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Abstract

Ivrii’s conjecture asserts that the Cauchy problem is C∞ well-posed
for any lower order term if every critical point of the principal symbol is
effectively hyperbolic. Effectively hyperbolic critical point is at most triple
characteristic. If every characteristic is at most double this conjecture
has been proved in 1980’. In this paper we prove the conjecture for the
remaining cases, that is for operators with triple effectively hyperbolic
characteristics.
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1 Introduction

This paper is devoted to the Cauchy problem

(1.1)

 Pu = Dm
t u+

∑m−1
j=0

∑
|α|+j≤m aj,α(t, x)D

α
xD

j
tu = 0,

Dj
tu(0, x) = uj(x), j = 0, . . . ,m− 1

where t ≥ 0, x ∈ Rd and the coefficients aj,α(t, x) are real valued C∞ functions
in a neighborhood of the origin of R1+d and Dx = (Dx1

, . . . , Dxd
), Dxj

=
(1/i)(∂/∂xj) and Dt = (1/i)(∂/∂t). The Cauchy problem (1.1) is C∞ well-
posed at the origin for t ≥ 0 if one can find a δ > 0 and a neighborhood U of
the origin of Rd such that (1.1) has a unique solution u ∈ C∞([0, δ) × U) for
any uj(x) ∈ C∞(Rd). We assume that the principal symbol of P

p(t, x, τ, ξ) = τm +

m−1∑
j=0

∑
|α|+j=m

aj,α(t, x)ξ
ατ j
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is hyperbolic for t ≥ 0, that is there exist δ′ > 0 and a neighborhood U ′ of the
origin such that

(1.2) p = 0 has only real roots in τ for (t, x) ∈ [0, δ′)× U ′ and ξ ∈ Rd

which is indeed necessary in order that the Cauchy problem (1.1) is C∞ well-
posed near the origin for t ≥ 0 ([17], [19]).

In [7], Ivrii and Petkov proved that if the Cauchy problem (1.1) is C∞ well
posed for any lower order term then the Hamilton map Fp has a pair of non-
zero real eigenvalues at every critical point ([7, Theorem 3]). With X = (t, x),
Ξ = (τ, ξ) the Hamilton map Fp is defined by

Fp(X,Ξ) =


∂2p

∂X∂Ξ

∂2p

∂Ξ∂Ξ

− ∂2p

∂X∂X
− ∂2p

∂Ξ∂X


and a critical point (X,Ξ) is a point where ∂p/∂X = ∂p/∂Ξ = 0. Note that
p(X,Ξ) = 0 at critical points by the homogeneity in Ξ so that (X,Ξ) is a
multiple characteristic and τ is a multiple characteristic root of p. A critical
point where the Hamilton map Fp has a pair of non-zero real eigenvalues is
called effectively hyperbolic ([4], [10]). In [8], Ivrii has proved that if every
critical point is effectively hyperbolic, and p admits a decomposition p = q1q2
with real smooth symbols qi near the critical point, then the Cauchy problem
is C∞ well-posed for every lower order term. In this case the critical point is
effectively hyperbolic if and only if the Poisson bracket {q1, q2} does not vanish
there. He has conjectured that the assertion would hold without any additional
condition.

If a critical point (X,Ξ) is effectively hyperbolic then τ is a characteristic
root of multiplicity at most 3 ([7, Lemma 8.1]). If every multiple characteristic
root is at most double, the conjecture has been proved in [8], [20], [11, 12, 13],
[21, 23, 22]. When there exists an effectively hyperbolic critical point (X,Ξ)
such that τ is a triple characteristic root where p cannot be factorized, several
partial results are obtained in [2], [27], [28], [26]. Note that if there is a triple
characteristic which is not effectively hyperbolic the Cauchy problem is not
well-posed in the Gevrey class of order s > 2 in general, even the subprincipal
symbol vanishes identically ([3]).

In this paper we prove

Theorem 1.1. Assume (1.2). If every critical point (0, 0, τ, ξ), ξ 6= 0 is effec-
tively hyperbolic then for any aj,α(t, x) with j + |α| ≤ m− 1, which are C∞ in
a neighborhood of (0, 0), there exist δ > 0, a neighborhood U of the origin and
n > 0 such that for any s ∈ R and any f with t−n+1/2〈D〉sf ∈ L2((0, δ) × Rd)
there exists u with t−n〈D〉−n−2+s+m−jDj

tu ∈ L2((0, δ)×Rd), j = 0, 1, . . . ,m−1
satisfying

Pu = f in (0, δ)× U.
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Here 〈D〉 stands for
√
1 + |Dx|2. For some more detailed information about

the constant n, see (10.1) below.

Theorem 1.2. Under the same assumption as in Theorem 1.1, for any aj,α(t, x)
with j + |α| ≤ m − 1, which are C∞ in a neighborhood of (0, 0), there exist
δ > 0 and a neighborhood U of the origin such that for any uj(x) ∈ C∞

0 (Rd),
j = 0, 1, . . . ,m − 1, there exists u(t, x) ∈ C∞([0, δ) × U) satisfying (1.1) in
[0, δ) × U . If u(t, x) ∈ C∞([0, δ) × U) with ∂jt u(0, x) = 0, j = 0, 1, . . . ,m − 1,
satisfies Pu = 0 in [0, δ)× U then u = 0 in a neighborhood of (0, 0).

Proof. Compute uj(x) = Dj
tu(0, x) for j = m,m + 1, . . . from uj(x), j =

0, 1, . . . ,m− 1 and the equation Pu = 0. By a Borel’s lemma there is w(t, x) ∈
C∞

0 (R1+d) such that Dj
tw(0, x) = uj(x) for all j ∈ N. Since (Dj

tPw)(0, x) = 0
for all j ∈ N it is clear that t−n+1/2〈D〉sPw ∈ L2((0, δ)×Rd) for any s. Thanks
to Theorem 1.1 there exists v with t−n〈D〉−2n−2+s+m−jDj

t v ∈ L2((0, δ)× Rd),
j = 0, 1, . . . ,m − 1 satisfying Pv = −Pw in (0, δ) × U . Since we may assume
n ≥ 1 hence Dj

t v(0, x) = 0, j = 0, 1, . . . ,m − 1 we conclude that u = v + w
is a desired solution. Local uniqueness follows from Theorem 13.4 because
∂kt u(0, x) = 0 for any k ∈ N by Pu = 0.

Remark 1.1. Under the assumption of Theorem 1.1 we see that p has necessar-
ily non-real characteristic roots in the t < 0 side near (0, 0, ξ) if p(0, 0, τ, ξ) = 0
has a triple characteristic root. Therefore P would be a Tricomi type operator
in this case. In fact from [7, Lemma 8.1] it follows that if τ is a triple character-
istic root at (0, 0, ξ) and all characteristic roots are real in a full neighborhood
of (0, 0, ξ) then Fp(0, 0, τ, ξ) = O.

Remark 1.2. For any characteristic root τ of multiplicity r ≥ 3 at (t, x, ξ) with
t ≥ 0 the point (t, x, τ, ξ) is a critical point, where Fp(t, x, τ, ξ) = O unless r = 3
and t = 0 ([7, Lemma 8.1]). For any double characteristic root τ at (t, x, ξ) with
t ≥ 0 the point (t, x, τ, ξ) is a critical point if t > 0 while it is not necessarily
critical point if t = 0. Here is a simple example

P = (D2
t − tℓD2

x)(Dt + cDx), ℓ ∈ N, x ∈ R, t ≥ 0

where c ∈ R. Let c 6= 0 then it is clear that τ = 0 is a double characteristic root
at (0, 0, 1). If ℓ = 1 then ∂tp(0, 0, 0, 1) = −c 6= 0 and hence (0, 0, 0, 1) is not a
critical point. If ℓ ≥ 2 then (0, 0, 0, 1) is a critical point and Fp has non-zero
real eigenvalues there if and only if ℓ = 2. Let c = 0 then τ = 0 is a triple
characteristic root at (0, 0, 1) hence (0, 0, 0, 1) is a critical point. At (0, 0, 0, 1),
Fp has non-zero real eigenvalues if and only if ℓ = 1.

2 Outline of the proof of Theorem 1.1

As noted in Introduction, if a critical point (X,Ξ) is effectively hyperbolic then τ
is a characteristic root of multiplicity at most 3. This implies that it is essential
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to study operators P of third order

(2.1) P = D3
t +

3∑
j=1

aj(t, x,D)〈D〉jD3−j
t

which is differential operator in t with coefficients aj ∈ S0, classical pseudodif-
ferential operator of order 0, where 〈D〉 = op((1 + |ξ|2)1/2). One can reduce P
to the case with a1(t, x,D) = 0 and hence the principal symbol is

(2.2) p(t, x, τ, ξ) = τ3 − a(t, x, ξ)|ξ|2τ − b(t, x, ξ)|ξ|3.

All characteristic roots are real for t ≥ 0 implies that

(2.3) ∆ = 4 a(t, x, ξ)3 − 27 b(t, x, ξ)2 ≥ 0, (t, x, ξ) ∈ [0, T )× U × Rd.

Assume that p(0, 0, τ, ξ̄) = 0 has a triple characteristic root τ̄ , which is neces-
sarily τ̄ = 0. The critical point (0, 0, τ̄ , ξ̄) is effectively hyperbolic if and only
if

(2.4) ∂ta(0, 0, ξ̄) 6= 0.

So we can assume that a = e(t+ α(x, ξ)) with e > 0. Add to P a second order
term Me〈D〉Dt with a large parameter M > 0 which is irrelevant because even-
tually it is proved that any lower order term can be controlled. The coefficient
a(t, x, ξ) changes to e(t+ α+M〈ξ〉−1) which we still denote by the same a.

With U = t(D2
t u, 〈D〉Dtu, 〈D〉2u) the equation Pu = f is reduced to

(2.5) DtU = A(t, x,D)〈D〉U +B(t, x,D)U + F

where A,B ∈ S0, F = t(f, 0, 0) and

A(t, x, ξ) =

0 a b
1 0 0
0 1 0

 .
Let S be the Bézout matrix of p and ∂p/∂τ , that is

S(t, x, ξ) =

 3 0 −a
0 2a 3b
−a 3b a2


then S is nonnegative definite and symmetrizes A, that is SA is symmetric
which is easily examined directly, though this is a special case of a general
fact (see [14], [25]). We now diagonalize S by an orthogonal matrix T so that
T−1ST = Λ = diag (λ1, λ2, λ3) where 0 < λ1 < λ2 < λ3 are the eigenvalues of
S which satisfies ∣∣∂αx ∂βξ λj∣∣ ≾ a3−j−|α+β|/2〈ξ〉−|β|, j = 1, 2, 3.
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Then the equation is reduced to a 3×3 first order system of V = T−1U ; roughly

(2.6) DtV = AT 〈D〉V +BTV, AT = T−1AT

where Λ symmetrizes AT . A significant feature of λj is that

∆

a
≾ λ1 ≾ a2, λ2 ' a, λ3 ' 1.

From the conditions (2.3) and (2.4) the discriminant ∆ is essentially a third
order polynomial in t and we can find a smooth ψ(x, ξ) and c > 0 such that

(2.7)
∆

a
≥ cmin

{
t2, (t− ψ)2 +Mρ〈ξ〉−1

}
where ρ = α+M〈ξ〉−1 and ψ satisfies∣∣∂αx ∂βξ ψ∣∣ ≾ ρ1−|α+β|/2〈ξ〉−|β|.

Since (2.6) is a symmetrizable system with a diagonal symmetrizer Λ, a
natural energy will be

(
op(Λ)V, V

)
=

3∑
j=1

(
op(λj)Vj , Vj

)
and (2.7) suggests that a weighted energy with a scalar weight op(t−nϕ−n)

ϕ = ω + t− ψ, ω =
√

(t− ψ)2 +Mρ〈ξ〉−1

would work, which is essentially the same weight as the weight employed for
studying double effectively hyperbolic characteristics in [23] (see also [24]), there
M〈ξ〉−1 was used in place of Mρ〈ξ〉−1. A main feature of the weight function
tϕ is

∂t(tϕ) = κ (tϕ), κ =
1

t
+

1

ω
.

Our task is now to show the weighted energy

Re e−θt(op(Λ)op(t−nϕ−n)V, op(t−nϕ−n)V )

works well and can control any lower order term, yielding weighted energy esti-
mates for P . In doing so it is crucial that λj , ω, ρ and ϕ are admissible weights
for the metric

g =M−1
(
〈ξ〉|dx|2 + 〈ξ〉−1|dξ|2

)
and λj ∈ S(λj , g), ϕ ∈ S(ϕ, g) so on. This fact enables us to apply the Weyl
calculus to op(λj), op(ϕ

−n) and so on. One of main points to derive energy
estimates is the following inequalities

Re (op(Λ)op(∂t(t
−nϕ−n))V,W )− θ (op(Λ)W,W )

≤ −n(1− CM−1)‖op(κ1/2Λ1/2)W‖2

−c θ
(
‖op(Λ1/2)W‖2 +

3∑
j=1

M3−j‖〈D〉−(3−j)/2Wj‖2
)
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where W = op(t−nϕ−n)V , while for B = (bij) with bij ∈ S(1, g) we see∣∣(op(Λ)op(B)W,W )
∣∣ ≤ C‖op(κ1/2Λ1/2)W‖2

+C
(
‖op(Λ1/2)W‖2 +

3∑
j=1

M3−j‖〈D〉−(3−j)/2Wj‖2
)

which are proved applying the Weyl calculus of pseudodifferential operators.

3 Lower bound of discriminant

Study third order operators P of the form (2.1) with a1(t, x,D) = 0, hence the
principal symbol has the form (2.2) where a(t, x, ξ) and b(t, x, ξ) are homoge-
neous of degree 0 in ξ and assumed to satisfy (2.3) with some T > 0 and some
neighborhood U of the origin of Rd. Assume that p(t, x, τ, ξ) has a triple char-
acteristic root τ̄ at (0, 0, ξ̄), |ξ̄| = 1 and (0, 0, τ̄ , ξ̄) is effectively hyperbolic. It is
clear that

τ̄ = 0, a(0, 0, ξ̄) = 0, b(0, 0, ξ̄) = 0.

Since ∂αx ∂
β
ξ a(0, 0, ξ̄) = 0 for |α + β| = 1 and ∂αx ∂

β
ξ b(0, 0, ξ̄) = 0 for |α + β| ≤ 2

by (2.3) (see Lemma 4.2 below) it is easy to see

(3.1) det
(
λ− Fp(0, 0, 0, ξ̄)

)
= λ2d

(
λ2 − {∂ta(0, 0, ξ̄)}2

)
hence (0, 0, 0, ξ̄) is effectively hyperbolic if and only if

∂ta(0, 0, ξ̄) 6= 0.

Since a(0, 0, ξ̄) = 0 and ∂ta(0, 0, ξ̄) 6= 0 there is a neighborhood U of (0, 0, ξ̄) in
which one can write

a(t, x, ξ) = e(t, x, ξ)(t+ α(x, ξ))

where e > 0 in U . Note that α(x, ξ) ≥ 0 near ξ̄ because a(t, x, ξ) ≥ 0 in
[0, T )× U × Rd.

3.1 A perturbed discriminant

Introducing a small parameter ϵ we consider

τ3 − e(t, x, ξ)(t+ α(x, ξ) + ϵ2)|ξ|2τ − b(t, x, ξ) |ξ|3

= τ3 − a(t, x, ξ, ϵ)|ξ|2 − b(t, x, ξ)|ξ|3.
(3.2)

From now on we write b(X) or a(X, ϵ) and so on to make clearer that these
symbols are defined in some neighborhood of X̄ = (0, ξ̄) or (X̄, 0). Consider the
discriminant of (3.2);

∆(t,X, ϵ) = 4 a3(t,X, ϵ)− 27 b2(t,X).
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Lemma 3.1. One can write

∆ = ẽ(t,X, ϵ)
(
t3 + a1(X, ϵ)t

2 + a2(X, ϵ)t+ a3(X, ϵ)
)

in a neighborhood of (0, X̄, 0) where aj(X̄, 0) = 0, j = 1, 2, 3 and ẽ > 0.

Proof. It is clear that ∂kt a
3(0, X̄, 0) = 0 for k = 0, 1, 2 and ∂3t a

3(0, X̄, 0) 6= 0.
Show ∂tb(0, X̄, 0) = 0. Suppose the contrary and hence

b(t, X̄, 0) = t
(
b1 + tb2(t)

)
with b1 6= 0. Since a(t, X̄, 0) = c t with c > 0 then ∆(t, X̄, 0) = 4 c3 t3 −
27 b(t, X̄, 0)2 ≥ 0 leads to a contradiction. Thus ∂kt ∆(0, X̄, 0) = 0 for k = 0, 1, 2
and ∂3t∆(0, X̄, 0) 6= 0. Then from the Malgrange preparation theorem (e.g. [5,
Theorem 7.5.5]) one can conclude the assertion.

Introducing

(3.3) ρ(X, ϵ) = α(X) + ϵ2

one can also write

∆ = 4e3(t+ ρ)3 − 27b2 = 4e3
{
(t+ ρ)3 − 27

4e3
b2
}
= 4e3

{
(t+ ρ)3 − b̂

2}
with b̂ = 3

√
3 b/2e3/2. Denoting

b̂(t,X) =

2∑
j=0

b̂j(X)tj + b̂3(t,X)t3

where b̂0(X̄) = b̂1(X̄) = 0 which follows from the proof of Lemma 3.1, one can
write

∆/ẽ = ∆̄ = t3 + a1(X, ϵ)t
2 + a2(X, ϵ)t+ a3(X, ϵ)

= E
{
(t+ ρ)3 −

( 2∑
j=0

b̂j(X)tj + b̂3(t,X)t3
)2}(3.4)

with E(t,X, ϵ) = 4e3/ẽ. Here note that E(0, X̄, 0) = 1 since e(0, X̄, 0) =
∂ta(0, X̄, 0) and ẽ(0, X̄, 0) = 4∂ta(0, X̄, 0)

3.

Lemma 3.2. There is a neighborhood V of X̄ such that∣∣b̂1(X)
∣∣ ≤ 4α1/2(X) (X ∈ V ).

Proof. It is clear that |b̂0(X)| ≤ α3/2(X). If α(X) = 0 then the assertion is
obvious. Assume α(X) 6= 0. Since

(3.5) (t+ α(X))3 ≥
( 2∑
j=0

b̂j(X)tj + b̂3(t,X)t3
)2

(0 ≤ t ≤ T )
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choosing t = 3α(X) ≤ T , writing α = α(X), it follows from (3.5) that

8α3/2 ≥
∣∣b̂0(X) + 3b̂1(X)α

∣∣− Cα2 ≥ 3|b̂1(X)|α− Cα2 − α3/2

hence the assertion is clear because α(X̄) = 0.

Lemma 3.3. In a neighborhood of (X̄, 0) we have aj(X, ϵ) = O
(
ρ(X, ϵ)j

)
for

j = 1, 2, 3. More precisely

a1(X, ϵ) = E(0, X, ϵ)
(
3ρ(X, ϵ)− b̂

2

1(X)
)
+O(ρ3/2),

a2(X, ϵ) = E(0, X, ϵ)
(
3ρ2(X, ϵ)− 2b̂0(X)b̂1(X)

)
+O(ρ3/2),

a3(X, ϵ) = E(0, X, ϵ)
(
ρ3(X, ϵ)− b̂

2

0(X)
)
.

Proof. Since ∆̄(0, X, ϵ) ≥ 0 it follows from (3.4) that a3(X, ϵ) = E(0, X, ϵ)
(
ρ(X, ϵ)3−

b̂0(X)2
)
≥ 0 hence b̂0 = O(ρ3/2) and consequently a3(X, ϵ) = O(ρ3). Since

∂t∆̄
∣∣∣
t=0

= a2(X, ϵ) = ∂tE(0, X, ϵ)a3(X, ϵ)

+E(0, X, ϵ)
(
3ρ2(X, ϵ)− 2b̂0(X)b̂1(X)

)
it follows that b̂0(X)b̂1(X) = O(ρ2) by Lemma 3.2 and hence the above equality
shows the assertion for a2(X, ϵ). Finally from

∂2t ∆̄
∣∣∣
t=0

= 2a1(X, ϵ) = ∂2tE(0, X, ϵ)a3(X, ϵ)

+2∂tE(0, X, ϵ)
(
3ρ2(X, ϵ)− 2b̂0(X)b̂1(X)

)
+2E(0, X, ϵ)

(
3ρ(X, ϵ)− b̂1(X)2 − 2b̂0(X)b̂2(X)

)
and Lemma 3.2 one concludes the assertion for a1(X, ϵ).

3.2 Construction of ψ(x, ξ)

Denote

(3.6) ν(X, ϵ) = inf{t | ∆̄(t,X, ϵ) > 0}

and hence ∆̄(ν,X, ϵ) = 0. First check that ν(X, ϵ) ≤ 0. Suppose the contrary.
Since ∆̄(t,X, ϵ) ≥ 0 for t ≥ 0 it follows that ν(X, ϵ) is a double root, that is one
can write ∆̄(t) = (t− ν)2(t− ν̃) with a real ν̃. It is clear that ν̃ 6= ν and ν̃ ≤ 0
because ∆̄(t) ≥ 0 for t ≥ 0. Therefore we have ν̃ < ν and ∆̄(t) > 0 in ν̃ < t < ν
which is incompatible with the definition of ν. Write

∆̄(t,X, ϵ) = (t− ν(X, ϵ))
(
t2 +A1(X, ϵ)t+A2(X, ϵ)

)
where A1 = ν + a1. Here we prepare following lemma.
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Lemma 3.4. One can find a neighborhood U of (X̄, 0) such that for any (X, ϵ) ∈
U there is j ∈ {1, 2, 3} such that

|νj(X, ϵ)| ≥ ρ(X, ϵ)/9

where ∆̄(t,X, ϵ) =
∏3

j=1(t− νj(X, ϵ)).

Proof. First show that there is 1/3 < δ < 1/2 such that

(3.7) max
{
|ρ3 − b̂

2

0|1/3, |ρ2 − 2b̂0b̂1/3|1/2, |ρ− b̂
2

1/3|
}
≥ δ2ρ.

In fact denoting f(δ) = 2(1 − δ6)1/2(1− δ2)1/2/
√
3− 1− δ4 it is easy to check

that f(1/3) > 0 and f(1/2) < 0. Take 1/3 < δ < 1/2 such that f(δ) = 0.

If |ρ3 − b̂
2

0|1/2 < δ2ρ and |ρ − b̂
2

1/3| < δ2ρ then |b̂0| ≥ (1 − δ6)1/2ρ3/2 and

|b̂1| ≥
√
3(1− δ2)1/2ρ1/2 hence

|ρ2 − 2b̂0b̂1/3| ≥ 2|b̂0b̂1|/3− ρ2 ≥
(
f(δ) + δ4

)
ρ2 = δ4ρ2

which shows that |ρ2 − 2b̂0b̂1/3|1/2 ≥ δ2ρ. Thus (3.7) is proved. Thanks to
Lemma 3.3, taking E(0, X̄, 0) = 1 and 1/3 < δ, one can find a neighborhood U
of (X̄, 0) such that

|a1(X, ϵ)| ≥ ρ/3, |a2(X, ϵ)| ≥ ρ2/33, |a3(X, ϵ)| ≥ ρ3/36, (X, ϵ) ∈ U .

Then the assertion follows from the relations between {νi} and {ai}.

Lemma 3.5. Denote ν defined in (3.6) by ν1 and by νj, j = 2, 3 the other roots
of ∆̄ = 0 in t. Then one can find a neighborhood U of (X̄, 0) and ci > 0 such
that

(3.8) if ν1 + a1 < 2 c1 ρ, (X, ϵ) ∈ U then |ν1 − νj | ≥ c2 ρ, j = 2, 3.

In particular ν1(X, ϵ) is smooth in (X, ϵ) ∈ U ∩ {ν1 + a1 < 2 c1ρ}.

Proof. Set δ = 1/9 and take c1 < δ/4. First note that if Re νj ≥ c1δ, j = 2, 3 it
is clear that |ν1 − νj | ≥ |ν1 − Re νj | ≥ Re νj ≥ c1δ because ν1 ≤ 0 then we may
assume

(3.9) Re νj < c1δ, j = 2, 3.

Write

∆̄(t) =

3∏
j=1

(t− νj) = (t− ν1)
(
(t+A1/2)

2 −D
)

and recall ν1 + a1 = A1. Consider the case that both ν2, ν3 are real so that
D ≥ 0 and ν2, ν3 = −A1/2±

√
D. If D = 0 and hence

−c1δ < Re νj = −A1/2 < c1δ

9



in view of (3.8) and (3.9). Then we see |ν1| ≥ δ ρ thanks to Lemma 3.4 and
hence

|ν1 − νj | ≥ |ν1| − |νj | ≥ (δ − c1)ρ ≥ 3δρ/4.

If D > 0 then one has −A1/2+
√
D ≤ 0. Otherwise ∆̄(t) would be negative for

some t > 0 near −A1/2+
√
D which is a contradiction. Thus

√
D ≤ A1/2 ≤ c1 δ

which shows that
|ν2|, |ν3| ≤ |A1|/2 +

√
D ≤ 2c1 ρ

and hence |ν1| ≥ δ ρ by Lemma 3.4 again. Therefore

|ν1 − νj | ≥ |ν1| − |νj | ≥ (δ − 2c1) ρ ≥ δρ/2.

Turn to the case D < 0 such that ν2, ν3 = −A1/2± i
√

|D|. As observed above
one may assume |Re νj | = |A1/2| < c1δ. Thanks to Lemma 3.4 either |ν1| ≥ δρ
or |ν2| = |ν3| ≥ δρ. If |ν1| ≥ δρ then it follows that

|ν1 − νj | ≥ |ν1 +A1/2| ≥ |ν1| − |A1|/2 ≥ (δ − c1)ρ ≥ 3δρ/4.

If |ν2| = |ν3| ≥ δρ so that |A1|/2 +
√
|D| ≥ δρ hence

√
|D| ≥ δρ − |A1|/2 ≥

(δ − c1)ρ which proves

|ν1 − νj | ≥
√
|D| ≥ (δ − c1)ρ ≥ δρ/2.

Thus ν1(X, ϵ) is a simple root and hence smooth provided that ν1+a1 < c1ρ.

Now define ψ(X, ϵ) which plays a crucial role in our arguments deriving
weighted energy estimates. Choose χ(s) ∈ C∞(R) such that 0 ≤ χ(s) ≤ 1 with
χ(s) = 1 if s ≤ 0 and χ(s) = 0 for s ≥ 1. Define

ψ(X, ϵ) = −χ
(ν1 + a1

2c1ρ

)ν1 + a1
2

(ϵ 6= 0).

We now prove

Proposition 3.1. One can find a neighborhood U of (X̄, 0) such that

(3.10) ∆̄(t,X, ϵ) ≥ υmin
{
t2, (t− ψ(X, ϵ))2

}
(t+ ρ(X, ϵ))

holds for (X, ϵ) ∈ U , ϵ 6= 0 and t ∈ [0, T ] where υ =
(
2(18

√
2 + 1)

)−1
.

Proof. Set δ = 1/9 again. First check that one can find c ≥ υ such that

(3.11) ∆̄(t,X, ϵ) ≥ c t2(t+ ρ) if A1 = ν1 + a1 ≥ 0.

Write ∆̄(t) = (t−ν1)
(
(t+A1/2)

2−D
)
. Consider the case D = 0. From Lemma

3.4 either |ν1| ≥ δρ or |A1/2| = A1/2 ≥ δρ. If |ν1| ≥ δρ then t− ν1 = t+ |ν1| ≥
t + δρ hence δ−1(t − ν1) ≥ t + ρ. Since (t + A1/2)

2 ≥ t2 it is clear that (3.11)
holds with c = δ. If A1/2 ≥ δρ then t + A1/2 ≥ t + δρ and t + A1/2 ≥ t,

10



t − ν1 = t + |ν1| ≥ t gives (3.11) with c = δ. Next consider the case D > 0.
Since ∆̄(t) ≥ 0 for t ≥ 0 if follows that −A1/2 +

√
D ≤ 0. Write

∆̄(t) = (t− ν1)(t− ν2)(t− ν3)

where ν2, ν3 = −A1/2 ±
√
D ≤ 0. If |ν1| ≥ δρ then δ−1(t − ν1) ≥ t + ρ as

above and t − νi = t + |νi| ≥ t then (3.11) with c = δ. Consider the case
D < 0 so that ν2, ν3 = −A1/2 ± i

√
|D|. If |ν1| ≥ δρ then (3.11) holds because

|t− νi| ≥ |t+A1/2| ≥ t. If |ν2| = |ν3| ≥ δρ then A1/2 +
√
|D| ≥ δρ. Since

(t− ν2)(t− ν3) = (t+A1/2)
2 + |D| ≥

(
t+A1/2 +

√
|D|

)2
/2

≥ (t+ δρ)2/2 ≥ δ t (t+ ρ)/2

(3.11) holds with c = δ/2.
Turn to the case A1 < 0. In this case, using ψ = −(ν1 + a1)/2 > 0, one can

write
∆̄(t) = (t− ν1)

(
(t− ψ)2 −D

)
.

Consider the case |ν1| ≥ δρ. Note that D ≤ 0 otherwise ψ +
√
D > 0 would be

a positive simple root of ∆̄(t) and a contradiction. Then

(t− ψ)2 −D = (t− ψ)2 + |D| ≥ (t− ψ)2.

Recalling t− ν1 = t+ |ν1| ≥ δ(t+ ρ) we get

(3.12) ∆̄(t,X, ϵ) ≥ c (t− ψ)2(t+ ρ)

with c = δ. Consider the case |ν2| = |ν3| =
∣∣ψ ± i

√
|D|

∣∣ = √
ψ2 + |D| ≥ δρ so

that
(t− ν2)(t− ν3) = (t− ψ)2 + |D| ≥

(
|t− ψ|+

√
|D|

)2
/2.

Assume ψ ≥
√

|D| so that
√
2ψ ≥ δρ. For 0 ≤ t ≤ ψ/2 hence t ≤ |t − ψ| and

ψ/2 ≤ |t− ψ| one has

|t− ψ| = (1− γ)|t− ψ|+ γ|t− ψ| ≥ (1− γ)t+ γψ/2

≥ (1− γ)t+ (γδ/2
√
2)ρ ≥ δ(2

√
2 + δ)−1(t+ ρ)

with γ = 2
√
2/(2

√
2 + δ). Since |t − ψ| +

√
|D| ≥ |t − ψ| ≥ t and |t − ν1| =

t+ |ν1| ≥ t it is clear that (3.11) holds with c = δ/2(2
√
2+ δ). For ψ/2 ≤ t such

that |t− ψ| ≤ t one sees

t− ν1 ≥ t = (1− γ)t+ γt ≥ (1− γ)t+ γψ/2 ≥ δ(2
√
2 + δ)−1(t+ ρ)

and hence (t− ν1)
(
(t− ψ)2 + |D|

)
≥ c (t+ ρ)(t− ψ)2 which is (3.12) with c =

δ/2(2
√
2 + δ). Next assume

√
|D| ≥ ψ so that

√
2
√
|D| ≥ δρ. For 0 ≤ t ≤ ψ/2

one has |t− ψ| ≥ t and hence

|t− ψ|+
√

|D| ≥ t+ δρ/
√
2 ≥ (δ/

√
2)(t+ ρ).
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Noting |t − ν1| = t + |ν1| ≥ t it is clear that (3.11) holds with c = δ/2
√
2. For

ψ/2 ≤ t we see that

|t− ψ|+
√
|D| ≥ t− |ψ|+

√
|D| ≥ t, |t− ψ|+

√
|D| ≥

√
|D| ≥ δρ/

√
2

which shows that |t − ψ| +
√
|D| ≥ δ(

√
2 + δ)−1(t + ρ). Recalling |t − ν1| =

t + |ν1| ≥ t again one has (3.11) with c = δ/2(
√
2 + δ). Thus the proof is

completed.

Lemma 3.6. One can find a neighborhood U of (X̄, 0) and ϵ0 > 0, C∗ > 0 such
that

(3.13)
|∂t∆(t,X, ϵ)|
∆(t,X, ϵ)

≤ C∗
(1
t
+

1

|t− ψ|+
√
a ϵ

)
, (X, ϵ) ∈ U

holds for t ∈ (0, T ] and 0 < ϵ ≤ ϵ0.

Proof. It will suffice to show (3.13) for ∆(t,X,
√
2ϵ) which we denote by ∆̃(t,X, ϵ).

It is clear that

∆̃ = ∆+ 4e3
(
3(t+ ρ)2ϵ2 + 3(t+ ρ)ϵ4 + ϵ6

)
= ∆+∆r.

Writing ∆̃ = ẽ
(
∆̄ + ∆̄r

)
it suffices to show the assertion for ∆̄ + ∆̄r instead of

∆̃. Note that

(3.14)
|∂t∆̄r|
∆̄r

≤ C
(
1 +

1

t+ ρ

)
≤ C ′ 1

t

always holds. Write ∆̄ = (t− ν1)(t− ν2)(t− ν3) and note that

∂t∆̄

∆̄
=

3∑
j=1

1

t− νj
.

Checking the proof of Proposition 3.1 it is easy to see that∣∣∂t∆̄/∆̄∣∣ ≤ C/t

when A1 ≥ 0. Therefore

|∂t∆̃|
∆̃

≤ |∂t∆̄|
∆̄ + ∆̄r

+
|∂t∆̄r|
∆̄ + ∆̄r

≤ |∂t∆̄|
∆̄

+
|∂t∆̄r|
∆̄r

proves the assertion. Study the case that A1 < 0. From the proof of Proposition
3.1 one can write

∆̄ = (t− ν1)
(
(t− ψ)2 −D

)
where ψ > 0 and D ≤ 0. If |D| ≥ aϵ2 then

|t− ψ|
(t− ψ)2 + |D|

≤ 1

((t− ψ)2 + aϵ2)1/2
≤

√
2

|t− ψ|+
√
a ϵ

12



which proves the assertion since |t−ν1| = t+ |ν1| ≥ t. Similarly if |t−ψ| ≥
√
a ϵ

one has
|t− ψ|

(t− ψ)2 + |D|
≤ 2

|t− ψ|+
√
a ϵ
.

If |D| < aϵ2 and |t− ψ| <
√
a ϵ it follows that

|∂t∆̄| ≤ (t− ψ)2 + |D|+ 2|t− ν1||t− ψ| ≤ 2aϵ2 + Ca3/2ϵ

because |t− ν1| ≤ Ca. In view of C∆̄r ≥ a2ϵ2 one concludes that

|∂t∆̄|
∆̄ + ∆̄r

≤ |∂t∆̄|
∆̄r

≤ C
2aϵ2 + Ca3/2ϵ

a2ϵ2

≤ C
(1
a
+

1√
a ϵ

)
≤ C ′

(1
t
+

1

|t− ψ|+
√
a ϵ

)
which together with (3.14) proves the assertion.

4 Extension of symbols

In the preceding Sections 3.1 and 3.2 all symbols we have studied are defined
in some conic (in ξ) neighborhood of (X, ϵ) = (X̄, 0) or X = X̄. In this section
we extend such symbols to those on Rd × Rd following [23] (also [24]).

4.1 Extension of symbols

Let X̄ = (0, ξ̄) with |ξ̄| = 1. Let χ(s) ∈ C∞(R) be equal to 1 in |s| ≤ 1, vanishes
in |s| ≥ 2 such that 0 ≤ χ(s) ≤ 1. Define y(x) and η(ξ) by

yj(x) = χ(M2xj)xj , ηj(ξ) = χ(M2(ξj〈ξ〉−1
γ − ξ̄j))(ξj − ξ̄j〈ξ〉γ) + ξ̄j〈ξ〉γ

for j = 1, 2, . . . , d with
〈ξ〉γ = (γ2 + |ξ|2)1/2

where M and γ are large positive parameters constrained

(4.1) γ ≥M5.

It is easy to see that (1− CM−2)〈ξ〉γ ≤ |η| ≤ (1 + CM−2)〈ξ〉γ and

(4.2) |y| ≤ CM−2, |η/|η| − ξ̄| ≤ CM−2

with some C > 0 so that (y, η) is contained in a conic neighborhood of (0, ξ̄),
shrinking with M . Note that (y, η) = (x, ξ) on the conic neighborhood of (0, ξ̄)

(4.3) WM =
{
(x, ξ) | |x| ≤M−2, |ξj/|ξ| − ξ̄j | ≤M−2/2, |ξ| ≥ γM

}
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since ∣∣∣ ξj〈ξ〉γ
− ξ̄j

∣∣∣ ≤ ∣∣∣ ξj〈ξ〉γ
− ξj

|ξ|

∣∣∣+ ∣∣∣ ξj|ξ| − ξ̄j

∣∣∣ ≤ M−1

2
+

|〈ξ〉γ − |ξ||
〈ξ〉γ

≤ M−2

2
+

γ2

〈ξ〉γ(〈ξ〉γ + |ξ|)
≤M−2

if (x, ξ) ∈ WM where δij is the Kronecker’s delta. Define extensions α(x, ξ),
a(t, x, ξ), b(t, x, ξ), ∆(t, x, ξ), ∆̄(t, x, ξ), . . . of α(X), a(t,X, ϵ), b(t,X), ∆(t,X, ϵ),
∆̄(t,X, ϵ), . . . by

α(x, ξ) = α(y(x), η(ξ)), a(t, x, ξ) = a(t, y(x), η(ξ), ϵ(ξ)),

b(t, x, ξ) = b(t, y(x), η(ξ)), ∆(t, x, ξ) = ∆(t, y(x), η(ξ), ϵ(ξ)),

∆̄(t, x, ξ) = ∆̄(t, y(x), η(ξ), ϵ(ξ))

so on with

(4.4) ϵ(ξ) =M1/2〈ξ〉−1/2
γ .

In view of (4.1) and (4.2) such extended symbols are defined in Rd × Rd. Let

G =M4(|dx|2 + 〈ξ〉−2
γ |dξ|2).

Then it is easy to see

(4.5) yj ∈ S(M−2, G), ηj − ξ̄j〈ξ〉γ ∈ S(M−2〈ξ〉γ , G), ϵ(ξ) ∈ S(M−2, G)

for j = 1, . . . , d. To avoid confusions we denote 〈η(ξ)〉γ by [ξ] hence

(4.6) [ξ] ∈ S(〈ξ〉γ , G), [ξ]〈ξ〉−1
γ − 1 ∈ S(M−2, G).

Lemma 4.1. Let f(X, ϵ) be a symbol defined in a conic neighborhood of (X̄, 0)

which is homogeneous of degree 0 in ξ. If ∂αx ∂
β
ξ ∂

k
ϵ f(X̄, 0) = 0 for 0 ≤ |α+ β|+

k < r then f(x, ξ) = f(y(x), η(ξ), ϵ(ξ)) ∈ S(M−2r, G). Let h(X) be a symbol
defined in a conic neighborhood of X̄ which is homogeneous of degree 0 in ξ.
Then

h(x, ξ)− h(0, ξ̄) ∈ S(M−2, G).

Proof. We prove the first assertion. By the Taylor formula one can write

f(y, η, ϵ) =
∑

|α+β|+k=r

1

α!β!k!
yα(η − ξ̄〈ξ〉γ)βϵk∂αx ∂

β
ξ ∂

k
ϵ f(0, ξ̄〈ξ〉γ , 0)

+(r + 1)
∑

|α+β|+k=r+1

[ 1

α!β!k!
yα(η − ξ̄〈ξ〉γ)βϵk

×
∫ 1

0

(1− θ)r∂αx ∂
β
ξ ∂

k
ϵ f(θy, θ(η − ξ̄〈ξ〉γ) + ξ̄〈ξ〉γ , θϵ)dθ

]
.

14



It is clear that

yα(η − ξ̄〈ξ〉γ)βϵk∂αx ∂
β
ξ ∂

k
ϵ f(0, ξ̄, 0)〈ξ〉−|β|

γ ∈ S(M−2r, G)

for |α+β|+k = r in view of (4.5). Since 〈ξ〉γ/C ≤ |θ(η− ξ̄〈ξ〉γ)+ ξ̄〈ξ〉γ | ≤ C〈ξ〉γ
the integral belongs to S(〈ξ〉−|β|

γ , G) hence the second term on the right-hand
side is in S(M−2r−2, G) thus the assertion.

4.2 Estimate of extended symbols

From now on it is assumed that all constants are independent of M and γ if
otherwise stated. We write A ≾ B if A is bounded by constant, independent of
M and γ, times B. Recall ρ(X, ϵ) = α(X) + ϵ2 so that

(4.7) ρ(x, ξ) = α(x, ξ) +M〈ξ〉−1
γ .

From Lemma 4.1 we see ρ ∈ S(M−4, G) hence |∂αx ∂
β
ξ ρ| ≾ 〈ξ〉−|β|

γ for |α+β| = 2.
Since ρ ≥ 0 it follows from the Glaeser inequality that

(4.8)
∣∣∂αx ∂βξ ρ∣∣ ≾ √

ρ 〈ξ〉−|β|
γ (|α+ β| = 1).

Lemma 4.2. Assume |a(X, ϵ)| ≤ Cρ(X, ϵ)n with some n > 0 in a conic neigh-
borhood of (X̄, 0) and a(X, ϵ) is of homogeneous of degree 0 in ξ. Then there
exists Cαβ > 0 such that

(4.9)
∣∣∂αx ∂βξ a(x, ξ)∣∣ ≤ Cαβρ(x, ξ)

n−|α+β|/2〈ξ〉−|β|
γ .

Proof. From the assumption it follows that ∂αx ∂
β
ξ ∂

k
ϵ a(0, ξ̄, 0) = 0 for |α+β|+k <

2n and hence Lemma 4.1 shows that a(x, ξ) ∈ S(M−4n, G). Therefore for
|α+ β| ≥ 2n one sees∣∣〈ξ〉|β|γ ∂αx ∂

β
ξ a(x, ξ)

∣∣ ≤ CM2|α+β|−4n ≤ C
(
C0ρ

−1
)|α+β|/2−n

= CC
|α+β|/2−n
0 ρn−|α+β|/2

because M4 ≤ C0ρ
−1. Hence (4.9) holds for |α + β| ≥ 2n. The case |α + β| ≤

2n− 1 remains to be checked. Writing X = (x, ξ), Y = (y, η〈ξ〉γ) and applying
the Taylor formula to obtain

∣∣a(X + sY )
∣∣ = ∣∣∣ 2n−1∑

j=0

sj

j!
dja(X;Y ) +

s2n

(2n)!
d2na(X + sθY ;Y )

∣∣∣
≤ C

( 2n−1∑
j=0

sj

j!
djρ(X;Y ) +

s2n

(2n)!
d2nρ(X + sθ′Y ;Y )

)n
(4.10)

with some 0 < θ, θ′ < 1 where

dja(X;Y ) =
∑

|α+β|=j

j!

α!β!
∂αx ∂

β
ξ a(x, ξ)y

αηβ〈ξ〉|β|γ .
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If ρ(x, ξ) = 0 then ∂αx ∂
β
ξ ρ(x, ξ) = 0 for |α + β| = 1 because ρ ≥ 0 and then

it follows that ∂αx ∂
β
ξ a(x, ξ) = 0 for |α + β| ≤ 2n − 1 from (4.10) hence (4.9) is

obvious. We fix a small s0 > 0 and assume ρ(x, ξ) 6= 0. If ρ(x, ξ) ≥ s0 then one
has ∣∣∂αx ∂βξ a(x, ξ)〈ξ〉|β|γ

∣∣ ≤ CαβM
−4n+2|α+β| ≤ Cαβ

≤ Cαβs
−n+|α+β|/2
0 s

n−|α+β|/2
0 ≤ Cαβs

−n+|α+β|/2
0 ρn−|α+β|/2

which proves (4.9). Assume 0 < ρ(x, ξ) < s0. Note that∣∣d2na(X + sθY ;Y )
∣∣ ≤ C, d2nρ(X + sθ′Y ;Y ) ≤ Cρ(X)1−n

for any |(y, η)| ≤ 1/2. Indeed the first one is clear from a(x, ξ) ∈ S(M−4n, G).
To check the second inequality it is enough to note that for |α+ β| = 2n∣∣∂αx ∂βξ ρ(X + θ′′Y )

∣∣ ≤ CM−2+2n〈ξ + θ′′〈ξ〉γη〉−|β|
γ ≤ C ′(C0ρ(X)−1)n−1〈ξ〉−|β|

γ

since
√
2〈ξ + θ〈ξ〉γη〉γ ≥ 〈ξ〉γ/2 for |η| ≤ 1/2 and |θ| < 1. Take s = ρ(X)1/2 in

(4.10) to get

∣∣∣ 2n−1∑
j=0

1

j!
dja(X;Y )ρ(X)j/2

∣∣∣ ≤ C
( 2n−1∑

j=0

1

j!
djρ(X;Y )ρ(X)j/2

)n

+ Cρ(X)n

which is bounded by Cρ(X)n because |dρ(X;Y )| ≤ C ′′ρ(X)1/2 in view of (4.8)
and

|djρ(X;Y )| ≤ CM−2+j ≤ C(C0ρ
−1(X))j/2−1

for j ≥ 3. This gives

∣∣∣ 2n−1∑
j=1

1

j!
dja(X;Y )

ρ(X)j/2

ρ(X)n

∣∣∣ ≤ C1.

Replacing (y, η) by s(y, η), |(y, η)| = 1/2, 0 < |s| < 1 one obtains

∣∣∣ 2n−1∑
j=1

sj

j!
dja(X;Y )

ρ(X)j/2

ρ(X)n

∣∣∣ ≤ C1.

Since two norms sup|s|≤1 |p(s)| and max {|cj |} on the vector space consisting

of all polynomials p(s) =
∑2n−1

j=0 cjs
j are equivalent one obtains |dja(X;Y )| ≤

B′ρ(X)n−j/2. Since |(y, η)| = 1/2 is arbitrary one concludes (4.9).

Corollary 4.1. On has
∣∣∂αx ∂βξ ρ(x, ξ)∣∣ ≾ ρ(x, ξ)1−|α+β|/2〈ξ〉−|β|

γ .

Lemma 4.3. Let s ∈ R. Then
∣∣∂αx ∂βξ ρs∣∣ ≾ ρs−|α+β|/2〈ξ〉−|β|

γ .
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Proof. Since

∂αx ∂
β
ξ ρ

s =
∑

Cα(j)β(j)ρs
(∂α(1)

x ∂β
(1)

ξ ρ

ρ

)
· · ·

(∂α(k)

x ∂β
(k)

ξ ρ

ρ

)
the assertion follows from Corollary 4.1.

Lemma 4.4. Let aj(x, ξ) = aj(y(x), η(ξ), ϵ(ξ)). Then∣∣∂αx ∂βξ aj(x, ξ)∣∣ ≾ ρ(x, ξ)j−|α+β|/2〈ξ〉−|β|
γ , j = 1, 2, 3.

Proof. The assertion follows from Lemmas 3.3 and 4.2.

For the extension ψ(x, ξ) = ψ(y(x), η(ξ), ϵ(ξ)) of ψ(X, ϵ) we have

Lemma 4.5. One has
∣∣∂αx ∂βξ ψ(x, ξ)∣∣ ≤ Cαβρ(x, ξ)

1−|α+β|/2〈ξ〉−|β|
γ .

Proof. Since Lemma 4.2 is not available for ψ(X, ϵ) because it is not defined for
ϵ = 0 then we show the assertion directly. Let ν1(x, ξ), a1(x, ξ) and ∆̄(t, x, ξ) be
extensions of ν1(X, ϵ), a1(X, ϵ) and ∆̄(t,X, ϵ) and hence one has ∆̄(ν1(x, ξ), x, ξ) =
0. Note that |∂t∆̄(ν1, x, ξ)| ≥ 4 c22 ρ

2(x, ξ) if ν1(x, ξ) + a1(x, ξ) < 2c1ρ(x, ξ)
thanks to Lemma 3.5. Starting with

∂t∆̄(ν1, x, ξ)∂
α
x ∂

β
ξ ν1 + ∂αx ∂

β
ξ ∆̄(ν1, x, ξ) = 0 (|α+ β| = 1)

a repetition of the same argument proving the estimates for λ2 in Lemma 6.3
below together with Lemma 4.4 one obtains

(4.11)
∣∣∂αx ∂βξ ν1∣∣ ≾ ρ1−|α+β|/2〈ξ〉−|β|

γ , ν1 + a1 < 2c1ρ.

Here we have used |ν1| ≾ ρ which also follows from Lemma 4.4. Using (4.11)
and Lemmas 4.3 and 4.4 the assertion follows easily.

4.3 Remarks on the condition (3.10)

In this subsection we work near (0, ξ̄) and (x, ξ) varies in a neighborhood of
(0, ξ̄). First note that p has no triple characteristic root in t > 0 because
t+ α(x, ξ) > 0 for t > 0. Define

ψ̄(x, ξ) = −(ν1(x, ξ, 0) + a1(x, ξ, 0))/2

then it is clear from the proof of Proposition 3.1 that

(4.12) C∆(t, x, ξ, 0) ≥ min
{
t2, (t− ψ̄(x, ξ))2

}
(t+ α(x, ξ)) (t ≥ 0).

Assume that p has a double characteristic root at (t, x, ξ) with t > 0. Denoting
by µ(t, x, ξ) the other characteristic root of p, which is simple and hence smooth
in (t, x, ξ) near the reference point, one can write

p(t, x, τ, ξ) = τ3 − a(t, x, ξ)|ξ|2τ − b(t, x, ξ)|ξ|3

= (τ − µ(t, x, ξ))
(
τ2 + c1(t, x, ξ)τ + c2(t, x, ξ)

)
.
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Note that

∆(t, x, ξ, 0)|ξ|6 =
(
4 a3 − 27 b2

)
|ξ|6 = (2c21 + c2)

(
c21 − 4c2

)
where ∆2 = (c21−4c2)/4 is the discriminant of τ2+c1τ+c2. Since µ

2+c1µ+c2 6= 0
hence 2c21 + c2 6= 0 it follows from (4.12) that

{(t, x, ξ) | ∆2 = 0, t > 0} ⊂ {(t, x, ξ) | t = ψ̄(x, ξ) > 0}.

Note that ψ̄(x, ξ) > 0 implies that ν1(x, ξ, 0)+a1(x, ξ, 0) < 0 ≤ 2c1α(x, ξ) hence
ψ̄(x, ξ) is smooth there and

(4.13)
∣∣ν1(x, ξ, 0)− νj(x, ξ, 0)

∣∣ ≥ c2α(x, ξ), j = 2, 3

by Lemma 3.5. Now we can prove

Lemma 4.6. Near X̄ = (0, ξ̄) the doubly characteristic set of p with t > 0 is
contained in {(t, x, ξ) | t = ψ̄(x, ξ) > 0} and t− ψ̄(x, ξ) is a time function for p.

It remains to show that t − ψ̄ is a time function (see e.g. [24]) for p. Let
q = τ2+ c1τ + c2 then Fp = c Fq at a double characteristic with t > 0 with some
c 6= 0 then it is enough to prove that t− ψ̄ is a time function for q. Write

q =
(
τ + c1/2

)2 −∆2

and recall [24, Lemma 2.1.3] that t− ψ̄ is a time function for q if and only if

(4.14) {τ + c1/2, t− ψ̄} > 0, {∆2, t− ψ̄}2 ≤ 4 c{τ + c1/2, t− ψ̄}2∆2

with some 0 < c < 1. Since ∆2 ≥ 0 one obtains |{∆2, t − ψ̄}| = |{∆2, ψ̄}| ≤
C
√
∆2 |∇ψ̄|. Taking (4.13) into account, a repetition of the proof of Lemma 4.5

shows |∇ψ̄| ≤ C ′√α and hence |{∆2, t− ψ̄}|2 ≤ Cα∆2. On the other hand one
has {τ + c1/2, t − ψ̄} = 1 − {c1, ψ̄}/2 ≥ 1 − C|∇ψ̄| ≥ 1 − C ′′√α then (4.14)
holds because α can be assumed to be small there.

4.4 Lower bound of perturbed discriminant

Recall that α(x, ξ), a(t, x, ξ), b(t, x, ξ), e(t, x, ξ), ∆(t, x, ξ), . . . are extensions of
α(X), a(t,X, ϵ), b(t,X), e(t,X, ϵ), ∆(t,X, ϵ), . . . defined in Section 4.2 so that

p = τ3 − a(t, x, ξ)|ξ|2τ + b(t, x, ξ)|ξ|3, a = e(t, x, ξ)
(
t+ α(x, ξ)

)
is now defined in Rd ×Rd and coincides with the original p in a conic neighbor-
hood WM of (0, ξ̄). We add a term 2Me(t, x, ξ)〈ξ〉−1

γ to p and consider

τ3 − e(t+ α+ 2M〈ξ〉−1
γ )|ξ|2τ − b |ξ|3.

Denoting

(4.15) aM (t, x, ξ) = e(t, x, ξ)(t+ α(x, ξ) + 2M〈ξ〉−1
γ )
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consider the discriminant

∆M (t, x, ξ) = 4 e3
(
t+ α+ 2M〈ξ〉−1

γ

)3 − 27 b2

= 4 e3
(
t+ α+M〈ξ〉−1

γ )3 − 27 b2 +∆r(t, x, ξ)
(4.16)

where, recalling α+M〈ξ〉−1
γ = ρ, we have

∆r = 4e3
(
3(t+ ρ)2M〈ξ〉−1

γ + 3(t+ ρ)M2〈ξ〉−2
γ +M3〈ξ〉−3

γ

)
= 12e3

(
c1(x, ξ)t

2 + c2(x, ξ)t+ c3(x, ξ)
)
≥ 12e3M(t+ ρ)2〈ξ〉−1

γ

where it is clear that cj(x, ξ) verifies
∣∣∂αx ∂βξ cj∣∣ ≾ ρj−|α+β|/2〈ξ〉−|β|

γ . Thanks to
Proposition 3.1 one has

∆̄(t, x, ξ) ≥ υmin {t2, (t− ψ)2}(t+ ρ).

Since ∆(t, x, ξ) = ẽ ∆̄ then

∆(t, x, ξ) = ẽ ∆̄ ≥ ẽ υmin {t2, (t− ψ)2}(t+ ρ)

≥
(
ẽ/e

)
υmin {t2, (t− ψ)2}e(t+ ρ).

(4.17)

Therefore choosing a constant ν̄ > 0 such that 12 e2 ≥
(
ẽ/e

)
υν̄ one obtains from

(4.16), (4.17) that

∆M ≥
(
ẽ/e

)
υmin

{
t2, (t− ψ)2

}
e(t+ ρ) + 12 e3(t+ ρ)2M〈ξ〉−1

γ

≥
(
ẽ/e

)
υ
(
min

{
t2, (t− ψ)2

}
+ ν̄(t+ ρ)M〈ξ〉−1

γ

)
e(t+ ρ)

≥
(
ẽ/e

)
υmin

{
t2, (t− ψ)2 + ν̄Mρ〈ξ〉−1

γ

}
e(t+ ρ) (t ≥ 0).

(4.18)

Proposition 4.1. One can write

∆M = e
(
t3 + a1(x, ξ)t

2 + a2(x, ξ)t+ a3(x, ξ)
)

where 0 < e ∈ S(1, G) uniformly in t and aj satisfies

(4.19)
∣∣∂αx ∂βξ aj∣∣ ≾ ρj−|α+β|/2〈ξ〉−|β|

γ .

Moreover there exist ν̄ > 0 and c > 0 such that

(4.20)
∆M

aM
≥ ẽ

2e
υ min

{
t2, (t− ψ)2 + ν̄Mρ〈ξ〉−1

γ

}
,

∆M

aM
≥ cM〈ξ〉−1

γ aM

for 0 ≤ t ≤ T where ψ and ρ satisfy

(4.21)
∣∣∂αx ∂βξ ψ∣∣, ∣∣∂αx ∂βξ ρ∣∣ ≾ ρ1−|α+β|/2〈ξ〉−|β|

γ .

Proof. Choosing ϵ =
√
2M1/2〈ξ〉−1/2

γ in (4.4) and applying Lemma 3.1 one
can write ∆M as a third order polynomial in t, up to non-zero factor and can
estimate the coefficients thanks to Lemmas 3.3 and 4.2 in terms of α+2M〈ξ〉−1

γ .
Noting ρ(x, ξ) ≤ α(x, ξ) + 2M〈ξ〉−1

γ ≤ 2ρ(x, ξ) we have (4.19). The assertion
(4.20) follows from (4.18) for aM ≤ 2 e(t+ ρ). The estimates (4.21) are nothing

but Corollary 4.1 and Lemma 4.5 with the choice ϵ =M1/2〈ξ〉−1/2
γ .
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We estimate the ratio of ∂tb to
√
aM for later use.

Lemma 4.7. We have∣∣∂tb∣∣ ≤ (1 + CM−2)
(
2
√
2/3

)
|e(0, 0, ξ̄)|

√
aM (0 ≤ t ≤M−2).

Proof. Write b = β0(x, ξ) + tβ1(x, ξ) + t2β3(t, x, ξ). From 27b2 ≤ 4a3 for 0 ≤
t ≤ T it is clear that |β0| ≤ (2/3

√
3)e3/2α3/2. We first check that

(4.22) |β1| ≤ (1 + CM−2)(2/
√
3)e3/2

√
α.

If α(x, ξ) = 0 then β1(x, ξ) = 0 by 27b2 ≤ 4a3 hence (4.22) is clear. When
α(x, ξ) > 0 take t = 3α it follows from 27b2 ≤ 4a3 that

3α|β1| ≤ 2(43/2e3/2/3
√
3)α3/2 + |β0|+ Cα2 ≤ (6/

√
3)e3/2α3/2 + Cα2

≤ (6/
√
3)(1 + CM−2)e3/2α3/2

because α ≤ CM−4 which proves (4.22). Since |∂tb| ≤ |β1|+ Ct we see that

|∂tb| ≤ (1 + CM−2)(2/
√
3)e3/2

√
α+ CM−2

√
t

≤ (1 + CM−2)(2/
√
3)e3/2

(√
α+

√
t
)

from which the proof is immediate.

Remark 4.1. Here we make a remark on e(0, 0, ξ̄) = ∂ta(0, 0, ξ̄). In view
of (3.1) it is clear that e(0, 0, ξ̄) is the nonzero positive real eigenvalue of
Fp(0, 0, 0, ξ̄). Since ẽ/e = 4 e2(0, 0, ξ̄)

(
1+O(M−2)

)
the coefficienet of the right-

hand side of (4.20) is, essentially, constant times the square of the nonzero
positive real eigenvalue of the Hamilton map.

In what follows we denote ē = e(0, 0, ξ̄).

5 Metric g and estimates of ω and ϕ

Introduce the metric

g = g(x,ξ)(dx, dξ) =M−1
(
〈ξ〉γ |dx|2 + 〈ξ〉−1

γ |dξ|2
)

which is a basic metric with which we work in this paper. Note that

S(Ms, G) ⊂ S(Ms, g)

because Ms+2|α+β|〈ξ〉−|β|
γ ≤ MsM−|α+β|/2〈ξ〉(|α|−|β|)/2

γ in view of 〈ξ〉γ ≥ γ ≥
M5. The metric g is slowly varying and σ temperate (see [6, Chapter 18.5], in
what follows we omit “σ” because we use only the Weyl calculus in this paper)
uniformly in γ ≥M5 ≥ 1 which will be checked in Section 7.
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Lemma 5.1. For |α+ β| ≥ 1 one has∣∣∂αx ∂βξ ψ∣∣ ≾M1/2ρ1/2〈ξ〉−1/2
γ M−|α+β|/2〈ξ〉(|α|−|β|)/2

γ .

Proof. It is enough to remark∣∣∂αx ∂βξ ψ∣∣ ≾ ρ1−|α+β|/2〈ξ〉−|β|
γ ≾ ρ1/2ρ−(|α+β|−1)/2〈ξ〉−|β|

γ

≾ ρ1/2(M−1〈ξ〉γ)(|α+β|−1)/2〈ξ〉−|β
γ =M1/2ρ1/2〈ξ〉−1/2

γ M−|α+β|/2〈ξ〉(|α|−|β|)/2
γ

which proves the assertion.

Corollary 5.1. For |α+ β| ≥ 1 one has

∂αx ∂
β
ξ ψ ∈ S(M−(|α+β|−1)/2ρ1/2〈ξ〉−1/2

γ 〈ξ〉(|α|−|β|)/2
γ , g).

5.1 Estimate ω by metric g

Taking Proposition 4.1 into account we introduce a preliminary weight

ω(t, x, ξ) =

√
(t− ψ(x, ξ))2 + ν̄Mρ〈ξ〉−1

γ .

Since the exact value of ν̄ > 0 is irrelevant in the following arguments so we
assume ν̄ = 1 from now on. In what follows we work with symbols depending
on t. We assume that t varies in some fixed interval [0, T ] and it is assumed
that all constants are independent of t ∈ [0, T ] and γ, M if otherwise stated.
Now A ≾ B implies that A is bounded by constant, independent of t, M and γ,
times B.

Lemma 5.2. Let s ∈ R. For |α+ β| ≥ 1 we have∣∣∂αx ∂βξ ωs
∣∣ ≾ ωs(ω−1ρ1/2〈ξ〉−1/2

γ )M−(|α+β|−1)/2〈ξ〉(|α|−|β|)/2
γ .

Proof. Recall ω2 = (t− ψ)2 +Mρ〈ξ〉−1
γ . Note that for |α+ β| ≥ 2∣∣∂αx ∂βξ (t− ψ)2
∣∣ ≾ ω|∂αx ∂

β
ξ ψ|+

∑
|∂α

′

x ∂
β′

ξ ψ||∂
α′′
∂β

′′

ξ ψ|

≾ ωρ1−|α+β|/2〈ξ〉−|β|
γ + ρ2−|α+β|/2〈ξ〉−|β|

γ

≾ ω2
{
ω−1ρ1/2ρ−(|α+β|−1)/2 + ω−2ρρ−(|α+β|−2)/2

}
〈ξ〉−|β|

γ

≾ ω2
{
ω−1ρ1/2(M−1〈ξ〉γ)(|α+β|−1)/2 + ω−2ρ(M−1〈ξ〉γ)(|α+β|−2)/2

}
〈ξ〉−|β|

γ

≾ ω2(ω−1ρ1/2〈ξ〉−1/2
γ )M−(|α+β|−1)/2〈ξ〉(|α|−|β|)/2

γ

since ω ≥
√
Mρ1/2〈ξ〉−1/2

γ . When |α+β| = 1 there is no second term and hence∣∣∂αx ∂βξ (t− ψ)2
∣∣ ≾ ωρ1/2−(|α+β|−1)/2〈ξ〉−|β|

γ

≾ ω2(ω−1ρ1/2〈ξ〉−1/2
γ )M−(|α+β|−1)/2〈ξ〉(|α|−|β|)/2

γ .
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Next it is easy to see that for |α+ β| ≥ 1∣∣∂αx ∂βξ (Mρ〈ξ〉−1
γ )

∣∣ ≾Mρ〈ξ〉−1
γ ρ−|α+β|/2〈ξ〉−|β|

γ

≾Mρ1/2〈ξ〉−1
γ ρ−(|α+β|−1)/2〈ξ〉−|β|

γ

≾ ω2
(
Mω−2ρ1/2〈ξ〉−1

γ

)(
M−1〈ξ〉γ

)(|α+β|−1)/2〈ξ〉−|β|
γ

≾ ω2(ω−1ρ1/2〈ξ〉−1/2
γ )M−(|α+β|−1)/2〈ξ〉(|α|−|β|)/2

γ

because ω ≥
√
Mρ1/2〈ξ〉−1/2

γ ≥M〈ξ〉−1
γ . Therefore one concludes that∣∣∂αx ∂βξ ω2

∣∣ ≾ ω2(ω−1ρ1/2〈ξ〉−1/2
γ )M−(|α+β|−1)/2〈ξ〉(|α|−|β|)/2

γ

which proves the assertion for s = 2. For general s noting∣∣∂αx ∂βξ (ω2)s/2
∣∣ ≾ ∑∣∣(ω2)s/2−l

(
∂α

1

x ∂β
1

ξ ω2
)
· · ·

(
∂α

l

x ∂β
l

ξ ω
2
)∣∣

≾
∑

ωs
(
ω−1ρ1/2〈ξ〉−1/2

γ )lM−(|α+β|−l)/2〈ξ〉(|α|−|β|)/2
γ

≾ ωs
(
ω−1ρ1/2〈ξ〉−1/2

γ )M−(|α+β|−1)/2〈ξ〉(|α|−|β|)/2
γ

for ω−1ρ1/2〈ξ〉−1/2
γ ≤M−1/2 ≤ 1 the proof is immediate.

Corollary 5.2. We have ωs ∈ S(ωs, g) for s ∈ R.

Corollary 5.3. For |α+ β| ≥ 1 one has

∂αx ∂
β
ξ ω

s ∈ S
(
M−(|α+β|−1)/2ωsω−1ρ1/2〈ξ〉−1/2+(|α|−β|)/2

γ , g
)
.

5.2 Estimate ϕ by metric g

Introduce a wight which plays a crucial role in deriving energy estimates

ϕ(t, x, ξ) = ω(t, x, ξ) + t− ψ(x, ξ).

Start with remarking

Lemma 5.3. There is C > 0 such that ϕ(t, x, ξ) ≥M〈ξ〉−1
γ /C.

Proof. When t− ψ(x, ξ) ≥ 0 one has ϕ ≥ ω hence

ϕ ≥ ω ≥M1/2ρ1/2〈ξ〉−1/2
γ ≥M〈ξ〉−1

γ

is obvious for ρ ≥ M〈ξ〉−1
γ . Assume t − ψ(x, ξ) < 0 then 0 ≤ t < ψ(x, ξ) ≤

δρ(x, ξ) with some δ > 0 by Lemma 4.5. Noticing that |t−ψ(x, ξ)| = ψ(x, ξ)−t ≤
δρ(x, ξ) we have

ω2(t, x, ξ) = (t− ψ(x, ξ))2 +Mρ(x, ξ)〈ξ〉−1
γ ≤ δ2ρ2 +Mρ〈ξ〉−1

γ

≤ δ2ρ2 + ρ2 = (δ2 + 1)ρ2.
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Now remarking that

(5.1) ϕ(t, x, ξ) ≥
Mρ〈ξ〉−1

γ

ω + |t− ψ|
≥
Mρ〈ξ〉−1

γ

2ω

the proof is immediate.

Next show

Lemma 5.4. We have
∣∣∂αx ∂βξ ϕ∣∣ ≾ ϕM−|α+β|/2〈ξ〉(|α|−|β|)/2

γ .

Proof. Let |α+ β| = 1 and write

(5.2) ∂αx ∂
β
ξ ϕ =

−∂αx ∂
β
ξ ψ

ω
ϕ+

∂αx ∂
β
ξ (Mρ〈ξ〉−1

γ )

2ω
= ϕαβϕ+ ψαβ .

From Corollaries 5.2 and 4.1 it follows that∣∣∂µx∂νξ (ψαβ

)∣∣ ≾ ω−1Mρ〈ξ〉−1
γ M−|α+β+µ+ν|/2〈ξ〉(|α+µ|−|β+ν|)/2

γ .

Noting (5.1) one obtains∣∣∂µx∂νξ (ψαβ

)∣∣ ≾ ϕM−|α+β+µ+ν|/2〈ξ〉(|α+µ|−|β+ν|)/2
γ .

On the other hand thanks to Corollaries 5.1 and 5.2 one sees

|∂µx∂νξ ϕαβ | ≾M−|α+β+µ+ν|/2〈ξ〉(|α+µ|−|β+ν|)/2
γ .

Hence using (5.2) the assertion is proved by induction on |α+ β|.

We refine this lemma.

Lemma 5.5. Let |α+ β| ≥ 1 then

∂αx ∂
β
ξ ϕ ∈ S(ϕM−(|α+β|−1)/2ω−1ρ1/2〈ξ〉−1/2

γ 〈ξ〉(|α|−|β|)/2
γ , g).

Proof. From Corollary 5.1 one has ∂αx ∂
β
ξ ψ ∈ S(ρ1/2〈ξ〉−1/2

γ 〈ξ〉(|α|−|β|)/2
γ , g) for

|α + β| = 1 hence ϕαβ ∈ S(ω−1ρ1/2〈ξ〉−1/2
γ 〈ξ〉(|α|−|β|)/2

γ , g) for |α + β| = 1 by
Corollary 5.2. From Corollary 5.3 it follows that∣∣∂µx∂νξ (ψαβ

)∣∣ ≾ ω−1ρ1/2M〈ξ〉−1−|β|
γ M−|µ+ν|/2〈ξ〉(|µ|−|ν|)/2

γ

for |α + β| = 1 because ∂αx ∂
β
ξ (Mρ〈ξ〉−1

γ ) ∈ S(Mρ1/2〈ξ〉−1−|β|
γ , g). Thanks to

Lemma 5.3 one sees M〈ξ〉−1
γ ≤ Cϕ(t, x, ξ) and hence

ψαβ ∈ S(ω−1ρ1/2〈ξ〉−1/2
γ 〈ξ〉(|α|−|β|)/2

γ ϕ, g), |α+ β| = 1.

Since ϕ ∈ S(ϕ, g) by Lemma 5.4 we conclude the assertion from (5.2).

23



6 Bézout matrix as symmetrizer

Add −2Mop(e(t, x, ξ)〈ξ〉−1
γ )[D]2Dt to the principal part and subtract the same

one from the lower order part so that the operator is left to be invariant;

P̂ = D3
t − aM (t, x,D)[D]2Dt − b(t, x,D) [D]3 + b1(t, x,D)D2

t(
b2(t, x,D) + dM (t, x,D))[D]Dt + b3(t, x,D)[D]2

where bj(t, x, ξ) ∈ S(1, G) and dM (t, x, ξ) = 2M(e〈ξ〉−1
γ )#[ξ] ∈ S(M,G). Here

note that

(6.1) dM (t, x, ξ)− 2Me(t, x, ξ) ∈ S(M−1, g)

which follows from (4.6). With U = t(D2
t u, [D]Dtu, [D]2u) the equation P̂ u = f

is transformed to

(6.2) DtU = A(t, x,D)[D]U +B(t, x,D)U + F

where F = t(f, 0, 0) and

A(t, x, ξ) =

0 aM b
1 0 0
0 1 0

 , B(t, x, ξ) =

b1 b2 + dM b3
0 0 0
0 0 0

 .
Let S be the Bézout matrix of p and ∂p/∂τ , that is

S(t, x, ξ) =

 3 0 −aM
0 2aM 3b

−aM 3b a2M


then S is nonnegative definite and symmetrizes A, that is SA is symmetric.

6.1 Eigenvalues of Beźout matrix

Consider the principal symbol τ3 − aM (t, x, ξ)[ξ]2τ − b(t, x, ξ)[ξ]3 of P̂ . Denote

σ(t, x, ξ) = t+ α(x, ξ) + 2M〈ξ〉−1
γ = t+ ρ(x, ξ) +M〈ξ〉−1

γ

hence aM (t, x, ξ) = e(t, x, ξ)σ(t, x, ξ) and (1−CM−2)ē σ ≤ aM ≤ (1+CM−2)ē σ.
In what follows we assume that t varies in the interval

0 ≤ t ≤M−4.

Since ρ ∈ S(M−4, G) it is clear that σ(t, x, ξ) ∈ S(M−4, G).

Lemma 6.1. We have
∣∣∂αx ∂βξ σ∣∣ ≾ σ1−|α+β|/2〈ξ〉−|β|

γ . In particular σ ∈ S(σ, g).

Proof. It is clear from (4.8) that
∣∣∂αx ∂βξ σ∣∣ ≾ √

σ 〈ξ〉−|β|
γ for |α + β| = 1. For

|α+ β| ≥ 2 it follows from ρ ∈ S(M−4, G) that∣∣∂αx ∂βξ σ∣∣ ≾M2|α+β|−4〈ξ〉−|β|
γ ≾ σ1−|α+β|/2〈ξ〉−|β|

γ

since Cσ−1 ≥M4. The second assertion is clear from σ−1 ≤M−1〈ξ〉γ .

24



Corollary 6.1. Let s ∈ R. Then
∣∣∂αx ∂βξ σs

∣∣ ≾ σs−|α+β|/2〈ξ〉−|β|
γ . In particular

σs ∈ S(σs, g).

Definition 6.1. To simplify notations we denote by C(σs) the set of symbols
r(t, x, ξ) satisfying ∣∣∂αx ∂βξ r∣∣ ≾ σs−|α+β|/2〈ξ〉−|β|

γ .

It is clear that C(σs) ⊂ S(σs, g) because σ−|α+β|/2 ≤ M−|α+β|/2〈ξ〉|α+β|/2
γ .

It is also clear that if p ∈ C(σs) with s > 0 then (1 + p)−1 − 1 ∈ C(σs).

Lemma 6.2. One has

asM ∈ C(σs), (s ∈ R), b ∈ C(σ3/2), ∂taM ∈ C(1), ∂tb ∈ C(
√
σ).

Proof. The first assertion is clear from Corollary 6.1 because aM = eσ and
e ∈ S(1, G), 1/C ≤ e ≤ C. To show the second assertion, recalling b(t, x, ξ) is
the extension of b(t,X), write

b(t, x, ξ) = b(0, y(x), η(ξ)) + ∂tb(0, y(x), η(ξ))t

+

∫ 1

0

(1− θ)∂2t b(θt, y(x), η(ξ))dθ · t2.
(6.3)

Since ∂αx ∂
β
ξ b(0, 0, ξ̄) = 0 for |α+β| ≤ 2 and ∂tb(0, 0, ξ̄) = 0 then thanks to Lemma

4.1 one has b(0, y(x), η(ξ)) ∈ S(M−6, G) and ∂tb(0, y(x), η(ξ)) ∈ S(M−2, G).
Since 0 ≤ t ≤ M−4 we conclude that b(t, x, ξ) ∈ S(M−6, G). Since |b| ≤ Cσ3/2

and σ ∈ S(M−4, G) a repetition of the same arguments proving Lemma 4.2
shows the second assertion. The third assertion is clear because ∂taM = e +
(∂te)σ. As for the last assertion, recall Lemma 4.7 that |∂tb| ≤ Ca

1/2
M ≤ C ′σ1/2.

Noting ∂tb ∈ S(M−2, G) which results from (6.3) one sees |〈ξ〉|β|γ ∂αx ∂
β
ξ ∂tb| ≾

M2|α+β|−2 ≾ σ1/2−|α+β|/2 for |α+ β| ≥ 1 hence the assertion.

Let
0 ≤ λ1(t, x, ξ) ≤ λ2(t, x, ξ) ≤ λ3(t, x, ξ)

be the eigenvalues of S(t, x, ξ). Recall [26, Proposition 2.1]

Proposition 6.1. There exist M0 and K > 0 such that

∆M/(6aM + 2a2M + 2a3M ) ≤ λ1 ≤
(
2/3 +KaM

)
a2M ,

(2−KaM ) aM ≤ λ2 ≤ (2 +KaM ) aM ,

3 ≤ λ3 ≤ 3 +Ka2M

provided that M ≥M0.

Proof. Since aM = e σ and σ ∈ S(M−4, G) then for any ϵ̄ > 0 there is M0 such
that eM−4

0 ≤ ϵ̄. Then the assertion follows from [26, Proposition 2.1].

Corollary 6.2. The eigenvalues λi(t, x, ξ) are smooth in (0,M−4]× Rd × Rd.
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6.2 Estimates of eigenvalues

First we prove

Lemma 6.3. One has λj ∈ C(σ3−j) for j = 1, 2, 3.

Denote q(λ) = det (λI − S) so that

(6.4) q(λ) = λ3 − (3 + 2aM + a2M )λ2 + (6aM + 2a2M + 2a3M − 9b2)λ−∆M .

Note that

(6.5) ∂λq(λi)∂
α
x ∂

β
ξ λi + ∂αx ∂

β
ξ q(λi) = 0, |α+ β| = 1.

Let us write ∂αx ∂
β
ξ = ∂α,βx,ξ for simplicity. We show by induction on |α+ β| that

∂λq(λi)∂
α,β
x,ξ λi =

∑
2|µ+ν|+s≥2

Cµ,ν,γ(j),δ(j),s∂
µ,ν
x,ξ ∂

s
λq(λi)

×
(
∂γ

(1),δ(1)

x,ξ λi
)
· · ·

(
∂γ

(s),δ(s)

x,ξ λi
)(6.6)

where µ +
∑
γ(i) = α, ν +

∑
δ(j) = β and |γ(i) + δ(j)| ≥ 1. The assertion

holds for |α+ β| = 1 by (6.5). Suppose that (6.6) holds for |α+ β| = m. With

|e+ f | = 1 operating ∂e,fx,ξ to (6.6) the resulting left-hand side is

∂λq(λi)∂
α+e,β+f
x,ξ λi + ∂2λq(λi)(∂

α,β
x,ξ λi)(∂

e,f
x,ξλi) + ∂e,fx,ξ∂λq(λi)∂

α,β
x,ξ λi

= ∂λq(λi)∂
α+e,β+f
x,ξ λi

−
∑

2|µ+ν|+s≥2

Cµ,ν,γ(j),δ(j),s∂
µ,ν
x,ξ ∂

s
λq(λi)

(
∂γ

(1),δ(1)

x,ξ λi
)
· · ·

(
∂γ

(s),δ(s)

x,ξ λi
)
.

On the other hand, the resulting right-hand side is∑
C...∂

µ+e,ν+f
x,ξ ∂sλq(λi)

(
∂γ

(1),δ(1)

x,ξ λi
)
· · ·

(
∂γ

(s),δ(s)

x,ξ λi
)

+
∑

C...∂
µ,ν
x,ξ ∂

s+1
λ q(λi)

(
∂e,fx,ξλi

)(
∂γ

(1),δ(1)

x,ξ λi
)
· · ·

(
∂γ

(s),δ(s)

x,ξ λi
)

+

s∑
j=1

∑
C...∂

µ,ν
x,ξ ∂

s
λq(λi)

(
∂γ

(1),δ(1)

x,ξ λi
)
· · ·

(
∂γ

(j)+e,δ(j)+f
x,ξ λi

)
· · ·

(
∂γ

(s),δ(s)

x,ξ λi
)

which can be written as∑
2|µ+ν|+s≥2

Cµ,ν,γ(j),δ(j),s∂
µ,ν
x,ξ ∂

s
λq(λi)

(
∂γ

(1),δ(1)

x,ξ λi
)
· · ·

(
∂γ

(s),δ(s)

x,ξ λi
)

where µ+
∑
γ(i) = α+ e, ν+

∑
δ(i) = β+ f and |γ(j)+ δ(j)| ≥ 1. Therefore we

conclude (6.6). In order to estimate ∂α,βx,ξ λi one needs to estimate ∂µ,νx,ξ ∂
s
λq(λi).
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Lemma 6.4. For any s ∈ N and α, β it holds that

|∂α,βx,ξ ∂
s
λq(λj)| ≾ σ4−j−(3−j)s−|α+β|/2〈ξ〉−|β|

γ , j = 1, 2

|∂α,βx,ξ ∂
s
λq(λ3)| ≾ σ−|α+β|/2〈ξ〉−|β|

γ .

Proof. From Proposition 6.1 and (6.4) one sees that

|q(λi)| ≾ |λi|2 + |aM ||λi|+ |aM |3,

|∂α,βx,ξ q(λi)| ≾
(
|∂α,βx,ξ aM |+ |∂α,βx,ξ b

2|
)
|λi|+ |∂α,βx,ξ a

3
M |+ |∂α,βx,ξ b

2| (|α+ β| ≥ 1)

because |∆M | ≾ a3M and |b| ≾ a
3/2
M . Therefore thanks to Proposition 6.1 and

Lemma 6.2 one obtains the assertions for the case s = 0. Since

|∂λq(λi)| ≾ |λi|+ |aM |, |∂sλq(λi)| ≾ 1, s ≥ 2,

|∂α,βx,ξ ∂λq(λi)| ≾ |∂α,βx,ξ aM ||λi|+ |∂α,βx,ξ aM |+ |∂α,βx,ξ b
2| (|α+ β| ≥ 1),

|∂α,βx,ξ ∂
2
λq(λi)| ≾ |∂α,βx,ξ aM |, ∂α,βx,ξ ∂

s
λq(λi) = 0, s ≥ 3 (|α+ β| ≥ 1)

the assertions for the case s ≥ 1 are clear from Proposition 6.1 and Lemma 6.2
again.

Proof of Lemma 6.3: Since ∂λq(λi) =
∏

k ̸=i(λi−λk) it follows from Proposition
6.1 that

(6.7) 6aM (1− CaM ) ≤
∣∣∂λq(λi)∣∣ ≤ 6aM (1 + CaM ), i = 1, 2, ∂λq(λ3) ' 1.

Then for |α+ β| = 1 one has∣∣∂α,βx,ξ λj
∣∣ ≾ ∣∣∂α,βx,ξ q(λj)/∂λq(λj)

∣∣ ≾ σ3−j−1/2〈ξ〉−|β|
γ , j = 1, 2, 3

by Lemma 6.4 with s = 0. Assume that∣∣∂α,βx,ξ λj
∣∣ ≾ σ3−j−|α+β|/2〈ξ〉−|β|

γ , j = 1, 2, 3

holds for |α+ β| ≤ m. Lemma 6.4 and (6.6) show that∣∣∂λq(λ1)∂α,βx,ξ λ1
∣∣ ≾ ∑

σ3−2s−|µ+ν|/2σ2−|γ(1)+δ(1)|/2 · · ·σ2−|γ(s)+δ(s)|/2〈ξ〉−|β|
γ

≾
∑

σ3−|µ+ν|/2σ−|γ(1)+δ(1)|/2 · · ·σ−|γ(s)+δ(s)|/2〈ξ〉−|β|
γ ≾ σ3−|α+β|/2〈ξ〉−|β|

γ .

This together with (6.7) proves the estimate for λ1. The same arguments show
the assertion for λ2. The estimate for λ3 is clear from (6.6) because of (6.7).
Thus we have the assertion for |α + β| = m + 1 and the proof is completed by
induction on |α+ β|.

Turn to estimate ∂tλi.

Lemma 6.5. One has ∂tλ1 ∈ C(σ), ∂tλ2 ∈ C(1) and ∂tλ3 ∈ C(1).
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Proof. First examine that ∂λq(λi)∂
α,β
x,ξ ∂tλi can be written as∑

|α′+β′|<|α+β|

C...∂
µ,ν
x,ξ ∂

s+1
λ q(λi)

(
∂α

′,β′

x,ξ ∂tλi
)(
∂γ

(1)+δ(1)

x,ξ λi
)
· · ·

(
∂γ

(s)+δ(s)

x,ξ λi
)

+
∑

C...∂
µ,ν
x,ξ ∂

s
λ∂tq(λi)

(
∂γ

(1)+δ(1)

x,ξ λi
)
· · ·

(
∂γ

(s)+δ(s)

x,ξ λi
)(6.8)

where α′ + µ +
∑
γ(i) = α, β′ + ν +

∑
δ(i) = β and |γ(i) + δ(i)| ≥ 1. Indeed

(6.8) is clear when |α+ β| = 0 from

(6.9) ∂λq(λi)∂tλi + ∂tq(λi) = 0.

Differentiating (6.9) by ∂e,fx,ξ and repeating the same arguments proving (6.6)
one obtains (6.8) by induction. To prove Lemma 6.5 first check that

(6.10) |∂α,βx,ξ ∂
s
λ∂tq(λj)| ≾ σ3−j−(3−j)s−|α+β|/2〈ξ〉−|β|

γ , j = 1, 2, 3.

In fact from

(6.11) ∂tq(λ) = −∂t(2aM + a2M )λ2 + ∂t(6aM + 2a2M + 2a3M − 9b2)λ− ∂t∆M

it follows that |∂tq(λi)| ≾ λi + σ2 and |∂α,βx,ξ ∂tq(λi)| ≾ (λi + σ2)σ−|α+β|/2〈ξ〉−|β|
γ

for |α + β| ≥ 1 in view of Lemma 6.2 and hence the assertion for s = 0. Since

|∂α,βx,ξ ∂
s
λ∂tq(λi)| ≾ σ−|α+β|/2〈ξ〉−|β|

γ for s ≥ 1 the assertion can be proved. We
now show Lemma 6.5 for λ1 by induction on |α+ β|. Assume

(6.12)
∣∣∂α,βx,ξ ∂tλ1

∣∣ ≾ σ1−|α+β|/2〈ξ〉−|β|
γ .

It is clear from (6.9), (6.7) and (6.10) that (6.12) holds for |α+ β| = 0. Assume
that (6.12) holds for |α+ β| ≤ m. For |α+ β| = m+ 1, thanks to the inductive
assumption, Lemma 6.4 and Lemma 6.3 it follows that∑

|α′+β′|<|α+β|

∣∣∂µ,νx,ξ ∂
s+1
λ q(λ1)

(
∂α

′,β′

x,ξ ∂tλ1
)(
∂γ

(1)+δ(1)

x,ξ λ1
)
· · ·

(
∂γ

(s)+δ(s)

x,ξ λ1
)∣∣

≾
∑

σ3−2(s+1)−|µ+ν|/2σ1−|α′+β′|/2σ2−|γ(1)+δ(1)|/2 · · ·σ2−|γ(s)+δ(s)|/2〈ξ〉−|β|
γ

≾ σ2−|α+β|/2〈ξ〉−|β|
γ .

On the other hand one sees ∑∣∣∂µ,νx,ξ ∂
s
λ∂tq(λ1)

(
∂γ

(1)+δ(1)

x,ξ λ1
)
· · ·

(
∂γ

(s)+δ(s)

x,ξ λ1
)∣∣

�
∑

σ2−2s−|µ+ν|/2σ2−|γ(1)+δ(1)|/2 · · ·σ2−|γ(s)+δ(s)|/2〈ξ〉−|β|
γ ≾ σ2−|α+β|/2〈ξ〉−|β|

γ

in view of (6.10) and Lemma 6.3. This proves that (6.12) holds for |α+β| = m+1
and hence for all α, β. As for λ2, λ3 the proof is similar.
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6.3 Eigenvectors of Bézout matrix

We sometimes denote by C(σs) a function belonging to C(σs). If we write nij for
the (i, j)-cofactor of λkI−S then t(nj1, nj2, nj3) is, if non-trivial, an eigenvector
of S corresponding to λk. We take k = 1, j = 3 and hence aM (2 aM − λ1)

3 b(λ1 − 3)
(λ1 − 3)(λ1 − 2 aM )

 =

ℓ11ℓ21
ℓ31


is an eigenvector of S corresponding to λ1 and therefore

t1 =

t11t21
t31

 =
1

d1

ℓ11ℓ21
ℓ31

 , d1 =
√
ℓ211 + ℓ221 + ℓ231

is a unit eigenvector of S corresponding to λ1. Thanks to Proposition 6.1 and
recalling b ∈ C(σ3/2) it is clear that

d1 =
√
36 a2M + C(σ3) = 6aM

√
1 + C(σ) = 6aM (1 + C(σ)).

Therefore since ℓ11 = C(σ2), ℓ21 = C(σ3/2) and ℓ31 = 6 a+ C(σ2) we have

t1 =

t11t21
t31

 =

 aM/3 + C(σ2)
−3b/(2aM ) + C(σ)

1 + C(σ)

 .
Similarly choosing k = 2, j = 2 and k = 3, j = 1 −3aMb
(λ2 − 3)(λ2 − a2M )− a2M

3b(λ2 − 3)

 =

ℓ12ℓ22
ℓ32

 ,
(λ3 − 2aM )(λ3 − a2M )− 9b2

−3aMb
−aM (λ3 − 2aM )

 =

ℓ13ℓ23
ℓ33


are eigenvectors of S corresponding to λ2 and λ3 respectively and

tj =

t1jt2j
t3j

 =
1

dj

ℓ1jℓ2j
ℓ3j

 , dj =
√
ℓ21j + ℓ22j + ℓ23j

are unit eigenvectors of S corresponding to λj , j = 2, 3. Thanks to Proposition
6.1 it is easy to check

d2 = 3λ2(1 + C(σ)), d3 = λ23(1 + C(σ)).

Then repeating the same arguments one concludest12t22
t32

 =

 C(σ3/2)
−1 + C(σ)

−3b/λ2 + C(σ)

 ,
t13t23
t33

 =

 1 + C(σ)
C(σ5/2)

−aM/λ3 + C(σ2)

 .
29



Now T = (t1, t2, t3) = (tij) is an orthogonal matrix which diagonalizes S;

Λ = T−1ST = tTST =

λ1 0 0
0 λ2 0
0 0 λ3

 .
Note that Λ symmetrizes AT = T−1AT ;

t(ΛAT ) =t( tTSAT ) =tT t(SA)T = tTSAT = ΛAT .

Summarize what we have proved above in

Lemma 6.6. Let T be defined as above. Then there is M0 such that T has the
form

T =

 aM/3 + C(σ2) C(σ3/2) 1 + C(σ)
−3b/(2aM ) + C(σ) −1 + C(σ) C(σ5/2)

1 + C(σ) −3b/λ2 + C(σ) −aM/λ3 + C(σ2)


=

 C(σ) C(σ3/2) 1 + C(σ)
C(σ1/2) −1 + C(σ) C(σ5/2)
1 + C(σ) C(σ1/2) C(σ)


for M ≥M0. In particular T, T−1 ∈ S(1, g).

Lemma 6.7. We have

∂tT =

 ∂t(aM/3) + C(σ) C(σ1/2) C(1)
−∂t(3b/2aM ) + C(1) C(1) C(σ3/2)

C(1) −∂t(3b/λ2) + C(1) −∂t(aM/λ3) + C(σ)


=

 C(1) C(σ1/2) C(1)
C(σ−1/2) C(1) C(σ3/2)
C(1) C(σ−1/2) C(1)

 .
Proof. Note that every entry of T is a function in aM , b and λj . Then the
assertion is clear from Lemmas 6.2 and 6.5.

From Lemma 6.6 it follows that

(6.13) 〈ξ〉|β|γ ∂αx ∂
β
ξ T =

C(√σ) C(σ) C(
√
σ)

C(1) C(
√
σ) C(σ2)

C(
√
σ) C(1) C(

√
σ)

 , |α+ β| = 1.

Lemma 6.8. There is M0 such that AT = T−1AT has the form

AT =

 C(
√
σ) −1 + C(σ) C(

√
σ)

C(σ) C(
√
σ) −1 + C(σ)

C(σ3/2) C(σ) C(σ5/2)

 , M ≥M0.
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Proof. Writing AT = (ãij) it is clear that

ãij = t1i aM t2j + t1i b t3j + t2it1j + t3it2j .

Then the assertion follows from Lemma 6.6.

Corollary 6.3. Let AT = (ãij). Then

ã31 = λ1 C(
√
σ), ã32 = λ2 C(1), ã21 = λ1 C(σ−1).

Proof. Lemma 6.8 gives

ΛAT =

λ1C(√σ) λ1(−1 + C(σ)) λ1C(
√
σ)

λ2ã21 λ2ã22 λ2(−1 + C(σ))
λ3ã31 λ3ã32 λ3ã33

 .
Since ΛAT is symmetric it follows immediately

ã31 =
λ1C(

√
σ)

λ3
, ã32 =

λ2(−1 + C(σ))
λ3

, ã21 =
λ1(−1 + C(

√
σ))

λ2
.

This proves the assertion because 1/λ3 ∈ C(1) and 1/λ2 ∈ C(σ−1).

From Corollary 6.3 one can improve Lemma 6.8 such that ã31 = C(σ5/2) for
λ1 ∈ C(σ2).

Corollary 6.4. We have

〈ξ〉|β|γ ∂αx ∂
β
ξ A

T =

 C(1) C(
√
σ) C(1)

C(
√
σ) C(1) C(

√
σ)

C(σ) C(
√
σ) C(σ2)

 , |α+ β| = 1.

Proof. The proof is clear since 〈ξ〉|β|γ ∂αx ∂
β
ξ (−1 + C(σ)) = C(

√
σ).

Before closing the section we consider T−1(∂tT ). Note that

(∂tT
−1)T = (∂t(

tT ))T = (〈∂tti, tj〉)

and 〈∂tti, tj〉 = −〈ti, ∂ttj〉 = −〈∂ttj , ti〉 so that (∂tT
−1)T is antisymmetric.

From Lemmas 6.6 and 6.7 one has

(6.14) T−1(∂tT ) =

 0 −∂t(3b/2aM ) + C(1) C(1)
∂t(3b/2aM ) + C(1) 0 C(

√
σ)

∂t(aM/3) + C(σ) C(
√
σ) 0

 .
For later use we estimate (2, 1)-th and (3, 1)-th entries of T−1(∂tT ). Recalling
aM = e(t+ α+ 2M〈ξ〉−1

γ ) and 0 ≤ t ≤M−4 it is clear

(6.15) ∂taM − ē ∈ S(M−2, g).

Taking |b2/a3M | ≤ 4/27 into account, thanks to Lemma 4.7 it follows that∣∣√aM∂t(3b/2aM )
∣∣ ≤ 3

(∣∣∂tb/√aM ∣∣+ ∣∣b/a3/2M

∣∣|∂taM |
)
/2

≤ (1 + CM−2)
(
(1 + 3

√
2)/

√
3
)
ē.

(6.16)
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7 ϕ and λj are admissible weights for g

Write z = (x, ξ) and w = (y, η). It is clear that

gσz (dx, dξ) =M
(
〈ξ〉γ |dx|2 + 〈ξ〉−1

γ |dξ|2
)
=M2gz(dx, dξ).

Note that |ξ − η| ≤ c 〈ξ〉γ with 0 < c < 1 implies

(1− c)〈ξ〉γ/
√
2 ≤ 〈η〉γ ≤

√
2 (1 + c)〈ξ〉γ .

If gz(w) < c then |ξ − η|2 < cM〈ξ〉γ = cM〈ξ〉−1
γ 〈ξ〉2γ ≤ c 〈ξ〉2γ then

gz(dx, dξ)/C ≤ gw(dx, dξ) ≤ Cgz(dx, dξ)

with C independent of γ ≥M5 ≥ 1 that is gz is slowly varying uniformly in γ ≥
M5 ≥ 1. Similarly noting that |ξ− η| ≥ (γ+ |ξ|)/2 ≥ 〈ξ〉γ/2 if 〈η〉γ ≤ 〈ξ〉γ/2

√
2

and |ξ − η| ≥ (γ + |η|)/2 ≥ 〈η〉γ/2 if 〈η〉γ ≥ 2
√
2〈ξ〉γ it is clear that

(7.1)
〈ξ〉γ
〈η〉γ

+
〈η〉γ
〈ξ〉γ

≤ C
(
1 + 〈η〉−1

γ |ξ − η|2
)
≤ C(1 + gσw(z − w)

)
that is g is temperate uniformly in γ ≥ 0 and M ≥ 1 (see [6, Chapter 18.5]).
Therefore g is an admissible metric. It is clear from (7.1) that

(7.2) gσz (z − w) ≤ C
(
1 + gσw(z − w)

)2
.

7.1 ρ and σ are admissible weights for g

We adapt the same convention as in Sections 5, 6 even to weights for g so that
we omit to say uniformly in t ∈ [0,M−4].

Lemma 7.1. ρ is an admissible weight for g.

Proof. First study ρ1/2. Assume

gz(w) =M−1〈ξ〉γ
(
|y|2 + 〈ξ〉−2

γ |η|2
)
< c (< 1/2)

so thatM−1〈ξ〉−1
γ |η|2 < c hence |η| < c〈ξ〉γ forM〈ξ〉−1

γ ≤ 1. Thus 〈ξ + sη〉−1
γ ≤

C〈ξ〉−1
γ (|s| < 1) and Lemma 4.3 shows

|ρ1/2(z + w)− ρ1/2(z)| ≤ C
(
|y|+ 〈ξ + sη〉−1

γ |η|
)
≤ CM1/2〈ξ〉−1/2

γ g1/2z (w).

Since ρ(z) ≥M〈ξ〉−1
γ this yields

(7.3) |ρ1/2(z + w)− ρ1/2(z)| ≤ Cρ1/2(z)g1/2z (w).

Choosing c such that C c < 1/2 one has
∣∣ρ(z + w)/ρ(z)− 1

∣∣ < 1/2 hence

ρ1/2(z + w)/2 ≤ ρ1/2(z) ≤ 3 ρ1/2(z + w)/2
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that is ρ1/2 is g continuous hence so is ρ. Note that

(7.4) M〈ξ〉−1
γ ≤ ρ(z) ≤ CM−4 ≤ C.

If |η| ≥ c 〈ξ〉γ/2 then gσz (w) ≥Mc2〈ξ〉γ/4 and gσz (w) ≥Mc|η|/2 thus

ρ(z + w) ≤ C ≤ C〈ξ〉γρ(z) ≤ C ′ρ(z)(1 + gσz (w)).

If |η| ≤ c〈ξ〉γ then (7.3) gives

(7.5) ρ1/2(z + w) ≤ Cρ1/2(z)(1 + gz(w))
1/2 ≤ Cρ1/2(z)(1 + gσz (w))

1/2

so that

(7.6) σ(t, z + w) ≤ C σ(t, z)(1 + gσz (w))

hence ρ is g temperate in view of (7.2). Thus ρ is an admissible weight.

Lemma 7.2. σ is an admissible weight for g and σ ∈ S(σ, g).

Proof. Since σ(t, z) = t + ρ(z) +M〈ξ〉−1
γ and ρ(z) +M〈ξ〉−1

γ is admissible for
g by Lemma 7.1 it is clear that σ is admissible for g. The second assertion is
clear from ∣∣∂αx ∂βξ σ∣∣ ≾ σ1−|α+β|/2〈ξ〉−|β|

γ ≾ σ(M−1〈ξ〉γ)|α+β|/2〈ξ〉−|β|
γ

≾ σM−|α+β|/2〈ξ〉(|α|−|β|)/2
γ .

for σ ≥M〈ξ〉−1
γ .

7.2 ω and ϕ are admissible weights for g

We start with showing

Lemma 7.3. ω and ϕ are g continuous.

Proof. Denote f = t− ψ and h =M1/2ρ1/2〈ξ〉−1/2
γ so that ω2 = f2 + h2. Note

that

|ω(z + w)− ω(z)| = |ω2(z + w)− ω2(z)|
|ω(z + w) + ω(z)|

≤ 2|f(z + w)− f(z)|+ 2|h(z + w)− h(z)|
(7.7)

because
|f(z + w) + f(z)|
|ω(z + w) + ω(z)|

≤ 2,
|h(z + w) + h(z)|
|ω(z + w) + ω(z)|

≤ 2.

Assume gz(w) < c (≤ 1/2) which implies |η| <
√
c〈ξ〉γ for M〈ξ〉−1

γ ≤ 1 hence

(7.8) 〈ξ + sη〉γ/C ≤ 〈ξ〉γ ≤ C〈ξ + sη〉γ
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where C is independent of |s| ≤ 1. It is assumed that constants C may change
from line to line but independent of γ ≥ M5 ≥ 1. Noting |f(z + w) − f(z)| =
|ψ(z + w)− ψ(z)| it follows from Lemma 5.1 that

|f(z + w)− f(z)| ≤ Cρ1/2(z + sw)
(
|y|+ 〈ξ + sη〉−1

γ |η|2
)

≤ Cρ1/2(z + sw)
(
|y|+ 〈ξ〉−1

γ |η|
)
≤ CM1/2ρ1/2(z)〈ξ〉−1/2

γ g1/2z (w)
(7.9)

since ρ is g continuous. Noting that ω(z) ≥M1/2ρ1/2(z)〈ξ〉−1/2
γ it results

(7.10) |f(z + w)− f(z)| ≤ Cω(z)g1/2z (w).

Similar arguments shows that |h(z +w)− h(z)| ≤ CM1/2〈ξ〉−1
γ g

1/2
z (w). Taking

ω(z) ≥M1/2ρ1/2(z)〈ξ〉−1/2
γ ≥M〈ξ〉−1

γ into account we have

|h(z + w)− h(z)| ≤ CM−1/2ω(z)g1/2z (w).

Therefore from (7.7) one has |ω(z + w) − ω(z)| ≤ Cω(z)g
1/2
z (w). Choosing c

such that C c < 1/2 we conclude that ω is g continuous.
Next consider ϕ. Since ϕ = ω + f one can write

ϕ(z + w)− ϕ(z)

=
(f(z + w)− f(z))(ϕ(z + w) + ϕ(z)) + h2(z + w)− h2(z)

ω(z + w) + ω(z)
.

(7.11)

Since ω is g continuous, decreasing c > 0 if necessary, one has

ω(z + w)/C ≤ ω(z) ≤ C ω(z + w)

which together with (7.10) gives

|f(z + w)− f(z)|/(ω(z + w) + ω(z)) ≤ Cg1/2z (w).

Recalling h2(z) = Mρ(z)〈ξ〉−1
γ and repeating similar arguments as above one

sees

|h2(z + w)− h2(z)| ≤ CMρ1/2(z)〈ξ〉−3/2
γ g1/2z (w)

≤ CM1/2ρ(z)〈ξ〉−1
γ g1/2z (w)

(7.12)

for ρ1/2(z) ≥M1/2〈ξ〉−1/2
γ . Taking (5.1) into account it follows from (7.12) that

|h2(z + w)− h2(z)|/(ω(z + w) + ω(z)) ≤ Cϕ(z)g1/2z (w).

Combining these estimates we obtain from (7.11) that∣∣∣ϕ(z + w)

ϕ(z)
− 1

∣∣∣ ≤ C
∣∣∣ϕ(z + w)

ϕ(z)
+ 1

∣∣∣g1/2z (w) + Cg1/2z (w)

which proves ϕ(z)/C ≤ ϕ(z + w) ≤ C ϕ(z) choosing c > 0 small. Then we
conclude that ϕ is g continuous.
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Lemma 7.4. ω and ϕ are admissible weights for g and ω ∈ S(ω, g), ϕ ∈ S(ϕ, g).

Proof. Note that

(7.13) 〈ξ〉−1
γ ≤M〈ξ〉−1

γ ≤
√
M

√
ρ〈ξ〉−1/2

γ ≤ ω ≤ CM−4 ≤ C.

Assume |η| ≥ c 〈ξ〉γ hence gσz (w) ≥Mc2〈ξ〉γ ≥ c2〈ξ〉γ . Therefore

(7.14) ω(z + w) ≤ C ≤ C〈ξ〉γω(z) ≤ C ′ω(z)(1 + gσz (w)).

Assume |η| ≤ c 〈ξ〉γ and note that (7.5) holds provided |η| ≤ c〈ξ〉γ . Then
checking the proof of Lemma 7.3 we see that |f(z+w)−f(z)| ≤ Cω(z)(1+gσz (w))
and |h(z + w) − h(z)| ≤ Cω(z)(1 + gσz (w))

1/2. Then (7.14) follows from (7.7)
which proves that ω is g temperate hence admissible for g.

Turn to ϕ. From (5.1) and (7.4), (7.13) it follows that

〈ξ〉−2
γ /C ≤M6〈ξ〉−2

γ /C ≤ ϕ(z) = ω(z) + f(z) ≤ CM−4 ≤ C.

If |η| ≥ 〈ξ〉γ/2 then gσz (w) ≥M〈ξ〉γ/4 ≥ 〈ξ〉γ/4 hence

ϕ(z + w) ≤ C ≤ C2〈ξ〉2γϕ(z) ≤ Cϕ(z)(1 + gσz (w))
2.

Assume |η| ≤ 〈ξ〉γ/2 so that (7.8) holds. From (7.5) and (7.9) it results that

|f(z + w)− f(z)| ≤ Cρ1/2(z)〈ξ〉−1/2
γ (1 + gσz (w)).

Recalling (7.5) and M2gz(w) = gσz (w) the same arguments obtaining (7.12)
shows that

|h2(z + w)− h2(z)| ≤ Cρ1/2(z)〈ξ〉−3/2
γ (1 + gσz (w)).

Taking these into account (7.11) yeilds

|ϕ(z + w)− ϕ(z)| ≤ C
( ρ1/2(z)〈ξ〉−1/2

γ

ω(z + w) + ω(z)

(
ϕ(z + w) + ϕ(z)

)
+

ρ1/2(z)〈ξ〉−3/2
γ

ω(z + w) + ω(z)

)
(1 + gσz (w)).

(7.15)

Applying Lemma 5.3 to (7.15) to obtain

|ϕ(z + w)− ϕ(z)| ≤ C
( ρ1/2(z)〈ξ〉−1/2

γ

ω(z + w) + ω(z)

(
ϕ(z + w) + ϕ(z)

)
+

ρ1/2(z)〈ξ〉−1/2
γ

ω(z + w) + ω(z)
ϕ(z)

)
(1 + gσz (w))

= C
(
ϕ(z + w) + 2ϕ(z)

) ρ1/2(z)〈ξ〉−1/2
γ

ω(z + w) + ω(z)
(1 + gσz (w)).
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If ρ1/2(z)〈ξ〉−1/2
γ (1 + gσz (w))/(ω(z + w) + ω(z)) < ε then it follows∣∣∣ϕ(z + w)

ϕ(z)
− 1

∣∣∣ ≤ ε
(ϕ(z + w)

ϕ(z)
+ 2

)
from which we have ϕ(z + w)/C ≤ ϕ(z) ≤ C ϕ(z + w). If

ρ1/2(z)〈ξ〉−1/2
γ

ω(z + w) + ω(z)
(1 + gσz (w)) ≥ ε

we have

ε−2(1 + gσz (w))
2 ≥ 2〈ξ〉γ

ρ(z)
ω(z + w)ω(z) ≥ ϕ(z + w)

1

2ϕ(z)

by (5.1) and an obvious inequality ϕ(z + w) ≤ 2ω(z + w). Thus we conclude
that ϕ is g temperate hence ϕ is an admissible weight for g.

7.3 λj are admissible weights for g

Lemma 7.5. Assume that λ ∈ C(σ2) and λ ≥ cMσ〈ξ〉−1
γ with some c > 0.

Then λ is an admissible weight for g.

Proof. Consider
√
λ. Assume gz(w) < c and hence 〈ξ + sη〉γ ≈ 〈ξ〉γ . Since√

λ ∈ C(σ) it follows that∣∣√λ(z + w)−
√
λ(z)

∣∣ ≤ C
√
σ(z + sw)

(
|y|+ 〈ξ + sη〉−1

γ |η|
)

≤ C
√
σ(z + sw)〈ξ〉−1/2

γ g1/2z (w)
(7.16)

which is bounded by C ′
√
σ(z)〈ξ〉−1/2

γ g
1/2
z (w) since σ is g continuous. By as-

sumption λ(z) ≥ cMσ(z)〈ξ〉−1
γ one has∣∣√λ(z + w)−

√
λ(z)

∣∣ ≤ C ′′M−1/2
√
λ(z) g1/2z (w) ≤ C ′′

√
λ(z) g1/2z (w).

Choosing c > 0 such that C ′′√c < 1 shows that
√
λ(z) is g continuous and so

is λ(z). From cM2〈ξ〉−2
γ ≤ cMσ〈ξ〉−1

γ ≤ λ ≤ C ′σ2 ≤ C ′M−4 one sees

c1M〈ξ〉−1
γ ≤ c1M

1/2σ1/2〈ξ〉−1/2
γ ≤

√
λ(z) ≤ C.

If |η| ≥ 〈ξ〉γ/2 hence gσz (w) ≥M〈ξ〉γ/4 then√
λ(z + w) ≤ C ≤ C(c1M)−1〈ξ〉γ

√
λ(z) ≤ C ′

√
λ(z) gσz (w).

If |η| ≤ 〈ξ〉γ/2 it follows from (7.16) and (7.6)∣∣√λ(z + w)−
√
λ(z)

∣∣ ≤ C
√
σ(z)〈ξ〉−1/2

γ (1 + gσz (w))

≤ C ′
√
λ(z)(1 + gσz (w))

which proves that
√
λ is g temperate and hence so is λ.
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Lemma 7.6. Assume that λ ∈ C(σ) and λ ≥ cM〈ξ〉−1
γ with some c > 0. Then

λ is an admissible weight for g. If λ ∈ C(1) and λ ≥ c with some c > 0 then λ
is an admissible weight for g.

Proof. It is enough to repeat the proof of Lemma 7.5.

Lemma 7.7. Assume that λ ∈ C(σ2) and λ ≥ cMσ〈ξ〉−1
γ with some c > 0.

Then
∂αx ∂

β
ξ λ ∈ S(

√
σ
√
λ〈ξ〉−|β|

γ , g), |α+ β| = 1.

In particular λ ∈ S(λ, g).

Proof. From λ ∈ C(σ2) we have |〈ξ〉|β|γ ∂αx ∂
β
ξ λ| ≤ C σ for |α + β| = 2. Since

λ ≥ 0, thanks to the Glaeser’s inequality one has∣∣∂αx ∂βξ λ∣∣ ≤ C ′ √σ
√
λ 〈ξ〉−|β|

γ , |α+ β| = 1.

For |α′ + β′| ≥ 1 note that∣∣∂α′

x ∂
β′

ξ′

(
∂αx ∂

β
ξ λ

)∣∣ ≾ σ3/2−|α′+β′|/2〈ξ〉−|β|−|β′|
γ ≾ σ1−(|α′+β′|−1)/2〈ξ〉−|β|

γ 〈ξ〉−|β′|
γ

≾ σ(M−1〈ξ〉γ)(|α
′+β′|−1)/2〈ξ〉−|β′|

γ 〈ξ〉−|β|
γ

≾ σM−|α′+β′|/2M1/2〈ξ〉−1/2
γ 〈ξ〉(|α

′|−|β′|)/2
γ 〈ξ〉−|β|

γ

≾
√
σM−|α′+β′|/2

√
λ 〈ξ〉(|α

′|−|β′|)/2
γ 〈ξ〉−|β|

γ

because λ ≥ cMσ〈ξ〉−1
γ which proves the first assertion. Noting

√
σ〈ξ〉−|β|

γ =
√
σ〈ξ〉−1/2

γ 〈ξ〉(|α|−|β|)/2
γ ≤ CM−1/2

√
λ 〈ξ〉(|α|−|β|)/2

γ

it is clear that λ ∈ S(λ, g).

Lemma 7.8. Assume that λ ∈ C(σ) and λ ≥ cM〈ξ〉−1
γ with some c > 0. Then

λ ∈ S(λ, g). If λ ∈ C(1) and λ ≥ c with some c > 0. Then λ ∈ S(λ, g).

Proof. It suffices to repeat the proof of Lemma 7.7.

Corollary 7.1. For s ∈ R we have λsj ∈ S(λsj , g), j = 1, 2, 3.

Define

κ =
1

t
+

1

ω
=
t+ ω

tω
, (t > 0).

Lemma 7.9. κ is an admissible weight for g and κs ∈ S(κs, g) for s ∈ R.

Proof. Since ω−1 is g continuous and g temperate it is clear that κ = t−1+ω−1

is g continuous and g temperate. Noting that ω−1 ∈ S(ω−1, g) and ω−1 ≤ κ it
is also clear that∣∣∂αx ∂βξ κ∣∣ = ∣∣∂αx ∂βξ ω−1

∣∣ ≾M−|α+β|/2ω−1〈ξ〉(|α|−|β|)/2
γ

≾M−|α+β|/2κ〈ξ〉(|α|−|β|)/2
γ , |α+ β| ≥ 1

which proves κ ∈ S(κ, g).
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Lemma 7.10. One has

∂αx ∂
β
ξ κ

s ∈ S
(
M−(|α+β|−1)/2κsω−1ρ1/2〈ξ〉−1/2+(|α|−β|)/2

γ , g
)
, |α+ β| ≥ 1.

Proof. Since ∂αx ∂
β
ξ κ

s = κs−1∂αx ∂
β
ξ κ it is enough to show the case s = 1. The

proof of the case s = 1 follows easily from Corollary 5.3.

Lemma 7.11. There is C > 0 such that

1

κλ1
≤ 3

ē2 υ
(1 + CM−4)κ,

1

σ2κ
≤ κ.

Proof. In view of Propositions 4.1 and 6.1 one sees

λ1 ≥ ē2

3
υ(1− CM−4)min

{
t2, ω2

}
.

Denote c = 3/(ē2 υ(1 − CM−4)) = (3/ē2 υ)(1 + CM−4). If ω2 ≥ t2 and hence
λ1 ≥ t2/c then 1/λ1 ≤ c/t2 which shows that

1

κλ1
≤ c

κt2
=

c t ω

(t+ ω)t2
=

c ω

(t+ ω)t
≤ c(t+ ω)

tω
= cκ.

If t2 ≥ ω2 and hence λ1 ≥ ω2/c then 1/λ1 ≤ c/ω2 and hence

1

κλ1
≤ c

κω2
=

c t ω

(t+ ω)ω2
=

c t

(t+ ω)ω
≤ c(t+ ω)

t ω
= cκ

then the first assertion. To show the second assertion it suffices to note σ ≥ t
and then σ2(t+ ω)2 ≥ t2(t+ ω)2 ≥ t2ω2.

8 Lower bounds of op(λi)

8.1 Some preliminary lemmas

Introduce a metric independent of M

ḡ = 〈ξ〉γ |dx|2 + 〈ξ〉−1
γ |dξ|2

so that g =M−1 ḡ. We start with

Lemma 8.1. Let m be an admissible weight for g and p ∈ S(m, g) satisfy
p ≥ cm with some constant c > 0. Then p−1 ∈ S(m−1, g) and there exist
k, k̃ ∈ S(M−1, g) such that

p#p−1#(1 + k) = 1, (1 + k)#p#p−1 = 1, p−1#(1 + k)#p = 1,

p−1#p#(1 + k̃) = 1, (1 + k̃)#p−1#p = 1, p#(1 + k̃)#p−1 = 1.
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Proof. It is clear that p−1 ∈ S(m−1, g). Write p#p−1 = 1 − r where r ∈
S(M−1, g). Fix any M . Since

|r|(l)S(1,ḡ) = sup
|α+β|≤l,(x,ξ)∈R2d

∣∣〈ξ〉(|β|−|α|)/2
γ ∂αx ∂

β
ξ r

∣∣ ≤ ClM
−1

from the Calderón-Vaillancourt theorem we have ‖op(r)‖ ≤ CM−1. Therefore
for largeM there exists the inverse (1−op(r))−1 which is given by 1+

∑∞
ℓ=1 r

#ℓ ∈
S(1, ḡ). (see [1]). Denote k =

∑∞
ℓ=1 r

#ℓ ∈ S(1, ḡ) and prove k ∈ S(M−1, g). It
is easy to see from the proof (see, e.g. [16], [18]) that there is M0 such that for
any l ∈ N one can find Cl > 0 such that

|k|(l)S(1,ḡ) ≤ Cl

holds uniformly in M ≥M0. Note that k satisfies (1− r)#(1 + k) = 1, that is

(8.1) k = r + r#k.

Since r ∈ S(M−1, g) it follows from (8.1) that
∣∣k∣∣(l)

S(1,ḡ)
≤ ClM

−1 uniformly in

M ≥M0. Assume that

(8.2) sup
∣∣〈ξ〉(|β|−|α|)/2

γ ∂αx ∂
β
ξ k

∣∣ ≤ Cα,β,νM
−1−l/2, |α+ β| ≥ l

for 0 ≤ l ≤ ν. Let |α+ β| ≥ ν + 1 and note that

∂αx ∂
β
ξ k = ∂αx ∂

β
ξ r +

∑
C···

(
∂α

′′

x ∂β
′′

ξ r
)
#
(
∂α

′

x ∂
β′

ξ k
)

where α′ + α′′ = α and β′ + β′′ = β. From the assumption (8.2) we have

∂α
′

x ∂
β′

ξ k ∈ S(M−1−|α′+β′|/2〈ξ〉(|α
′|−|β′|)/2

γ , ḡ) if |α′ + β′| ≤ ν and ∂α
′

x ∂
β′

ξ k ∈
S(M−1−ν/2〈ξ〉(|α

′|−|β′|)/2
γ , ḡ) if |α′ + β′| ≥ ν + 1. Since r ∈ S(M−1, g) one has(

∂α
′′

x ∂β
′′

ξ r
)
#
(
∂α

′

x ∂
β′

ξ k
)
∈ S(M−1−(ν+2)/2〈ξ〉(|α|−|β|)/2

γ , ḡ)

which implies that (8.2) holds for 0 ≤ l ≤ ν+1 and hence for all ν by induction
on ν. This proves that k ∈ S(M−1, g). The proof of the assertions for k̃ is
similar.

Here recall [24, Lemmas 3.1.6, 3.1.7].

Lemma 8.2. Let q ∈ S(1, g) satisfy q ≥ c with a constant c independent of M .
Then there is C > 0 such that(

op(q)u, u) ≥ (c− CM−1/2)‖u‖2.

Proof. One can assume c = 0. We see q(x, ξ)+M−1/2 is an admissible weight for

ḡ and (q+M−1/2)1/2 ∈ S((q+M−1/2)1/2, ḡ). Moreover ∂αx ∂
β
ξ (q+M−1/2)1/2 ∈

S(M−1/2〈ξ〉(|α|−|β|)/2
γ , ḡ) for |α+ β| = 1. Therefore

q +M−1/2 = (q +M−1/2)1/2#(q +M−1/2)1/2 + r, r ∈ S(M−1, ḡ)

which proves the assertion.
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Lemma 8.3. Let q ∈ S(1, g) then there is C > 0 such that

‖op(q)u‖ ≤
(
sup |q|+ CM−1/2

)
‖u‖.

Lemma 8.4. Let m > 0 be an admissible weight for g and m ∈ S(m, g). If
q ∈ S(m, g) then there is C > 0 such that∣∣(op(q)u, u)∣∣ ≤ (

sup
(
|q|/m

)
+ CM−1/2

)
‖op(

√
m )u‖2.

Proof. First note that m±1/2 are admissible weights and m±1/2 ∈ S(m±1/2, g).
Write

q̃ = (1 + k)#m−1/2#q#m−1/2#(1 + k̃) ∈ S(1, g)

where m1/2#(1 + k)#m−1/2 = 1 and m−1/2#(1 + k̃)#m1/2 = 1 such that

m1/2#q̃#m1/2 = q.

Since k, k̃ ∈ S(M−1, g) one can write q̃ = qm−1+r with r ∈ S(M−1, g). Thanks
to Lemma 8.3 we have ‖op(qm−1)v‖ ≤ (sup

(
|q|/m

)
+ CM−1/2)‖v‖ hence∣∣(op(q)u, u)∣∣ ≤ ∣∣(op(qm−1)op(m1/2)u, op(m1/2)u)|+ CM−1‖op(m1/2)u‖2

proves the assertion.

Lemma 8.5. Let mi > 0 be two admissible weights for g and assume that
mi ∈ S(mi, g) and m2 ≤ Cm1 with C > 0. Then there is C ′ > 0 such that∥∥op(m2)u

∥∥ ≤ C ′∥∥op(m1)u
∥∥.

Proof. Write m̃2 = m2#m
−1
1 #(1 + k) such that m2 = m̃2#m1 with k ∈

S(M−1, g). Since m̃2 ∈ S(1, g) one has

‖op(m2)u‖ = ‖op(m̃2)op(m1)u‖ ≤ C ′‖op(m1)u‖

which proves the assertion.

8.2 Lower bounds of op(λj)

Lemma 8.6. There exist C > 0 and M0 such that

Re
(
op(λj#κ)u, u

)
≥ (1− CM−2)

∥∥op(κ1/2λ1/2j )u
∥∥2, M ≥M0.

Proof. Since κ ∈ S(κ, g) and λj ∈ S(λj , g) one can write

λj#κ = κλj + rj1 + rj2

where rj1 is pure imaginary and rj2 ∈ S(M−2κλj , g). Thanks to Lemma 8.4 it
follows that

Re (op(λj#κ)u, u) ≥ (op(κλj)u, u)− CM−2‖op(λj1/2κ1/2)u‖2.
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Consider (op(κλj)u, u). Since λ
1/2
j κ1/2 ∈ S(λ

1/2
j κ1/2, g) then

(λ
1/2
j κ1/2)#(λ

1/2
j κ1/2) = λjκ+ r̃j

with r̃j ∈ S(M−2λjκ, g). Applying Lemma 8.4 to op(r̃j) one obtains(
op(λjκ)u, u) ≥ (1− CM−2)‖op(λ1/2j κ1/2)u‖2

which proves the assertion.

Lemma 8.7. There exist c > and M0 such that

Re
(
op(λ1)u, u

)
≥ c

∥∥op(λ1/21 )u
∥∥2 + cM2

∥∥〈D〉−1
γ u

∥∥2, M ≥M0.

Proof. From Propositions 4.1 and 6.1 it follows that λ1 ≥ c′Mσ〈ξ〉−1
γ with some

c′ > 0. Denote
λ̃1 = λ1/2− cMσ〈ξ〉−1

γ

where c > 0 is chosen so that λ̃1 ≥ c1Mσ〈ξ〉−1
γ with c1 > 0. Note that λ̃1 ∈

C(σ2) since Mσ〈ξ〉−1
γ ∈ C(σ2). Thanks to Lemmas 7.5 and 7.7 it follows that

λ̃1 ∈ S(λ̃1, g) and λ̃1 is an admissible weight for g. Thus a repetition of the
above arguments shows(

op(λ̃1)u, u) ≥ (1− CM−2)‖op(λ̃
1/2

1 )u‖2

where the right-hand side is nonnegative if M ≥
√
C =M0. Since

(σ1/2〈ξ〉−1/2
γ )#(σ1/2〈ξ〉−1/2

γ ) = σ 〈ξ〉−1
γ + r

with r ∈ S(M−2σ 〈ξ〉−1
γ , g) and then(

op(σ 〈ξ〉−1
γ )u, u) ≥ (1− CM−2)‖op(σ1/2〈ξ〉−1/2

γ )u‖2.

Recalling op(λ1/2) = op(λ̃1) + cMop(σ 〈ξ〉−1
γ ) it follows that

(8.3) (op(λ1/2)u, u) ≥ cM(1− CM−2)‖op(σ1/2〈ξ〉−1/2
γ )u‖2

for M ≥M0. Since M
2〈ξ〉−2

γ ≤Mσ〈ξ〉−1
γ it follows from Lemma 8.5 that

(8.4) M2‖〈D〉−1
γ u‖2 ≤ CM‖op(σ1/2〈ξ〉−1/2

γ )u‖2.

Finally writing λ1 = λ
1/2
1 #λ

1/2
1 + r with r ∈ S(M−1λ1, g) one obtains(

op(λ1/2)u, u
)
≥ (1/2− CM−1)

∥∥op(λ1/21 )u
∥∥2

which together with (8.3) and (8.4) proves the assertion.

Lemma 8.8. There exist c > 0 and M0 such that

Re
(
op(λ2)u, u

)
≥ c

∥∥op(λ1/22 )u
∥∥2 + cM

∥∥〈D〉−1/2
γ u

∥∥2, M ≥M0.
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Proof. A repetition of the same arguments shows that

(op(λ2)u, u) ≥ (1− CM−2)‖op(λ1/22 )u‖2.

Note that one can find C > 0, M0 such that

‖op(σ1/2)u‖/C ≤ ‖op(λ1/22 )u‖2 ≤ C‖op(σ1/2)u‖

for M ≥M0. Noting σ ≥M〈ξ〉−1
γ we conclude the assertion.

Lemma 8.9. There exist c > 0 and M0 such that(
op(λ3)u, u

)
≥ c

∥∥u∥∥2, M ≥M0.

Summarize what we have proved in

Proposition 8.1. There exist c > 0, C > 0 and M0 such that

Re (op(Λ#κ)W,W ) ≥ (1− CM−2)‖op(κ1/2Λ1/2)W‖2,

Re (op(Λ)W,W ) ≥ c

3∑
j=1

(
‖op(Λ1/2)W‖2 + ‖op(D)W‖2

)
for M ≥M0 where

D =

M〈ξ〉−1
γ 0 0

0 M1/2〈ξ〉−1/2
γ 0

0 0 1

 .
9 System with diagonal symmetrizer

Diagonalizing the Bézout matrix introduced in Section 6 we reduce the system
(6.2) to a system with a diagonal symmetrizer.

Lemma 9.1. Let p ∈ C(σk) then ∂αx ∂
β
ξ p ∈ S(σk−|α+β|/2〈ξ〉−|β|

γ , g).

Proof. The proof is clear from∣∣∂α′

x ∂
β′

ξ (∂αx ∂
β
ξ p)

∣∣ ≾ σk−|α′+β′+α+β|/2〈ξ〉−|β′+β|
γ

≾ σk−|α+β|/2〈ξ〉−|β|
γ σ−|α′+β′|/2〈ξ〉−|α′+β′|/2

γ 〈ξ〉(|α
′|−|β′|)/2

γ

≾ σk−|α+β|/2〈ξ〉−|β|
γ M−|α′+β′|/2〈ξ〉(|α

′|−|β′|)/2
γ

since σ ≥ ρ ≥M〈ξ〉−1
γ .

Lemma 9.2. Let p ∈ C(σk) and q ∈ C(σℓ). Then

p#p− p2 ∈ S(σ2k−2〈ξ〉−2
γ , g), p#q − pq ∈ S(σk+ℓ−1〈ξ〉−1

γ , g).
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Proof. The assertions follows from Lemma 9.1 and the Weyl calculus of pseu-
dodifferential operators.

Since a ∈ C(σ), b ∈ C(σ3/2) one sees A#[ξ] = A(t, x, ξ)[ξ] + R with R ∈
S(M−2, g) for ∂βξ [ξ] ∈ S(1, g) by (4.6) one can replaceA(t, x,D)#[D] by op(A[ξ])
in (6.2), moving R to B. Denote

L = Dt − op(Ã)− op(B), Ã =

0 a b
1 0 0
0 1 0

 [ξ].

Consider T−1#T = I − R where R ∈ S(M−1, g). Thanks to Lemma 8.1 there
is K ∈ S(M−1, g) such that (I−R)#(I+K) = I = (I+K)#(I−R) and hence

T−1#T#(I +K) = I, (I +K)#T−1#T = I, T#(I +K)#T−1 = I.

Therefore one can write

(9.1) L op(T ) = op(T ) L̃

where

L̃ = Dt − op((I +K)#T−1#(Ã+B)#T ) + op((I +K)#T−1#(DtT )).

Lemma 9.3. One has K ∈ S(M−1〈ξ〉−1
γ , g).

Proof. Write T = (tij) then T
−1#T = (

∑3
k=1 tki#tkj) and denote

3∑
k=1

tki#tkj = δij + rij .

Taking Lemma 6.6 into account, we see rii ∈ S(σ−1〈ξ〉−2
γ , g) ⊂ S(M−1〈ξ〉−1

γ , g)

and rij ∈ S(σ1/2〈ξ〉−1
γ , g) ⊂ S(M−2〈ξ〉−1

γ , g) for i 6= j thanks to Lemma 9.2
hence R ∈ S(M−1〈ξ〉−1

γ , g). Since K ∈ S(M−1, g) satisfies K = R + R#K we
conclude the assertion.

Therefore K#T−1#(Ã+B)#T ∈ S(M−1, g) is clear. Hence

L̃ = Dt − op(T−1#(Ã+B)#T − T−1#(DtT )) + op(S(M−1, g)).

To simplify notations sometimes we abbreviate S(m, g) to S(m) where m is
admissible for g. In view of Lemmas 6.6 and 6.7 it follows from Lemma 9.2 that

T−1#(∂tT ) = T−1∂tT

+

 S(σ−1〈ξ〉−1
γ ) S(σ−1/2〈ξ〉−1

γ ) S(〈ξ〉−1
γ )

S(σ−1/2〈ξ〉−1
γ ) S(σ−1〈ξ〉−1

γ ) S(σ−1/2〈ξ〉−1
γ )

S(〈ξ〉−1
γ ) S(σ−1/2〈ξ〉−1

γ ) S(〈ξ〉−1
γ )

(9.2)
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hence T−1#(∂tT ) = T−1∂tT + S(M−1, g) because σ ≥M〈ξ〉−1
γ .

Turn to study T−1#Ã#T . Noting that ∂αx ∂
β
ξ a ∈ S(σ1/2〈ξ〉−|β|

γ , g), ∂αx ∂
β
ξ b ∈

S(σ〈ξ〉−|β|
γ , g) for |α+ β| = 1 and ∂βξ [ξ] ∈ S(1, g), |β| = 1 we have

T−1#Ã = T−1Ã+R, R =

 S(1) S(M−2) S(M−6)
S(M−2) S(1) S(M−8)
S(M−8) S(M−2) S(M−6)

 .
Therefore T−1#Ã#T = (T−1Ã)#T +R1 with

R1 = R#T =

S(M−4) S(M−2) S(1)
S(M−2) S(1) S(M−2)
S(M−4) S(M−2) S(M−8)

 .
Note that

T−1Ã =

 C(σ1/2) 1 + C(σ) C(σ5/2)
−1 + C(σ) C(σ1/2) C(σ3)
C(σ5/2) C(σ) C(σ3/2)

 [ξ]

and hence

〈ξ〉|β|γ ∂αx ∂
β
ξ

(
T−1Ã

)
=

 S(1) S(1) S(M−8)
S(1) S(1) S(M−10)

S(M−8) S(M−2) S(M−4)


for |α+ β| = 1. Then thanks to (6.13) one sees

(T−1Ã)#T = T−1ÃT +R2, R2 =

 S(1) S(M−2) S(M−2)
S(1) S(M−2) S(M−2)

S(M−2) S(M−4) S(M−6)

 .
Thus we obtain T−1#Ã#T = T−1ÃT +R1 +R2 where

R1 +R2 =

 S(1) S(M−2) S(M−2)
S(1) S(M−2) S(M−2)

S(M−2) S(M−4) S(M−6)

 .
Recall

B =

b1 b2 + dM b3
0 0 0
0 0 0


and consider T−1#B#T . Since dM ∈ S(M, g) one sees by Lemma 6.6 that

T−1#B =

 S(σ) S(Mσ) S(σ)
S(σ3/2) S(Mσ3/2) S(σ3/2)
b1 + S(σ) b2 + dM + S(Mσ) b3 + S(σ)

 .
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Noting that σ ≤ CM−4 we conclude that T−1#B#T is written

(9.3)

 S(σ) S(Mσ) S(σ)
S(σ3/2) S(Mσ3/2) S(σ3/2)

b3 + S(Mσ1/2) −b2 − dM + S(σ1/2) b1 + S(σ)

 .
Thus using σ ≤ CM−4 again

T−1#B#T =

 0 0 0
0 0 0
b3 −2Me+ S(1) S(1)

+ S(M−1, g)

where we have used (6.1). We summarize what we have proved in

Proposition 9.1. One can write L · op(T ) = op(T ) · L̃ where

L̃ = Dt − op(A+ B1 − T−1DtT ), A = (T−1AT )[ξ] ,

B1 =

 S(1) S(1) S(1)
S(1) S(1) S(1)

b3 + S(M−1) −2Me+ S(1) S(1)

 .
Note that from Lemma 4.1 it follows that

(9.4) b3(t, x, ξ)− b̄3 ∈ S(M−2, g), b̄3 = b3(0, 0, ξ̄).

10 Weighted energy estimates

10.1 Energy form

Let w = tϕ(t, x, ξ) and consider the energy with the scalar weight op(w−n);

E(V ) = e−θt
(
op(Λ)op(w−n)V, op(w−n)V

)
where θ > 0 is a large positive parameter and n is fixed such that

(10.1) n > υ−1/2
( |3 b̄3 + iē|

ē
+ 6 +

√
2
)
+ C∗ + 2

where υ−1 =
(
2(18

√
2 + 1)

)
and C∗ is given by (3.13) and ē is the nonzero

positive real eigenvalue of Fp(0, 0, 0, ξ̄) (cf. [24, (7.2.3)]).
Note that ∂tϕ = ω−1ϕ and hence

∂tw
−n = −n

(1
t
+

1

ω

)
w−n = −nκw−n.

Recall that V satisfies

(10.2) ∂tV = op(iA+ iB)V + F, B = B1 − T−1DtT.
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Noting that Λ is real and diagonal hence op(Λ)∗ = op(Λ) one has

d

dt
E = −θe−θt

(
op(Λ)op(w−n)V, op(w−n)V

)
−2nRe e−θt

(
op(Λ)op(κw−n)V, op(w−n)V )

+e−θt
(
op(∂tΛ)op(w

−n)V, op(w−n)V
)

+2Re e−θt
(
op(Λ)op(w−n)(op(iA+ iB)V + F ), op(w−n)V ).

(10.3)

Consider op(w−n)op(Λ)op(κw−n) = op(w−n#Λ#(κw−n)). Since κ and ϕ−n

are admissible weights for g one can write

κ#ϕ−n = κϕ−n − r, r ∈ S(M−1κϕ−n, g).

Let r̃ = r#ϕn#(1 + k) ∈ S(M−1κ, g) such that r = r̃#ϕ−n and hence κϕ−n =
(κ+ r̃)#ϕ−n thus

κw−n = (κ+ r̃)#w−n.

Therefore we have

Re
(
op(Λ)op(κw−n)V, op(w−n)V

)
≥ Re

(
op(Λ#κ)op(w−n)V, op(w−n)V

)
−
∣∣(op(Λ#r̃)op(w−n)V, op(w−n)V )

∣∣.
Since λj#r̃ ∈ S(M−1κλj , g) thanks to Lemma 8.4 the second term on the right-
hand side is bounded by

CM−1‖op(κ1/2Λ1/2)op(w−n)V ‖.

Applying Proposition 8.1, one can conclude, denoting Wj = op(w−n)Vj , that

Re
(
op(Λ)op(κw−n)V, op(w−n)V

)
≥ (1− CM−1)‖op(κ1/2Λ1/2)W‖2.

Applying Proposition 8.1 again one obtains

Re
(
op(Λ)op(w−n)V, op(w−n)V

)
≥ c

(
‖op(Λ1/2)W‖2 + ‖op(D)W‖2

)
for M ≥M0.

Definition 10.1. To simplify notations we denote

E1(V ) = ‖op(κ1/2Λ1/2)op(w−n)V ‖2 = t−2n‖op(κ1/2Λ1/2)op(ϕ−n)V ‖2,
E2(V ) = ‖op(Λ1/2)op(w−n)V ‖2 + ‖op(D)op(w−n)V ‖2

= t−2n‖op(Λ1/2)op(ϕ−n)V ‖2 + t−2n‖op(D)op(ϕ−n)V ‖2.

Now we summarize

Lemma 10.1. One can find C > 0, c > 0 and M0 such that

nRe
(
op(Λ)op(κw−n)V, op(w−n)V

)
+ θ Re

(
op(Λ)op(w−n)V, op(w−n)V

)
≥ n(1− CM−1)E1(V ) + c θE2(V ), M ≥M0.
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10.2 Term (op(Λ)op(w−n)op(B)V, op(w−n)V )

First recall that λi ∈ S(λi, g) and λ1 ≤ Cσλ2 ≤ Cσ2λ3 with some C > 0. Let
b ∈ S(σ−1/2, g) and consider (op(λj)op(b)Wi,Wj) for i ≥ j. Write

r = (1 + k)#(κ−1/2λ
−1/2
j )#(λj#b)#λ

−1/2
i #(1 + k̃)

∈ S(κ−1/2σ−1/2λ
1/2
j λ

−1/2
i , g) ⊂ S(σ(i−j)/2, g) (i ≥ j)

for σκ ≥ 1, such that (κ1/2λ
1/2
j )#r#λ

1/2
i = λj#b. Then we have

|(op(λj)op(b)Wi,Wj)| ≤M−2‖op(κ1/2Λ1/2)W‖2 + CM2‖op(Λ1/2)W‖2

for i ≥ j. Turn to study (op(λi)op(b)Wj ,Wi) for 1 ≤ j < i. Let b ∈ S(M l, g)
and denote

r = (1 + k)#(κ−1/2λ
−1/2
2 )#(λ3#b)#λ

−1/2
3 #(1 + k̃)

such that (κ1/2λ
1/2
2 )#r#λ

1/2
3 = λ3#b. Since r ∈ S(κ−1/2λ

1/2
3 λ

−1/2
2 , g) hence

r ∈ S(σ1/2λ
−1/2
2 , g) ⊂ S(1, g) in view of Lemma 7.11 which proves∣∣(op(λ3)op(b)W2,W3)

∣∣ = ∣∣(op(r)op(κ1/2λ1/22 )W2, op(λ3)W3)
∣∣

≤ CM−2‖op(κ1/2Λ1/2)W‖2 + CM2+2l‖op(Λ1/2)W‖2.

We next check (op(λ3)op(b)W1,W3) for b ∈ S(1, g). Write

r = (1 + k)#(κ−1/2λ
−1/2
1 )#(λ3#b)#(κ−1/2λ

−1/2
3 )#(1 + k̃)

such that (κ1/2λ
1/2
1 )#r#(κ1/2λ

1/2
3 ) = λ3#b. Since k, k̃ ∈ S(M−1, g) it is easy

to see that
r = b#(λ

1/2
3 λ

−1/2
1 κ−1) + r̃

with r̃ ∈ S(M−1/2, g). By Proposition 6.1 and Lemma 7.11 one sees that∣∣λ1/23 λ
−1/2
1 κ−1

∣∣ ≤ 3/(ē υ1/2) + CM−4

hence ‖op(λ1/23 λ
−1/2
1 κ−1)u‖ ≤ 3/(ē υ1/2) (1 + C ′M−1/2)‖u‖. Therefore

|(op(λ3)op(b)W1,W3)| = |(op(r31)op(κ1/2λ1/21 )W1, op(κ
1/2λ

1/2
1 )W3)|

≤
(
3/(ē υ1/2)‖op(b)‖+ CM−1/2

)
‖op(κ1/2Λ1/2)W‖2.

Now consider (op(λ2)op(b)W1,W2) for b ∈ S(σ−1/2, g) = S(λ
−1/2
2 , g). Denote

r = (1 + k)#(κ−1/2λ
−1/2
2 )#(λ2#b)#(λ

−1/2
1 κ−1/2)#(1 + k̃)

such that (κ1/2λ
1/2
2 )#r#(λ

1/2
1 κ1/2) = λ2#b. Since one can write

r = (λ
1/2
2 b)#(κ−1λ

−1/2
1 ) + r̃
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with r̃ ∈ S(M−1, g) because κ−1λ
−1/2
1 ∈ S(1, g). Thus repeating the same

arguments as above one conclude∣∣(op(λ2)op(b)W1,W2)
∣∣ ≤ (√

3/(ē υ1/2)‖op(λ1/22 b)‖+CM−1/2
)
‖op(κ1/2Λ1/2)W‖2.

We summarize the above estimates in

Lemma 10.2. We have∣∣(op(λj)op(b)Wi,Wj)
∣∣ ≤ CM−2‖op(κ1/2Λ1/2)W‖2 + CM2‖op(Λ1/2)W‖2

for b ∈ S(σ−1/2, g) and i ≥ j and

|(op(λ3)op(b)W2,W3)| ≤ CM−2‖op(κ1/2Λ1/2)W‖2 + CM2+2l‖op(Λ1/2)W‖2

for b ∈ S(M l, g) and

|(op(λ3)op(b)W1,W3)| ≤
(
3/(ē υ1/2)‖op(b)‖+ CM−1/2

)
‖op(κ1/2Λ1/2)W‖2

for b ∈ S(1, g) and∣∣(op(λ2)op(b)W1,W2)
∣∣ ≤ (√

3/(ē υ1/2)‖op(λ1/22 b)‖+CM−1/2
)
‖op(κ1/2Λ1/2)W‖2

for b ∈ S(σ−1/2, g).

In particular, this lemma implies

Corollary 10.1. Let B = (bij) ∈ S(1, g). Then∣∣(op(Λ)op(B)W,W )
∣∣ ≤ (3/(ē υ1/2)‖op(b31)‖+ CM−1/2)E1(V ) + CE2(V ).

From Proposition 9.1 it results ϕ−n#B1 − B1#ϕ
−n ∈ S(M−1ϕ−n, g) then

one concludes by Corollary 10.1 that

(10.4)
∣∣(op(Λ)[op(w−n), op(B1)]V,W )

∣∣ ≤ CM−1E1(V ) + CE2(V )

where W = op(w−n)V again. Write T−1∂tT = (t̃ij) and recall (6.14) and note
that t̃12 = −t̃21 ∈ C(σ−1/2) and t̃31 ∈ S(1, g). Then thanks to Lemma 5.5 one
has

λ2#(ϕ−n#t̃21 − t̃21#ϕ
−n)#ϕn ∈ S(ω−1ρ1/2〈ξ〉−1

γ , g)

⊂ S(M−1
√
κλ1

√
κλ2, g),

λ3#(ϕ−n#t̃31 − t̃31#ϕ
−n)#ϕn ∈ S(σ−1/2ω−1ρ1/2〈ξ〉−1

γ , g)

⊂ S(M−1
√
κλ1

√
κλ3, g)

because Cλ1 ≥ Mσ〈ξ〉−1
γ , Cλ2 ≥ σ ≥ M〈ξ〉−1

γ and ω−1 ≤ κ. Therefore repeat-
ing similar arguments one concludes

(10.5)
∣∣(op(Λ)[op(w−n), op(T−1∂tT )]V,W )

∣∣ ≤ CM−1E1(V ).
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Recalling B = B1 − T−1DtT it follows from (10.4) and (10.5) that

(10.6)
∣∣(op(Λ)[op(w−n), op(B)]V,W )

∣∣ ≤ CM−1E1(V ) + CE2(V ).

With B = (qij) we see that

q21 = i∂t(3b/2aM ) + S(1), q31 = b3 + i∂taM/3 + S(M−1)

and q32 = −2Me+ S(1), qij ∈ S(σ−1/2, g) for j ≥ i. Applying Lemma 10.2 we
have from (6.15), (6.16), (9.4) and Proposition 6.1 that∣∣(op(Λ)op(B)op(w−n)V, op(w−n)V )

∣∣
≤

(
υ−1/2(|3b̄3 + iē|/ē+ 6 +

√
2) + CM−1/2

)
E1(V ) + CM4E2(V ).

(10.7)

Combining the estimates (10.7) and (10.6) we obtain

Lemma 10.3. We have∣∣(op(Λ)op(w−n)op(B)V, op(w−n)V )
∣∣

≤
(
υ−1/2(|3b̄3 + iē|/ē+ 6 +

√
2) + CM−1/2

)
E1(V ) + CM4E2(V ).

10.3 Term (op(Λ)op(w−n)op(iA)V, op(w−n)V )

Study g−n#A−A#g−n. Recall Lemma 6.8

(10.8) A = [ξ]

 C(
√
σ) −1 + C(σ) C(

√
σ)

C(σ) C(
√
σ) −1 + C(σ)

C(σ3/2) C(σ) C(σ5/2)

 .
Let r ∈ C(σs) then thanks to Lemma 5.5 it follows that

ϕ−n#([ξ]r)− ([ξ]r)#ϕ−n ∈ S(ϕ−nσs−1/2ω−1ρ1/2, g).

Denoting ϕ−n#A−A#ϕ−n = (rij), in view of Lemma 5.5 it follows that

rij ∈ S(ϕ−nω−1ρ1/2, g) ⊂ S(M−2κϕ−n, g)

for i ≤ j because ω−1 ≤ κ. Writing r̃ij = rij#ϕ
n#(1 + k) ∈ S(M−2κ, g) such

that rij = r̃ij#ϕ
−n one obtains∣∣(op(λi)op(rij)Vj ,Wi)

∣∣ = ∣∣(op(λi#r̃ij)Wj ,Wi)
∣∣

≤ CM−2‖op(κ1/2Λ1/2)W‖2

since λi#r̃ij ∈ S(M−2κλi, g). It rests to estimate (op(λi)op(rij)Vj ,Wi) for
i > j. From Corollary one sees ã21 = λ1 C(σ−1) hence thanks to Lemmas 5.5
and 7.7

r21 = ϕ−n#(ã21[ξ])− ϕ−nã21[ξ] ∈ S(σ−1/2λ
1/2
1 ω−1ρ1/2ϕ−n, g)

⊂ S(λ
1/2
1 κϕ−n, g)
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because ω−1 ≤ κ hence r21 = r̃21#ϕ
−n with r̃21 ∈ S(κλ

1/2
1 , g). Then noting

λ
1/2
2 ≤ CM−2 we have∣∣(op(λ2)op(r21)V1,W2)

∣∣ = ∣∣(op(λ2#r̃21)W1,W2)
∣∣

≤ CM−2‖op(κ1/2Λ1/2)W‖2.

Similarly from ã31 = λ1 C(σ1/2), ã32 = λ2 C(1) and Lemma 7.7 it follows that

r31 ∈ S(σλ
1/2
1 ω−1ρ1/2ϕ−n, g) ⊂ S(M−6λ

1/2
1 κϕ−n, g),

r32 ∈ S(λ
1/2
2 ω−1ρ1/2ϕ−n, g) ⊂ S(M−2λ

1/2
2 κϕ−n, g).

Here we have used

(10.9) ∂αx ∂
β
ξ λ2 ∈ S(λ

1/2
2 〈ξ〉−|β|

γ , g), |α+ β| = 1

which follows from λ2 ∈ C(σ) easily. Then one obtains∣∣(op(λ3)op(r31)V1,W3)
∣∣ ≤ CM−6‖op(κ1/2Λ1/2)W‖2,∣∣(op(λ3)op(r32)V2,W3)
∣∣ ≤ CM−2‖op(κ1/2Λ1/2)W‖2.

Therefore (op(Λ)op(w−n)op(A)V, op(w−n)V )− (op(Λ)op(A)W,W ) is bounded
by constant times M−2E1(V ).

Next study Λ#A− ΛA = (qij). From Lemmas 6.8 and 7.7 it follows that

λ1#(ã1j [ξ])− λ1ã1j [ξ] ∈ S(σ1/2λ
1/2
1 , g) ⊂ S(M−2λ1κ, g),

λ2#(ã2j [ξ])− λ2ã2j [ξ] ∈ S(λ
1/2
2 , g) ⊂ S(λ2κ

1/2, g)

because λ
1/2
1 κ ≥ 1 and Cλ2κ ≥ 1. Then∣∣(op(q1j)Wj ,W1)

∣∣ ≤ CM−2‖op(κ1/2Λ1/2)W‖2 + C‖op(Λ1/2)W‖2

for j = 1, 2, 3 and∣∣(op(q2j)Wj ,W2)
∣∣ ≤ CM−2‖op(κ1/2Λ1/2)W‖2 + CM2‖op(Λ1/2)W‖2

for j = 2, 3. Repeating similar arguments, applying Lemmas 6.8 and 7.7, one
has

λ2#(ã21[ξ])− λ2ã21[ξ] ∈ S(σ−1/2λ
1/2
2 λ

1/2
1 , g) ⊂ S(κ1/2λ

1/2
2 λ

1/2
1 , g),

λ3#(ã31[ξ])− λ3ã31[ξ] ∈ S(σ1/2λ
1/2
1 , g),

λ3#(ã32[ξ])− λ3ã32[ξ] ∈ S(σ−1/2λ
1/2
2 , g) ⊂ S(κ1/2λ

1/2
2 , g)

since κσ ≥ 1. Therefore we have

|(op(q21)W2,W1)|+ |(op(q31)W3,W1)|+ |(op(q32)W3,W2)|
≤ CM−2‖op(Λ1/2κ1/2)W‖2 + CM2‖op(Λ1/2)W‖2.
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Thus we conclude that∣∣(op(Λ)op(w−n)op(A)V, op(w−n)V )− (op(ΛA)W,W )
∣∣

≤ CM−2E1(V ) + CM2E2(V ).
(10.10)

Since Λ∗ = Λ a repetition of the same arguments proves that∣∣(op(Λ)op(w−n)V, op(w−n)op(A)V )− (op(AΛ∗)W,W )
∣∣

is also bounded by the right-hand side of (10.10). Recalling that ΛA = A∗Λ
and Λ∗ = Λ we have

Lemma 10.4. One can find C > 0 such that∣∣Re (op(Λ)op(w−n)op(iA)V, op(w−n)V )
∣∣ ≤ CM−2E1(V ) + CM2E2(V ).

10.4 Term (op(∂tΛ)op(w
−n)V, op(w−n)V )

Start with

Lemma 10.5. We have ∂tλj ∈ S(κλj , g), j = 1, 2.

Proof. Note that Lemma 3.6 with ϵ =
√
2M〈ξ〉−1

γ implies

|∂t∆M | ≤ C∗
(1
t
+

1

ω

)
∆M = C∗κ∆M .

Recalling ∂tλ1 = −∂tq(λ1)/∂λq(λ1) it follows from (6.11) and (6.7) that

|∂tλ1| ≤ (1 + CM−2)
(
|∂taM/aM |λ1 + |∂t∆M |/6aM

)
.

Since (1+CM−2)λ1 ≥ ∆M/6aM by Proposition 6.1 and 1/aM ≤ κ/e by Lemma
7.11 one concludes |∂tλ1| ≤ (1 + CM−2)(C∗ + 1)κλ1. Since ∂tλ1 ∈ C(σ) then

|∂αx ∂
β
ξ ∂tλ1| ≤ Cσ1−|α+β|/2〈ξ〉−|β|

γ ≤ Cσ1/2〈ξ〉−1/2
γ 〈ξ〉(|α|−|β|)/2

γ .

From Lemma 7.11 and Cλ1 ≥Mσ〈ξ〉−1
γ it follows that

κλ1 ≥ κ
√
λ1M

1/2σ1/2〈ξ〉−1/2
γ /C ≥M1/2σ1/2〈ξ〉−1/2

γ /C

which proves |∂αx ∂
β
ξ ∂tλ1| ≤ CM−1/2κλ1〈ξ〉(|α|−|β|)/2

γ for |α + β| = 1. For |α +
β| ≥ 2 it follows that

|∂αx ∂
β
ξ ∂tλ1| ≾ σ1−|α+β|/2〈ξ〉−|β|

γ ≾ σ−(|α+β|−2)/2〈ξ〉−|β|
γ

≾ (M−1〈ξ〉γ)(|α+β|−2)/2〈ξ〉−|β|
γ =M〈ξ〉−1

γ M−|α+β|/2〈ξ〉(|α|−|β|)/2
γ

≤ σ−1Mσ〈ξ〉−1
γ M−|α+β|/2〈ξ〉(|α|−|β|)/2

γ ≤ Cκλ1M
−|α+β|/2〈ξ〉(|α|−|β|)/2

γ

because κσ ≥ 1. Therefore we conclude ∂tλ1 ∈ S(κλ1, g). On the other hand
∂tλj ∈ S(κλj , g), j = 2, 3 is clear since ∂tλj ∈ C(1) ⊂ S(1, g) ⊂ S(κλ2, g) for
Cλ2κ ≥ 1. This completes the proof.
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Note that from (6.10), (6.11), (6.7) and Proposition 6.1 we see that∣∣∂tλ2∣∣ ≤ |∂taM |λ2/aM + CaM ≤
(
1 + CM−2

)
κλ2

for κσ ≥ 1. Now applying Lemma 8.4 one obtains∣∣(op(∂tλ1)W1,W1)
∣∣ ≤ (C∗ + 1 + CM−1/2)‖op(κ1/2λ1/21 )W1‖2,∣∣(op(∂tλ2)W2,W2)

∣∣ ≤ (1 + CM−1/2)‖op(κ1/2λ1/22 )W2‖2.

Since
∣∣(op(∂tλ3)W3,W3)

∣∣ ≤ C‖op(λ3)W3‖2 is clear summarizing the above es-
timates we obtain

Lemma 10.6. We have∣∣(op(∂tΛ)op(w−n)V, op(w−n)V )
∣∣ ≤ (C∗ + 2 + CM−1/2)E1(V ) + CE2(V ).

10.5 Conclusion

Consider the term Re
(
op(Λ)op(w−n)F, op(w−n)V ) where F = t(F1, F2, F3).

Write
R = (1 +K)#(κ−1/2Λ1/2)#Λ#(κ1/2Λ−1/2)#(1 + K̃)

such that Λ = (κ1/2Λ1/2)#R#(κ−1/2Λ1/2). Since R ∈ S(1, g) it follows that∣∣(op(Λ)op(w−n)F, op(w−n)V )
∣∣

=
∣∣(op(R)op(κ−1/2Λ1/2)op(w−n)F, op(κ1/2Λ1/2)op(w−n)V )

∣∣
≤ CM−1‖op(κ1/2Λ1/2)op(w−n)V ‖2 + CM‖op(κ−1/2Λ1/2)op(w−n)F‖2.

Therefore we have

Lemma 10.7. There exist C > 0, M0 such that∣∣Re (op(Λ)op(w−n)F, op(w−n)V )
∣∣ ≤ CM−1E1(V )

+CM‖op(κ−1/2Λ1/2)op(w−n)F‖2, M ≥M0.

Because of the choice of n it follows from (10.3) and Lemmas 10.1, 10.3,
10.4, 10.6, 10.7 one can find ci > 0 and M0, γ0, θ0 such that

d

dt
E ≤ −c1e−θtE1 − c2θe

−θtE2 + CMe−θt‖op(κ−1/2Λ1/2)op(w−n)F‖2

for M ≥ M0, γ ≥ γ0 and θ ≥ θ0. Recalling w−n = t−nϕ−n and integrating the
above differential inequality in t we obtain
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Proposition 10.1. There exist ci > 0 and M0, γ0, θ0 such that

c1t
−2ne−θt

(
‖op(Λ1/2)op(ϕ−n)V (t)‖2 + ‖op(D)op(ϕ−n)V (t)‖2

)
+c2

∫ t

0

e−θss−2n‖op(κ1/2Λ1/2)op(ϕ−n)V (s)‖2ds

+c3θ

∫ t

0

e−θss−2n
(
‖op(Λ1/2)op(ϕ−n)V (s)‖2 + ‖op(D)op(ϕ−n)V (s)‖2

)
ds

≤ CM

∫ t

0

e−θss−2n‖op(κ−1/2Λ1/2)op(ϕ−n)F (s)‖2ds

for V satisfying

lim
t→+0

t−2n
(
op(Λ)op(ϕ−n)V (t), op(ϕ−n)V (t)

)
= 0

and for 0 ≤ t ≤M−4, M ≥M0, γ ≥ γ0 and θ ≥ θ0.

FixM such that Proposition 10.1 holds. Since ϕ > 0 is bounded and κ ≥ t−1

and 〈ξ〉−3/2+j/2
γ ≤ Cλ

1/2
j one sees that

t−1/2〈ξ〉−3/2+j/2
γ ≤ Cκ1/2λ

1/2
j ϕ−n, 1 ≤ j ≤ 3.

Hence it follows from Lemma 8.5 that

t−1/2‖〈D〉−1
γ V ‖ ≤ t−1/2‖op(D)V ‖ ≤ C‖op(κ1/2Λ1/2ϕ−n)V ‖.

Writing κ1/2λjϕ
−n = rj#ϕ

−n with rj ∈ S(κ1/2λ
1/2
j , g) it is clear that

(10.11) t−1/2‖〈D〉−1
γ V ‖ ≤ t−1/2‖op(D)V ‖ ≤ C‖op(κ1/2Λ1/2)op(ϕ−n)V ‖.

Similarly we see that

‖op(κ−1/2Λ1/2)op(ϕ−n)F‖ ≤ C‖op(κ−1/2ϕ−nΛ1/2)F‖.

Thanks to Lemma 5.3 one has

κ−1/2ϕ−nλ
1/2
j ∈ S(

√
t 〈ξ〉nγ , g)

hence applying Lemma 8.5 again

‖op(κ−1/2Λ1/2)op(ϕ−n)F‖ ≤ C‖op(κ−1/2ϕ−nΛ1/2)F‖
≤ C

√
t ‖〈D〉nγF‖.

(10.12)

Remarking that
∣∣(op(Λ)op(ϕ−n)V (t), op(ϕ−n)V (t))

∣∣ ≤ C‖〈D〉nγV (t)‖2 one con-
cludes that

Corollary 10.2. We have

t−2ne−θt‖op(D)V (t)‖2 +
∫ t

0

s−2n−1e−θs‖op(D)V (s)‖2ds

≤ C

∫ t

0

s−2n+1e−θs‖〈D〉nγF (s)‖2ds

for V satisfying limt→+0 t
−n‖〈D〉nγV (t)‖ = 0.
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11 Preliminary existence result

Let s ∈ R and try to obtain estimates for 〈D〉sγV . In what follows we fix M and
γ (actually it is enough to choose γ =M5, see (4.1)) such that Proposition 10.1
holds, while θ remains to be free. From (10.2) one has

∂t(〈D〉sγV ) =
(
op(iA+ iB) + i[〈D〉sγ , op(A+ B)]〈D〉−s

γ

)
〈D〉sγV + 〈D〉sγF.

Lemma 11.1. For any s ∈ R there is C > 0 such that∣∣([〈D〉sγ , op(A)]V, op(Λ)〈D〉sγV )
∣∣ ≤ CE2(〈D〉sγV ).

Proof. Denoting T−1AT = (ãij) thanks to Corollary 6.3 and Lemma 7.7 and
(10.9) we see that

((ã31[ξ])#〈ξ〉sγ − 〈ξ〉sγ#(ã31[ξ]))#〈ξ〉−s
γ ∈ S(σ

√
λ1, g),

((ã32[ξ])#〈ξ〉sγ − 〈ξ〉sγ#(ã32[ξ]))#〈ξ〉−s
γ ∈ S(

√
λ2, g),

((ã21[ξ])#〈ξ〉sγ − 〈ξ〉sγ#(ã21[ξ]))#〈ξ〉−s
γ ∈ S(σ−1/2

√
λ1, g)

(11.1)

where S(σ
√
λ1, g) ⊂ S(M−4

√
λ1, g) and S(σ−1/2

√
λ1, g) = S(λ

−1/2
2

√
λ1, g).

From Lemma 6.8 it is easy to see ((ãij [ξ])#〈ξ〉sγ−〈ξ〉sγ#(ãij [ξ]))#〈ξ〉−s
γ ∈ S(1, g)

for j ≥ i then taking (11.1) into account the assertion is easily proved.

Lemma 11.2. For any s ∈ R and any ϵ > 0 there is C > 0 such that∣∣([〈D〉sγ , op(B)]V, op(Λ)〈D〉sγV )
∣∣ ≤ ϵ E1(〈D〉sγV ) + CE2(〈D〉sγV ).

Proof. Write B1 = (b̃ij). Since b̃ij ∈ S(1, g) by (9.3) it suffices to consider b̃ij
with i > j. Taking b1, b2 ∈ S(1, G) and dM ∈ S(M,G) (here recall that M
being fixed) into account, it follows from (9.3) that

λ2#(〈ξ〉sγ#b̃21 − b̃21#〈ξ〉sγ)#〈ξ〉−s
γ ∈ S(σ5/2〈ξ〉−1/2

γ , g) ⊂ S(σ3/2λ
1/2
2 λ

1/2
1 , g),

λ3#(〈ξ〉sγ#b̃31 − b̃31#〈ξ〉sγ)#〈ξ〉−s
γ ∈ S(σ1/2〈ξ〉−1/2

γ , g) ⊂ S(λ
1/2
1 λ

1/2
3 , g),

λ3#(〈ξ〉sγ#b̃32 − b̃32#〈ξ〉sγ)#〈ξ〉−s
γ ∈ S(σ1/2〈ξ〉−1/2

γ , g) ⊂ S(〈ξ〉−1/2
γ λ

1/2
2 λ

1/2
3 , g)

since λ1 ≥Mσ〈ξ〉−1
γ . This proves

(11.2)
∣∣([〈D〉sγ , op(B1)]V, op(Λ)〈D〉sγV )

∣∣ ≤ CE2(〈D〉sγV ).

Next consider T−1∂tT = (t̃ij). Recalling t̃21 ∈ C(σ−1/2) and t̃31 ∈ C(1) we have

λ2#(〈ξ〉sγ#t̃21 − t̃21#〈ξ〉sγ)#〈ξ〉−s
γ ∈ S(〈ξ〉−1

γ , g) ⊂ S(M−1
√
κλ1

√
λ2, g),

λ3#(〈ξ〉sγ#t̃31 − t̃31#〈ξ〉sγ)#〈ξ〉−s
γ ∈ S(σ−1/2〈ξ〉−1

γ , g) ⊂ S(M−1
√
κλ1

√
λ3, g)

since σκ ≥ 1, Cλ1 ≥Mσ〈ξ〉−1
γ and Cλ2 ≥ σ ≥M〈ξ〉−1

γ . Therefore we have∣∣([〈D〉sγ , op(T−1∂tT )]V, op(Λ)〈D〉sγV )
∣∣ ≤ CM−1

√
E1(〈D〉sγV )

√
E2(〈D〉sγV )

≤ ϵ E1(〈D〉sγV ) + C2M−2ϵ−1E2(〈D〉sγV )

which together with (11.2) proves the assertion.
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Choosing ϵ > 0 smaller than c2 in Proposition 10.1 and choosing θ large we
conclude

Proposition 11.1. Let s ∈ R be given. There exist C > 0, θ0 > 0 such that

t−2ne−θt
(
‖op(Λ1/2)op(ϕ−n)〈D〉sγV (t)‖2 + ‖op(D)op(ϕ−n)〈D〉sγV (t)‖2

)
+

∫ t

0

e−θτ τ−2n‖op(κ1/2Λ1/2)op(ϕ−n)〈D〉sγV (τ)‖2dτ

+θ

∫ t

0

e−θτ τ−2n
(
‖op(Λ1/2)op(ϕ−n)〈D〉sγV (τ)‖2

+‖op(D)op(ϕ−n)〈D〉sγV (τ)‖2
)
dτ

≤ C

∫ t

0

e−θτ τ−2n‖op(κ−1/2Λ1/2)op(ϕ−n)〈D〉sγF (τ)‖2dτ

for 0 ≤ t ≤M−4 = δ, θ0 ≤ θ and V satisfying

lim
t→+0

t−2n
(
op(Λ)op(ϕ−n)〈D〉sγV (t), op(ϕ−n)〈D〉sγV (t)

)
= 0.

Lemma 11.3. For any s ∈ R there exists Cs > 0 such that

t−2n‖op(D)〈D〉sγV (t)‖2 +
∫ t

0

τ−2n−1‖op(D)〈D〉sγV (τ)‖2dτ

≤ Cs

∫ t

0

τ−2n+1‖〈D〉n+s
γ L̃V (τ)‖2dτ

for 0 ≤ t ≤ δ and for V satisfying limt→+0 t
−n‖〈D〉n+s

γ V (t)‖ = 0.

Recall (9.1) so that L̃ = op(I +K)op(T−1) ·L · op(T ) with T , T−1 ∈ S(1, g)
then

‖〈D〉n+s
γ L̃V ‖ ≤ Cs‖〈D〉n+s

γ L · op(T )V ‖.
Since ‖〈D〉s−1

γ op(T )V ‖ ≤ Cs‖〈D〉s−1
γ V ‖ ≤ Cs‖op(D)〈D〉sγV ‖ it results from

Lemma 11.3 that

t−2n‖〈D〉s−1
γ op(T )V (t)‖+

∫ s

0

τ−2n−1‖〈D〉s−1
γ op(T )V (τ)‖2dτ

≤ Cs

∫ t

0

τ−2n+1‖〈D〉n+s
γ L · op(T )V (τ)‖2dτ.

Replacing op(T )V by U one obtains

Lemma 11.4. For any s ∈ R there exists Cs > 0 such that

t−2n‖〈D〉s−1
γ U(t)‖2 +

∫ t

0

τ−2n−1‖〈D〉s−1
γ U(τ)‖2dτ

≤ Cs

∫ t

0

τ−2n+1‖〈D〉n+s
γ LU(τ)‖2dτ, 0 ≤ t ≤ δ

for V satisfying limt→+0 t
−n‖〈D〉n+s

γ U(t)‖ = 0.
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Return to P̂ . Since U = t(D2
t u, 〈D〉γDtu, 〈D〉2γu) and LU = t(P̂ u, 0, 0) we

have

t−2n
2∑

j=0

‖〈D〉s+1−j
γ Dj

tu(t)‖2 +
2∑

j=0

∫ t

0

τ−2n−1‖〈D〉s+1−j
γ Dj

tu(τ)‖2dτ

≤ Cs

∫ t

0

τ−2n+1‖〈D〉n+s
γ P̂ u(τ)‖2dτ, 0 ≤ t ≤ δ.

(11.3)

Now consider the adjoint operator P̂ ∗ of P̂ . Noting aM ∈ C(σ), b ∈ C(σ3/2)
and (4.6) we see that

P̂ ∗ = D3
t − aM (t, x,D)[D]2Dt − b(t, x,D) [D]3

+b1D
2
t +

(
b̃2 + dM )[D]Dt + b̃3[D]2 + c̃1Dt + c̃2[D]

with b̃j ∈ S(1, g) and c̃j ∈ S(M3, g) hence c̃j [D]−1 ∈ S(M−2, g) where it is not
difficult to check that

b̃3 −
(
b3 + ie

)
∈ S(M−3, g).

Since the power n of the weight ϕ−n depends only on a, b and b3 (see (10.1))
then we can assume that one can choose the same n for P̂ ∗ as for P̂ . Then
employing the weighted energy

E∗(V ) = eθt
(
op(Λ)op(wn)V, op(wn)V

)
and repeating the same arguments as before and making the integration

−
∫ δ

t

d

dt
E∗ dt

we have

Proposition 11.2. There exist ci > 0 and M0, γ0, θ0 such that

c1t
2neθt

(
‖op(Λ1/2)op(ϕn)V (t)‖2 + ‖op(D)op(ϕn)V (t)‖2

)
+c2

∫ δ

t

eθτ τ2n‖op(κ1/2Λ1/2)op(ϕn)V (τ)‖2dτ

+c3θ

∫ δ

t

e−θτ τ2n
(
‖op(Λ1/2)op(ϕn)V (τ)‖2 + ‖op(D)op(ϕn)V (τ)‖2

)
dτ

≤ Cδ2neθδ(op(Λ)op(ϕn)V (δ), op(ϕn)V (δ))

+CM

∫ δ

t

eθτ τ2n‖op(κ−1/2Λ1/2)op(ϕn)F ∗(τ)‖2dτ, 0 ≤ t ≤ δ =M−4

for M ≥M0, γ ≥ γ0 and θ ≥ θ0 where F ∗ = op(T )t(P̂ ∗f, 0, 0).
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Fix M such that Proposition 11.2 holds. From Lemma 5.3 and Cλj ≥
M2〈ξ〉−1

γ we have

t−1/2〈ξ〉−n−3/2+j/2
γ ∈ S(κ1/2λ

1/2
j ϕn, g), κ1/2λ

1/2
j ϕn ∈ S(

√
t, g)

which shows that

t2neθt‖op(D)〈D〉−n
γ V (t)‖2 +

∫ δ

t

τ2n−1eθτ‖op(D)〈D〉−n
γ V (τ)‖2dτ

≤ Cδ2neθδ‖V (δ)‖2 + C

∫ δ

t

τ2n+1eθτ‖F ∗(s)‖2dτ, 0 < t ≤ δ.

Therefore repeating the same arguments as before we have

Lemma 11.5. For any s ∈ R there is Cs > 0 such that

t2n‖〈D〉s−n−1
γ U(t)‖2 +

∫ δ

t

τ2n−1‖〈D〉s−n−1
γ U(τ)‖2dτ

≤ Cs

(
δ2n‖〈D〉sγU(δ)‖2 +

∫ δ

t

τ2n+1‖〈D〉sγF ∗(τ)‖2dτ
)
, 0 < t ≤ δ.

Lemma 11.5 implies that

2∑
j=0

(
t2n‖〈D〉s+1−j

γ Dj
tu(t)‖2 +

∫ δ

t

τ2n−1‖〈D〉s+1−j
γ Dj

tu(τ)‖2dτ
)

≤ Cs

(
‖δ2n

2∑
j=0

‖〈D〉n+s+2−j
γ Dj

tu(δ)‖2 +
∫ δ

t

τ2n+1‖〈D〉n+s
γ P̂ ∗u(τ)‖2dτ

)

(11.4)

for 0 < t ≤ δ. Replacing s by −n− 1− s then (11.4) gives∫ δ

0

t2n−1‖〈D〉−n−su(t)‖2dt ≤ C

∫ δ

0

t2n+1‖〈D〉−1−sP̂ ∗u(t)‖2dt

for u ∈ C∞
0 ((0, δ)× Rd). This implies∣∣∣ ∫ δ

0

(f, v)dt
∣∣∣ ≤ (∫ δ

0

t−2n+1‖〈D〉n+sf‖2dt
)1/2(∫ δ

0

t2n−1‖〈D〉−n−sv‖2dt
)1/2

≤ C
(∫ δ

0

t−2n+1‖〈D〉n+sf‖2dt
)1/2(∫ δ

0

t2n−1‖〈D〉−1−sP̂ ∗v‖2dt
)1/2

for all v ∈ C∞
0 ((0, δ)×Rd) and f such that

∫ δ

0
t−2n+1‖〈D〉n+sf‖2dt <∞. Using

the Hahn-Banach theorem to extend the anti-linear form in P̂ ∗v;

(11.5) P̂ ∗v 7→
∫ δ

0

(f, v)dt
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we conclude that there is some u with
∫ δ

0
t−2n+1‖〈D〉1+su‖2dt < +∞ such that∫ δ

0

(f, v)dt =

∫ δ

0

(u, P̂ ∗v)dt.

This implies that P̂ u = f . Since we may assume that 2n − 1 ≥ 0 and hence
〈D〉1+su ∈ L2((0, δ)× Rd) it follows from [6, Theorem B.2.9] that

〈D〉1+s−jDj
tu ∈ L2((0, δ)× Rd), j = 0, 1, 2.

In view of the estimate (11.3) the following estimate holds for this u

t−2n
2∑

j=0

‖〈D〉1−j+sDj
tu(t)‖2 +

2∑
j=0

∫ t

0

τ−2n−1‖〈D〉1+s−jDj
tu(τ)‖2dτ

≤ C

∫ t

0

τ−2n+1‖〈D〉n+sf(τ)‖2dτ, 0 ≤ t ≤ δ.

(11.6)

Theorem 11.1. There exists δ > 0 such that for any s ∈ R and any f with
t−n+1/2〈D〉n+sf ∈ L2((0, δ)× Rd) there is a unique u with

t−n−1/2〈D〉1+s−jDj
tu ∈ L2((0, δ)× Rd), j = 0, 1, 2

satisfying P̂ u = f and (11.6).

Instead of (11.5) considering the anti-linear form in P̂ v;

P̂ v 7→
∫ δ

0

(f, v)dt+

1∑
j=0

(
w2−j , D

j
t v(δ, ·)

)
+
(
w0, (D

2
t − 〈D〉2a(δ, x,D))v(δ, ·)

)
for v ∈ C∞

0 ((0,∞) × Rd) and repeating similar arguments adopting (11.3) we
conclude

Theorem 11.2. There exists δ > 0 such that for any s ∈ R and any f with
tn+1/2〈D〉n+sf ∈ L2((0, δ) × Rd) and any wj with 〈D〉n+s+2−j

γ wj ∈ L2(Rd),
j = 0, 1, 2, there is a unique u with

(11.7) tn−1/2〈D〉1+s−jDj
tu ∈ L2((0, δ)× Rd), Dj

tu(δ, ·) = wj , j = 0, 1, 2

satisfying P̂ ∗u = f and (11.4).

Indeed we first see that there is u with tn−1/2〈D〉1+su ∈ L2((0, δ) × Rd)
satisfying Dj

tu(δ) = wj , j = 0, 1, 2 (e.g. [6, Chapter XXIII]). Since 〈D〉n+sf ∈
L2((ε, δ) × Rd) and 〈D〉1+su ∈ L2((ε, δ) × Rd) for any ε > 0 it follows from
[6, Theorem B.2.9] that 〈D〉1+s−jDj

tu ∈ L2((ε, δ) × Rd), 0 ≤ j ≤ 2. Applying
(11.4) with t = ε we conclude (11.7), since ε > 0 is arbitrary.

Remark 11.1. It is clear from the proof that for any n′ ≥ n, Theorems 11.1
and 11.2 hold.
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12 Propagation of micro support

In Section 11 we have proved an existence result of the Cauchy problem for
P̂ , which coincides with the original P only in WM . Following [21], [22], [9]
(also [24]) we show that the micro support of u(t, ·), obtained by Theorem 11.1,
propagates with a finite speed via estimates of Sobolev norms of Φu, cut off by
a suitable Φ. This fact enables us to solve the Cauchy problem for the original
P through that of P̂ .

12.1 Estimate of cut off solution

Let χ(x) ∈ C∞
0 (Rd) be equal to 1 near x = 0 and vanish in |x| ≥ 1. Set

dϵ(x, ξ; y, η) =
{
χ(x− y)|x− y|2 + |ξ〈ξ〉−1

γ − η〈η〉−1
γ |2 + ϵ2

}1/2
,

fϵ(t, x, ξ; y, η) = t− T + νdϵ(x, ξ; y, η)

where (y, η) ∈ Rd × (Rd \ {0}) and ν is a positive small parameter and T > 0.
Note that

(12.1)
∣∣∂αx ∂βξ dϵ∣∣ ≤ C〈ξ〉−|β|

γ , |α+ β| = 1

where C is independent of ϵ > 0. Define Φϵ by

(12.2) Φϵ(t, x, ξ) =

{
exp (1/fϵ(t, x, ξ)) if fϵ < 0

0 otherwise

and set
Φϵ1 = f−1

ϵ Φϵ.

Note that Φϵ, Φϵ1 ∈ S(1, g0) for any fixed ϵ > 0 where g0 = |dx|2 + 〈ξ〉−2
γ |dξ|2

and
Φϵ − fϵ#Φϵ1 ∈ S(〈ξ〉−1

γ , g0).

Since ∂tΦϵ = −Φϵ1/fϵ writing

∂t(op(Φϵ)V ) = −op(f−1
ϵ Φϵ1)V + (op(iA+ iB))op(Φϵ)V

+[op(Φϵ), op(iA+ iB)]V + op(Φϵ)F
(12.3)

we estimate E(op(Φϵ)V ) = e−θt
(
op(Λ)op(w−n)op(Φϵ)V, op(w

−n)op(Φϵ)V
)
. Since

Φϵ#B1−B1#Φϵ ∈ S(c(M)〈ξ〉−1/2
γ , g) by Proposition 9.1 it is not difficult to see

from the proof of Corollary 10.1 that∣∣(op(Λ)op(ϕ−n)[op(Φ), op(B1)]V, op(ϕ
−n)op(Φ)V

)∣∣
≤ c(M, ϵ)N (〈D〉−1/4

γ V )

where, to simplify notations, we have set

E1(V ) + E2(V ) = t−2nN (V ).
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Denote Φϵ#(T−1∂tT )− (T−1∂tT )#Φϵ = (φij) hence φ21 ∈ S(σ−1〈ξ〉−1
γ , g) and

φ31 ∈ S(σ−1/2〈ξ〉−1
γ , g) in view of (6.14). Then we have

λ2#φ21 ∈ S(〈ξ〉−1
γ , g) ⊂ S(〈ξ〉−1/2

γ

√
κλ1

√
κλ2, g),

λ3#φ31 ∈ S(σ−1/2〈ξ〉−1
γ , g) ⊂ S(〈ξ〉−1/2

γ

√
κλ1

√
κλ3, g)

because Cλ1 ≥ Mσ〈ξ〉−1
γ , Cλ2 ≥ σ and κσ ≥ 1. A repetition of similar argu-

ments proving (10.5) shows that∣∣(op(Λ)op(ϕ−n)[op(Φϵ), op(T
−1∂tT )]V, op(ϕ

−n)op(Φϵ)V
)∣∣

≤ c(M, ϵ)N (〈D〉−1/4
γ V ).

Note that Φϵ#A−A#Φϵ can be written

∑
|α+β|=1

(−1)|α|

(2i)|α+β|α!β!

(
∂αx ∂

β
ξ Φϵ∂

β
x∂

α
ξ A− ∂βx∂

α
ξ Φϵ∂

α
x ∂

β
ξ A

)
+Rϵ = Hϵ +Rϵ

where it follows from (10.8) that

Rϵ =

S(σ−1/2〈ξ〉−1
γ ) S(M2〈ξ〉−1

γ ) S(σ−1/2〈ξ〉−1
γ )

S(〈ξ〉−1
γ ) S(σ−1/2〈ξ〉−1

γ ) S(M2〈ξ〉−1
γ )

S(σ1/2〈ξ〉−1
γ ) S(〈ξ〉−1

γ ) S(σ3/2〈ξ〉−1
γ )


∈ S(c(M)〈ξ〉−1/2

γ , g)

for σ ≥M〈ξ〉−1
γ . It is not difficult to see from the proof of Corollary 10.1 that∣∣(op(Λ)op(ϕ−n)op(Rϵ)V, op(ϕ

−n)op(Φϵ)V
)∣∣

≤ c(M, ϵ)N (〈D〉−1/4
γ V ).

Study (op(Λ)op(ϕ−n)op(iHϵ)V, op(ϕ
−n)op(Φϵ)V ). Note that Hϵ ∈ S(1, g) be-

cause ∂αx ∂
β
ξ A ∈ S(〈ξ〉1−|β|

γ , g) for |α+ β| = 1. Write

Φϵ = fϵ#Φϵ1 + rϵ, rϵ ∈ S(〈ξ〉−1
γ , g0)

and note ϕ−n#fϵ−fϵ#ϕ−n ∈ S(ω−1ρ1/2〈ξ〉−1
γ ϕ−n, g) ⊂ S(M−1/2ϕ−n〈ξ〉−1/2

γ , g),
then a repetition of similar arguments proves that the difference∣∣(op(Λ)op(ϕ−n)op(iHϵ)V, op(ϕ

−n)op(Φϵ)V
)

−
(
op(f)op(Λ)op(ϕ−n)op(iHϵ)V, op(ϕ

−n)op(Φϵ1)V
)∣∣

is bounded by c(M, ϵ)N (〈D〉−1/4
γ V ). Since λj ∈ S(λj , g) it follows that

fϵ#λj − λj#fϵ ∈ S(M−1/2λj〈ξ〉−1/2
γ , g)
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then applying a similar arguments one can see that the difference∣∣(op(fϵ)op(Λ)op(ϕ−n)op(iHϵ)V, op(ϕ
−n)op(Φϵ1)V

)
−
(
op(Λ)op(ϕ−n)op(fϵ)op(iHϵ)V, op(ϕ

−n)op(Φϵ1)V
)∣∣

is bounded again by c(M, ϵ)N (〈D〉−1/4
γ V ). Here look at iHϵ more carefully.

Note that

iHϵ =
( ∑

|α+β|=1

∂αx ∂
β
ξ (ãij [ξ])(∂

β
x∂

α
ξ fϵ)

1

fϵ
Φ1ϵ

)
=

(
hϵij

) 1

fϵ
Φ1ϵ

Taking hϵij ∈ S(1, g) and f−1
ϵ Φϵ1, Φϵ1 ∈ S(1, g0) into account one can write

fϵ#(iHϵ) =
(
hϵij

)
#Φϵ1 +Rϵ

where Rϵ ∈ S(M−1/2〈ξ〉−1/2
γ , g) hence denoting H̃ϵ =

(
hϵij

)
it results that∣∣(op(Λ)op(ϕ−n)op(fϵ)op(iHϵ)V, op(ϕ

−n)op(Φϵ1)V )

−(op(Λ)op(ϕ−n)op(H̃ϵ)op(Φϵ1)V, op(ϕ
−n)op(Φϵ1)V

)∣∣
is bounded by c(M, ϵ)N (〈D〉−1/4

γ V ). From Lemma 6.8 we see that

hϵij ∈ C(1), j ≥ i, hϵ21, h
ϵ
32 ∈ C(σ1/2), hϵ31 ∈ C(σ)

then in view of Lemma 5.5

λi#
(
ϕ−n#hϵij − hϵij#ϕ

−n
)
∈ S(κλi〈ξ〉−1

γ ϕ−n, g), j ≥ i,

λ2#
(
ϕ−n#hϵ21 − hϵ21#ϕ

−n
)
∈ S(M−1/2κλ2λ

1/2
1 〈ξ〉−1/2

γ ϕ−n, g),

λ3#
(
ϕ−n#hϵ32 − hϵ32#ϕ

−n
)
∈ S(κλ3λ

1/2
2 〈ξ〉−1

γ , g),

λ3#
(
ϕ−n#hϵ31 − hϵ31#ϕ

−n
)
∈ S(M−5/2κλ3λ

1/2
1 〈ξ〉−1/2

γ , g).

From this it follows that∣∣(op(Λ)op(ϕ−n)op(H̃ϵ)op(Φϵ1)V, op(ϕ
−n)op(Φϵ1)V )

−(op(Λ)op(H̃ϵ)op(ϕ
−n)op(Φϵ1)V, op(ϕ

−n)op(Φϵ1)V
)∣∣

is bounded by c(M, ϵ)N (〈D〉−1/4
γ V ).

Lemma 12.1. One can write

hϵij =
∑

|α+β|=1

kϵijαβ#lijαβ + rϵij

where kϵijαβ ∈ S(1, g0) such that |kϵijαβ | ≤ Cν with some C > 0 independent of
ν and ϵ for any 1 ≤ i, j ≤ 3. As for lijαβ and rϵij one has

lijαβ ∈ S(1, g), rϵij ∈ S(σ−1/2〈ξ〉−1
γ , g), (j ≥ i),

l21αβ ∈ S(σ−1/2
√
λ1, g), rϵ21 ∈ S(M−1/2σ−1/2

√
λ1〈ξ〉−1/2

γ , g),

l31αβ ∈ S(σ
√
λ1, g), rϵ31 ∈ S(M−1/2σ

√
λ1〈ξ〉−1/2

γ , g),

l32αβ ∈ S(
√
λ2, g), rϵ32 ∈ S(M−1/2

√
λ2〈ξ〉−1/2

γ , g).
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Proof. Set kϵijαβ = 〈ξ〉|α|γ ∂βx∂
α
ξ fϵ and lijαβ = 〈ξ〉−|α|

γ ∂αx ∂
β
ξ (ãij [ξ]) then the asser-

tion for kϵijαβ is clear from (12.1). The assertions for lijαβ follow from Lemma
6.8, Corollary 6.3 and Lemma 7.7. To prove the assertions for rϵij note that

∂µx∂
ν
ξ lijαβ ∈ S(σ−1/2〈ξ〉−|ν|

γ , g), |µ+ ν| = 1 for j ≥ i and

∂µx∂
ν
ξ l21αβ , ∂µx∂

ν
ξ l32αβ ∈ S(〈ξ〉−|ν|

γ , g), ∂µx∂
ν
ξ l31αβ ∈ S(σ1/2〈ξ〉−|ν|

γ , g)

for |µ + ν| = 1 which follows from ã21, ã32 ∈ C(σ) and ã31 ∈ C(σ5/2). Then
remarking that σ ≥M〈ξ〉−1

γ and λ1 ≥Mσ〈ξ〉−1
γ the assertions for rϵij are checked

immediately.

With Rϵ = (rϵij) andW = op(ϕ−n)op(Φϵ1)V , recalling λ1 ≤ Cσλ2 ≤ Cσ2λ3,
it is easy to see that∣∣(op(Rϵ)W, op(Λ)W )

∣∣ ≤ c(M, ϵ)‖op(Λ1/2)〈D〉−1/4
γ W‖2.

Turn to (op(hϵij)Wj , op(λi)Wi). Write λi = λ
1/2
i #(1 + ki)#λ

1/2
i with ki ∈

S(M−1, g) then thanks to Lemma 12.1 it follows that∣∣(op(λi)op(hϵij)Wj , op(λi)Wi)
∣∣

≤ (1 + CM−1)
∑

|α+β|=1

∣∣(op(λ1/2i )op(lijαβ)Wj , op(k
ϵ
ijαβ)op(λ

1/2
i )Wi)

∣∣
≤ C(1 +M−1)‖op(λ1/2i )op(lijαβ)Wj‖‖op(kϵijαβ)op(λ

1/2
i )Wi‖

≤ C ′(1 +M−1)‖op(λ1/2j )Wj‖‖op(kϵijαβ)op(λ
1/2
i )Wi‖

because λ
1/2
i #lijαβ ∈ S(λ

1/2
j , g) in view of Lemma 12.1. On the other hand,

taking Lemma 12.1 into account, it follows from the sharp G̊arding inequality
(e.g. [6, Theorem 18.1.14])

‖op(kϵijαβ)op(λ
1/2
i )Wi‖ ≤ Cν‖op(λ1/2i )Wi‖

+C(M,ν, ϵ)‖op(λ1/2i )〈D〉−1/2
γ Wi‖.

Therefore applying the above obtained estimates one can find C > 0 indepen-
dent of ϵ, ν and M such that∣∣Re(op(Λ)op(H̃ϵ)W,W )

∣∣ ≤ C(ν +M−1/2)‖op(Λ1/2)W‖2

+C(M,ν, ϵ)‖op(Λ1/2)〈D〉−1/4
γ W‖2

≤ C(ν +M−1/2)‖op(Λ1/2)op(ϕ−n)op(Φϵ1)V ‖2

+C ′(M,ν, ϵ)‖op(Λ1/2)op(ϕ−n)〈D〉−1/4
γ V ‖2.

Since it follows from the same reasoning that∣∣(op(Λ)op(ϕ−n)op(f−1
ϵ Φϵ)V, op(ϕ

−n)op(Φϵ)V
)

−
(
op(Λ)op(ϕ−n)op(Φϵ1)V, op(ϕ

−n)op(Φϵ1)V
)∣∣

≤ c(M, ϵ)N (〈D〉−1/4
γ V )
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we obtain finally

−Re
(
op(Λ)op(ϕ−n)op(f−1

ϵ Φϵ)V, op(ϕ
−n)op(Φϵ)V

)
+Re

(
op(Λ)op(ϕ−n)[op(Φϵ), op(iA)]V, op(ϕ−n)op(Φϵ)V

)
≤ −

(
1− C(ν +M−1/2)

)
‖op(Λ1/2)op(ϕ−n)op(Φϵ1)V ‖2

+c(M,ν, ϵ)N (〈D〉−1/4
γ V ).

(12.4)

We fix M0 and ν0 such that 1 − C(ν0 +M
−1/2
0 ) ≥ 0 and Proposition 10.1

holds, and from now on γ = M5
0 and δ = 1/M4

0 are assumed to be fixed.
Applying Proposition 10.1 to op(Φ)V instead of V one obtains, in view of (12.3)
and (12.4) that

Proposition 12.1. For any 0 < ν ≤ ν0 and any ϵ > 0 one can find C > 0 such
that

E1(op(Φϵ)V ) +

∫ t

0

τ−2nN (op(Φϵ)V )dτ

≤ C

∫ t

0

τ−2n‖op(κ−1/2Λ1/2)op(ϕ−n)op(Φϵ)L̃V ‖2dτ

+C

∫ t

0

τ−2nN (〈D〉−1/4
γ V )dτ.

Applying 〈D〉sγ to (12.3) and repeating similar arguments proving Proposi-
tions 11.1 and 12.1 one obtains

Proposition 12.2. For any s ∈ R, any 0 < ν ≤ ν0 and any ϵ > 0 one can find
C > 0 such that

E1(〈D〉sγop(Φϵ)V ) +

∫ t

0

τ−2nN (〈D〉sγop(Φϵ)V )dτ

≤ C

∫ t

0

τ−2n+1‖〈D〉n+s
γ op(Φϵ)L̃V ‖2dτ + C

∫ t

0

τ−2nN (〈D〉s−1/4
γ V )dτ

for 0 ≤ t ≤ δ.

12.2 Micro support propagates with finite speed

Lemma 12.2. Assume t−n〈D〉l1γ V ∈ L2((0, δ) × Rd) and t−n+1/2〈D〉l2γ L̃V ∈
L2((0, δ) × Rd) and t−n+1/2〈D〉n+s0

γ op(Φϵ0)L̃V ∈ L2((0, δ) × Rd) with some
l1, l2 ∈ R and s0 ∈ R. Then for every 0 < ϵ0 < ϵ we have

t−n〈D〉sγΦϵV ∈ L2((0, δ)× Rd)

for all s ≤ s0 − 5/4. Moreover∫ t

0

τ−2n‖〈D〉sγop(Φϵ)V (τ)‖2dτ ≤ C

∫ t

0

(
τ−2n‖〈D〉l1γ V (τ)‖2

+τ−2n+1‖〈D〉l2γ L̃V (τ)‖2
)
dτ + C

∫ t

0

τ−2n+1‖〈D〉n+s0
γ op(Φϵ0)L̃V (τ)‖2dτ
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for 0 < t ≤ δ.

Proof. We may assume l1 ≤ s0 otherwise nothing to be proved. Let J be the
largest integer such that l1 + J/4 ≤ s0. Take ϵj > 0 such that ϵ0 < ϵ1 < · · · <
ϵJ = ϵ. We write Φϵj = Φj and fj = fϵj in this proof. Inductively we show that∫ t

0

τ−2nN (〈D〉l1+j/4
γ op(Φj)V )dτ ≤ C

∫ t

0

τ−2n‖〈D〉l1γ V (τ)‖2dτ

+C

∫ t

0

τ−2n+1
{
‖〈D〉l2γ L̃V (τ)‖2 + ‖〈D〉l1+n+j/4

γ op(Φ0)L̃V (τ)‖2
}
dτ.

(12.5)

Note that from (10.12) and (10.11) it follows

(12.6) ‖〈D〉−1
γ V ‖/C ≤ N (V ) ≤ C‖〈D〉nγV ‖.

Choose ψj(x, ξ) ∈ S(1, g0) so that suppψj ⊂ {fj < 0} and {fj+1 < 0} ⊂ {ψj =
1}. Noting that

op(Φj+1)L̃ op(ψj) = op(Φj+1#ψj)L̃+ op(Φj+1)[L̃, op(ψj)]

we apply Proposition 12.2 with s = l1 +(j+1)/4, Φ = Φj+1 and V = op(ψj)V .

Since Φj+1#ψj − Φj+1 ∈ S−∞ then ‖〈D〉l1+(j+1)/4+n
γ op(Φj+1)L̃ op(ψj)V ‖2 is

bounded by

c‖〈D〉l1+(j+1)/4+n
γ op(Φj+1)L̃V ‖2 + C(j)‖〈D〉l1γ V ‖2

and hence by

(12.7) C(j)
{
‖〈D〉l1+(j+1)/4+n

γ op(Φϵ0)L̃V ‖2 +
{
‖〈D〉l2γ L̃V ‖2 + ‖〈D〉l1γ V ‖2

}
because Φj+1 − kj#Φϵ0 ∈ S−∞ with some kj ∈ S(1, g0). Since ψj − k̃j#Φj ∈
S−∞ with some k̃j ∈ S(1, g0) it follows that

N (〈D〉l1+j/4
γ op(Φj+1)op(ψj)V ) ≤ CN (〈D〉l1+j/4

γ op(Φj)V ) + C‖〈D〉l1γ V ‖2.

Consider N (〈D〉l1+(j+1)/4
γ op(Φj+1)op(ψj)V ). Noting that Φj+1#ψj − Φj+1 ∈

S−∞ the same reasoning shows that

N (〈D〉l1+(j+1)/4
γ op(Φj+1)V )

≤ CN (〈D〉l1+(j+1)/4
γ op(Φj+1)op(ψj)V ) + C‖〈D〉l1γ V ‖2.

(12.8)

Multiply (12.8) and (12.7) by t−2n and t−2n+1 respectively and integrate it from
0 to t we conclude from Proposition 12.2 that (12.5) holds for j + 1 and hence
for j = J . Since l1+J/4 ≤ s0 and l1+J/4 > s0−1/4 we conclude the assertion
by (12.6).
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Let Γi (i = 1, 2, 3) be open conic sets in Rd × (Rd \ {0}) with relatively
compact basis such that Γ1 ⋐ Γ2 ⋐ Γ3. Take hi(x, ξ) ∈ S(1, g0) with supph1 ⊂
Γ1 and supph2 ⊂ Γ3\Γ2. Consider a solution V with t−n〈D〉lγV ∈ L2((0, δ)×Rd)
to the equation

L̃V = op(h1)F, t−n+1/2〈D〉sγF ∈ L2((0, δ)× Rd).

Proposition 12.3. Notations being as above. There exists δ′ = δ′(Γi) > 0 such
that for any r ∈ R there is C > 0 such that∫ t

0

τ−2n‖〈D〉rγop(h2)V (τ)‖2dτ

≤ C

∫ t

0

{
τ−2n+1‖〈D〉sγF (τ)‖2 + τ−2n‖〈D〉lγV (τ)‖2

}
dτ, 0 < t ≤ δ′.

Proof. Let fϵ = t − ν0τ̂ + ν0dϵ(x, ξ; y, η) with a small τ̂ > 0. It is clear that
there is ϵ̂ > 0 such that

{t ≥ 0} ∩ {fϵ̂ ≤ 0} ∩
(
R× supph1

)
= ∅

for any (y, η) /∈ Γ2. Take ϵ̂ < ϵ̃ < τ̂ . It is also clear that one can find a finite
number of (yi, ηi) ∈ Γ3 \ Γ2, i = 1, . . . ,M such that with δ′ = ν0(τ̂ − ϵ̃)/2

Γ3 \ Γ2 ⋐
( M⋃

i=1

{fϵ̃(δ′, x, ξ; yi, ηi) ≤ 0}
)
,

{t ≥ 0} ∩ {fϵ̃(t, x, ξ; yi, ηi) ≤ 0} ∩
(
R× supph1

)
= ∅.

Now Φiϵ is defined by (12.2) with fϵ(t, x, ξ; yi, ηi). Then since
∑

Φiϵ̃ > 0 on
[0, δ′]× supph2 there is k ∈ S(1, g0) such that h2−k

∑
Φiϵ̃ ∈ S−∞. Noting that

t−n+1/2〈D〉rγop(Φiϵ̂)op(h1)F ∈ L2((0, δ) × Rd) for any r ∈ R we apply Lemma
12.2 with Φϵ0 = Φϵ̂, Φϵ = Φiϵ̃ and s0 = r + 5/4 to obtain∫ t

0

τ−2n‖〈D〉rγop(Φiϵ̃)V (τ)‖2dτ ≤ C

∫ t

0

τ−2n‖〈D〉lγV (τ)‖2dτ

+

∫ t

0

τ−2n+1
(
‖〈D〉2n+r+5/4

γ op(Φiϵ̂)op(h1)F (τ)‖2 + ‖〈D〉sγF (τ)‖
)
dτ

for ‖〈D〉sγL̃V (τ)‖ ≤ C‖〈D〉sγF (τ)‖. Since Φiϵ̂#h1 ∈ S−∞ summing up the above
estimates over i = 1, . . . ,M one concludes the desired assertion.

Lemma 12.3. The same assertion as Proposition 12.3 holds for L.

Proof. Assume that U satisfies

LU = op(h1)F, t−n〈D〉lγU ∈ L2((0, δ)× Rd)

where t−n+1/2〈D〉sγF ∈ L2((0, δ) × Rd). Choose Γ̃i such that Γ1 ⋐ Γ̃1 ⋐ Γ̃2 ⋐
Γ2 ⋐ Γ3 ⋐ Γ̃3 and h̃i ∈ S(1, g0) such that supp h̃1 ⊂ Γ̃1, supp h̃2 ⊂ Γ̃3 \ Γ̃2
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and h̃i = 1 on the support of hi. Recall that L op(T ) = op(T ) L̃. Then with
U = op(T )V one has

L̃V = (I + op(K))op(T−1)op(h1)F.

Since there is T̃ ∈ S(1, g) such that (I +K)#T−1#h1 − h̃1T̃ ∈ S−∞ it follows
from Proposition 12.3 (or rather its proof) that∫ t

0

τ−2n‖〈D〉rγop(h̃2)V (τ)‖2dτ

≤ C

∫ t

0

{
τ−2n‖〈D〉lγV (τ)‖2 + τ−2n+1‖〈D〉sγF (τ)‖2}dτ.

Similarly since there is T̃ ∈ S(1, g) such that h2#T − h̃2T̃ ∈ S−∞ repeating the
same arguments we conclude the assertion.

Returning to P̂ we have

Proposition 12.4. Notations being as above. Then there exists δ′ = δ′(Γi) > 0
such that for any s, r ∈ R there is C such that for any solution u to

P̂ u = op(h1)f, t−n〈D〉l+2−jDj
tu ∈ L2((0, δ′)× Rd), j = 0, 1, 2

with t−n+1/2〈D〉sf ∈ L2((0, δ′)× Rd) one has∫ t

0

τ−2n
2∑

j=0

‖〈D〉r+2−jop(h2)D
j
tu(τ)‖2dτ

≤ C

∫ t

0

{
τ−2n+1‖〈D〉sf(τ)‖2 + τ−2n

2∑
j=0

‖〈D〉l+2−jDj
tu(τ)‖2

}
dτ, 0 < t ≤ δ′.

Denote by Hn,s((0, δ)× Rd) the set of all u such that∫ δ

0

τ−2n‖〈D〉sf(τ, ·)‖2dτ < +∞.

Thanks to Theorem 11.1 for any f ∈ H−n+1/2,n+s((0, δ)×Rd) there is a unique

solution u ∈ H−n,s+1((0, δ)×Rd) to P̂ u = f satisfying (11.6). Denote this map
by

Ĝ : H−n+1/2,n+s((0, δ)× Rd) 3 f 7→ u ∈ H−n,s+1((0, δ)× Rd)

then it follows from Proposition 12.4 and Theorem 11.1 that∫ t

0

τ−2n
2∑

j=0

‖〈D〉r+2−jop(h2)D
j
t Ĝ op(h1)f(τ)‖2dτ

≤ C

∫ t

0

{
τ−2n+1‖〈D〉n+sf(τ)‖2 + τ−2n

2∑
j=0

‖〈D〉s+1−jDj
tu(τ)‖2

}
dτ

≤ C

∫ t

0

τ−2n+1‖〈D〉n+sf(τ)‖2dτ.
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Replacing n+ s by s and r + 2 by r we obtain∫ t

0

τ−2n
2∑

j=0

‖〈D〉r−jop(h2)D
j
t Ĝ op(h1)f(τ)‖2dτ

≤ C

∫ t

0

τ−2n+1‖〈D〉sf(τ)‖2dτ.

Summarizing we conclude

Proposition 12.5. Notations being as above and let Γi (i = 1, 2, 3) be open
conic sets in Rd×(Rd\{0}) with relatively compact basis such that Γ1 ⋐ Γ2 ⋐ Γ3

and hi(x, ξ) ∈ S(1, g0) with supph1 ⊂ Γ1 and supph2 ⊂ Γ3 \ Γ2. Then there
exists δ′ = δ′(Γi) > 0 such that for any r, s one can find C > 0 such that∫ t

0

τ−2n
2∑

j=0

‖〈D〉r−jop(h2)D
j
t Ĝ op(h1)f(τ)‖2dτ

≤ C

∫ t

0

τ−2n+1‖〈D〉sf(τ)‖2dτ, 0 < t ≤ δ′

for any f ∈ H−n+1/2,s((0, δ
′)× Rd).

Denote by H∗
n,s((0, δ] × Rd) the set of all f with

∫∞
0
t2n‖〈D〉sf‖2dt <

+∞ such that f = 0 for t ≥ δ. Thanks to Theorem 11.2 for any f ∈
H∗

n+1/2,n+s((0, δ] × Rd) there is a unique solution u ∈ H∗
n,s+1((0, δ] × Rd) to

P̂ ∗u = f satisfying (11.6). Denote this map by

Ĝ∗ : H∗
n+1/2,n+s((0, δ]× Rd) 3 f 7→ u ∈ H∗

n,s+1((0, δ]× Rd).

Repeating similar arguments one obtains

Proposition 12.6. Notations being as in Proposition 12.5. Then there exists
δ′ = δ′(Γi) > 0 such that for any r, s one can find C > 0 such that∫ δ′

t

τ2n
2∑

j=0

‖〈D〉r−jop(h2)D
j
t Ĝ

∗ op(h1)f(τ)‖2dτ

≤ C

∫ δ′

t

τ2n+1‖〈D〉sf(τ)‖2dτ, 0 < t ≤ δ′

for any f ∈ H∗
n+1/2,s((0, δ

′]× Rd).

Remark 12.1. It is clear from the proof that for any n′ ≥ n, Propositions 12.5
and 12.6 hold.

13 Proof of Theorem 1.1

Applying the fact that the micro support of u(t, ·), solution to P̂ u = f obtained
by Theorem 11.1, propagates with a finite speed (Proposition 12.5) we prove
Theorem 1.1 following [22], [24].
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13.1 Parametrix with finite propagation speed

Consider

(13.1) P = Dm
t +

m∑
j=1

aj(t, x,D)〈D〉jDm−j
t

which is differential operator in t with coefficients aj ∈ S0. We say that G is
a parametrix for P with finite propagation speed of micro supports (which we
abbreviate to “parametrix with fps” from now on) with loss of (n, l) derivatives
if G satisfies the following conditions:

(i) There exists δ > 0 such that for any s ∈ R there is C > 0 such that we
have PGf = f and

m−1∑
j=0

∫ t

0

τ−2n‖〈D〉−l+s+m−jDj
tGf(τ)‖2dτ

≤ C

∫ t

0

τ−2n+1‖〈D〉sf(τ)‖2dτ, f ∈ H−n+1/2,s((0, δ)× Rd).

(ii) For any hj(x, ξ) ∈ S(1, g0), j = 1, 2 with supph2 ⋐ (Rd × Rd) \ supph1
there exists δ′ > 0 such that for any r, s ∈ R there is C > 0 such that

m−1∑
j=0

∫ t

0

τ−2n‖〈D〉r−jop(h2)D
j
tGop(h1)f(τ)‖2dτ

≤ C

∫ t

0

τ−2n+1‖〈D〉sf(τ)‖2dτ, 0 < t ≤ δ′

(13.2)

holds for any f ∈ H−n+1/2,s((0, δ
′)× Rd).

Let P1 and P2 be two operators of the form (13.1). We say

P1 ≡ P2 at (x̂, ξ̂)

if there exist δ′ > 0 and a conic neighborhood W of (x̂, ξ̂) such that

(13.3) P1 − P2 =

m∑
j=1

Rj(t, x,D)〈D〉jDm−j
t

with Rj ∈ S0 which are in S−∞(W ) uniformly in 0 ≤ t ≤ δ′.

Theorem 13.1. Assume that for any (x̂, η), |η| = 1 one can find Pη of the
form (13.1) having a parametrix with fps with loss of (n, ℓ(η)) derivatives such
that P ≡ Pη at (x̂, η). Then there exist δ > 0, ℓ ≥ 0 and a neighborhood
U of x̂ such that for every f ∈ H−n+1/2,s+ℓ((0, δ) × Rd) there exists u with

Dj
tu ∈ H−n,s+m−j((0, δ)× Rd), 0 ≤ j ≤ m− 1, satisfying

Pu = f in (0, δ)× U

where ℓ = sup|η|=1 ℓ(η).
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Proof. By assumption Pη has a parametrix Gη with fps with loss of (n, ℓ(η))
derivatives. There are finite open conic neighborhood Wi of (x̂, ηi) such that
∪iWi ⊃ Ω × (Rd \ {0}), where Ω is a neighborhood of x̂, and P ≡ Pηi

at
(x̂, η) with W = Wi in (13.3). Now take another open conic covering {Vi} of
Ω× (Rd \ {0}) with Vi ⋐Wi, and a partition of unity {αi(x, ξ)} subordinate to
{Vi} so that ∑

i

αi(x, ξ) = α(x)

where α(x) is equal to 1 in a neighborhood of x̂. Define

G =
∑
i

Gηiαi.

Then denoting P − Pηi
= Ri we have

PGf =
∑
i

PGηiαif =
∑
i

PηiGiαif +
∑
i

RiGiαif = α(x)f −Rf

where R =
∑

iRiGηi
αi. Then∫ t

0

τ−2n‖〈D〉s+ℓRf(τ)‖2dτ ≤ C

∫ t

0

τ−2n+1‖〈D〉s+ℓf(τ)‖2dτ

for 0 ≤ t ≤ δ′′ with some δ′′ > 0 in view of (13.2) where ℓ = maxi ℓ(ηi).
Choosing δ1 > 0 small such that∫ t

0

τ−2n‖〈D〉s+ℓRf(τ)‖2dτ ≤ 1

2

∫ t

0

τ−2n‖〈D〉s+ℓf(τ)‖2dτ, 0 < t ≤ δ1

for f ∈ H−n,s+ℓ((0, δ)×Rd)). With S =
∑∞

k=0R
k one has Sf ∈ H−n,s+ℓ((0, δ1)×

Rd) and∫ t

0

τ−2n‖〈D〉s+ℓSf(τ)‖2dτ ≤ 2

∫ t

0

τ−2n‖〈D〉s+ℓf(τ)‖2dτ, 0 < t ≤ δ1.

Let γ(x) ∈ C∞
0 (Rd) be equal to 1 near x̂ such that supp γ ⋐ {α = 1}. Since

γ(α−R)S = γ(I −R)S = γ it follows that

γ(x)PGSf = γ(x)f.

With u = GSf one has

m−1∑
j=0

∫ t

0

τ−2n‖〈D〉s+m−jDj
tu(τ)‖2dτ ≤ C

∫ t

0

τ−2n+1‖〈D〉s+ℓSf(τ)‖2dτ

≤ C ′
∫ t

0

τ−2n‖〈D〉s+ℓf(τ)‖2dτ

which proves the assertion.
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We define a parametrix with fps for P ∗ with obvious modifications then

Theorem 13.2. Assume that for any (x̂, η), |η| = 1 one can find P ∗
η of the

form (13.1) such that P ∗ ≡ P ∗
η for which parametrix with fps exists. Then

there exist δ > 0, ℓ ≥ 0 and a neighborhood U of x̂ such that for every f ∈
H∗

n+1/2,s+ℓ((0, δ] × Rd) there exists u with Dj
tu ∈ H∗

n,s+m−j((0, δ] × Rd), 0 ≤
j ≤ m− 1, satisfying

P ∗u = f in (0, δ)× U.

13.2 Local existence and uniqueness

First consider a third order operator P of the form (2.1). To reduce P to the
case a1(t, x,D) = 0 we apply a Fourier integral operator, which is actually the
solution operator S(t′, t) of the Cauchy problem

Dtu+ a1(t, x,Dx)u = 0, u(t′, x) = ϕ(x)

such that S(t′, t) : ϕ 7→ u(t) then it is clear that S(t, 0)(Dt + a1)S(0, t) = Dt.
Let

S(t, 0)PS(0, t) = P̃

and assume that P̃ has a parametrix with fps G̃ with loss of (n, ℓ) derivatives.
Then one can show that G = S(0, t)G̃S(t, 0) is a parametrix of P with fps with
loss of (n, ℓ) derivatives.

Let |η| = 1 be given. Assume that p has a triple characteristic root τ̄ at
(0, 0, η) and (0, 0, τ̄ , η) is effectively hyperbolic. Theorem 11.1 and Proposition
12.4 imply that P̂ , which coincides with the original P in WM , given by (4.3),
has a parametrix with fps with loss of (n, n+ 2) derivatives. Now assume that
p has a double characteristic root τ̄ at (0, 0, η) such that (0, 0, τ̄ , η) is effectively
hyperbolic characteristic if it is a critical point. Note that one can write

p(t, x, τ, ξ) =
(
τ + b(t, x, ξ)

)(
τ2 + a1(t, x, ξ)τ + a2(t, x, ξ)

)
= p1p2

in a conic neighborhood of (0, 0, η) where p1(0, 0, τ̄ , η) 6= 0. Note that there
exist P̂ i such that

P ≡ P̂ 1 · P̂ 2 at (0, η)

where the principal symbol of P̂ j coincides with pj in a conic neighborhood

of (0, 0, η). Note that if P̂ i has a parametrix with fps Gi with loss of (n, ℓi)
derivatives then one can see that G2G1 is a parametrix with fps for P̂ 1 · P̂ 2 with
loss of (n, ℓ1 + ℓ2) derivatives.

First assume that (0, 0, τ̄ , η) is a critical point. Then it is easy to see that

Fp(0, 0, τ̄ , η) = cFp2
(0, 0, τ̄ , η)

with some c 6= 0 and hence (0, 0, τ̄ , η) is effectively hyperbolic characteristic of
p2. Then following [22, 24] there is a parametrix with fps for P̂ 2. Since P̂ 1 is a
first order operator with real principal symbol p1 it is easy to see that P̂ 1 has a
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parametrix with fps. Therefore P has a parametrix with fps. Turn to the case
that (0, 0, τ̄ , η) is not a critical point. Writing p2 as

p2(t, x, τ, ξ) = τ2 − a(t, x, ξ)|ξ|2

it is easily seen that (0, 0, τ̄ , η) is not a critical point implies that ∂ta(0, 0, η) > 0,
which is the case that P̂ 2 is a hyperbolic operator of principal type and some
detailed discussion is found in [6, Chapter 23.4]. It is easily proved that P̂ 2 has
a parametrix with fps, because it suffices to employ the weight t−n (ϕ−n is now
absent) in order to obtain weighted energy estimates.

Turn to the general case. Let |η| = 1 be arbitrarily fixed. Write p(0, 0, τ, η) =∏r
j=1

(
τ − τj)

mj where
∑
mj = m and τj are real and distinct from each other,

where mj ≤ 3 which follows from the assumption. There exist δ > 0 and a conic
neighborhood U of (0, η) such that one can write

p(t, x, τ, ξ) =

r∏
j=1

p(j)(t, x, τ, ξ),

p(j)(t, x, τ, ξ) = τmj + aj,1(t, x, ξ)τ
mj−1 + · · ·+ aj,mj (t, x, ξ)

for (t, x, ξ) ∈ (−δ, δ) × U where aj,k(t, x, ξ) are real valued, homogeneous of
degree k in ξ and p(j)(0, 0, τ, η) = (τ − τj)

mj and p(j)(t, x, τ, ξ) = 0 has only
real roots in τ for (t, x, ξ) ∈ [0, δ)×U . If (0, 0, τj , η) is a critical point of p, and
necessarily mj ≥ 2, then (0, 0, τj , η) is a critical point of p(j) and it is easy to
see

Fp(0, 0, τj , η) = cjFp(j)(0, 0, τj , η)

with some cj 6= 0 and hence Fp(j)(0, 0, τj , η) has non-zero real eigenvalues if

Fp(0, 0, τj , η) does and vice versa. It is well known that one can find P (j) such
that

P ≡ P (1)P (2) · · ·P (r) at (0, η)

where P (j) are operators of the form (13.1) withm = mj whose principal symbol
coincides with p(j) in some conic neighborhood of (0, 0, η). Since each P (j) has
a parametrix with fps thanks to Theorem 11.1 and Proposition 12.5 hence so
does P . Therefore Theorem 1.1 results from Theorem 13.1 noting Remark 12.1.

Repeating a parallel arguments to the existence proof for P above we obtain

Theorem 13.3. Under the same assumption as in Theorem 1.1 there exist
δ > 0, a neighborhood U of the origin and n > 0 such that for any s ∈ R and any
f ∈ H∗

n+1/2,s((0, δ]×Rd) there exists u with Dj
tu ∈ H∗

n,−n−2+s+m−j((0, δ]×Rd),
j = 0, 1, . . . ,m− 1 satisfying

P ∗u = f in (0, δ)× U.

Now we prove a local uniqueness result for the Cauchy problem for P ap-
plying Theorem 13.3. From the assumption one can find a neighborhood W
of the origin of Rd and T > 0 such that every multiple characteristic of p on
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(t, x, ξ) ∈ (0, T ) ×W is at most double and double characteristic is effectively
hyperbolic. Let f ∈ C∞

0 ((0, δ′)× {|x| < ε}) (δ′ ≤ T ) and let v be a solution to
P ∗v = f vanishing in t ≥ δ′. Then thanks to [15, Main Theorem] there exists
ĉ > 0 such that

suppxv(t, ·) ⊂ {|x| ≤ ε+ ĉ δ′}, 0 < t ≤ δ′.

Now assume that u satisfies Pu = 0 in (0, δ) × U and ∂kt u(0, x) = 0 for all k.
Choose ε > 0 and δ′ > 0 such that {|x| ≤ ε+ ĉ δ′} ⊂ U , δ′ ≤ δ. Then we see

0 =

∫ δ′

0

(
Pu, v

)
dt =

∫ δ′

0

(
u, P ∗v

)
dt =

∫ δ′

0

(
u, f

)
dt.

Since f ∈ C∞
0 ((0, δ′)× {|x| < ε}) is arbitrary, we conclude that

u(t, x) = 0, (t, x) ∈ (0, δ′)× {|x| ≤ ε}.

Theorem 13.4. If u(t, x) ∈ C∞([0, δ) × U) satisfies Pu = 0 in [0, δ) × U and
∂kt u(0, x) = 0 for all k then u = 0 in a neighborhood of (0, 0).
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