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Abstract

Ivrii’s conjecture asserts that the Cauchy problem is C*° well-posed
for any lower order term if every critical point of the principal symbol is
effectively hyperbolic. Effectively hyperbolic critical point is at most triple
characteristic. If every characteristic is at most double this conjecture
has been proved in 1980°. In this paper we prove the conjecture for the
remaining cases, that is for operators with triple effectively hyperbolic
characteristics.
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1 Introduction

This paper is devoted to the Cauchy problem

m m—1 ai
1) Pu=D"u+ 37000 22 0 1j<m Ga(t,2) Dg Diu =0,
Dlu(0,2) = uj(z), j=0,....,m—1

where t > 0, z € R% and the coefficients a;q(t,x) are real valued C* functions
in a neighborhood of the origin of R*** and D, = (D,,,...,D,,), Dy, =
(1/i)(0/0x;) and Dy = (1/i)(0/0t). The Cauchy problem (1.1) is C* well-
posed at the origin for ¢t > 0 if one can find a § > 0 and a neighborhood U of
the origin of R? such that (1.1) has a unique solution u € C*°([0,§) x U) for
any uj(z) € C*°(R?). We assume that the principal symbol of P

m—1
Ptz ) =7"+ > > ajalt,x)¢7

J=0 |al+j=m
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is hyperbolic for t > 0, that is there exist 6’ > 0 and a neighborhood U’ of the
origin such that

(1.2) p = 0 has only real roots in 7 for (t,z) € [0,6’) x U’ and & € R?

which is indeed necessary in order that the Cauchy problem (1.1) is C*° well-
posed near the origin for ¢ > 0 ([17], [19]).

In [7], Ivrii and Petkov proved that if the Cauchy problem (1.1) is C*° well
posed for any lower order term then the Hamilton map F} has a pair of non-
zero real eigenvalues at every critical point ([7, Theorem 3]). With X = (¢, z),
E = (7, ¢) the Hamilton map F) is defined by

9%p 8%p

_ 0X 0= 0=0=
Fo(X,2) = ) )

o°p o°p

C0X0X  0=0X

and a critical point (X,Z) is a point where dp/9X = dp/I= = 0. Note that
p(X,E) = 0 at critical points by the homogeneity in = so that (X,Z) is a
multiple characteristic and 7 is a multiple characteristic root of p. A critical
point where the Hamilton map F, has a pair of non-zero real eigenvalues is
called effectively hyperbolic ([4], [10]). In [8], Ivrii has proved that if every
critical point is effectively hyperbolic, and p admits a decomposition p = ¢1¢2
with real smooth symbols ¢; near the critical point, then the Cauchy problem
is C>° well-posed for every lower order term. In this case the critical point is
effectively hyperbolic if and only if the Poisson bracket {qi, g2} does not vanish
there. He has conjectured that the assertion would hold without any additional
condition.

If a critical point (X, ZE) is effectively hyperbolic then 7 is a characteristic
root of multiplicity at most 3 ([7, Lemma 8.1]). If every multiple characteristic
root is at most double, the conjecture has been proved in [8], [20], [11, 12, 13],
[21, 23, 22]. When there exists an effectively hyperbolic critical point (X, =)
such that 7 is a triple characteristic root where p cannot be factorized, several
partial results are obtained in [2], [27], [28], [26]. Note that if there is a triple
characteristic which is not effectively hyperbolic the Cauchy problem is not
well-posed in the Gevrey class of order s > 2 in general, even the subprincipal
symbol vanishes identically ([3]).

In this paper we prove

Theorem 1.1. Assume (1.2). If every critical point (0,0,7,§), & # 0 is effec-
tively hyperbolic then for any ajo(t,z) with j + |a] < m — 1, which are C™ in
a neighborhood of (0,0), there exist § > 0, a neighborhood U of the origin and
n > 0 such that for any s € R and any f with t—"*1/2(D)* f € L2((0,0) x R?)
there exists u with t~"(D)~"~2+s+tm=iply € L2((0,5) xR?), j =0,1,...,m—1
satisfying

Pu=f in (0,0) xU.



Here (D) stands fory/1 + |D.|?. For some more detailed information about
the constant n, see (10.1) below.

Theorem 1.2. Under the same assumption as in Theorem 1.1, for any a;j o(t, x)
with 7 + |a] < m — 1, which are C* in a neighborhood of (0,0), there exist
§ > 0 and a neighborhood U of the origin such that for any u;(z) € C§°(RY),
J=0,1,...,m —1, there exists u(t,x) € C°([0,6) x U) satisfying (1.1) in
[0,0) x U. If u(t,z) € C*([0,0) x U) with d{u(0,2) =0, j =0,1,...,m —1,
satisfies Pu =0 in [0,8) x U then u =0 in a neighborhood of (0,0).

Proof. Compute uj(z) = DJu(0,z) for j = m,m + 1,... from u;(z), j =
0,1,...,m — 1 and the equation Pu = 0. By a Borel’s lemma there is w(t,z) €
Cs° (R ) such that Diw(0,z) = u;(z) for all j € N. Since (D} Pw)(0,z) =0
for all j € N it is clear that t~"+1/2(D)*Pw € L?((0,6) x RY) for any s. Thanks
to Theorem 1.1 there exists v with ¢~"(D)=2"=2+s+tm=iply ¢ L2((0,6) x RY),
Jj=0,1,...,m — 1 satisfying Pv = —Pw in (0,0) x U. Since we may assume
n > 1 hence D]v(0,z) =0, j = 0,1,...,m — 1 we conclude that u = v + w
is a desired solution. Local uniqueness follows from Theorem 13.4 because
OFu(0,2) = 0 for any k € N by Pu = 0. O

Remark 1.1. Under the assumption of Theorem 1.1 we see that p has necessar-
ily non-real characteristic roots in the ¢ < 0 side near (0,0,¢) if p(0,0,7,&) =0
has a triple characteristic root. Therefore P would be a Tricomi type operator
in this case. In fact from [7, Lemma 8.1] it follows that if 7 is a triple character-
istic root at (0,0,¢) and all characteristic roots are real in a full neighborhood
of (0,0,¢) then F,(0,0,7,£) = O.

Remark 1.2. For any characteristic root 7 of multiplicity r > 3 at (¢, z, §) with
t > 0 the point (¢, z, 7, &) is a critical point, where F,,(t,z, 7,&) = O unlessr =3
and t = 0 ([7, Lemma 8.1]). For any double characteristic root 7 at (¢, xz,§) with
t > 0 the point (¢,z,7,&) is a critical point if ¢ > 0 while it is not necessarily
critical point if ¢ = 0. Here is a simple example

P=(D?—t'D}(D;+¢D,), (€N, z€R, t>0

where ¢ € R. Let ¢ # 0 then it is clear that 7 = 0 is a double characteristic root
at (0,0,1). If £ =1 then 9;p(0,0,0,1) = —c¢ # 0 and hence (0,0,0,1) is not a
critical point. If £ > 2 then (0,0,0,1) is a critical point and F), has non-zero
real eigenvalues there if and only if £ = 2. Let ¢ = 0 then 7 = 0 is a triple
characteristic root at (0,0,1) hence (0,0,0,1) is a critical point. At (0,0,0,1),
F), has non-zero real eigenvalues if and only if £ = 1.

2 Outline of the proof of Theorem 1.1

As noted in Introduction, if a critical point (X, Z) is effectively hyperbolic then 7
is a characteristic root of multiplicity at most 3. This implies that it is essential



to study operators P of third order

3
(2.1) P=D}+> a;(t,z,D)(D)D;™’

Jj=1

which is differential operator in ¢ with coefficients a; € S, classical pseudodif-
ferential operator of order 0, where (D) = op((1 + |¢|?)*/?). One can reduce P
to the case with aq (¢, 2, D) = 0 and hence the principal symbol is

(22) p(tv X, T, f) = 7—3 - (l(t, z, £)|€|27— - b(t, z, §)|£|3
All characteristic roots are real for ¢ > 0 implies that
(2.3) A=4da(t,z, &) —27b(t,x,6)? >0, (t,2,6) €[0,T) x U x R%

Assume that p(0,0,7,&) = 0 has a triple characteristic root 7, which is neces-

sarily 7 = 0. The critical point (0,0, 7,&) is effectively hyperbolic if and only
if

(2.4) 0:a(0,0,€) # 0.

So we can assume that a = e(t + a(z,£)) with e > 0. Add to P a second order

term Me(D)D, with a large parameter M > 0 which is irrelevant because even-

tually it is proved that any lower order term can be controlled. The coefficient

a(t,z,€) changes to e(t + o+ M{(£)~!) which we still denote by the same a.
With U = Y(D?u, (D) Dyu, (D)?u) the equation Pu = f is reduced to

(2.5) DU = A(t,z, D)(D)U + B(t,z, D)U + F
where A, B € S°, F =*(f,0,0) and
b

0
Atz =1 0 0
0 0

— O Q

Let S be the Bézout matrix of p and dp/d7, that is

3 0 —a
S(t,z,)=10 2a 3b
—a 3b a?

then S is nonnegative definite and symmetrizes A, that is SA is symmetric
which is easily examined directly, though this is a special case of a general
fact (see [14], [25]). We now diagonalize S by an orthogonal matrix T so that
T718T = A = diag (A1, A2, A3) where 0 < A1 < Ay < A3 are the eigenvalues of
S which satisfies

0200 2;| 3 aP-a-letB2(e) =181 5= 12,3,



Then the equation is reduced to a 3 x 3 first order system of V = T~1U; roughly
(2.6) D,V = AT(D)W + BTV, AT =T7'AT

where A symmetrizes AT. A significant feature of \; is that
A
—2MZd A~a, A3~ L
a

From the conditions (2.3) and (2.4) the discriminant A is essentially a third
order polynomial in ¢ and we can find a smooth ¥ (z, &) and ¢ > 0 such that

(2.7) %z cmin {¢%, (t —¢)* + Mp(&)~'}
where p = o+ M(£)~! and 9 satisfies
’5§5,§¢| = p1—|a+6\/2<§>—|ﬁ\.

Since (2.6) is a symmetrizable system with a diagonal symmetrizer A, a
natural energy will be

3
(op(MV, V) =D (op(A)V;. V)

j=1
and (2.7) suggests that a weighted energy with a scalar weight op(t~"¢~")
p=wrt—1, w=/(t—1)>+Mp(£)!

would work, which is essentially the same weight as the weight employed for
studying double effectively hyperbolic characteristics in [23] (see also [24]), there
M (€)=t was used in place of Mp(¢)~1. A main feature of the weight function

to is

1 1
(o) =k (td), k= ¥ + o
Our task is now to show the weighted energy
Ree~"(op(A)op(t~"6 ™"V, op(t~"6~")V)

works well and can control any lower order term, yielding weighted energy esti-
mates for P. In doing so it is crucial that A;, w, p and ¢ are admissible weights
for the metric

g=M7((&)|dz|* + (€)' |de|?)
and \; € S(\;,9), ¢ € S(¢,g) so on. This fact enables us to apply the Weyl
calculus to op(};), op(¢~™) and so on. One of main points to derive energy
estimates is the following inequalities
Re (op(A)op(d:(t™"¢™"))V, W) — 0 (op(A)W, W)
< —n(1—CM")|lop(r"/2AV2)W|J?

3
—cO([lop(AV2)W | + Y MPI([(D)~ 2w 1?)

Jj=1



where W = op(t~"¢~")V, while for B = (b;;) with b;; € S(1,g) we see
|(op(A)op(B)W, W)| < Cllop(k/2AY2)W |2
3
+CO([lop(AV2)W P + Y~ MP (D)= )1?)
j=1

which are proved applying the Weyl calculus of pseudodifferential operators.

3 Lower bound of discriminant

Study third order operators P of the form (2.1) with a;(¢,2, D) = 0, hence the
principal symbol has the form (2.2) where a(t,z,&) and b(¢, x,€) are homoge-
neous of degree 0 in £ and assumed to satisfy (2.3) with some 7' > 0 and some
neighborhood U of the origin of R%. Assume that p(t,z,7,¢) has a triple char-
acteristic root 7 at (0,0,&), || = 1 and (0,0, 7, &) is effectively hyperbolic. It is
clear that

F=0, a(0,0,§) =0, b(0,0,&)=0.

Since 0297 a(0,0,€) = 0 for |a + 8| = 1 and 929.b(0,0,€) = 0 for | + S| < 2
by (2.3) (see Lemma 4.2 below) it is easy to see

(3.1) det (A — F(0,0,0,)) = A2 (A2 — {8,a(0,0,6)}?)

hence (0,0,0,¢) is effectively hyperbolic if and only if

8,a(0,0,&) # 0.

Since a(0,0,£) = 0 and 8;a(0,0,&) # 0 there is a neighborhood U of (0,0, €) in
which one can write

a(t,z,§) = e(t,z,§)(t + a(z,§))
where e > 0 in U. Note that a(z,&) > 0 near £ because a(t,z,£) > 0 in
[0,T) x U x R4,
3.1 A perturbed discriminant
Introducing a small parameter € we consider
0 —e(t,z,€)(t + o(x,§) + )¢ T — b(t,x, &) €[
= T3 - a(t,x,g, 6)|§|2 - b(t7x7£)|f|3

From now on we write b(X) or a(X,¢) and so on to make clearer that these
symbols are defined in some neighborhood of X = (0,&) or (X,0). Consider the
discriminant of (3.2);

(3.2)

A(t, X, e) =4a3(t, X, €) — 27b%(t, X).



Lemma 3.1. One can write
A=t X, e)(t? + a1(X, )t + az (X, €)t + az(X, ¢))
in a neighborhood of (0,X,0) where a;(X,0) =0, j =1,2,3 and & > 0.
Proof. 1t is clear that OFa3(0,X,0) = 0 for k = 0,1,2 and 93a3(0, X,0) # 0.
Show 9;b(0, X,0) = 0. Suppose the contrary and hence
b(t, X,0) =t(by + tha(t))

with by # 0. Since a(t,X,0) = ¢t with ¢ > 0 then A(t,X,0) = 4¢3¢3 —
27b(t, X,0) > 0 leads to a contradiction. Thus OFA(0,X,0) =0 for k=0,1,2
and 93 A(0, X,0) # 0. Then from the Malgrange preparation theorem (e.g. [5,

Theorem 7.5.5]) one can conclude the assertion. O
Introducing
(3.3) p(X,6) = a(X) + &

one can also write
27 -
A =4 (t+ p)® — 2707 = 463{(75 + )3 @zﬂ} —4*{(t+p)* b}

with b = 3v/3 b/2¢3/2. Denoting

b(t, X) = ii)j(xw‘ + by (t, X)t?

where by(X) = by (X) = 0 which follows from the proof of Lemma 3.1, one can
write
AJe=A =13+ a1(X,)t* + ax(X, )t + az(X,¢)
3.4 2
(34) {t+0)> = (D bj(X)t + bs(t, X)t 5%

7=0

with E(t, X,¢) = 4e§/é. Here note that E(0,X,0) = 1 since e(0,X,0) =
9:a(0, X,0) and (0, X,0) = 40;a(0, X, 0)3.

Lemma 3.2. There is a neighborhood V of X such that
b1(X)] < 4a'/?(X) (X €V).
Proof. Tt is clear that |bo(X)| < a®2(X). If a(X) = 0 then the assertion is

obvious. Assume «(X) # 0. Since

(3.5) (t+ (X ZJ Y+ bs(t, X)2)? (0<t<T)



choosing t = 3a(X) < T, writing a = a(X), it follows from (3.5) that

8a®/% > ’l;o(X) + 3131(X)oz’ —Ca? > 3|by(X)|a — Ca? — a®/?
hence the assertion is clear because a(X) = 0. O
Lemma 3.3. In a neighborhood of (X,0) we have a;j(X,e) = O(p(X,€)?) for
7 =1,2,3. More precisely
-2
a1(X,e) = E(0, X, €) (3p(X, €) — b1 (X)) + O(p*/?),
a(X, €) = E(0, X, ¢)(3p° (X, €) — 2bo(X)by (X)) + O(p*/?),
-2
az(X,€) = E(0, X, €) (p*(X, €) — by(X)).
Proof. Since A(0, X, €) > 0 it follows from (3.4) that a3(X, €) = E(0, X, €) (p(X, €)*>—
bo(X)?) > 0 hence by = O(p*/?) and consequently az(X,€) = O(p®). Since

oA

0 = QZ(Xa 6) = atE(07X7 €)a3(X7 6)
t=

+E(0, X, €)(3p%(X, €) — 2bo(X)b1 (X))

it follows that by (X )b1(X) = O(p?) by Lemma 3.2 and hence the above equality
shows the assertion for as(X,¢€). Finally from

8§AL:O =2a1(X,€) = 07 F(0, X, €)az (X, €)
+20,E(0, X, €) (3% (X, €) — 2bo(X)b1 (X))
+2E(0, X, €) (3p(X, €) — b1 (X)? — 2bo(X )ba (X))

and Lemma 3.2 one concludes the assertion for aq (X ¢). O

3.2 Construction of ¢(z,¢)
Denote
(3.6) (X, ) = nf{t | A(t, X, ¢) > 0}

and hence A(v, X, ¢) = 0. First check that v(X,e) < 0. Suppose the contrary.
Since A(t, X,¢€) > 0 for t > 0 it follows that v(X, €) is a double root, that is one
can write A(t) = (t — v)%(t — ) with a real 7. It is clear that 7 # v and 7 < 0
because A(t) > 0 for t > 0. Therefore we have 7 < v and A(t) > 0in 0 <t < v
which is incompatible with the definition of v. Write

A(t, X, e) = (t —v(X,€)(t* + A1(X, e)t + Az(X, €))

where A1 = v + a1. Here we prepare following lemma.



Lemma 3.4. One can find a neighborhood U of (X, 0) such that for any (X, €) €
U there is j € {1,2,3} such that

‘Vj(X’6)| 2 p(X,€)/9

where A(t, X, ¢) =T

j=1

(t = vi(X,€)).

Proof. First show that there is 1/3 < § < 1/2 such that
(3.7) max{|p3 B3, 0% — 2boby /32, |p — Bf/3|} > 62).

In fact denoting f(8) = 2(1 — §%)Y/2(1 — 62)1/2/y/3 — 1 — 6* it is easy to check
that f(1/3) > 0 and f(1/2) < 0. Take 1/3 < § < 1/2 such that f(5) = 0.
If |p® — lA)(2)|1/2 < 6%p and |p — Ei/3| < 02p then |bo| > (1 — 6%)1/2p3/2 and
|b1] > v/3(1 — 62)'/2p'/2 hence

07 — 2bob1 /3] > 2|bob1|/3 — p* > (£(8) + 5%)p* = 6*p?

which shows that |p? — 2_13051/3|1/2 > §2p. Thus (3.7) is proved. Thanks to
Lemma 3.3, taking £(0, X,0) =1 and 1/3 < J, one can find a neighborhood U
of (X,0) such that

lar(X, )| = p/3, laz(X,€)| 2 p*/3°, las(X,e)] 2 p*/3°, (X,€) €U.
Then the assertion follows from the relations between {v;} and {a;}. O

Lemma 3.5. Denote v defined in (3.6) by v1 and by v;, J = 2,3 the other roots
of A =0 int. Then one can find a neighborhood U of (X,0) and ¢; > 0 such
that

(38) if rmtar<2cp, (X,e)cU then |v1—v;|>cap, j=2,3.
In particular v1 (X, €) is smooth in (X,e) e U N {v1 + a1 < 2c1p}.

Proof. Set 6 =1/9 and take ¢; < §/4. First note that if Rev; > ¢16, j = 2,3 it
is clear that |v; — vj| > |v1 — Revj| > Rev; > ¢16 because v; < 0 then we may
assume

(39) Re v; < c10, j=2,3.
Write .
At) = H(t —v;) = (t—v)((t+A1/2)* - D)

and recall v; + a; = A;. Consider the case that both v5, v3 are real so that
D>0and vy, v3=—-A1/2+ VD. If D =0 and hence

—c10 <Rev; =—-41/2 <16



in view of (3.8) and (3.9). Then we see |v1| > d p thanks to Lemma 3.4 and
hence
1 —wil = ] =[] = (6 = c1)p = 36p/4.

If D > 0 then one has —A; /2 ++/D < 0. Otherwise A(t) would be negative for
some t > 0 near —A1/2+\/5 which is a contradiction. Thus v/ D < A1/2< 16
which shows that

val, vs] < [A1]/2+ VD <261 p

and hence |v1| > 6 p by Lemma 3.4 again. Therefore

i = vl = | = [vj| 2 (8 = 2¢1) p = 0p/2.

Turn to the case D < 0 such that ve, v3 = —A;/2 £i/|D|. As observed above
one may assume |Rev;| = |A1/2| < ¢1. Thanks to Lemma 3.4 either 11| > dp
or |va| = |vs| > dp. If |v1| > 0p then it follows that

|l/1 —Vj‘ Z |I/1 +A1/2| Z |V1| — |A1|/2 2 ((S—Cl>p Z 3(5/)/4

If |vo| = |v3| > dp so that |A1]/2 + /|D| > dp hence /|D| > dp — |A1]/2 >
(6 — ¢1)p which proves

lv1 —vi| > V/|D| > (6 —ci)p > 6p/2.
Thus v1 (X €) is a simple root and hence smooth provided that v1+a; < c1p. O

Now define (X, €) which plays a crucial role in our arguments deriving
weighted energy estimates. Choose x(s) € C*°(R) such that 0 < x(s) < 1 with
x(s) =11if s <0 and x(s) =0 for s > 1. Define

V1+a1>u1—|—a1 (67&0)'

(X, 6) = —x( 5o ) g

We now prove

Proposition 3.1. One can find a neighborhood U of (X,0) such that

(3.10) A(t, X, e) > vmin {, (t — (X, )’} (t + p(X, €))

holds for (X,€) €U, e # 0 and t € [0,T] where v = (2(18v/2 + 1))_1.

Proof. Set 6 =1/9 again. First check that one can find ¢ > v such that

(3.11) A(t,X,e) > ct*(t+p) if Al =vi+a >0.

Write A(t) = (t—v1)((t+ A1/2)* = D). Consider the case D = 0. From Lemma
3.4 either |v1| > dp or |A1/2]| = A1/2 > 6p. If |v1] > dp then t — vy =t + |v1] >

t+ dp hence 6~ 1(t —v1) >t + p. Since (t + A;/2)? > 2 it is clear that (3.11)
holds with ¢ = 6. If A1/2 > 0p then ¢t + A1/2 > t 4+ 0p and t + A1/2 > {,

10



t—vy =t+|v| >t gives (3.11) with ¢ = §. Next consider the case D > 0.
Since A(t) > 0 for t > 0 if follows that —A4;/2 + VD < 0. Write

A(t) = (t = 1)t — va)(t — v3)

where vo,v3 = —A;/2 + VD < 0. If |v1] > 6p then 671t —vy) >t +p as
above and t —v; = t + |v;| > t then (3.11) with ¢ = 6. Consider the case
D < 0 so that vo,v3 = —A;/2 +4+/|D|. If |v1] > 0p then (3.11) holds because

] = 1 = L. - = = . Si
[t —vi| > [t + A1/2| > ¢ If |vo| = |vs| > dp then A1/2 4 /|D| > dp. Since

(t—vo)(t —vs) = (t+ A1/2)> + |D| > (t+ A /2 + /D)% /2

> (t+0p)2/2 2 8L (t+ )2

(3.11) holds with ¢ = §/2.
Turn to the case Ay < 0. In this case, using ¥ = —(v1 +a1)/2 > 0, one can
write

A(t) = (t = m)((t—%)? = D).

Consider the case |vq| > 5_;). Note that D < 0 otherwise ¥ + v/D > 0 would be
a positive simple root of A(t) and a contradiction. Then

(t=)? =D =(t—¥)* +|D| > (t - ).
Recalling t — vy =t + |11 > 6(t + p) we get
(3.12) A(t, X, €) > c(t—1)*(t+p)
with ¢ = §. Consider the case |v2] = |v3] = |¢) izm‘ = /4?2 +|D] > ép so

that
(t—w)(t —vs) = (t —9)> + |D| > (|t — v| + /D] )?/2.

Assume ¢ > +/|D| so that v/2¢ > §p. For 0 < t < 1/2 hence t < |t — | and
/2 < |t — | one has

[t=9l =@ =t =+t =] = (1 =)t +7¢/2
> (1=t + (v6/2vV2)p > 6(2v2 + 8) L (t + p)
with v = 2v/2/(2v/2 + 6). Since |t — |+ /|D] > |t — 9| > t and |t — 1| =

t+4|v1| > t it is clear that (3.11) holds with ¢ = §/2(2v/2+6). For ¢//2 < t such
that |t — | < t one sees

t—m >t=0—)t+yt> 1 —t+70/2 > 62V2+68) " (t+p)

and hence (¢t — v1)((t — ¥)? +|D|) > c(t + p)(t — ¥)? which is (3.12) with ¢ =
§/2(2v/2 + 6). Next assume +/]D| > 9 so that v/2,/|D| > §p. For 0 <t < ¢p/2

one has [t — 1| > ¢ and hence

|t = +V/|D[ > t+3p/V2 > (5/V2)(t + p).
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Noting |t — v1]| = t + 11| > t it is clear that (3.11) holds with ¢ = §/2v/2. For
/2 <t we see that

t—y|+V|D[ >t =[] +/[D[ >t, |t—¢|++/|D|>+/|D|>dp/V2

which shows that [t — 1| + \/|D| > 6(v/2 + §) 71 (t + p). Recalling |t — 1| =
t + 1| > t again one has (3.11) with ¢ = 6/2(v/2 + §). Thus the proof is
completed. O

Lemma 3.6. One can find a neighborhood U of (X,0) and ¢y > 0, C* > 0 such
that

|atA(taXa 6)| < *(1 1
= = 0]+ Vae

(3.13) NS -+

), (X,e) el

holds fort € (0,T] and 0 < € < €.

Proof. Tt will suffice to show (3.13) for A(t, X, v/2€) which we denote by A(t, X, €).
It is clear that

A=A+4(3(t+p)’ +3(t+p)e* +€°) = A+ A,.

Writing A=c¢ (A + Ar) it suffices to show the assertion for A + A, instead of
A. Note that
1

1
!
gc*(ler)SCz

|61:Ar‘

(3.14) =

always holds. Write A = (¢ — v1)(t — v2)(t — v3) and note that
BA 1
t p—
A B Z t— vj '

Checking the proof of Proposition 3.1 it is easy to see that

|0 A/A| < Cft
when A; > 0. Therefore
[N < _|0A] 0:A:] _ [0:A] | [0:A,]
A TA+A,  A+A, T A A,

proves the assertion. Study the case that A; < 0. From the proof of Proposition
3.1 one can write

A=(t—w)((t—1)*>—D)
where 1 > 0 and D < 0. If |D| > ae? then

-l 1 .
(=P +1D] = (=P +a@)? = =il + Vae

12



which proves the assertion since |t —vy| = t+|v1| > t. Similarly if [t —¢| > Jae
one has
-l 2
(t =2+ |D| ~ [t =9l +ae
If |D| < ae? and |t — 1| < \/ae it follows that

18,A| < (t — )2 + |D| + 2|t — ||t — ¥| < 2a€e? 4 Ca®/?e
because |t — v1| < Ca. In view of CA, > a?€? one concludes that

A A 2 3/2
7|8tA| < \8EA| < 2ae* + Ca’/?¢

e C
A+A. 7 A, a?e?
1 1 1 1
<C(- <C(-4+——
- (a+\/&e)— (t+|t—w|+\/&e)
which together with (3.14) proves the assertion. O

4 Extension of symbols

In the preceding Sections 3.1 and 3.2 all symbols we have studied are defined
in some conic (in §) neighborhood of (X,€) = (X,0) or X = X. In this section
we extend such symbols to those on RY x R? following [23] (also [24]).

4.1 Extension of symbols

Let X = (0,&) with || = 1. Let x(s) € C*®(R) be equal to 1 in |s| < 1, vanishes
in |s| > 2 such that 0 < x(s) < 1. Define y(z) and n(&£) by

yj(x) = x(MPxj)xj, n;(€) = x(M*(&(5 = ENE — §(6)) +&(6)y

for j =1,2,...,d with
(€)= (P + e

where M and ~ are large positive parameters constrained

(4.1) v > M°.

It is easy to see that (1 — CM~2)(£), < |n| < (1 + CM~2)(¢)., and
(4.2) lyl <CM™2, |n/ln| — € < CM~*

with some C' > 0 so that (y,n) is contained in a conic neighborhood of (0,
(

,27
shrinking with M. Note that (y,7n) = (x,£) on the conic neighborhood of (0, &)

(4.3) W = {(2,€) | la] < M™%, 1&/I§] = & < M7?/2, [¢] = M}

13



since

-1
6, -ol<la -l g -l < 5+ Mo
M~ 2 72

—2
= T, e =M

if (v,§) € Wi where d;; is the Kronecker’s delta. Define extensions a(z,§),
a(t,z,§), b(t,z,§), A(t, z,&), A(t,z,8),...of a(X), a(t, X, €), b(t, X), A(t, X, ¢),
A(t, X, e), ... by
a(z,§) = a(y(z),n(§)), a(t,z,&) = alt,y(x),n(§),(&)),
b(t,z,€) = b(t,y(2), n(€)), Alt,z,§) = Alt,y(2),n(€), €(€)),
A(t,2,€) = A(t, y(x),n(€) €(€))
so on with
(4.4) e(§) = M2 ()2,

In view of (4.1) and (4.2) such extended symbols are defined in R? x R?. Let
G = M*(|dz[* + (§)57|d&]).
Then it is easy to see

(45)  y; € SM.G), ny— §(6), € SM2E),.G), €(6) € S(M,C)

for j =1,...,d. To avoid confusions we denote (n(§)), by [£] hence

(4.6) [€] € S((€),G),  [ENE; —1e S(M2,G).

Lemma 4.1. Let f(X,¢€) be a symbol defined in a conic neighborhood of (X,0)
which is homogeneous of degree 0 in £. If agagaff()‘(, 0)=0 for 0 < |a+ 8|+
k < r then f(z,€) = f(y(x),n(€),e(€)) € S(M~2",G). Let h(X) be a symbol
defined in a conic neighborhood of X which is homogeneous of degree 0 in &.

Then
h(z,€) — h(0,6) € S(M™2,G).

Proof. We prove the first assertion. By the Taylor formula one can write
1 _ _
f(yanae) = Z mya(n_E<€>’Y)B€kaga?aff(oa€<£>’Y7O)
|aA-B|+k=r
1 _
« o B _k
Hr) > [ - €@

|a+B|+k=r+1

< [ a—oyazofot on.otm—le),) + &), 0000).
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It is clear that
Y (1 — E(€),) P F 020008 £(0,€,0)(6); 17 € S(M~?",G)

for |a+B|+k = r in view of (4.5). Since (£).,/C < [0(n—E(&),)+E(&),] < C(E),
the integral belongs to S((f);lﬁl,G) hence the second term on the right-hand
side is in S(M 2772 @) thus the assertion. O

4.2 Estimate of extended symbols

From now on it is assumed that all constants are independent of M and -~ if
otherwise stated. We write A X B if A is bounded by constant, independent of
M and v, times B. Recall p(X,¢) = a(X) + € so that

(4.7) p(z,€) = alz,&) + M(§)7".

From Lemma 4.1 we see p € S(M %, G) hence |6§6§p| =3 <§>;|/3\ for |a+ 0| = 2.
Since p > 0 it follows from the Glaeser inequality that

(4.8) 0200l 3P (& (la+8l=1).

Lemma 4.2. Assume |a(X,€)| < Cp(X, €)™ with some n > 0 in a conic neigh-
borhood of (X,0) and a(X,¢€) is of homogeneous of degree 0 in §. Then there
exists Cop > 0 such that

(4.9) 0200 a(2,€)| < Cagpla, )" 1+81/2(g) 181,

Proof. From the assumption it follows that 8§8§8§a(0, €,0) = 0 for |a+B|+k <
2n and hence Lemma 4.1 shows that a(z,&) € S(M %" G). Therefore for

|ao+ 3| > 2n one sees
le% a —4n _ a+pB|/2—n
(10202 a(x,€)| < CMPetoI=4n < O (Copt) *HFY
_ Oc(|)0¢+/3|/2—npn7|a+6|/2
because M* < Cop~!. Hence (4.9) holds for |a + 3| > 2n. The case |a + 8] <

2n — 1 remains to be checked. Writing X = (2,&), Y = (y,7(§),) and applying
the Taylor formula to obtain

la(X + sY)| = ‘%Z_l S—jdja(X'Y) + i d*"a(X + SHY'Y)’
= J! ’ (2n)! '
(410) 2n—1 sJ . g2n n
< C( 3 EPGY) + (2n)!d2"p(X + sG’Y;Y))

J=0

with some 0 < 6,0’ < 1 where

. 1l
Pa(X;Y) = 3 morofale, Oyn’ (€

la+8]=j

15



If p(x,€) = 0 then agafp(x,g) = 0 for |a + 8| = 1 because p > 0 and then

it follows that 328?a(x,§) =0 for |a + f| < 2n — 1 from (4.10) hence (4.9) is
obvious. We fix a small sop > 0 and assume p(z,§) # 0. If p(z,£) > s¢ then one
has

0200 a(z, )(€)1] < CapM—1mH2e48l < 0
< Oaﬁsan+|a+5\/2sg—|a+ﬂ|/2 < Ca/355n+|a+'@|/2pni‘a+ﬂ|/2

which proves (4.9). Assume 0 < p(z,§) < so. Note that
|d*"a(X 4+ s0Y;Y)| < C, d”"p(X +s0'Y;Y) < Cp(X)' ™"

for any |(y,n)| < 1/2. Indeed the first one is clear from a(x,¢) € S(M 4" G).
To check the second inequality it is enough to note that for |a + 8] = 2n

0202 p(X +0"Y)| < CM72T2(E+07(€) )5 1P < C'(Cop(X) 1) (€)1

since V/2(& + 0(€),n) > (€),/2 for [n] < 1/2 and |0] < 1. Take s = p(X)¥/? in
(4.10) to get

2n—1 2n—1
> %dja(X;Y)P(X)j/Q‘ <c(y %dﬂ‘mx;mp(xvﬂ) + Cp(X)"
j=0 7 3=0 "

which is bounded by Cp(X)" because |dp(X;Y)| < C"p(X)'/? in view of (4.8)
and
@7 p(X;Y)| < CM™*H < C(Cop™ (X))27

for j > 3. This gives

2n—1 ;
1 p(X)i7?
—da(X;Y < (C].
‘ ; 5! (X:Y) p(X)" ’ !

Replacing (y,n) by s(y,n), [(y,n)| =1/2, 0 < |s| < 1 one obtains

2n—1

Jj . J/2
‘ 3 i'dja(X;Y)p(X)
= b

< (.
p(X)m 1=

Since two norms sup, <y |p(s)| and max {|c;[} on the vector space consisting

of all polynomials p(s) = Z?Zgl cjs! are equivalent one obtains |d/a(X;Y)| <

B'p(X)"/2, Since |(y,n)| = 1/2 is arbitrary one concludes (4.9). O
Corollary 4.1. On has ’838?/)(@5” =3 p(x,§)1_|a+ﬂ|/2<§>;|ﬁ|.

Lemma 4.3. Let s € R. Then ‘3;’3?,08‘ < ps—latBl/2(ey 1Al
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Proof. Since

8?(1)aﬁ(1)p ag(k)aﬂ(k)p
82‘8? 5= ZC’a(jmu)Ps ( £ ) ( S )
P P
the assertion follows from Corollary 4.1. O

Lemma 4.4. Let a;(x,€) = a;(y(z),n(&),e(§)). Then
|00 a; (@, €)| 3 pla,€)71HA2 () 710 j=1,2,3.
Proof. The assertion follows from Lemmas 3.3 and 4.2. O
For the extension ¢ (z,&) = ¥(y(z),n(€),€(€)) of (X, €) we have

Lemma 4.5. One has ]agagw(x,g)y < Coppla, &)1 1o+81/2() 1AL,

Proof. Since Lemma 4.2 is not available for ¢(X, €) because it is not defined for
¢ = 0 then we show the assertion directly. Let vy (x, &), ai(z,€) and A(t, z,€) be
extensions of v1 (X, €), a1 (X, €) and A(t, X, €) and hence one has A (v (z, &), z, &) =
0. Note that [0;A(v1,2,8)| > 4cdp?(x,&) if vi(z,€) + ai(z,€) < 2c1p(z,€)
thanks to Lemma 3.5. Starting with

A (vy,2,£)0500v1 + 050 Ay, 2,€) =0 (Ja+ 8] = 1)

a repetition of the same argument proving the estimates for A5 in Lemma 6.3
below together with Lemma 4.4 one obtains

(4.11) |(’9§‘0§1/1| 3 ,olfl"‘H’)Vz<£);|5‘7 vi +a; < 2cp.

Here we have used |v1| 3 p which also follows from Lemma 4.4. Using (4.11)
and Lemmas 4.3 and 4.4 the assertion follows easily. O

4.3 Remarks on the condition (3.10)

In this subsection we work near (0,&) and (x,£) varies in a neighborhood of

(0,€). First note that p has no triple characteristic root in ¢ > 0 because
t+ az,&) >0 for t > 0. Define

7#(33’5) = _(Vl('r7€7 O) + al(x7€a O))/Q
then it is clear from the proof of Proposition 3.1 that
(4.12) CA(t,z,£,0) > min {t2, (t— @(x,f))Q}(t +a(z,£)) (t>0).

Assume that p has a double characteristic root at (¢, z, &) with ¢ > 0. Denoting
by u(t, x, &) the other characteristic root of p, which is simple and hence smooth
in (¢, x,&) near the reference point, one can write

p(taxa 7, 5) = 7—3 - a(t,w,§)|§\27 - b(t7x7§)|£|3
= (1 — u(t,2,8))(r* + c1(t, 2,7 + ea(t, 2, 6)).

17



Note that
A(t,x,€,0)[€° = (4 a® — 27 1)2)|§|6 = (2c3 + 02)(6% - 462)

where Ay = (¢?—4cy)/4 is the discriminant of 72+c¢y7+co. Since p+cyptca # 0
hence 2¢} + cp # 0 it follows from (4.12) that

{(t2,8) [ Ay = 0,8 > 0} C{(t,2,) [ t = ¢(x, &) > O}

Note that 1(z, £) > 0 implies that 1 (z,£,0)+a1(x,£,0) < 0 < 2c1a(x, ) hence
¥(x,€) is smooth there and

(413) |V1(.’E,£,0)—Vj($,£,0)| 2020[(1.75)7 ]:273
by Lemma 3.5. Now we can prove

Lemma 4.6. Near X = (0,€) the doubly characteristic set of p with t > 0 is

contained in {(t,xz,&) | t = ¥(x,&) > 0} and t —(x,§) is a time function for p.

It remains to show that ¢ — 1) is a time function (see e.g. [24]) for p. Let
q=T1%+c17+co then F, = ¢ F, at a double characteristic with ¢ > 0 with some

¢ # 0 then it is enough to prove that ¢ — v is a time function for q. Write

q= (T+Cl/2)27A2

and recall [24, Lemma 2.1.3] that ¢t — ¢ is a time function for ¢ if and only if
(414)  {r+e/2t-9} >0, {Dgt =9} <de{r+e/2t -9} A,

with some 0 < ¢ < 1. Since Ay > 0 one obtains [{Ag,t — ¥} = [{Ag,¥}] <
Cv/Ay | V| Taking (4.13) into account, a repetition of the proof of Lemma 4.5
shows |V¢| < C'y/a and hence |{Ag,t —1}|?> < Caly. On the other hand one
has {7 4+ ¢1/2,t =} = 1 —{c1,%}/2 > 1 - C|Vy| > 1 — C”/a then (4.14)
holds because o can be assumed to be small there.

4.4 Lower bound of perturbed discriminant

Recall that a(x,§), a(t,x,§), b(t, x,§), e(t,x, &), A(t,z,€), ... are extensions of
a(X), a(t, X, €), b(t, X), e(t, X, €), A(t,X,¢€), ... defined in Section 4.2 so that

p=""—alt,z IPr + btz OIS, a=e(t,€)(t+alr,©))

is now defined iniRd x R?® and coincides with the original p in a conic neighbor-
hood Wiy of (0,£). We add a term 2Me(t, z,£)(€); " to p and consider

% —e(t+a+2ME)T[EPT - blEf.
Denoting

(4.15) ay(t,x, &) = e(t, z, &) (t + alz, &) + 2M(£)]1)
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consider the discriminant
(416 Anr(ty,€) = 46> (t + a+2M(6)1)° - 278
' =4e®(t+a+ M€ =270 + An(t,2,€)

where, recalling o + M<§>’1 = p, we have
Ay =4e>(3(t+ p)?M(E)S" +3(t + p)M*(€) 7% + M>(€)77)
=12¢%(c1 (2, )* + ca(w, )t + c3(x,€)) > 12> M (t + p)* ()

where it is clear that ¢;(z,§) verifies |8§‘8?cj| = pj’|a+5‘/2(§>;w. Thanks to
Proposition 3.1 one has

A(t,fﬂ,g) Z vmin {t27 (t - w)Q}(t + P)
Since A(t,z,£) = é A then
A(t,z,€) = A > evmin {t?, (t — ¢)*}(t + p)
> (&/e)vmin {t*, (t — )’ }e(t + p).

Therefore choosing a constant 7 > 0 such that 12 e > (é / e)UD one obtains from
(4.16), (4.17) that

Ay > (€/e)vmin {2, (t — ) be(t + p) + 12> (t + p)> M (€

(4.18) > (&/e)v(min {t?, (t —¢)*} + v(t + p)M({)Jl)e(t +p)
> (é/e)vmin {t*, (t — ¢)> + PMp(&); ' be(t+p)  (t>0).

(4.17)

Proposition 4.1. One can write
AM = e(tg + al(wa £)t2 + ag(.T, f)t + (13(’1’, 5))

where 0 < e € S(1,G) uniformly in t and a; satisfies

(4.19) 0007 a;| 3 p 1P () J1AL
Moreover there exist v > 0 and ¢ > 0 such that

Ay _ € 2, - -1, Am ~1
(4.20) ot > %U min {t*, (t — 1) +vMp(€)5'}, T >cM(§), " am

for 0 <t < T where v and p satisfy
(4.21) 070gw], (0207 p| 3 P11 ().

Proof. Choosing ¢ = \/§M1/2<§>§1/2 in (4.4) and applying Lemma 3.1 one
can write Ajy; as a third order polynomial in ¢, up to non-zero factor and can
estimate the coefficients thanks to Lemmas 3.3 and 4.2 in terms of a+2M (€ >

Noting p(z,€) < afx, &) + 2M(€);" < 2p(x, &) we have (4.19). The assertlon
(4.20) follows from (4.18) for aps S 2e(t+ p). The estimates (4.21) are nothing

but Corollary 4.1 and Lemma 4.5 with the choice e = M/2(¢); /2. O
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We estimate the ratio of 9;b to y/a,s for later use.

Lemma 4.7. We have

0| < (14+CM72)(2¢/2/3)[e(0,0,)[Vans ~ (0<t< M™?).

Proof. Write b = Bo(z,€) + tB1(x, &) + t2B3(t, x,€). From 27b? < 4a® for 0 <
t < T it is clear that |Bg| < (2/3v/3)e/2a%/2. We first check that

(4.22) B1] < (1+ CM2)(2/V3)e*? a.

If a(z,&) = 0 then Bi(x,€) = 0 by 27b* < 4a3 hence (4.22) is clear. When
a(z,€) > 0 take t = 3a it follows from 27b? < 4a® that

3alf| < 2(43/2e3/2/3v/3)a3/? 4 |Bo| + Ca® < (6/V3)e3/2a3/? 4 Ca?
< (6/V3)(1 4+ CM~2)e3/203/2
because o < C'M~* which proves (4.22). Since |9;b| < |B1] + Ct we see that
0,0 < (1 4+ CM~2)(2/V3)e* 2\ /a+ CM ™2/t
< (1+CM72)(2/V3)e*? (Va + Vi)
from which the proof is immediate. O

Remark 4.1. Here we make a remark on ¢(0,0,¢) = 9;a(0,0,£). In view
of (3.1) it is clear that €(0,0,&) is the nonzero positive real eigenvalue of
F,(0,0,0,€). Since é/e = 4€2(0,0,£)(1+O(M~2)) the coefficienet of the right-
hand side of (4.20) is, essentially, constant times the square of the nonzero
positive real eigenvalue of the Hamilton map.

In what follows we denote € = (0,0, £).

5 Metric g and estimates of w and ¢
Introduce the metric
9= 9(ae) (dw,d€) = M ((€),]dz|* + (§)7|dg]?)
which is a basic metric with which we work in this paper. Note that
S(M*,G) C S(M*,g)

because M+2e+Bl(eV TPl < pps pp—latsl/2(e) (=802 4 yiew of (£), > 4 >
M?5. The metric g is slowly varying and o temperate (see [6, Chapter 18.5], in
what follows we omit “o” because we use only the Weyl calculus in this paper)
uniformly in v > M® > 1 which will be checked in Section 7.
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Lemma 5.1. For |a+ 3| > 1 one has
|838§1/1] < M1/2p1/2<§>;1/2M_‘a+ﬂ|/2(5)%""_“3')/2.
Proof. 1t is enough to remark

]8;’8?1&] = p1—|a+ﬁl/2<§>;|ﬂ| = p1/2p—(\a+ﬂ|—1)/2<€>7—lﬂl
= p1/2(M71<§>7)(\a+ﬁ\71)/2<£>;|ﬁ? - M1/2p1/2<§>;1/2M7|a+ﬁ\/2<§>£Y|alf\ﬁ\)/2

which proves the assertion. O

Corollary 5.1. For |a+ | > 1 one has

aga?w c S(M—(Ia-l-ﬁl—l)/?pl/Q<§>;1/2<€>£/\04|—\B|)/27 q).

5.1 Estimate w by metric g

Taking Proposition 4.1 into account we introduce a preliminary weight

w(t,,€) = \[(t = ¥(@,€))? + TMp(e)7".

Since the exact value of 7 > 0 is irrelevant in the following arguments so we
assume 7 = 1 from now on. In what follows we work with symbols depending
on t. We assume that ¢ varies in some fixed interval [0,7] and it is assumed
that all constants are independent of ¢ € [0,7T] and ~, M if otherwise stated.
Now A = B implies that A is bounded by constant, independent of ¢, M and ~,
times B.

Lemma 5.2. Let s € R. For |a+ 8] > 1 we have
02000 | 3w (™ pH/2(€)5 1/2) M4 BI=D/2 g ol 181)/2,

Proof. Recall w? = (t —1)? + Mp(€);'. Note that for [+ 3| > 2

020 (t — v)?| 3 wlog o Pl + > 105 97 ¢l10”" 9 ¢

= wp1—|a+ﬁl/2<§>;lﬁl + p2—|a+ﬁl/2<£>;|ﬁl

ZwH{w 2y UetBImN/2 =2 = (et Bl=2)/2) () 18]

S e {w T p A (M), 1eFFITN2 4 w72 p (M (g, ) 10 PIm2)/2 ) (6) 1A
2w (W p 2 (6); /2 M (et Bl=D/2 ) (el -18D)/2

since w > v/ Mp1/2<§>§1/2. When |a+ 3] = 1 there is no second term and hence

‘333{5@ —9)?| 3 wp1/2f(|a+6\fl)/2<§>;\ﬁl
= w2(w—1p1/2<§>;1/2)M—(Ia+ﬁl—1)/2<§>g\a|—\6|)/2_
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Next it is easy to see that for |a+ 8] > 1
|050¢ (Mp(&);1)| 3 Mp(e)y p 1o H0172(g) 1P
= Mp1/2<§>7 p (\a+ﬂ|fl)/2<§>;|ﬁl
— — — a —1)/2 —
W2 (Mw 2p1/2<§)71)(M 1<§>v)(‘ +8]-1)/ <§>w|ﬁ|
= w2(w71p1/2<§>;1/2)M7(|a+6|71)/2<§>fy\alf\ﬂl)/2

because w > v/ Mp'/2(€)5 12 > M(€);'. Therefore one concludes that
|8§8§w2| < wz(w71p1/2<§>;1/2)M7(\a+ﬂlfl)/2<§>§Y|a\f|5\)/2
which proves the assertion for s = 2. For general s noting
‘80‘66 5/2‘ < Z‘ w2 s/2—1 8(1 aﬁl ) 3 (8§l8?lw2)’

= Zw p'/? €5 VS/2) g~ (lethl= l)/2<€>(7\a|—|5|)/2
Sw(w™ 1,01/2(5)71/2)M (Ja+pl= 1)/2<§>g\a|—|ﬂ|)/2

for w=1pl/2(¢)71/% < M~1/2 < 1 the proof is immediate. O
Corollary 5.2. We have w® € S(w?,g) for s € R.

Corollary 5.3. For |a+ 8| > 1 one has

8§‘ng5 e §(Mletsl= 1)/2wsw*1p1/2<§>;1/2+(\a|fﬁ|)/2’g).

5.2 Estimate ¢ by metric g

Introduce a wight which plays a crucial role in deriving energy estimates

o(t,2,8) = w(t,z,8) +t — ().
Start with remarking
Lemma 5.3. There is C > 0 such that ¢(t,x,&) > M(€);'/C.
Proof. When t — ¢(x,£) > 0 one has ¢ > w hence
¢ >w>MY2p2EO) T > M)

is obvious for p > M (€)' Assume t — ¢)(x,£) < 0 then 0 < ¢ < 9(x,
op(x, &) with some 6 > 0 by Lemma 4.5. Noticing that |[t—(z, &)| = ¥(x,&)—
op(x, &) we have

Wt @, &) = (t — (x,€))* + Mp(x,£)(€);" < 8°p* + Mp(&);!
§52p2+02:(52+1)p2

§) <
t<
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Now remarking that

Mp(&);* - Mp(&);+

5.1 t >
(5.1 ota.) > S > S
the proof is immediate. O
Next show

Lemma 5.4. We have }8;‘8?(;5’ = ¢M“a+5‘/2<§>9a|7lﬁl)/2.
Proof. Let |+ 8] =1 and write

—020L

. 020 (Mp(€)51)
2w

From Corollaries 5.2 and 4.1 it follows that

(5.2) 030g ¢ = ¢ = bapt + Yap-
080 (Yp)| 3 ™ Mpe)y Ml P l/2 ) k15421072
Noting (5.1) one obtains
|3gag (7/’a[3)| =< ¢M*\a+ﬁ+u+l’\/2<§>fylﬂé+#\*|ﬁ+l/\)/2_
On the other hand thanks to Corollaries 5.1 and 5.2 one sees

|01 bapl 5 M—\a+B+H+V\/2<£>fy\a+u\—\/3+'1\)/2.

Hence using (5.2) the assertion is proved by induction on |a + 3. O
We refine this lemma.

Lemma 5.5. Let |a+ (8] > 1 then
020 p € S(p M~ UeHPI=D/2, =1 p1/2 ) 172 ) (el =I8D/2 g,

Proof. From Corollary 5.1 one has 8?8?1/} € S(p1/2<§>;1/2<§)9a‘7|m)/2,g) for

o+ B = 1 hence ¢up € S(w2pt/2(g)5 I g) for o + ] = 1 by
Corollary 5.2. From Corollary 5.3 it follows that

’3562/(7%5)‘ = w_lpl/QM(Q;l_WM_““”"/2(5)9““'”‘)/2

for |a + 8| = 1 because a;‘a?(Mp<§>;1) € S(Mp1/2<§);17‘5‘,g). Thanks to
Lemma 5.3 one sees M (€)' < Co(t,x,£) and hence

Yap € S(wp2(ET2OUTIN 26 g), o+ B =1.

Since ¢ € S(¢,g) by Lemma 5.4 we conclude the assertion from (5.2). O
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6 Bézout matrix as symmetrizer

Add —2Mop(e(t,z,£)(€);")[D]* Dy to the principal part and subtract the same
one from the lower order part so that the operator is left to be invariant;
P = D} — ap(t,x, D)[D)>D; — b(t, x, D) [D]* 4 by (t, z, D) D?

(b2(t, , D) + da(t, 2, D))[D] Dy + bs(t, z, D)[D)?

where b;(t,x,€) € S(1,G) and dp(t,z,€) = 2M (e(€)5 1) #[¢] € S(M,G). Here
note that

(6.1) da(t,z, &) — 2Me(t,z,&) € S(M™1, g)

which follows from (4.6). With U = *(D?u, [D]Dsu, [D]*u) the equation Pu = f
is transformed to

(6.2) DU = A(t,z,D)[D|U + B(t,z,D)U + F
where F' = (f,0,0) and

0 apm b by ba+dy b3
At &)= |1 0 0|, Blt,z,&) =0 0 0
0 1 0 0 0 0

Let S be the Bézout matrix of p and dp/97, that is
3 O —aps

St,z,)=1 0 2ap 3b

—ay  3b a3,

then S is nonnegative definite and symmetrizes A, that is SA is symmetric.

6.1 Eigenvalues of Bezout matrix
Consider the principal symbol 73 — an;(t, x, €)[€]2T — b(t, z, €)[¢]* of P. Denote
ot,z,8) =t +a(z,§) + 2M(€);" =t + p(z,) + M ()7

hence ays(t, z,€) = e(t,x,€)o(t,x,&) and (1-CM~2)eo < apy < (1+CM~?)éo.
In what follows we assume that t varies in the interval

0<t<M™™
Since p € S(M~%,G) it is clear that o(t,z,£) € S(M~*,G).
Lemma 6.1. We have |8§‘8§U’ = Jl"‘”m/z({);w, In particular o € S(o, g).

Proof. 1t is clear from (4.8) that ‘8(;8§BU| = ﬁ(f};lm for |a + 8] = 1. For
|a + B] > 2 it follows from p € S(M~*,G) that

|3§3?U| = M2\a+ﬁ\f4<§>;\ﬁ\ = Ulf\a+ﬁl/2<€>;\ﬂ\

since Co™! > M*. The second assertion is clear from o=! < M~1(¢).,. O
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Corollary 6.1. Let s € R. Then |8§8§05’ = as_‘0‘+'8|/2<§>;|6|. In particular
o€ S(o%,9).

Definition 6.1. To simplify notations we denote by C(c®) the set of symbols
r(t, x, ) satisfying
’agagr‘ = Us—|a+6\/2<§>;|ﬁ\.

It is clear that C(0®) C S(0*, g) because o~ loat81/2 < pp=la+B1/2(g)loFhl/2,
It is also clear that if p € C(0®) with s > 0 then (1 +p)~! —1 € C(c®).
Lemma 6.2. One has
a5 €C(0°), (seR), beC(c*?), 8apn €C), 8beC(o).

Proof. The first assertion is clear from Corollary 6.1 because ap; = eo and
e € S(1,G), 1/C < e < C. To show the second assertion, recalling b(t, x,&) is
the extension of b(t, X), write

b(t, z, &) = b(0,y(x),n(£)) + 0:b(0, y(x), n(&))t

(6.3) + /1(1 — 0)92b(0t, y(x),n(£))do - t2.
0

Since 8?8?!)(0, 0,&) = 0for |a+p] < 2and 9;b(0,0,€) = 0 then thanks to Lemma
4.1 one has b(0,y(z),n(€)) € S(M~° G) and 9;b(0,y(z),n(§)) € S(M~2,G).
Since 0 <t < M~* we conclude that b(t,z,£) € S(M~5,G). Since |b| < Co®/?
and ¢ € S(M~* G) a repetition of the same arguments proving Lemma 4.2

shows the second assertion. The third assertion is clear because diayr = e +
(8:e)0. As for the last assertion, recall Lemma 4.7 that [9,b] < Ca})” < C'o?/2.

Noting 9;b € S(M~2,G) which results from (6.3) one sees |<§>‘f‘8§8§&5b| =
M?let81=2 < 51/2=1a+B81/2 for |o + B > 1 hence the assertion. O

Let
0 S )\l(tamvg) S )\2(t7$76) S )\3(t,,’1)7f)

be the eigenvalues of S(t, z, ). Recall [26, Proposition 2.1]

Proposition 6.1. There exist My and K > 0 such that

An/(6an + 2a3; + 2a3,) < Ay < (2/3 4 Kanr) aiy,
(2 — KaM)aM <) < (2+KG,M)GM,
3< A3 <3+ Kad3,
provided that M > My.

Proof. Since ay = eo and o € S(M~*,G) then for any € > 0 there is My such
that eM(;4 < & Then the assertion follows from [26, Proposition 2.1]. O

Corollary 6.2. The eigenvalues \;(t,z, &) are smooth in (0, M %] x R4 x R<.
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6.2 Estimates of eigenvalues
First we prove
Lemma 6.3. One has \; € C(c377) for j =1,2,3.
Denote g(A) = det (AT — S) so that
(6.4)  q(\) =\ = (34 2ap + a3,)\? + (6ay + 203, + 245, — *)\ — Ay
Note that

(6.5) ONg(N)IZON + 0097 q(N) =0, [a+pl=1.
Let us write 6;’.’6? = 82‘? for simplicity. We show by induction on |a + §| that

8>\q()\i)5jf)\i = Z C#,yﬁu)750),585:;8;‘1()\1‘)
(66) 2|p+v|+s>2

(8"(1) N M) (67( SO )

where g4+ 37 = o, v+ 3260 = B and [y® + 6U)| > 1. The assertion
holds for |oo+ 5| =1 by (6.5). Suppose that (6.6) holds for |a + 5| = m. With
le + f| = 1 operating 8;£ to (6.6) the resulting left-hand side is
Ona(M) £ N+ RN (07N 0N + 07 Loxa(\)E
= 3AQ()\i)3§ze’ﬁ+f/\i

— Z OM,V7"/(j)7§(j)7sag)’ga§ ( )(87(1) 5(1) ) (87( ) 5(5) z).

2|ptv|+s>2
On the other hand, the resulting right-hand side is
3 CLAE RO (@ N - (31 N)
D0 CLALOT ) (@) (B2 ) - (02

+ZZC 8” Va)\q )(mm 5(1) l) 3 (a;z)Jre,(;(.f)Jrf)\i) (82?’5(5))\1)

L)

which can be written as

Z Ciy 1,600,507 03a(Ni) (0] ¢
2|p+v|+s>2

™) 50 () 50

Ai) - (907 T N)

where 4+ > 7 = a+e, v+ > 0% = g+ f and |y 4 §U)| > 1. Therefore we
conclude (6.6). In order to estimate 8?? Ai one needs to estimate 0, 03¢(\i).
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Lemma 6.4. For any s € N and «, 8 it holds that
05039\ 3 ot IOl DAL =12
1052 03a(N)] 3 o712 1A,

Proof. From Proposition 6.1 and (6.4) one sees that

lgOA)| 2 Ial? + laarl il + laar?,
05P a0l 3 (1058 ant| + 105867 [N| + 105 L aig| + 10086%) (la+ Bl > 1)

because |Ay| 2 a3, and [b] 3 a‘?\//f. Therefore thanks to Proposition 6.1 and
Lemma 6.2 one obtains the assertions for the case s = 0. Since

x| Z Nl + lanl,  [03a) S 1, s> 2,
1052 0na(N)| 3105 antlNil + 105 L and + 105707 (|la+ 8] = 1),
007 0%q(N)| Z105Fanl, O%F0%a(N) =0, s>3 (Ja+p]>1)

the assertions for the case s > 1 are clear from Proposition 6.1 and Lemma 6.2
again. U

Proof of Lemma 6.3: Since dxq(Ai) = [[;;(Ai — Ax) it follows from Proposition
6.1 that

(6.7)  6an (1 — Canr) < |0rqg(Ni)| < 6an(1+ Cang), i =1,2, drg(As) ~ 1.
Then for |+ 3] = 1 one has
}a;’?A” n |a;’gﬁQ()‘j)/a>\Q()‘j)| 3 0.3*j*1/2<£>;\ﬂ|’ J=123
by Lemma 6.4 with s = 0. Assume that
’a?f)\j‘ < O_S—j—la+,3|/2<£>;|/3|, j=1,2,3
holds for |a + 5] < m. Lemma 6.4 and (6.6) show that

|3,\q()\1)8§7’é/\1| = Z 037257|”+V|/202*"Y(l)+5(1>\/2 S 0-2*|’Y(S>+5(S)\/2 <§>;\5‘

_ 1M s OISO _ 3— 2 er—
:5203 lptvl/2 =17+ 12 o=+ |/2<£>W‘B|ja la+81/ <£>7|ﬁ|.

This together with (6.7) proves the estimate for A;. The same arguments show
the assertion for Ag. The estimate for A5 is clear from (6.6) because of (6.7).
Thus we have the assertion for |« + 8| = m + 1 and the proof is completed by
induction on |a + f]. O

Turn to estimate O \;.

Lemma 6.5. One has 9:\1 € C(0), OtA2 € C(1) and O: 3 € C(1).
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Proof. First examine that 8,\q()\i)8sf8t)\i can be written as

S coone @ o) B ) - @1 A
(6.8) lo+8'<la+8]
+ Z C a;l, UaAatq )(any(l)—‘—(s(l))\z) . (827(;)4-6(5) AZ)

where o + p 4+ 379 =, B/ +v+36® = g and [y + ¥ | > 1. Indeed
(6.8) is clear when | + 3| = 0 from

(6.9) IMg(Ai)OLA; + Org(N;) = 0.

Differentiating (6.9) by 86 T and repeating the same arguments proving (6.6)
one obtains (6.8) by 1nduct10n To prove Lemma 6.5 first check that

(6.10) 00F030uq(Ny)| Z oI Bmdmlat B2y I8 5 =1 9.3,
In fact from
(6.11)  9rq(N) = —0¢(2aps + a3))N* + 0y (6ans + 2a3, + 245, — W*)\ — O; Ay

it follows that [3;q(\:)| 3 As + 0 and |92 0,q(\)| 3 (A + 0o 1o+81/2 () 717!
for | + 8| > 1 in view of Lemma 6.2 and hence the assertion for s = 0. Since
|6;‘7’£8§\8tq()\i)| =3 0"‘”‘6‘/2(5);‘6‘ for s > 1 the assertion can be proved. We
now show Lemma 6.5 for A\; by induction on |a + 3|. Assume

(6.12) ’80(758 A ‘ < gl= |a+[3\/2<§>;|[3\.

It is clear from (6.9), (6.7) and (6.10) that (6.12) holds for o+ 8| = 0. Assume
that (6.12) holds for |a+ 8] < m. For |a+ 8| = m + 1, thanks to the inductive
assumption, Lemma 6.4 and Lemma 6.3 it follows that

(1) (1) (s) (s)
S amrasttan) (02 an) (82 TN - (9 )|
o/ +8"|<|a+B]
3 3 g2l /21l 4812 2= O8O/ 2 482 )l

=< 02—\a+B|/2<€>;\BI.

On the other hand one sees

(1) 4 5(1) () 4 5(s)
21002030 (07 7 M) - (e T M)
< 37 g2l rl/2 2= O8O /2 L G242 )11 L p2mlatal/2 () 18]

in view of (6.10) and Lemma 6.3. This proves that (6.12) holds for |a+8| = m+1
and hence for all «, 5. As for Ao, A3 the proof is similar. O
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6.3 Eigenvectors of Bézout matrix

We sometimes denote by C(c®) a function belonging to C(c®). If we write n;; for
the (i, j)-cofactor of Ayl — S then *(n;1, nja, nj3) is, if non-trivial, an eigenvector
of S corresponding to \;. We take k =1, j = 3 and hence

aM(ZaM*/\ﬂ 1
3b(A —3) = |l
(A1 = 3)(M1 —2anm) 31
is an eigenvector of S corresponding to A; and therefore
11 1 l11
ty = [to1| = R bor |, di =03 + 65, + 034
t31 U s

is a unit eigenvector of S corresponding to A;. Thanks to Proposition 6.1 and
recalling b € C(0%/?) it is clear that

di = /3643, +C(03) = 6ar/1+ C(o) = 6an (1 +C(0)).

Therefore since £1; = C(0?), £o1 = C(03/?) and {31 = 6a + C(6%) we have

(381 am/3+C(c?)
t1 = [to1| = —3b/(2aM) + C(U)
31 1+ C(o)

Similarly choosing k =2,7=2and k=3,j =1

—3aMb 612 ()\3 — 2(1]\/[)()\3 — a?\/[) — 9b2 613
()\2 — 3)()\2 — a?\/[) — CL?W = 622 5 —SCL]V[b = 623
3b(Ag — 3) 39 —an (A3 — 2an) U3

are eigenvectors of S corresponding to Ay and A3 respectively and

b 1 b 2 2 2
ty= |ty | = by |, dj =\l 6+
t3j J €3j

are unit eigenvectors of S corresponding to Aj;, j = 2,3. Thanks to Proposition
6.1 it is easy to check

dy = 3Xa(1+C(0)),  ds=A2(1+C(0)).

Then repeating the same arguments one concludes

tio C(a?/?) t13 1+C(o)
too | = —1—|—C(O’) , tog| = 6(05/2)
t390 *3b/>\2+C(U) t33 7CLM//\3+C((72)
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Now T = (tq,t2,t3) = (;;) is an orthogonal matrix which diagonalizes S;
A 0 0
A=T7'ST="'TST={0 X 0].
0 0 As
Note that A symmetrizes AT = T—1AT;
HAAT) =H('TSAT) =T (SA)T = '"TSAT = AAT.
Summarize what we have proved above in

Lemma 6.6. Let T be defined as above. Then there is My such that T has the
form

ay /3 +C(c?) C(a3/?) 1+C(o)
T = |-3b/(2anm) +C(0)  —1+4C(0) C(0%/?)
1+C(0) 73b/)\2+C(U) 70,M/>\3+C(0'2)_
C(o) C(@*?)  1+C(0)]
=|C(?) —1+C(o) C(c°?)
1+C(o) C(o'/?) C(o)

for M > My. In particular T, T~' € S(1,g).

Lemma 6.7. We have

O(an/3) +C(o) C(a'/?) C(1)
0T = [—8t(3b/2aM)+C(1) C(1) C(a3/?) ]
c(1) —0i(3b/A2) +C(1) =0 (an/As) +C(o)
c@) c@'?) )
= [(2(0—1/2) C(1) 0(03/2)} :
¢  Cc ) e

Proof. Note that every entry of T' is a function in aps, b and A;. Then the
assertion is clear from Lemmas 6.2 and 6.5. O

From Lemma 6.6 it follows that

C(vo) C(o) C(Vo)
(6.13) ©Plo20fT = | c(1) C(Vo) C(0*) |, la+8 =1
C(vo) €Q1) C(Vo)
Lemma 6.8. There is My such that AT = T—1AT has the form
(Vo) —1+Cl0)  C(/o)
AT = | C(o) C(y/o) —14C(o)|, M > M.
C(@?)  Clo) C(o®?)
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Proof. Writing AT = (a;;) it is clear that
Gij = t1s aprtoy + 1 0tz + taityy + taita;.
Then the assertion follows from Lemma 6.6. O
Corollary 6.3. Let AT = (a;;). Then
azt =M C(Vo), @z =AC(1), amn =AC(").
Proof. Lemma 6.8 gives

MC(Vo) Ai(=14C(0)) MC(Vo)
AAT = )\2&21 )\2&22 )\2(—1 + C(O’)) .
A3a31 A3032 A3a33

Since AAT is symmetric it follows immediately

i~ MOWR) o MCTECE) L MELECWE),

)\3 ) 32 — )\3 ) )\2
This proves the assertion because 1/A3 € C(1) and 1/X\y € C(o™1). O

From Corollary 6.3 one can improve Lemma 6.8 such that a3, = C(c°/2) for
A € C(O’2).

Corollary 6.4. We have

c(l) C(vo) c(1)
©Wasaf AT = |c(vo) €(1) C(o)|, la+p8l=1
Clo) C(Vo) C(o?)

Proof. The proof is clear since <§>|7m8;‘8?(—1 +C(0)) = C(\/o). O

~—

Before closing the section we consider T~1(9,T). Note that
@T™HT = (2 ("T)T = ((Oiti. t;))

and (0it;,t;) = —(t;,0:t;) = —(Ost;, t;) so that (0,T~1)T is antisymmetric.
From Lemmas 6.6 and 6.7 one has
0 —0:(3b/2apr) +C(1)  C(1)
(6.14)  T7Y9,T) = |0:(3b/2an) +C(1) 0 C(y/o)
O¢(an/3) +C (o) C(\/o) 0

For later use we estimate (2,1)-th and (3,1)-th entries of 771(9,T). Recalling
ap = e(t+a+2M(€)5") and 0 <t < M~* it is clear

(6.15) Orapn — e € S(M™2,g).
Taking [b?/a%;| < 4/27 into account, thanks to Lemma 4.7 it follows that

|Vanrd:(3b/2anr)| < 3(|:b/v/art| + |b/a’) ||Bsand]) /2

(6.16)
< (1+CM~2)((1+3vV2)/V3)e.

31



7 ¢ and )\; are admissible weights for g
Write z = (2,€) and w = (y, 7). It is clear that
92 (dz, d€) = M ((€)y|d|* + (6)7[dE|*) = M?g.(dx, dE).
Note that [¢ — 75| < ¢ (£), with 0 < ¢ < 1 implies
(1= ) (E)1/V2 < (n)y < V2(1+6)(),
If g.(w) < c then [§ —n|> < c M(£)y = c M(§)71(6)] < (&) then
9:(dw,dg)/C < gu(dx, d§) < Cg.(dx, df)

with C independent of vy > M3 > 1 that is g, is slowly varying uniformly in v >
M?® > 1. Similarly noting that [£ —n| > (y+[£])/2 > (€),/2 if (n) < (€),/2V2
and € — 7 > (v +n)/2 > (n),/2 if (n) > 2V/2(€), it is clear that

@ L>“/ —1 o 2 UZ—’(U
(7.1) m7+@M§C@+m”M n?) < C(1+ g5, (z —w))

that is g is temperate uniformly in v > 0 and M > 1 (see [6, Chapter 18.5]).
Therefore g is an admissible metric. It is clear from (7.1) that

—~

(7.2) 97 (2 —w) < C(1+ g (z — w))".

7.1 p and o are admissible weights for ¢

We adapt the same convention as in Sections 5, 6 even to weights for g so that
we omit to say uniformly in ¢t € [0, M ~%].

Lemma 7.1. p is an admissible weight for g.

Proof. First study p'/2. Assume

g:(w) = M7HE (ly* + ()7 %f*) < c(<1/2)

so that M~(€)7|n|* < ¢ hence |n| < ¢(€), for M (€)' < 1. Thus (£ + sm); "' <
C(€)5" (Is| < 1) and Lemma 4.3 shows

P12 (2 +w) = p2(2)| < C(lyl + (€ +sm)y nl) < CMY2(E) 71291 (w).
Since p(z) > M(£);! this yields
(7.3) P12 (2 +w) = p2(2)| < Cp'2(2) g2 (w).
Choosing ¢ such that C'c < 1/2 one has |p(z + w)/p(z) — 1| < 1/2 hence

P2z +w)/2 < pP(2) <3913z + w)/2
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that is p'/2 is ¢ continuous hence so is p. Note that

(7.4) M) <p(z) <CM ™ < C.

If | > ¢ (€), /2 then g7 (w) > Mc2(€),,/4 and g7 (w) > Meln|/2 thus
p(z +w) < C < CE)yp(2) < C'p(2)(1 + g7 (w)).

If || < c(€)~ then (7.3) gives

(7.5)  pM2(z+w) < Cp2(2)(1 + go(w)/* < Cp2(2)(1 + g2 (w))*/?

so that
(7.6) o(t,z4+w) <Col(t,z)(1+ g7 (w))
hence p is g temperate in view of (7.2). Thus p is an admissible weight. O

Lemma 7.2. o is an admissible weight for g and o € S(o,g).

Proof. Since o(t,z) = t + p(z) + M(£)5" and p(z) + M(£)5" is admissible for
g by Lemma 7.1 it is clear that ¢ is admissible for g. The second assertion is
clear from

0500 0| 3 ot 1AV () TP S o (M), )1 P2 (g) 1P
< o Mlat81/2(g) (al-180/2

foraEM(@;l. O

7.2 w and ¢ are admissible weights for ¢

We start with showing
Lemma 7.3. w and ¢ are g continuous.

Proof. Denote f =t —1) and h = M1/2p1/2<§>;1/2 so that w? = f2 + h2. Note
that

o o[ PG W) ()
7) w(z +w) —wl)l = =0 o)
<2[f(z +w) — f(2)] + 2|h(z + w) — h(z)|

because

G+ w) + £(2)] h(z +w) + h(2)]
Wit w) tw@)] =7 et e S

Assume g.(w) < ¢ (< 1/2) which implies || < y/¢(£), for M ()7 <1 hence

(7.8) (€4 5m)y/C < (§)y < CLE+ sm)y
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where C' is independent of |s| < 1. Tt is assumed that constants C' may change
from line to line but independent of v > M5 > 1. Noting |f(z + w) — f(2)| =
[(z +w) — 1(2)| it follows from Lemma 5.1 that

[F(z+w) = F(2)] < Cp'2(2 + sw) (Jy] + (& + sm); nf?)

7.9
T 2 0p et su)(ul+ (€7 ) < CA 20 () 67201 2 (w)

since p is g continuous. Noting that w(z) > M1/2p1/2(z)<§>;1/2 it results
(7.10) (2 +w) = f(2)] < Cw(2)gt?(w).
Similar arguments shows that |h(z +w) — h(2)] < C’Ml/Q(f);lg;m(w). Taking
w(z) > M1/2p1/2(z)<§>;1/2 > M(£);" into account we have

[h(z +w) = h(z)| < OM ™ 2w(2)g2/ (w).

Therefore from (7.7) one has |w(z + w) — w(z)| < C’w(z)gim(w). Choosing ¢
such that C'¢ < 1/2 we conclude that w is g continuous.
Next consider ¢. Since ¢ = w + f one can write

P(z +w) — ¢(2)
(7.11) _(fetw) = f(2)(¢(z + w) + ¢(2)) + h?(z + w) — h*(2)
w(z +w) +w(z) '

Since w is g continuous, decreasing ¢ > 0 if necessary, one has
Wz +w)/C < w(z) < Culz +w)
which together with (7.10) gives
/(2 +w) = f(2)|/(@(z +w) + w(z)) < Cgi/?(w).

Recalling h%(z) = Mp(2){€)7

71 and repeating similar arguments as above one
sees

|B?(z + w) — h2(2)] < CMp'/*(2)(€) ;291 * (w)
(7.12)

< OM'Y2p(2)(€)5 1 92 (w)

for p1/2(z) > MY/2(¢)7"/2. Taking (5.1) into account it follows from (7.12) that
B2 (2 + w) — B2 (2)|/(w(z + w) + w(z)) < Cp(2)g2"*(w).

Combining these estimates we obtain from (7.11) that

P(z +w) P(z +w) 1/2 1/2
S ] <o 1 gl P (w) + Cgl P (w
I el el T COREA ()
which proves ¢(z)/C < ¢(z +w) < C¢(z) choosing ¢ > 0 small. Then we
conclude that ¢ is g continuous. O
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Lemma 7.4. w and ¢ are admissible weights for g andw € S(w, g), ¢ € S(¢, g).
Proof. Note that

(7.13) @< MO <VMpE)TP<w< M < C.
Assume |n| > ¢ (&), hence g7 (w) > Mc*(€), > c*(£),. Therefore
(7.14) w(z+w) < C < C(§)yw(z) < Cw(z)(1+ g2 (w)).

Assume |n| < ¢(§)y and note that (7.5) holds provided |n| < ¢(§),. Then
checking the proof of Lemma 7.3 we see that | f(z+w)— f(2)| < Cw(z)(1+g7 (w))
and |h(z + w) — h(z)| < Cw(2)(1 + g7 (w))*/?. Then (7.14) follows from (7.7)
which proves that w is g temperate hence admissible for g.
Turn to ¢. From (5.1) and (7.4), (7.13) it follows that
(€)72/C < MHET?/C < ¢(2) = w(z) + f(z) <CMT' < C.

IF 9] > (€),/2 then g7 (1) > M(€)1/4 > (£), /4 hence

(2 +w) < C < CHETH(2) < Co(2)(1+ g2 (w))*.
Assume || < (£)./2 so that (7.8) holds. From (7.5) and (7.9) it results that

[f(z 4+ w) = f(2)] < Cp 2 (2)(€)7 V21 + g2 (w)).

Recalling (7.5) and M?g,(w) = ¢(w) the same arguments obtaining (7.12)
shows that

[h%(z +w) = h*(2)] < Cp/*(2)(€)7*(L + g2 (w)).

Taking these into account (7.11) yeilds

1/2( ) (¢ 1/2
) T P )+ 000

P2 (2) (€)1 .
+m)(1 + 97 (w)).

6z +w) - ¢(2)] < C(
(7.15)

Applying Lemma 5.3 to (7.15) to obtain
1/2(

6z +w) — 9()| < ¢ <z+u))§

ST 0) £ o)
.



I p1/2(2)<§>;1/2(1 + g2 (w))/(w(z + w) + w(z)) < e then it follows

o= (5 )

from which we have ¢(z +w)/C < ¢(z) < C¢(z +w). If

/ —-1/2
p”(m”)a+¢w»zs

w(z+w)+w(z
we have
_ 2(&) 1
2 o 2 2l

14 g7 (w))” > w(iz+ww(z) > ¢z +w)——

(1 02 (u))? 2 25 (e + wlz) 2 (= +w) g
by (5.1) and an obvious inequality ¢(z + w) < 2w(z + w). Thus we conclude
that ¢ is g temperate hence ¢ is an admissible weight for g. O

7.3 ), are admissible weights for g

Lemma 7.5. Assume that X € C(0?) and X > cMo(£)5" with some ¢ > 0.
Then X is an admissible weight for g.

Proof. Consider vA. Assume g,(w) < ¢ and hence (£ + sn)., ~ (). Since
VX € C(0) it follows that

’\/)\(z—kw)— \//\(z)| < Cy/o(z+ sw)(|y| + §+sn>_1|n\)
< C\o(z + sw)(€) 1/2 172 (w)

which is bounded by C’\/a(z)<§>§1/29;/2(w) since o is g continuous. By as-

sumption A(z) > cMo(z)(£);" one has

[VAGE +w) = VAR £ C"MTY2V/A(z) 922 (w) < C"VA(z) 92 (w

Choosing ¢ > 0 such that C”y/c < 1 shows that \/A(z) is g continuous and so
is A(z). From eM?(£)7% < cMo (€)' <A< Clo? < C’ 4 one sees

a M€ <M < \/A(z) < C.
If [n| > (€),/2 hence g (w) > M(€), /4 then

VA +w) < C < ClerM)™HE),VAZ) < C'VA(2) g2 (w)
If |n| < (£),/2 it follows from (7.16) and (7.6)
[VAG +w) = VAR < CVo(2)(€)72 (1 + g2 (w))
< C'M(l + 92 (w))

which proves that v\ is g temperate and hence so is \. O

(7.16)
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Lemma 7.6. Assume that A € C(0) and X\ > ¢cM(£)5" with some ¢ > 0. Then
X is an admissible weight for g. If A € C(1) and A\ > ¢ with some ¢ > 0 then A
is an admissible weight for g.

Proof. Tt is enough to repeat the proof of Lemma 7.5. O

Lemma 7.7. Assume that X € C(0?) and X\ > cMo(£);! with some ¢ > 0.
Then
0700 € S(WVaVMETg), o+ Bl =1.

In particular X € S(X, g).

Proof. From \ € C(c?) we have |<§>w3°‘35)\| < Co for |a + 8| = 2. Since
A > 0, thanks to the Glaeser’s inequality one has

|020¢N < O'Va VX)W, o+ ) = 1.
For |&/ + 8’| > 1 note that
0208/ (0200 0)| 3 ¥/2 1+ /2 g I L g1+ 1= /2 )19l ) 1
jg(Mf (&), )(\a +8|-1) /2< > 18 £>f|b’\

~

(
UM—‘C’/WIVZMUZ(S)W 1/2<€>(\a |—|8" \)/2<€>;|5\
(

= \/EM—\O/+ﬁ'|/2\f)\< >(\0/| 18'1)/2 §>;Iﬁ\

because A > cM o (€)1 which proves the first assertion. Noting

;
Vo ()31 = Vo (727102 < oM VX (gD
it is clear that A € S(A, g). 0

Lemma 7.8. Assume that A € C(0) and X\ > ¢cM(£)5" with some ¢ > 0. Then
Ae S\ g). If xeC(1) and XA > ¢ with some ¢ > 0. Then X € S(\,g).

Proof. Tt suffices to repeat the proof of Lemma 7.7. O
Corollary 7.1. For s € R we have \j € S(A},9), j =1,2,3.

Define ) . .
w

=4 —=— t>0).

" t+w tw '’ ( )

Lemma 7.9. k is an admissible weight for g and k* € S(k®,g) for s € R.

Proof. Since w™! is g continuous and g temperate it is clear that x =t~ +w™!
is g continuous and g temperate. Noting that w=! € S(w™!,g) and w™! < & it
is also clear that

‘aga?d _ |8§‘5‘?w71| = M*\OHrBl/?w*l<€>Ey\a|*\ﬂ|)/2
= M—|a+5\/2ﬁ<§>ga\—\ﬁ\)/27 la+ 6] >1

which proves k € S(k, g). O
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Lemma 7.10. One has

aga?ns c S(M*(|a+ﬁ\ /2,.8,~ 1p1/2<§>;1/2+(\0¢|*ﬁ|)/2’g)’ la 4 8] > 1.
Proof. Since 8;‘8?&8 = nS*lagafn it is enough to show the case s = 1. The
proof of the case s = 1 follows easily from Corollary 5.3. O

Lemma 7.11. There is C > 0 such that

1 3 1
< —(1 M~ — < K.
/f)\l_’zv( +OM™)x, o .

Proof. In view of Propositions 4.1 and 6.1 one sees
&2
AL > ?U(l — CM~*) min {#*,w?}.

Denote ¢ = 3/(e2v(1 — CM~%)) = (3/e2v)(1 + CM~*). If w? > 2 and hence
A1 > t2/c then 1/\; < ¢/t? which shows that

1 c ctw cw c(t + w)
I = < = CK.
kKA T RE2 (4wt (ttw)t T tw
If 2 > w? and hence \; > w?/c then 1/)\; < ¢/w? and hence
L< c __ctw et <c(t+w) .
kA T okw? (Pt ww? ((tww T tw

then the first assertion. To show the second assertion it suffices to note o > ¢t
and then o2(t + w)? > t2(t + w)? > t2w2. O

8 Lower bounds of op()\;)

8.1 Some preliminary lemmas
Introduce a metric independent of M

9= (E)ylda]? + (€)7|dg[?
so that g = M~!g. We start with

Lemma 8.1. Let m be an admissible weight for g and p € S(m,g) satisfy
p > c¢m with some constant ¢ > 0. Then p~l € S(m™1 g) and there ewist
k,k € S(M~1 g) such that

p#p H#A+E) =1, (L+k)#p#p =1, p '#(1 + )#p— 1,
plHpHA k) =1, (L +k)#p #p=1, p#Q +k)#p ' = 1.
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Proof. Tt is clear that p=* € S(m~',g). Write p#p~! = 1 —r where r €
S(M~1,g). Fix any M. Since

0, = s [(©UFleb2ozal < cirt
B9 appi<t@e)erz

from the Calderén-Vaillancourt theorem we have |lop(r)|| < CM 1. Therefore
for large M there exists the inverse (1—op(r))~! which is given by 1+ ,2, r# €
S(1,). (see [1]). Denote k =Y _,2, r#¢ € S(1,g) and prove k € S(M~1,g). It
is easy to see from the proof (see, e.g. [16], [18]) that there is My such that for
any [ € N one can find C; > 0 such that

1
‘k|(sgl7s7) <G
holds uniformly in M > Mj. Note that k satisfies (1 — r)#(1 4+ k) = 1, that is
(8.1) k =1+ r#k.

Since r € S(M~1, g) it follows from (8.1) that |k|g21 5 < C;M~1! uniformly in
M > M,. Assume that

(8.2) sup [(£){°1710D/20007k| < Co g, M2 Ja+ Bl > 1
for 0 <1 <w. Let |+ 8] > v+ 1 and note that

0000k = 0200r + > C.. (02" 0 ) # (02" 0 k)
where o/ + o” = « and ' + 8” = 5. From the assumption (8.2) we have
0800 k € S(M 12 (TR Gy e o 4 g < v oand 000k €
S(M=1=/2(e) | 1EIED/2 Gy g |0/ 4 ] > v+ 1. Since r € S(M ™1, g) one has

(8;‘”8?”7«)#(8;/8?/k) c S(M—l—(u+2)/2<§>(‘O¢|—‘ﬂ|)/27g)

oY

which implies that (8.2) holds for 0 </ < v+ 1 and hence for all v by induction
on v. This proves that k € S(M~!,g). The proof of the assertions for k is
similar. O

Here recall [24, Lemmas 3.1.6, 3.1.7].

Lemma 8.2. Let g € S(1,g) satisfy ¢ > ¢ with a constant ¢ independent of M.
Then there is C > 0 such that

(op(@)u,u) = (¢ = CM~2)|Jul?,

Proof. One can assume ¢ = 0. We see g(x, &)+ M ~1/? is an admissible weight for
gand (g+M~'/2)12 € S((q+ M~'/?)1/2 G). Moreover 8§8§(q+M_1/2)1/2 €
S(M=12()71B072 Gy for |a + B| = 1. Therefore

G+ MV = (g MOV £ MOV 4y e (M g)

which proves the assertion. O
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Lemma 8.3. Let g € S(1,g) then there is C > 0 such that
llop(@)ull < (sup lg| + CM~Y2)lul.

Lemma 8.4. Let m > 0 be an admissible weight for g and m € S(m,g). If
q € S(m, g) then there is C > 0 such that

|(op(q)u, w)| < (sup (lgl/m) + CM~*/?)|lop(v/m )ul/*.

Proof. First note that m*'/2 are admissible weights and m*'/2 S(mi1/2,g).
Write

q=(1+k)#m = 2gq#m 241 + k) € S(1,9)
where m!/2#(1 + k)#m~1/2 = 1 and m~'/2#(1 + k)#m'/? = 1 such that

m!4qHm!? = q.

Since k, k € S(M~1 g) one can write ¢ = gm ™' +r withr € S(M~1,g). Thanks
to Lemma 8.3 we have |[op(gm~1)v|| < (sup (|g|/m) + CM~*/?)|jv|| hence

|(op(g)u, u)| < |(op(gm™")op(m'/*)u, op(m'/*)u)| + CM " op(m'/*)ul|?
proves the assertion. O

Lemma 8.5. Let m; > 0 be two admissible weights for g and assume that
m; € S(my,g) and my < Cmy with C > 0. Then there is C' > 0 such that

Jop(ma)u] < O lop(rms |

Proof. Write mo = mg#mfl#(l + k) such that me = Mmo#my with k €
S(M~1 g). Since msy € S(1,g) one has

[lop(ma)ul| = [lop(mz)op(ma)ul < C*[lop(my)ull

which proves the assertion. O

8.2 Lower bounds of op(};)
Lemma 8.6. There exist C' > 0 and My such that

Re (op(\j#k)u, u) > (1 — C’M*2)||op(/<;1/2)\;/2)u”2, M > M,.
Proof. Since k € S(k,g) and A\; € S(\j, g) one can write
/\j#lﬂ = H)\j + 71+ 752

where ;1 is pure imaginary and rj, € S(M*Q/s/\j,g). Thanks to Lemma 8.4 it
follows that

Re (op(\j#K)u, uw) > (op(kAj)u, u) — CM_QHop(/\jl/2/f1/2)u||2.
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Consider (op(kA;)u,u). Since )\Jl-/21€1/2 € S()\jl-/2/11/2,g) then
1/2 1/2 -
()\j/ 111/2)#()\/ 51/2) = ANk + 7T
with 7; € S(M~2)\;k,g). Applying Lemma 8.4 to op(7;) one obtains
(op(Aj)u,w) 2 (L= CM)[lop(A;*k"/?)ul|”
which proves the assertion. O
Lemma 8.7. There exist ¢ > and My such that

2
I

Re (op(A1)u, u) > ¢ Hop(/\i/z)uH2 + cM2H<D>;1u M > M.

)

Proof. From Propositions 4.1 and 6.1 it follows that A, > ¢ Mo ()" with some
¢’ > 0. Denote 3
M =XM/2-cMo(€);?

where ¢ > 0 is chosen so that A\; > 01M0<§>;1 with ¢; > 0. Note that \; €

C(0?) since Mo (€);" € C(0?). Thanks to Lemmas 7.5 and 7.7 it follows that

A€ S(S\l,g) and \; is an admissible weight for g. Thus a repetition of the
above arguments shows

(op(A)uyu) > (1 — CM2)lop(A*)u?
where the right-hand side is nonnegative if M > +/C' = M. Since
(T HOT) = o (T +r

with r € S(M 20 (€)', g) and then

(op(0 (€)5 M u,u) = (1= CM2)Jop(a /(€)1 )ul .
Recalling op(A1/2) = op(S\l) + c¢Mop(o <§>;1) it follows that
(8.3) (0p(A1/2)u,u) = ¢ M(1 = CM?)|op(a'/*(€)7 "/ )ul®
for M > My. Since M?(£)5% < Mo (€)' it follows from Lemma 8.5 that
(8.4) ME(D); > < CM|lop(a/2(€) 72 )ul >,
Finally writing A\ = )\}/2#)\}/2 +r with r € S(M~!)\1, g) one obtains

(op(A/2)u,u) = (1/2= CM)|[op(A )|

which together with (8.3) and (8.4) proves the assertion. O

Lemma 8.8. There exist ¢ > 0 and My such that

Re (op(A2)u, u) > ¢ Hop(/\;/2)u||2 + cM||<D>;1/2uH27 M > M.
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Proof. A repetition of the same arguments shows that
(op(A2)u, w) = (1= CM~?)]Jop(Ay?)ul]”

Note that one can find C' > 0, My such that

lop(e/2)ul/C < [lop(Ay/*)ul® < Clop(a/?)u]
for M > My. Noting o > M(£);" we conclude the assertion. O
Lemma 8.9. There exist ¢ > 0 and My such that

(op()\g)u,u) > c||u||2, M > M,.
Summarize what we have proved in

Proposition 8.1. There exist ¢ > 0, C' > 0 and My such that

Re (op(A#K)W, W) > (1 — CM~2)|op(s'/ A2 )W |12,

v

(llop(AY%)W 1% + [lop(D)W|?)

-

Re (op(A)W, W) > ¢

J

for M > My where

M(E);l 0 0
D=| 0 M7 0
0 0 1

9 System with diagonal symmetrizer

Diagonalizing the Bézout matrix introduced in Section 6 we reduce the system
(6.2) to a system with a diagonal symmetrizer.

Lemma 9.1. Let p € C(c¥) then 353?}) € S(gkla+B1/2(e) 7181 gy
Proof. The proof is clear from

|3§‘ 3? (638?p)| < ghle’+8 +a+6\/2<£>;|5 +8
=< Uk—\a+ﬁ|/2<§>;lﬁlg—la +8 \/2<§>;\a +8 |/2<§>£Y|a [=18"1)/2

~

< Uk—\a+6|/2<€>;\5|M—\@/+ﬁ/|/2<§>(7|a'\—Wl)/?
sinceaEpZM({};l. O
Lemma 9.2. Let p € C(c*) and ¢ € C(c*). Then

p#p —p° € S(6® 7€)% 9),  pH#q—pg e ST g).
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Proof. The assertions follows from Lemma 9.1 and the Weyl calculus of pseu-
dodifferential operators. O

Since a € C(0), b € C(0/?) one sees A#[¢] = A(t,z,€)[¢] + R with R €
S(M—2,g) for 8?[5] € S(1, g) by (4.6) one can replace A(t,xz, D)#[D] by op(A[£])
in (6.2), moving R to B. Denote

L= D;—op(A) —op(B), A= [€].

o = O
— o Q

b
0
0

Consider T~'#T = I — R where R € S(M~!,g). Thanks to Lemma 8.1 there
is K € S(M~1,g) such that (I — R)#(I+ K) = I = (I+ K)#(I — R) and hence

THTHI +K)=1, (I+K)#T '#T =1, TH#I+K)#T '=1.
Therefore one can write
(9.1) Lop(T) = op(T) L
where
L= Dy —op((I + K)#T ' #(A+ B)#T) + op((I + K)#T ' #(D,T)).
Lemma 9.3. One has K € S(M~'(€)7', g).
Proof. Write T = (t;;) then T '#T = (Zizl tri#ti;) and denote
3
Ztki#tkj = 05 + Tij.
k=1

Taking Lemma 6.6 into account, we see r;; € S(o=1(€)52,9) € S(M~(€); 1, 9)

and r;; € 5(01/2@);1,9) C S(M’2(5>;1,g) for ¢ # j thanks to Lemma 9.2
hence R € S(M~'(£)71,g). Since K € S(M~', g) satisfies K = R+ R#K we
conclude the assertion. O

Therefore K#T'#(A+ B)#T € S(M~',g) is clear. Hence
L =Dy —op(T™"#(A+ B)#T — T~ #(D,T)) + op(S(M ", g)).

To simplify notations sometimes we abbreviate S(m,g) to S(m) where m is
admissible for g. In view of Lemmas 6.6 and 6.7 it follows from Lemma 9.2 that

T #(0,T) =T~ '0,T

(92) SO SETHEOT) S
8@ Sy Sl e
S(eyY ST e S(e)
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hence T'4(9,T) = T~'0,T + S(M~", g) because o > M(£)".
Turn to study T~ '#A#T. Noting that 8:?8551 € S(Ul/2<§>;‘5|,g), 62‘6‘?17 €
S(U(ﬁﬁlﬁl,g) for |a + B8] =1 and 8?[5] € 5(1,9), |8 = 1 we have

T '#A=T"T'A+R, R=|S(M2 S1) SM?)].

S(M~F) S(M~2) S(M~°)

S(1) - S(M?) S(M‘6)]

Therefore T—'#A#T = (T~ A)#T + R, with

S(M~) s(M~%)  S(1)
Ry = R#T = [S(M‘Q) S(1) S(M‘Q)] .
S(M~*) S(M~?) S(M~¥)

Note that
C(cY?)  1+C(s) C(55?)
T-'A=|-1+C(0) CY?) (%) | ¢
0(0'5/2) C(U) C<O.3/2>
and hence
S(1) S(1)  S(M~®)
©Pogal (17 A) = [ S(1) S(1) S(M—m)]
S(M=%) S(M~?)  S(M~™Y)

for |a+ S| = 1. Then thanks to (6.13) one sees
S() - S(M™%) S(M™2)
S(1)y  SWM~?) S(M~?)|.
S(M=2) S(M~*) SM ]

(TYAH#T =T AT + Ry, Ry =

Thus we obtain T 1#A#T = T~ AT + R, + R, where

S(1)
S(1)  S(M~?) S(M~2)]|.
S(M=2) S(M~*) S(M~°)

b1 ba+dy b3
B=10 0 0
0 0 0
and consider T~ 1#B#T. Since dy; € S(M, g) one sees by Lemma 6.6 that

R+ Ry =

S(M~2) 5(M2)]

Recall

T—I#B _ 5(03/2) S(M03/2) 5(03/2)

by +S(o) by +dy+S(Mo) bs+S(o)

S(o) S(Mo) S(o) ]
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Noting that ¢ < CM~* we conclude that T~ '#B#T is written

S(0) S(Mo) S(o)
(9.3) S(a%/?) S(Ma3/?) S(a%/?)
by + S(Mc'/?)  —by —dy + S(0'/?) by + S(0)

Thus using ¢ < CM~* again

0 0 0
T 4B#T = | 0 0 0 | +SWM1g)
b3 —2M€+S(1) S(l)

where we have used (6.1). We summarize what we have proved in
Proposition 9.1. One can write L - op(T) = op(T) - L where

L=D;—op(A+B, —T'D,T), A= (T 'AT)[¢],

S(1) S(1) S(1)
B = S(1) S(1) S(1)
by +S(M~Y) —2Me+ S(1) S(1)
Note that from Lemma 4.1 it follows that
(94) b3(tax7£) - 53 S S(M72»g)a ES - b3(07075)

10 Weighted energy estimates

10.1 Energy form
Let w = to(t, x,£) and consider the energy with the scalar weight op(w™");
E(V) = e~ (op(A)op(w ™)V, 0p(w ")V

where 6 > 0 is a large positive parameter and n is fixed such that
36 g
(10.1) n>v*1/2(@+6+x/§)+c*+2

where v™! = (2(18v2 + 1)) and C* is given by (3.13) and € is the nonzero
positive real eigenvalue of F,(0,0,0,&) (cf. [24, (7.2.3)]).
Note that 9;¢ = w™'¢ and hence

-n __ 1 1 -n _ —-n
Oyw 7—n<¥+a>w = -—nkw ".
Recall that V satisfies
(10.2) oV =op(iA+iB)V +F, B=B —T 'DT.
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Noting that A is real and diagonal hence op(A)* = op(A) one has

& = 0= (op(AJop(w ™)V, op(uw")V)
(10.3) —2nRe e (op(A)op(kw ™)V, op(w™")V)
+e~ " (op(0:A)op(w ™)V, op(w™")V)

+2Re e % (op(A)op(w ") (op(iA + iB)V + F),op(w™")V).

Consider op(w™™)op(A)op(kw™™) = op(w "#A#(kw™™)). Since k and ¢ "
are admissible weights for g one can write

K#G " =kd " =1, reSM k¢, g).

Let 7 = r#g" #(1 + k) € S(M~1k, g) such that r = 746" and hence kg™ —
(k + 7)#¢™™ thus
rw " = (k+T)#Hw "

Therefore we have
Re (op(A)op(mw_")V, op(w_")V) > Re (op(A#/@')Op(w_")V7 op(w_")V)
—| (op(A#7)op(w™™)V, op(w™")V)|.

Since \;j#7 € S(M~'k)\;, g) thanks to Lemma 8.4 the second term on the right-
hand side is bounded by

CM ™ lop(x'/2AY)op(w™™)V|.
Applying Proposition 8.1, one can conclude, denoting W; = op(w™")V}, that
Re (op(A)op(kw ™)V, op(w™™")V) = (L = CM~)[lop(x'/2AM2)WJ2.
Applying Proposition 8.1 again one obtains
Re (op(A)op(w™ ™)V, op(w™")V) = ¢([lop(AY*)W|* + lop(D)W|?)
for M > M.
Definition 10.1. To simplify notations we denote
E1(V) = [lop(s2AY2)op(w ™)V || = ¢ |lop(x*AY?)op(6 ™)V |1,
E2(V) = [lop(A*)op(w™ ")V |[* + [lop(P)op(w ™)V |?
=t Jop(A"?)op(¢ ")V ||* + t~*"lop(D)op(¢ )V |1*.
Now we summarize
Lemma 10.1. One can find C > 0, ¢ > 0 and My such that
n Re (op(A)op(kw ™)V, op(w™"™)V) + 6 Re (op(A)op(w ™)V, op(w™™)V)
>n(l—CM "E(V)+chE(V), M > M.
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10.2 Term (op(A)op(w=")op(B)V, op(w=")V)

First recall that \; € S(\;, g) and \; < Coly < Co?A3 with some C' > 0. Let
be S(c71/2,g) and consider (op(\;)op(b)W;, W;) for i > j. Write

r= (14 k#2020 ) #N (1 + E)
€ S(rH 20T ANPATR ) C S0 g) (i 2 )
for ok > 1, such that (nl/z)\;/Q)#r#)\;/z = A;#b. Then we have
|(0p(A))op(B)Wi, Wj)| < M~?[lop(s'/2AY2)W |2 + CM?|op(AT2)W |

for i > j. Turn to study (op(\;)op(b)W;, W;) for 1 < j < i. Let b € S(M', g)
and denote

r= (14 k)#E0 RO #b)#A; P H(1 + k)

such that (k'/2\Y%)#r#Ay/% = Ag#b. Since r € S(k=1/20)?A;"/?, ) hence
re 5(01/2)\;1/2,51) C S(1,9) in view of Lemma 7.11 which proves

|(0p(Aa)op(B) W, W) | = | (0p(r)op(s'/22y/*) W, 0p(As) W)
< OM~op(s AW+ OM> op(AY2) W2
We next check (op(Az)op(b)Wy, Ws) for b € S(1,g). Write
r= (L RHGTAT ROt (AT (14 E)
such that (/@1/2)\1/2)#7“#(51/2)\;/2) = \3#b. Since k, k€ S(M~',g) it is easy

to see that
r=b#r\ AT 2T + 7

with # € S(M~1/2,g). By Proposition 6.1 and Lemma 7.11 one sees that
’A§/2A;1/2n_1| < 3/(601/2) +COM™4
hence ||op(/\§/2)\1_1/2ﬂ*1)u|| < 3/(ev'?) (1 + C'M~1/?)|lu||. Therefore

|(0p(A3)op(B) W1, W3)| = [(op(rs1)op(r/2A}/*) Wi, op(k/2A}/ %) W3 )|
< (3/(ev"?)[lop(b) || + CM~Y/?)|jop(x"/2AV2)W |2,

Now consider (op(\2)op(b)Wr, Ws) for b € S(o=1/2 g) = S(/\2_1/2,g). Denote
r=(1+k)#E A HO#)# O] PV #1 + k)
such that (/il/Q)\ém)#r#()\}/zﬁl/Q) = Ao#b. Since one can write

r= (20 ETINY) + 7
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with 7 € S(M~!, g) because Kfl)\;l/z € S(1,9). Thus repeating the same
arguments as above one conclude

[(0p(A2)op(B) W1, Wa)| < (V3/(E0!/2)op(A"*b)[+C DM ~1/2) op(s!/2AM2)W .
We summarize the above estimates in
Lemma 10.2. We have
|(op(Aj)op ()W, W)| < CM 2 [lop(k!AV2)W[? 4 CM op(A2)W |2

forbe S(e=Y2 g) and i > j and

[(0p(A3)op(b)Wa, Wa)| < CM 2 [lop(s"/2AY2)W |2 +- CM**2 Jop(AY2) W |2
forbe S(M',g) and

|(op(A3)op()W1, W3)| < (3/(v'/?)]op(B) ]| + CM~V/2)[lop(x' AV )W |2
forbe S(1,g) and
|(0p(A2)op(B)W1, Wa)| < (V3/(2v'/?)op (A *b)[+CM/2) op(s*/*A/ )W |

forbe S(c=12 g).
In particular, this lemma implies

Corollary 10.1. Let B = (b;;) € S(1,9). Then
|(op(A)op(B)W, W)| < (3/(v"/?)|lop(bs1) || + CM~2)E1(V) + CEAV).

From Proposition 9.1 it results ¢~ "#B; — Bi#¢™" € S(M~1¢~",g) then
one concludes by Corollary 10.1 that

(104)  |(op(M)lop(w™),0p(B)]V, W)| < OM'&4(V) + C&x(V)

where W = op(w™")V again. Write T19,T = (%;;) and recall (6.14) and note
that t1o = —f9; € C(J_1/2) and f3; € S(1,g). Then thanks to Lemma 5.5 one
has

Mo (¢ " H#o1 — I #te™ ") #" € S(w'p' (€)1, 9)

C S(M~'/kXM VEA2, 9),

Aa# (¢ " 31 — Tar o ") #e" € S(o™ 2w pM2(€)7 1, 9)
C S(M_lm kA3, g)

because C\; > MU(§>;1, Clyg >0 > M(f};l and w™! < k. Therefore repeat-
ing similar arguments one concludes

(10.5) |(op(A)[op(w™™),0p(T 'O, T)|V,W)| < CM~'&1(V).
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Recalling B = By — T~1D,T it follows from (10.4) and (10.5) that
(10.6) |(op(A)[op(w™™),0p(B)]V, W)| < CM™1E(V) + C&(V).
With B = (g;;) we see that

21 = 10,(3b/2anr) + S(1), gs1 = bs + idrans /3 + S(M 1)

and g3z = —2Me + S(1), ¢;5 € S(o=1/2,g) for j >i. Applying Lemma 10.2 we
have from (6.15), (6.16), (9.4) and Proposition 6.1 that

| (op(A)op(B)op(w™")V, op(w™")V)|
(10.7) o - \

< (v™V2(13bs +iE|/E + 6 + V2) + CM Y2 E (V) + CM*E(V).
Combining the estimates (10.7) and (10.6) we obtain
Lemma 10.3. We have

| (op(A)op(w™")op(B)V, op(w™")V)]
< (vTY2(13b3 +ie|/e + 6 + V2) + CM Y2 E (V) + CM*E(V).

10.3 Term (op(A)op(w=")op(i.A)V,op(w™™)V)
Study ¢~ "#A — A#¢~". Recall Lemma 6.8

C(V7) —1+C0)  C(Vo)
(10.8) A= | Clo) C(y/o) —1+C(o)] .
C(@*?)  C(o) C(0°?)
Let r € C(0®) then thanks to Lemma 5.5 it follows that
¢—7L#([€]T) _ ([f]T)#¢_7l c S((b_”as_l/gw_lplﬂ,g).
Denoting ¢ "#A — A#¢~" = (r;;), in view of Lemma 5.5 it follows that
rij € S(¢7"w p%, ) C S(M kg™, g)

for i < j because w™! < k. Writing 7;; = ri;#¢"#(1 + k) € S(M 2k, g) such
that r;; = 7;;#¢ " one obtains

|(op(Xi)op(ri;)V;, Wi)| = | (op(Xs#7i5 )W, W)
< CM2|jop(k'2AY )W |2

since \i#7i; € S(M™2k);,g). It rests to estimate (op(A;)op(ri;)V;, W;) for
i > j. From Corollary one sees dz; = A C(0~1) hence thanks to Lemmas 5.5
and 7.7

ro1 = ¢ " H(an [€]) — ¢ "am (€] € S0 VAN PwTp 297 g)
c SN %he™", g)
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because w™! < k hence 791 = To1#¢ " with Fo1 € S(/ﬁ)\i/z,g). Then noting
A2 < CM~2 we have

|(op(A2)op(ra1) Vi, Wa)| = [(op(Aa#Far) Wi, Wa)|
< OM?|lop(k' 2 A2 )W,

Similarly from as; = A; C(0'/2), aza = A2 C(1) and Lemma 7.7 it follows that
ra € S(oN 2w p! 267" g) € S(MTONPRe T, g),
T32 € S()\;/zw*lplﬂ(b*”,g) C S(Mfz)\;ﬂmb*”,g).
Here we have used
(10.9) 020{ % € S, 0). ot Bl =1
which follows from Ay € C(0) easily. Then one obtains

|(0p(As)op(rs1) Vi, W3)| < CM ~Slop(k!/2AY )W |12,
’(Op(/\g)op(’l"gg)‘/g,W?,)’ < CM™2|op(k/2AY2YyW ||,

Therefore (op(A)op(w~")op(A)V, op(w~")V) — (op(A)op(A)W, W) is bounded
by constant times M ~2&(V).
Next study A#A — AA = (g;;). From Lemmas 6.8 and 7.7 it follows that

Mt [€]) = Mgy lé] € S(V2A,9) € S(M ik, g),
ot (d;1€)) — Madias[€] € S(N5', ) € S(Aas'/2, g)
because )\1/2/1 > 1 and CAak > 1. Then
|(0p(g1;) W, Wh)| < CM 2 |lop(s'/2AY2)W || + Cllop(A/*)W|?
for j =1,2,3 and
|(0p(a27)Wj, Wa)| < CM 2 [lop(s*AY2)W||* + C M op(AY2) W2

for j = 2,3. Repeating similar arguments, applying Lemmas 6.8 and 7.7, one
has

Nott(a[€]) — o [€] € S(071205/2 N2, 9) € (51200, g),
As#(@31[€)) — Asasi[€] € S(o/20", g),
Nat(@[€]) — Madanlé] € S(o12X5/%, 9) € S(51/20)%, g)

since ko > 1. Therefore we have

|(0p(g21) W2, W1)| + [(op(g31) W3, W1)| + [(op(gs2) W3, W2)|
< C’M‘QHop(Al/Qﬂl/Q)VVH2 + C’M2||0p(A1/2)WH2.
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Thus we conclude that
(10.10) |(op(A)op(w™™)op(A)V, op(w™")V) — (op(AA) W, W)|
| S OM 728 (V) + CM?Ey(V).

Since A* = A a repetition of the same arguments proves that
| (op(A)op(w™™)V, 0p(w™")op(A)V) — (op(AA")W, W)

is also bounded by the right-hand side of (10.10). Recalling that AA = A*A
and A* = A we have

Lemma 10.4. One can find C > 0 such that

|Re (op(A)op(w™")op(iA)V,op(w™™")V)| < CM & (V) + CM?E(V).

10.4 Term (op(9;A)op(w=™)V,op(w=")V)
Start with
Lemma 10.5. We have 0:\; € S(kA;j,9), j =1,2.
Proof. Note that Lemma 3.6 with ¢ = ﬁM({);l implies
10, An] < C (7 + —)AM = C* KAy
t w

Recalling 9; A\ = —0:q(A1)/0rq(A1) it follows from (6.11) and (6.7) that
|8t>\1| < (]. + C’M*Q)(|8taM/aM|>\1 + |8tAM|/6aM)

Since (1+CM~2)A\1 > Ajps/6ay by Proposition 6.1 and 1/ap < /e by Lemma
7.11 one concludes [9;A\1] < (1 4+ CM~2)(C* + 1)kA;. Since 9;A\; € C(o) then

|838§3t>\1| < C’Ul—la+ﬂ|/2<§>;|ﬂ| < 001/2<§>;1/2<f>,(y‘a|_‘6|)/2,
From Lemma 7.11 and C)\; > Ma(@;l it follows that
R 2 k0 MG O = MR ) T2 O

which proves |8§8§8t)\1| < CM_1/2/<;/\1<§>90‘|7|$|)/2 for |a 4+ 8| = 1. For |a +
B| > 2 it follows that
|5§5€53t)\1| = 017\a+6\/2<§>;\6\ = Jf(|a+ﬁ\f2)/2<£>;\6|
< (M—l<£>7>(\a+5\—2)/2<£>;|[3| — M<§>;1M—|a+[3|/2<£>(7|a|—|,6|)/2
< 071M0<£>;1M7\a+6\/2<€>(W\a|f\ﬂl)/2 < CﬁAle|a+ﬁ|/2<£>g|a|f|/3|)/2

because ko > 1. Therefore we conclude 9;\; € S(kA1,g). On the other hand
O Aj € S(kAj,9), 7 = 2,3 is clear since I \; € C(1) C S(1,g9) C S(kAz2,g) for
CXok > 1. This completes the proof. O
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Note that from (6.10), (6.11), (6.7) and Proposition 6.1 we see that
0 A2| < |Orans|Aa/an + Canr < (14 CM™2)kAs
for ko > 1. Now applying Lemma 8.4 one obtains
[(0p(@:X) W1, W1)| < (C7 + 1+ CM 12 Jop (w201 W 2,
|(0p(0:A2)Wa, Wa)| < (L+ CM /%) [lop(s!/2 25 %)W .

Since |(op(D4A3)Ws3, W3)| < Cllop(As)W3]|? is clear summarizing the above es-
timates we obtain

Lemma 10.6. We have

’(op(@t/\)op(w_")V, op(w_”)V)’ <(C* 4+ 24+ CMV2)E (V) + CE(V).

10.5 Conclusion

Consider the term Re (op(A)op(w™™)F,op(w™")V) where F = (Fy, F, F).
Write
R = (1+ K)#(sPAV)#A# (512 A72) (1 + K)

such that A = (k'/2AY/2)#R#(k~/2A1/2). Since R € S(1,g) it follows that

|(op(A)op(w™")F,op(w™"™)V)|
= |(op(R)op(r~/2AY?)op(w ™) F, op(k'/2AY?)op(w™™)V)|
< CM ™ Hop(k'2AY)op(w™™)V||? + CM||op(k~ /2 AY)op(w ™) F 2.

Therefore we have
Lemma 10.7. There exist C > 0, My such that

‘Re (op(A)op(w_")F, op(w_")V)| <CM™E (V)
+CM||op(k~Y2AY %) op(w™™)F||?, M > M.

Because of the choice of n it follows from (10.3) and Lemmas 10.1, 10.3,
10.4, 10.6, 10.7 one can find ¢; > 0 and My, 7o, 6y such that

%S < —c1e7E — o Ey + CMe % Jop (k™ 2AY2)op(w™ ") F||?

for M > My, v > 7 and 6 > 0y. Recalling w™" =t~ "¢~™ and integrating the
above differential inequality in ¢ we obtain
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Proposition 10.1. There exist ¢; > 0 and My, o, 0o such that
ext™ 2= (Jlop(A2)op(6~" )V (1)]12 + lop(P)op(¢~")V (1)]1?)

+02/ e_ess_zn||Op(ﬁ1/2A1/2)0p(¢_n)V(s)||2d8
0
vt | e*%s*"(||op<A1/2>op<¢*”>v<s>||2+Hop( Jop(6™")V (s)|*)ds

< O [ et op(s 2N 2hop(~ )R () s
for V' satisfying
2n —-n —n _
Jim 72" (op(A)op(67)V (1), 0p(6™ ")V (1)) = 0
and for 0 <t < M~*, M > My, v > o and 0 > 6.
Fix M such that Proposition 10.1 holds. Since ¢ > 0 is bounded and x > ¢t~}
and (£)5%/*1/2 < C’)\}/z one sees that
t71/2<§>;3/2+j/2 < Cﬁl/QA}/2¢7n, 1 S] < 3.
Hence it follows from Lemma 8.5 that
t7 2 (D) V| < 72 lop(D)V ]| < Cllop(s'/2AM 29~V .
Writing £'/2\;¢~" = r;#¢~™ with r; € S(Iil/2>\;/2,g) it is clear that
(10.11) V2DV < 72 op(D)V ]| < Cllop(s'/2AY?)op(¢~ )V |-
Similarly we see that
lop(s~"/2AY2)op(¢™ ") F|| < Cllop(r~ /26~ "AV2)F.
Thanks to Lemma 5.3 one has
RPN € S(VEE)S.9)
hence applying Lemma 8.5 again
llop(k~"/2AY2)op(¢™ ") F|| < Cllop(k~'/2¢™"AY?)F|
< CVE|[(D)SF].

Remarking that |(op(A)op(¢~")V (t),0p(¢~ ")V (t))| < CI(D)2V (t)||* one con-
cludes that

Corollary 10.2. We have
t
£ opDV P + [ 572 e op(D)V(s) s
0
¢
§C/ s*Q”He*esH(D):F(s)||2ds
0

for V' satisfying lim;_, o t="|[(D)JV (t)| = 0.

(10.12)

93



11 Preliminary existence result

Let s € R and try to obtain estimates for (D)3 V. In what follows we fix M and
7 (actually it is enough to choose ¥ = M3, see (4.1)) such that Proposition 10.1
holds, while 6 remains to be free. From (10.2) one has

(D)3 V) = (op(iA + iB) +i[(D)3, 0p(A+ B)(D);*)(D)3V + (D)3 F.
Lemma 11.1. For any s € R there is C > 0 such that
(D)3, 0p(A)V, 0p(A) (D)3 V)| < CE((D)3V).

Proof. Denoting T-*AT = (a;;) thanks to Corollary 6.3 and Lemma 7.7 and
(10.9) we see that

((@s1[ED#(E)5 — ()3 # (a1 [€])#(8)5° € S(ov/ A1, 9),
(11.1) ((@s2[E)##(E)5 — ()5 #(asa2[E))#(6)5 " € S(V A2, 9),
((a21 [ED#(E)5 — ()5 #@nl€])#(E)° € S(o7*V A1, g)

where S(ov/A1,g) C S(M~"V/Ar,g) and S(o=/2VA1,g) = S\ VAL g).
From Lemma 6.8 it is easy to see ((ai;[£])#(8)5 — (§)5#(ai; [5}))#(@ seS(1,9)
for j >4 then taking (11.1) into account the assertion is easily proved O

Lemma 11.2. For any s € R and any € > 0 there is C > 0 such that
[((D)3, 0p(B)]V, 0p(A)(D)3 V)| < e E1((D)3V) + CE((D)3V).

Proof. Write By = (bi;). Since b;; € S(1,g) by (9.3) it suffices to consider b;;
with ¢ > j. Taking by, b2 € S(1,G) and dy; € S(M,G) (here recall that M
being fixed) into account, it follows from (9.3) that

Na#((€)3#bar — bar #()3)#(€)" € S(/2(€)71/%,9) € S(6™°0* A%, 9),
Aot (€)5#bar — Ban#t (©)3)#(6)5° € S(07%(6)77%,9) € SN, 0),
Na#t((6) #har — Dot (€)3)#(6)7" € S(0V2(€)71/2,9) € S((6)72A2 A%, g)
since \; > Mo(€);!. This proves
(11.2) (D)3 op(BLIV.op(AND)3V)| < CE((D)V).
Next consider T-19,T = (#;;). Recalling t5; € C(¢~/2) and #3; € C(1) we have
XoF((€)5 #bar — tn #(E)3)#(€ > e S((&)71,9) € S(M~' /KM VA2, 9),

)y
As# ()5 #ts1 — Ta1#(E)2)#()5° € S(071/2(6)5 1, 9) € S(M™'/kA1 v/ A3, 9)
since ok > 1, O\ > Ma(f) Land Chy > 0 > M<§> L Therefore we have

(D)3, 0p(T 9TV, 0p(A)(D); V)| < CM 1\ [E1((D)3V)/E((D)3V)
< eE((D)V) + CPM 2T E((D)3V)

5
which together with (11.2) proves the assertion. O
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Choosing € > 0 smaller than ¢, in Proposition 10.1 and choosing 6 large we
conclude

Proposition 11.1. Let s € R be given. There exist C' > 0, 8y > 0 such that
t72= % (Jop(A/2)op(6~")D)3V (1)2 + op(D)op(6~" D)3V (1))

t
+ / e lop(w! /2 AN 2)op(¢ (D)3 V (7) | Pdr
0

+0 [ e op(a 2op(o ) D)3V ()|
+lop(P)op(¢~") (D)3 V (7)]]* ) dr
<c / e~ 0T lop(s~/2A)op(¢ ") (D) F(7)|Pdr

for0<t< M4 =96, 0) <0 and V satisfying
i 672" (op(A)op(6™") (D)3 V (), 0p(6~") (D) V (1) = 0.

Lemma 11.3. For any s € R there exists Cs > 0 such that
t
=" lop(D)(D)3V (1) +/O T2 Hop(D)(D)3V (1) |*dr

t
<, / 2L (D) L (1) Pdr
0

for 0 <t <0 and for V satisfying lim;_, o t="||(D)2 TV (t)|| = 0.

Recall (9.1) so that L = op(I + K)op(T~1)-L-op(T) with T, T~ € S(1, 9)
then )
I{D)Y LV || < Cs[{D)y L - op(T) V.

Since [(D)s top(T)V]| < Cs|(D);~ 'V < Csllop(D)(D): V]| it results from
Lemma 11.3 that

S

=2 (D)5 op(T)V (1) +/0 T2 D) op(T)V (1) Pdr

t
<, / 72 (DY L op(T)V (1) 2dr.
0

Replacing op(T)V by U one obtains
Lemma 11.4. For any s € R there exists Cs > 0 such that

t
-2 —1 2 —on—1 1 2
CRND U@+ [ D) ) P
t
<c. [ D LU Pr 0<t<s
0

for V' satisfying lim;_, o t =" (D)2 T°U(t)| = 0.
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Return to P. Since U = *(D?u, (D), Dyu, (D)2u) and LU = t(Pu,0,0) we
have

2 ) 2 t ) )
2y DS Du(b)|)? + Z/ T2 (D) DY () |Pdr
(11.3) i=0 j=0"0

t
< cs/ ro2 D) Pu(r) [Pdr, 0 <t <6
0
Now consider the adjoint operator P* of P. Noting ay; € C(o), b € C(c3/?)
and (4.6) we see that
P* = D} — an(t,z, D)[D)2D; — b(t, z, D) [D]?
+b1 D} + (bs + dar)[D] Dy + b3[D]? + & Dy + & (D]

with b; € S(1,g) and & € S(M?, g) hence &;[D]~* € S(M~2,g) where it is not
difficult to check that

by — (b3 +ie) € S(M~3, g).

Since the power n of the weight " depends only on a, b and b3 (see (10.1))
then we can assume that one can choose the same n for P* as for P. Then
employing the weighted energy

EX(V) = e” (op(A)op(w™)V, op(w™)V)

and repeating the same arguments as before and making the integration
s
d
- [ e

Proposition 11.2. There exist ¢; > 0 and My, o, 0o such that

we have

ert2e” ([lop(A/2)op(6")V (1) 2 + [lop(P)op(6")V (1))

)
+@/memmwm®wwwwwm
t

)
+e30 / e—W"(||op(A1/2>op(¢")V<r)||2 + ||op(D>op<¢">V<T>||2)dr
< 6% (op(A)op(¢™)V (8),0p(¢™)V (6))

g
+CM/ " op(k~ 2NV 2)op(¢™ ) F* (1) ||Pdr, 0<t<§=M"*
t

for M > My, v > o and 0 > 0y where F* = op(T)*(P*f,0,0).
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Fix M such that Proposition 11.2 holds. From Lemma 5.3 and C); >
M?(€)5" we have

t71/2<€>;n73/2+j/2 c S(H1/2)\;/2¢n,g), Hl/z)\}/%n c S(\/i, 9)

which shows that
5
2"’ lop(D)(D); "V (1)||” +/ 721 lop(D)(D); "V (7)||Pdr
t
)
< COM M|V (5)| + c/ P27 () 2dr, 0 <t < 6.
t

Therefore repeating the same arguments as before we have

Lemma 11.5. For any s € R there is Cs > 0 such that
)
(D) T U@ +/ (D) U ()| Pdr
t
5
< Cy (> (DU )2 +/ P2 (D) P () |Pdr ), 0 <t <3,
t

Lemma 11.5 implies that
(11.4)

2 0
(DDl + [ w2 (D)3 Diur) Par )
=0 ¢

2 5
< C (I S D) D@ P+ [ D)y P Par)
3=0 t
for 0 <t < 4. Replacing s by —n — 1 — s then (11.4) gives
5 5 R
[ ey Pa < ¢ [ ey P P
0 0
for u € C§°((0,6) x RY). This implies
g 6 1/2 4 1/2
| [ < ([ eemspopseppa) ([ ooy clt)
0 0 0
5 1/2 g . 1/2
< C(/ t—2n+1||<D>n+8f||2dt> (/ t2n_1||<D>_1_SP*U||2dt)
0 0

for all v € C§°((0,6) x RY) and f such that f(f t=2 (D) s f|12dt < co. Using
the Hahn-Banach theorem to extend the anti-linear form in P*v;

(11.5) P*v /Oé(f,v)dt
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we conclude that there is some u with foé t=2n (D)5 y||2dt < 400 such that

/Og(f, v)dt = /Oé(u, P*uv)dt.

This implies that Pu = f. Since we may assume that 2n — 1 > 0 and hence
(D)'*sy € L2((0,6) x RY) it follows from [6, Theorem B.2.9] that

(D)= DIy e L*((0,6) x RY), j=0,1,2.
In view of the estimate (11.3) the following estimate holds for this u

2

. 2 t . .
2 DY DI u(b)|) + Z/ T2 (D) T Dju(r)|Pdr
(11.6) j=0 §=0""0

t
< c/ (DY f () 2dr, 0 <t < 6.
0
Theorem 11.1. There exists 6 > 0 such that for any s € R and any f with
t=n 2Dy s f e L2((0,6) x RY) there is a unique u with
t="Y2(DY I DIy e L2((0,6) x RY), 5 =0,1,2
satisfying Pu = f and (11.6).

Instead of (11.5) considering the anti-linear form in Pu;

1
Pvl—>/ (f,v dt+z wa—j, D]v(3,))

+(wo, (D} — (D)? a(5 z,D))v(d,))

for v € C§°((0,00) x R%) and repeating similar arguments adopting (11.3) we
conclude

Theorem 11.2. There exists § > 0 such that for any s € R and any [ with
/2Dy f e L2((0,6) x RY) and any w; with (D)rtst2-dy; e L2(R%),
7 =0,1,2, there is a unique u with

(11.7) " Y2(D)**7IDly € L3((0,0) x RY), Diu(s,-) =w;, j=0,1,2
satisfying P*u = f and (11.4).

Indeed we first see that there is u with ¢"~1/2(D)*sy € L2((0,4) x R?)
satisfying D{u(d) = w;, j = 0,1,2 (e.g. [6, Chapter XXIII]). Since (D)"*5f €
L*((e,6) x RY) and (D)'*5u € L?((¢,) x R?) for any € > 0 it follows from
[6, Theorem B.2.9] that (D)!**~IDJu € L?((¢,6) x R%), 0 < j < 2. Applying
(11.4) with t = & we conclude (11.7), since € > 0 is arbitrary.

Remark 11.1. Tt is clear from the proof that for any n’ > n, Theorems 11.1
and 11.2 hold.
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12 Propagation of micro support

In Section 11 we have proved an existence result of the Cauchy problem for
P, which coincides with the original P only in Wj,. Following [21], [22], [9]
(also [24]) we show that the micro support of u(t, -), obtained by Theorem 11.1,
propagates with a finite speed via estimates of Sobolev norms of ®u, cut off by
a suitable ®. This fact enables us to solve the Cauchy problem for the original
P through that of P.

12.1 Estimate of cut off solution
Let x(7) € C§°(R?) be equal to 1 near = 0 and vanish in |x| > 1. Set

do(z, & y,m) = {x(@ —y)le —yP +16E)T" — i 2 + 32,
fE(t71‘7§;y777) =t— T+ Vds(x7£;y7’r])

where (y,7) € R? x (R?\ {0}) and v is a positive small parameter and T > 0.
Note that

(12.1) 0507 < (&), latpl=1

where C' is independent of ¢ > 0. Define &, by

(122> (I)e(t,l‘,g) — eXp (l/fE(t7:E7£)) lf fe < 0
0 otherwise

and set

(I)el = fe_l(I)e

Note that ®, ®c; € S(1,go) for any fixed € > 0 where g = |dz|* + (£);?|d¢]?
and

(I)e - fe#cbel S S(<€>;1a90)
Since 0;®, = — D/ fe writing

(123 Ou(op(2e)V) = —op(fc <(I> DV + (0p(iA + iB))op(@c)V

+[op(®.),op(iA +iB)|V + op(P)F

we estimate €(op(®c)V) = e~ (op(A)op(w™")op(P.)V, op(w~")op(®,)V). Since

O #B1 —B1#D. € S(c(M)(f)Jl/Q,g) by Proposition 9.1 it is not difficult to see
from the proof of Corollary 10.1 that

| (op(A)op(¢~™)[op(®), 0p(B1)]V, 0p(6~")op(®)V) |
< o(M, N ((D);/*V)

where, to simplify notations, we have set

ELV) 4+ &(V) =t N (V).
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Denote ®#(T'0,T) — (T~'0,T)#®. = (¢i;) hence gy € S(a7(€);', g) and
P31 € 5(0_1/2(5);1,9) in view of (6.14). Then we have

Ao#ta1 € S((€)51,9) € SUET*VEM VEN, 9),
Asftosr € S(e™ 2t g) C S <£>ﬂ2\/ kA3, 9)

because CA\; > M0'<f>;1, C)\y > o and ko > 1. A repetition of similar argu-
ments proving (10.5) shows that

| (op(A)op(¢~™)[op(®e), op(T~ 0, T)]V, 0p(¢~")op(®e) V)|
< c(M, e)./\/'((D>;1/4V).

Note that & .#A — A#P. can be written

(*1)‘04 o nf B na B aaf _
| % 1WW(M‘I’e%v“—MM&A) = et fi
a+p|=

where it follows from (10.8) that
S 125 S(MPE)TY)  S(o *1/2<5>71)
Re=| S(&7H Sl S5

S(@'(€)3") S(&)7h) S(@*2(€)51
€ S(c(M)(€);'2,9)

for o > M (€)', It is not difficult to see from the proof of Corollary 10.1 that

| (op(A)op(¢~")op(R)V, 0p(¢ ™" )Jop(Pe) V') |
< (M, N ((D);VHV).

Study (op(A)op(¢~")op(iHe)V,0p(¢p~™)op(Pc)V). Note that H. € S(1,g) be-
cause 82‘3?%1 € S(<§)§7‘6|,g) for |a + ] = 1. Write

o = fe#q)el +Te, Te€ S(<§>;1ago)

and note ¢~ "# fo— fftd ™" € S(wIpVHE) 1o, g) € S(M297 ()12 g),

then a repetition of similar arguments proves that the difference

| (op(A)op(¢~™)op(iH.)V,0p(¢~")op(®c)V)
—(op(f)op(A)op(¢~™)op(iHe)V, 0p(¢~")op(®e1)V)|

is bounded by (M, )N ((D)5/*V). Since A; € S();,g) it follows that

F#Nj — Nj#tfe € S(MTV2A(6)712, g)
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then applying a similar arguments one can see that the difference
|(op(fe)op(A)op(¢~")op(iH,)V, 0p(¢~ " )op(Pe1)V)
—(op(A)op(¢™")op(fe)op(iHe)V, 0p(¢ ™" )op(@e1) V)|

is bounded again by ¢(M, 6)N(<D>;1/4V). Here look at iH. more carefully.
Note that

i~ (Y oroflasleh@ior foa) = (i

la+8]=1

)ff)“

Taking hf; € S(1,9) and f1®.q, &4 € S(1,go) into account one can write
fe#(iHe) = (hf;)#Pe1 + Re
where R, € S(M~1/2(¢)5 12 ,g) hence denoting H, = (h;) it results that
| (op(A)op(¢™™)op(fe)op(iH)V, 0p(¢~")op(@e1) V)
—(op(A)op(¢~")op(He)op(®e1)V, 0p(¢~")op(®e1) V)|
is bounded by ¢(M, e)N(<D>;1/4V). From Lemma 6.8 we see that
hiy €C(L), j =i, By, hgp €C(0?),  hs, €Co)
then in view of Lemma 5.5
Nt (67" — hiy#e") € S(A(§)5 107" 9), 5 >,
/\2#((%5_”#}@1 — hy #¢~ ) (M_l/fo)\Q)\l/2<f>_l/2¢_n7g)a
ot (97" #h5 — Wi #o ") € S(rAs N6 ),
st (67" HRS, — B #67") € S(MT2kAA*(€)7 12, g).
From this it follows that
| (op(A)op(¢ ™ )op(H Jop(@e1)V, 0p(¢~")op(®e1)V)
—(op(A)op(He)op(¢~")op(@e1) V. 0p(¢~")op(@e1) V)|
is bounded by ¢(M, 6)N(<D>;1/4V).
Lemma 12.1. One can write

Z Kijaptlijap + 13

ot Bl=1

where k;,5 € S(1,90) such that |kg;. 5| < Cv with some C > 0 independent of
v and € for any 1 <1i,5 < 3. As for lijap and ri; one has

lijas € S(1,9), 75 € S(a™ V(€)1 9), (=),
lias € S(e72\/A1,g), 15 € S(MV? _1/2\/><§> 12.9),
)
)-

lstag € S(0V/A1,9), 15 € S(M™'2\/X 1(6)5 2
I3205 € S(vV 2, 9), 15 € S(M™Y2\/)\ 2(§)5 2.9

)
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Proof. Set kwaﬁ = <§>|a‘8'880‘f6 and ljjag = (§)§|a‘6§‘6§(dlj[§]) then the asser-
tion for kf; 5 is clear from (12 1). The assertions for /;;os follow from Lemma
6.8, Corollary 6.3 and Lemma 7.7. To prove the assertions for rj; note that

010 lijap € S(o™ (€)1 g), lu+v| =1 for j > i and

0L lo1ap, 04013208 € SUETY,g), 0OIz1a8 € S(a'/2(€)JV], 9)

for |u + v| = 1 which follows from as1, as2 € C(o) and as; € C(U5/2). Then
remarking that o > M (£)7 " and A\; > Mo (£)7" the assertions for r§; are checked
immediately. O

With R¢ = (rf;) and W = op(¢~")op(®1)V, recalling \; < Cody < Co?As,
it is easy to see that

|(op(R)W, 0p(A)W)| < (M, €)[lop(A*)(D); /W2,
Turn to (op(hs;)W;,op(Ai)W;). Write \; = )\3/2#(1 + ki)#/\;/Q with k; €
S(M~1,g) then thanks to Lemma 12.1 it follows that
| (op(Ai)op(hg;) W, 0p(Ag) W)

<@+OM7Y) ST (0N *)op(lijas) Wi, 0b(kSag)op(A )W)
la+B|=1

< C(1+ Mo\ )op(lijas) Wil lop(k§ap)op(A; ) Wi
< C'(1+ MY |op(A )W |[lop (kS0 5)op(A) 5 Wi |
because )\2/2#1@(15 € S()\;/Q,g) in view of Lemma 12.1. On the other hand,

taking Lemma 12.1 into account, it follows from the sharp Garding inequality
(e.g. [6, Theorem 18.1.14])

lop(kSjug)op(A/ )W || < Cullop(\/ ) Wi
+C(M, v, ¢)[lop(AL/*) (D)2 W

Therefore applying the above obtained estimates one can find C' > 0 indepen-
dent of €, v and M such that

Re(op(A)op(H)W, W)| < C(v+ M~'/2)op(A/*)W||?
+C(M,v,¢)|lop(A/2)(D); W2
< C(v+ M%) [lop(A"?)op(¢~")op(@a1)V|*
+C'(M, v, ¢)|lop(A'?)op(¢ ™" )(D); V|2,
Since it follows from the same reasoning that

| (op(A)op(¢~™)op(f ' @)V, 0p(¢~ ™ )op(@)V)
—(op(A)op(¢~™)op(®e1)V; 0p(¢ " )op(® )|

< o(M, )N (D) 1/4V)
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we obtain finally
—Re(op(A)op(¢~™)op(f ' @)V, 0p(¢™")op(®c)V)
+Re(op(A)op(¢~™)[op(®.), op(iA)]V, 0p(¢p~")op(®) V)
< — (1= C(v+MY?))[lop(A"*)op(¢")op(@c1)V'|)*
+e(M, v, ) N((D); V).

(12.4)

We fix My and vy such that 1 — C(vy + Mo_l/z) > 0 and Proposition 10.1
holds, and from now on v = M and § = 1/M{ are assumed to be fixed.
Applying Proposition 10.1 to op(®)V instead of V one obtains, in view of (12.3)
and (12.4) that

Proposition 12.1. For any 0 < v < vy and any € > 0 one can find C > 0 such
that

£1(op(®)V) + / 2\ (op () V) dr

0

t
<c / 727 lop(k~Y2AY2)op(¢ ™™ Yop(®.) LV | 2dr
0

t
+C / P 2N (D) VAV,
0

Applying (D)3 to (12.3) and repeating similar arguments proving Proposi-
tions 11.1 and 12.1 one obtains

Proposition 12.2. For any s € R, any 0 < v < vy and any € > 0 one can find
C > 0 such that

t
E1((D)5op(P)V) + / TN (D) op(®)V )dr
0
t t
<C [ D op@) LV IPdr + C [T A(D) Y )ar
0 0
for 0 <t <6.

12.2 Micro support propagates with finite speed

Lemma 12.2. Assume t~"(D))'V € L?((0,6) x R%) and t‘”"‘l/?(D)lff]V €
L?((0,0) x R?) and t’”+1/2<D>Z+S°op(®€O)I~/V € L%((0,8) x RY) with some
l1,l2 € R and sg € R. Then for every 0 < ¢y < € we have

t~(D)3®.V € L*((0,0) x RY)

for all s < sg —5/4. Moreover
t t
| ipse@oviniFar < [ (o

t
Fr DRIV )ar + [ D) op(e IV ()
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for 0 <t <6.

Proof. We may assume l; < sg otherwise nothing to be proved. Let J be the
largest integer such that I; + J/4 < sg. Take €; > 0 such that ¢g < €; < --- <
€; = €. We write &, = &; and f; = f, in this proof. Inductively we show that

‘ t
| Nt op(@idr < € [ oDV Pdr
0

(12.5) 0

+C [ D) IV + (D) op(@0) LV (7)

Note that from (10.12) and (10.11) it follows
(12.6) KD)F'VI/C < N(V) < CI(D) V.

Choose 9;(x, &) € S(1, go) so that suppy; C {f; <0} and {f;41 <0} C {¢; =
1}. Noting that

op(®;4+1)L op(¥;) = op(®;+1#;) L + op(®,41)[L, op(1);)]

we apply Proposition 12.2 with s =1 + (j+1)/4, ® = ®;1 and V = op(¢);)V.
Since ®, 14, — ®;41 € S then ||[(D), UV o0@ . ) Lop(y;) V2 is
bounded by

c[(D) UV A op (@) LV |1 + C(7) (D)3 V|2
and hence by
(12.7)  CO{IDYTIFD A 0p(@e )LV |1 + { (D)2 LV |1* + (D)4 V1*}

because @41 — k;j#®P., € S~ with some k; € S(1,g0). Since ¢; — k;#®; €
S™° with some k; € S(1, go) it follows that

NUD)SHMop(@11)op(4;)V) < CN (D) op(®;)V) + CI(D)S V.

Consider N((D)fyl+(j+l)/4op(¢>j+1)op(wj)V). Noting that ®;1#Y; — @41 €
S7°° the same reasoning shows that

NDYFHUD op(@;,4)V)

(12.8) .
< CN (D) U0 op (@41 )op(¥)V) + C||(D)2 V2.

Multiply (12.8) and (12.7) by t~2" and t~2"*! respectively and integrate it from
0 to t we conclude from Proposition 12.2 that (12.5) holds for j + 1 and hence
for j = J. Since l; + J/4 < s¢ and l; + J/4 > s — 1/4 we conclude the assertion
by (12.6). O
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Let T; (i = 1,2,3) be open conic sets in R? x (R?\ {0}) with relatively
compact basis such that I'y € I'y € I's. Take h;(z,€) € S(1, gg) with supp h; C
I'y and supp he C I'3\I's. Consider a solution V with t‘"(D}lVV € L%((0,0)xR9)
to the equation

LV =op(h)F, t""/2(D):F € L*((0,6) x R?).

Proposition 12.3. Notations being as above. There exists &' = §'(T;) > 0 such
that for any r € R there is C > 0 such that

/O (DY op(ha)V (7) | dr
<c| (D) ()2 4 (DY V() P, 0<t <.
0

Proof. Let fo =t — w7 + vode(x,&;y,m) with a small 7 > 0. It is clear that
there is € > 0 such that
{t>0}n{fe <0}N(Rxsupphy) =0

for any (y,n) ¢ T's. Take € < € < 7. It is also clear that one can find a finite
number of (y;,n;) € I's \T'2, ¢ =1,..., M such that with ¢’ = v(7 — €)/2

M
3\ Ty € (U{fé(él’x’€§yi,77¢) < 0}),
i=1

{t >0} N {fe(t,2,&wi,mi) <0} (R x supphy) = 0.

Now @, is defined by (12.2) with f.(¢,2,&; y;,m;). Then since > ®;z > 0 on
[0, '] x supp hs there is k € S(1, go) such that ho —k > P,z € S™°. Noting that
t="H2(D)rop(®i¢)op(hy)F € L2((0,6) x R?) for any r € R we apply Lemma
12.2 with &, = ®;, &, = ®;¢ and sg = r + 5/4 to obtain

/ (D). op(@:e)V ()| 2dr < C / T2 (D)L V()| Pdr
0 0
+ / 2DV A op (@, Jop(hy ) F ()2 + [[{D)S F(r)||)dr

for ||(D>;ZV(7')|| < CI{D)5F(7)||. Since ®;e#hy € S™°° summing up the above
estimates over i = 1,..., M one concludes the desired assertion. O
Lemma 12.3. The same assertion as Proposition 12.3 holds for L.
Proof. Assume that U satisfies

LU =op(h)F, t™(D)\U € L*((0,6) x R?)

where t‘”“/g(DﬁF e L?((0,6) x R%). Choose T; such that T'; € T} € Ty €
'y @3 €5 and h; € S(1,g0) such that supp hi C T4, supphy C I3 \ Iy
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and h; = 1 on the support of h;. Recall that Lop(T) = op(T) L. Then with
U = op(T)V one has

LV = (I + op(K))op(T~*)op(h1) .
Since there is T € S(1,g) such that (I + K)#T'#h; — T € S~ it follows
from Proposition 12.3 (or rather its proof) that

/O (D)5 op(ha)V (7)|dr
<0 [ G IDEV IR + T DY R P

Similarly since there is T’ € S(1,g) such that ho#T — hoT € S~ repeating the
same arguments we conclude the assertion. O

Returning to P we have

Proposition 12.4. Notations being as above. Then there exists &' = §'(T';) > 0
such that for any s, v € R there is C such that for any solution u to

Pu=op(h)f, +(D)**"/Dlu e L*((0,8') x RY), j=0,1,2
with t="t1/2(D)s f € L2((0,6") x R?) one has

/ 72”2” D)"™** Jop(hz) Dju(r)|*dr

t .
< C/ {r2 KDY F ()P +T*2”Z (D) 272 Dyu(r)|* }dr, 0<t <4
0 .
Denote by H,, ((0,5) x R?) the set of all u such that

)
/O =2 (DY (7, )|2dr < +o0.

Thanks to Theorem 11.1 for any f € H_,11/2,n45((0,0) x R?) there is a unique

solution u € H_ . .41((0,8) x RY) to Pu = f satisfying (11.6). Denote this map
by
G: H—n+1/2,n+s((0a 6) X Rd) B f =u e H—n,s+1((076) X Rd)

then it follows from Proposition 12.4 and Theorem 11.1 that

/ -2"Z|| D)2 Sop(h) DiG op(ha) £ ()| dr
=0
e / {2 LDy f(r) 2 4 720 3 [(D)* 1 Dlu(r) |2 b
j=0
<c| 2L Dy (7)) P
0
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Replacing n + s by s and r 4+ 2 by r we obtain

¢ 2 AN
/0 772N (D) op(he) DI G op(hy) f(7)||*dr
j=0

t
<c [ oy oPar

Summarizing we conclude

Proposition 12.5. Notations being as above and let T'; (i = 1,2,3) be open
conic sets in R x (R?\{0}) with relatively compact basis such thatT; € I'y € T'3
and hi(z,&) € S(1,g0) with supphy C I'y and supphe C I's \ I's. Then there
exists &' = §'(T;) > 0 such that for any r, s one can find C > 0 such that

t 2 o
/ 720N (DY op(ha) DI G op(hy) f(r)|*dr
0 =

t
< c/ 2L (DY F(7)|2dr, 0 <t <&
0

fOT’ any f € H*’ﬁr‘rl/Q,S((O? 61) x Rd)'
Denote by H; ,((0,6] x RY) the set of all f with [°"||(D)*f|%dt <

n,s

+o00 such that f = 0 for ¢ > §. Thanks to Theorem 11.2 for any f €
mt1/2n4s((0,6] X R?) there is a unique solution u € Hj; ., ;((0,6] x R?) to

P*u = f satisfying (11.6). Denote this map by
G* : :z+1/2,n+s((076] X Rd) > f —uc H:L,S+l((076] X Rd)
Repeating similar arguments one obtains

Proposition 12.6. Notations being as in Proposition 12.5. Then there exists
¢’ =6 (T;) > 0 such that for any r, s one can find C > 0 such that

’ 2
/t T%Z_;)||<D>T’jop(h2)Dfé*Op(hl)f(T)szT

6/
< c/ P24 (DY (72T, 0 <t <&
t

forany feH; ), ((0,8] % R%).

Remark 12.1. It is clear from the proof that for any n’ > n, Propositions 12.5
and 12.6 hold.

13 Proof of Theorem 1.1

Applying the fact that the micro support of u(t, -), solution to Pu = f obtained
by Theorem 11.1, propagates with a finite speed (Proposition 12.5) we prove
Theorem 1.1 following [22], [24].
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13.1 Parametrix with finite propagation speed

Consider
(13.1) P =D+ a;(t,z, D)D) D"’

j=1

which is differential operator in ¢ with coefficients a; € S°. We say that G is
a parametrix for P with finite propagation speed of micro supports (which we
abbreviate to “parametrix with fps” from now on) with loss of (n,1) derivatives
if G satisfies the following conditions:

(i) There exists 6 > 0 such that for any s € R there is C' > 0 such that we
have PGf = f and

m—1 t
S [ o) Par
=0 Jo

t
<C [T ERDP I R 2a(0.0) <R,

(ii) For any h;(z,€) € S(1,90), j = 1,2 with supphs € (R? x R?) \ supp hy
there exists ¢’ > 0 such that for any r, s € R there is C' > 0 such that

Z_:/ 77" |[(D)" T op(he) D] Gop(ha) f (7)|*dr
(13.2) i=0 "0

t
< c/ (DY F(r) AT, 0 <t <&
0

holds for any f € H_,11/2,5((0,0") x R?).
Let P, and P, be two operators of the form (13.1). We say
Pi=P, at (26

if there exist &’ > 0 and a conic neighborhood W of (&, €) such that
(13.3) Py — P, =Y Rj(t,z, D)(D)D;"™’
j=1

with R; € S° which are in S~°°(W) uniformly in 0 < ¢ < §'.

Theorem 13.1. Assume that for any (&,7m), |n| = 1 one can find P, of the
form (13.1) having a parametriz with fps with loss of (n,€(n)) derivatives such
that P = P, at (&,n). Then there exist 6 > 0, £ > 0 and a neighborhood
U of & such that for every f € H_,11/2,5+0((0,8) x RY) there exists u with

Diu € H porm_j((0,8) x RY), 0 < j <m — 1, satisfying
Pu=f in (0,0)xU
where £ = sup,, _; £(n).
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Proof. By assumption P, has a parametrix G, with fps with loss of (n,¢(n))
derivatives. There are finite open conic neighborhood W; of (&,7;) such that
UiW; D 2 x (R?\ {0}), where  is a neighborhood of #, and P = P,, at
(Z,m) with W = W; in (13.3). Now take another open conic covering {V;} of
Q x (R4\ {0}) with V; € W;, and a partition of unity {«;(z,£)} subordinate to
{V;i} so that
Z Cki(l', 5) = a(x)
where a(z) is equal to 1 in a neighborhood of #. Define
G=Y Gpai.
Then denoting P — P,, = R; we have
PGf =) PGyaif =Y P,Gioif +Y RiGioif = a(x)f — Rf
where R =), R;G,, ;. Then

t t
/ T2 (DY R f ()| Pdr < C / 2 (D) f(r)
0 0

for 0 < t < ¢” with some 6” > 0 in view of (13.2) where ¢ = max; {(n;).
Choosing d; > 0 small such that

t t
/ ’7'_2”H<D>S+ZRf(T)”2dT < %/ 7'_2”‘|<D>S+éf(7')”2d7'7 0<t< 51
0 0

for f € H_p s+0((0,8)xR?)). With S = Y72 | RF onehas Sf € H_,, 540((0,61)x
R?) and

t t
|y tspolPar <2 [ o) 0<t<an
0 0

Let y(z) € C5°(R?) be equal to 1 near # such that suppy € {a = 1}. Since
v(a — R)S = (I — R)S =~ it follows that

V(z)PGSf =y(2)f.
With v = GSf one has

> [y DR < 0 [ ey o Far

<c' [ D)t ) Par

which proves the assertion. O
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We define a parametrix with fps for P* with obvious modifications then

Theorem 13.2. Assume that for any (Z,7n), |n| = 1 one can find Py of the
form (13.1) such that P* = Py for which parametriz with fps exists. Then
there exist 6 > 0, £ > 0 and a neighborhood U of & such that for every f €
((0,0] x R?) there exists u with Dju € H} ((0,4] x RY), 0 <

*
n+1/2,5+¢ n,s+m—j
j <m —1, satisfying

P'u=f in (0,6)xU.

13.2 Local existence and uniqueness

First consider a third order operator P of the form (2.1). To reduce P to the
case a1 (t,z, D) = 0 we apply a Fourier integral operator, which is actually the
solution operator S(t',t) of the Cauchy problem

Diu+ay(t,z,Dy)u=0, u(t',z)=¢(x)

such that S(¥',t) : ¢ — w(¢) then it is clear that S(¢,0)(D; + a1)S(0,t) = Dy.
Let

S(t,0)PS(0,t) = P
and assume that P has a parametrix with fps G' with loss of (n,¢) derivatives.
Then one can show that G = S(0,)GS(t,0) is a parametrix of P with fps with
loss of (n,{) derivatives.

Let |n] = 1 be given. Assume that p has a triple characteristic root 7 at
(0,0,7) and (0,0, 7,n) is effectively hyperbolic. Theorem 11.1 and Proposition
12.4 imply that P, which coincides with the original P in Wy, given by (4.3),
has a parametrix with fps with loss of (n,n + 2) derivatives. Now assume that
p has a double characteristic root 7 at (0,0,7) such that (0,0, 7,7) is effectively
hyperbolic characteristic if it is a critical point. Note that one can write

p(t,o:,T, 5) = (T+b(t,1’,£)) (7_2 +a1(t,l',£)7'+a2(t,£177£)) = P1p2

in a conic neighborhood of (0,0,7) where p;(0,0,7,n7) # 0. Note that there
exist P; such that

P=P, Py at (0,n)
where the principal symbol of ]5j coincides with p; in a conic neighborhood
of (0,0,n). Note that if P; has a parametrix with fps G; with loss of (n,4;)
derivatives then one can see that Go(G; is a parametrix with fps for Py - Py with

loss of (n, £; + £3) derivatives.
First assume that (0,0, 7,n) is a critical point. Then it is easy to see that

Fp(0,07’7_—, 77) = CFpg (0; 077_—777)

with some ¢ # 0 and hence (0,0, 7,7) is effectively hyperbolic characteristic of
p2. Then following [22, 24] there is a parametrix with fps for Ps. SinceﬂPl is a
first order operator with real principal symbol p; it is easy to see that Py has a
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parametrix with fps. Therefore P has a parametrix with fps. Turn to the case
that (0,0, 7, 7) is not a critical point. Writing p» as

p2(t7$77-7 g) = T2 - a(t,x,§)|§|2

it is easily seen that (0,0, 7,7) is not a critical point implies that 9;a(0,0,n) > 0,
which is the case that P is a hyperbolic operator of principal type and some
detailed discussion is found in [6, Chapter 23.4]. It is easily proved that P has
a parametrix with fps, because it suffices to employ the weight =" (¢~ " is now
absent) in order to obtain weighted energy estimates.

Turn to the general case. Let || = 1 be arbitrarily fixed. Write p(0,0,7,7) =
H;zl (7 —7;)™ where Y. m; =m and 7; are real and distinct from each other,
where m; < 3 which follows from the assumption. There exist § > 0 and a conic
neighborhood U of (0,7) such that one can write

p(t,x,7.8) = [[ Pt 2,7, 9),

j=1
p(j)(ta z,T, g) =7 + ajyl(taxag)ijil et aj,m; (t,x,f)

for (t,z,§) € (—=6,0) x U where a;(t, z,§) are real valued, homogeneous of
degree k in ¢ and pU)(0,0,7,n) = (7 — 7;)" and p)(t,z,7,€) = 0 has only
real roots in 7 for (¢,z,€) € [0,6) x U. If (0,0, 7;,n) is a critical point of p, and
necessarily m; > 2, then (0,0, 7;,7) is a critical point of p\%) and it is easy to
see

Fp(07 07 Tj, 77) = CjFp(j) (07 07 Ty, 77)

with some ¢; # 0 and hence Fp(j)(0,0,Tj,n) has non-zero real eigenvalues if
F,(0,0,7;,n) does and vice versa. It is well known that one can find P such
that

pP=prOp®?. .. pr 4 (0,7)

where PU) are operators of the form (13.1) with m = m; whose principal symbol
coincides with p¥) in some conic neighborhood of (0,0,7). Since each PU) has
a parametrix with fps thanks to Theorem 11.1 and Proposition 12.5 hence so
does P. Therefore Theorem 1.1 results from Theorem 13.1 noting Remark 12.1.

Repeating a parallel arguments to the existence proof for P above we obtain

Theorem 13.3. Under the same assumption as in Theorem 1.1 there exist
0 > 0, a neighborhood U of the origin and n > 0 such that for any s € R and any
e 1s,((0,6]x R?) there exists w with Dju € Hj, o\ 5((0,6] xRY),
7=0,1,...,m — 1 satisfying

Pu=f in (0,6)xU.

Now we prove a local uniqueness result for the Cauchy problem for P ap-
plying Theorem 13.3. From the assumption one can find a neighborhood W
of the origin of R and T > 0 such that every multiple characteristic of p on
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(t,z,€) € (0,T) x W is at most double and double characteristic is effectively
hyperbolic. Let f € C§°((0,d") x {|z| < e}) (0’ < T) and let v be a solution to
P*v = f vanishing in ¢ > §’. Then thanks to [15, Main Theorem]| there exists
¢ > 0 such that

supp,v(t,-) C{|lz| <e+¢éd'}, 0<t<d.

Now assume that u satisfies Pu = 0 in (0,6) x U and 9fu(0,z) = 0 for all k.
Choose € > 0 and ¢’ > 0 such that {|z] <e+¢éd'} C U, § < 4. Then we see

5 5 5
0= / (Pu,v)dt = / (u, P*0)dt = / (u, ) dt.
0 0 0
Since f € C§°((0,6") x {|z| < €}) is arbitrary, we conclude that
u(t,z) =0, (t,x) € (0,8") x {|a| <&}

Theorem 13.4. If u(t,z) € C*([0,6) x U) satisfies Pu =0 in [0,0) x U and
OFu(0,2) = 0 for all k then u = 0 in a neighborhood of (0,0).
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