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1. Introduction

In this paper, we continue our studies [19,20] on the Galois representations in profinite
fundamental groups. Due to Belyi’s fundamental theorem [2], the absolute Galois group
GQ = Gal(Q̄/Q) can be embedded in the automorphism group Aut(F̂2) of the free profi-
nite group F̂2 regarded as π1(P 1

Q̄
− {0, 1,∞},

−→
01) with standard generators x, y, z (x, y, z:

loops around 0, 1, ∞ satisfying xyz = 1). The elements σ ∈ GQ are parametrized by pairs
(λσ, fσ) ∈ Ẑ× × F̂ ′

2, where λ : GQ → Ẑ× is the cyclotomic character and fσ is a uniquely
determined element (for each σ) in the commutator subgroup F̂ ′

2 of F̂2 so that σ ∈ GQ

acts as σ(x) = xλσ , σ(y) = f−1
σ yλσfσ. Studies of behaviours of the mysterious parameter

fσ on GQ lead to various versions of the Grothendieck–Teichmüller group GT ⊂ Aut(F̂2)
defined by functional equations in (λ, f) found satisfied by the image of GQ (Drinfeld,
Ihara, others: see, for example, [3,8,18]).

Grothendieck [5] proposed to consider geometric constraints of the image of GQ in GT
coming from ‘lego’ structures of a tower of the moduli spaces of curves. As a first step
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toward Galois–Teichmüller lego through ‘special loci’ inside the moduli spaces of curves,
Lochak and Schneps [10] introduced certain accessory parameters g and h : GT → F̂ 2

so as to decompose (uniquely) the main parameter f : GT → F̂ 2 as follows:

f(x, y) = g(y, x)−1g(x, y) =

{
y−(λ−1)/2h(y, z)−1h(x, y) (λ ≡ 1 mod 6),

y−(λ−1)/2h(y, z)−1y−1h(x, y) (λ ≡ −1 mod 6).
(1.1)

On GQ(⊂ GT), these parameters g and h represent Galois transformations of certain
paths on P 1−{0, 1,∞} connecting the infinity loci {0, 1,∞} to the special loci {−1, 1

2 , 2}
and {ρ, ρ−1} (where ρ := e2πi/6). Using this interpretation, in [19], we showed that the
parameters g and h can actually be directly written by (λ, f) on the image of GQ in GT,
and presented several new-type equations satisfied by the Galois image.

In [20], we switched our view of P 1 − {0, 1,∞} to its interpretation as the (coarse)
moduli space of elliptic curves of level 2 structures. Then, the special loci {−1, 1

2 , 2} and
{ρ, ρ−1} represent respectively moduli of the lemniscate elliptic curve Y 2 = X3 − X and
of the Mordell elliptic curve Y 2 = X4 −X, so naturally the arithmetic features of elliptic
curves came into our scope for the study of the Grothendieck–Teichmüller parameters.

The purpose of this paper is to study the Mordell curve case in details and to develop
a parallel theory to the lemniscate curve case investigated in [20].

One aspect of the above phenomenon may be sharply featured in the matrix special-
ization of these parameters f , g, h, when x, y ∈ F̂ 2 are specialized to the generator
matrices of the level 2 modular group Γ (2) ⊂ SL2(Z). Noting that the profinite com-
pletion ŜL2(Z) has still a big kernel towards SL2(Ẑ), we may consider specializations
in the latter group as a first approximation of information of fσ, gσ, hσ (σ ∈ GQ).
In [14, Corollary 4.13], using the Tate elliptic curve (that deforms a degenerated pointed
curve), we explicitly computed the matrix fσ(( 1 2

0 1 ), ( 1 0
−2 1 )) ∈ SL2(Ẑ), which turned out

later in [18, Remark 2.7] to be decomposed as the following ‘intriguing’ form:

fσ

( (
1 2
0 1

)
,

(
1 0

−2 1

) )

= (−1)(λσ−1)/2

(
1 0

−8ρ2(σ) 1

) (
λ−1

σ 0
0 λσ

) (
1 −8ρ2(σ)
0 1

)
(σ ∈ GQ). (1.2)

Here, ρ2 : GQ → Ẑ designates the Kummer 1-cocycle along the positive roots of 2
(see also [15,16]). The matrix specialization gσ(( 1 2

0 1 ), ( 1 0
−2 1 )), hσ(( 1 2

0 1 ), ( 1 0
−2 1 )) ∈ SL2(Ẑ)

should then decompose the right-hand side of the above formula (1.2) according to their
defining properties (1.1). It turns out that those decomposing factors are explicitly given
in the language of the Anderson–Ihara adelic beta function [1, 6, 7] specialized to the
‘adelic periods’ of the lemniscate and Mordell elliptic curves (Theorem 4.16; see [20] for
the lemniscate case).

As another direction of application, we obtain formulae of GQ-actions on some specific
braids in ‘power conjugate forms’ (Proposition 4.13). Unknown is whether they hold for
all elements of GT, i.e. if they could be constraints for the famous question GQ � GT.
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The contents of the present paper are as follows. In § 2, after preparing basic notions
on braid configuration spaces An \ D and standard tangential base points on them,
we focus on Cardano–Ferrari connection of those with four and three strings and on
Mordell transformation to certain moduli space of elliptic curves. In this context, we
find two canonical special loci—the lemniscate and Mordell loci—in A4 \ D, the braid
configuration space with four strings. In § 3, we introduce specific paths between standard
tangential base points on A4 \ D and on the Mordell locus, and look at related loops in
terms of braid generators. In § 4, we analyse the Galois actions on the fundamental group
of a punctured Mordell elliptic curve realized as a 6-cyclic cover over the projective line
with three-point ramification. Then, we finally fit this picture in the frame of Galois-braid
group, i.e. the arithmetic fundamental group of A4 \ D and obtain our main results.

2. Braid configuration space and Mordell locus

2.1. We start with regarding the affine n-space An
u (over Q) to be the moduli space

of the monic polynomials fu(X) = Xn + u1X
n−1 + · · · + un with coordinates u =

(u1, . . . , un). Our main concern is then the subspace An \ D of An consisting of points
of those fu(X) with multiplicity free zeros. To introduce a standard base point for its
fundamental group, we follow the construction by Ihara and Matsumoto [8]. First take
the Sn-cover An

v \ ∆ of An
u \ D with the coordinates v = (v1, . . . , vn) representing the

ordered zeros of fu(X) ∈ An
u \ D. Then, putting v = (t1t2 · · · tn, t2 · · · tn, . . . , tn) gives a

homomorphism of the structure ring of An
v \ ∆ into the Puiseux power series ring

Q
[
v1, . . . , vn,

∏
i<j

(vi − vj)−1
]

→ Q̄{{t1, . . . , tn}},

which defines a tangential base point �v on An
v \ ∆. We define the standard base point �b

on An
u \D to be the image of �v. In the above definition of �v, we may (and sometimes do)

assume t1 = 0. This gives an equivalent base point to �v, as the parallel transformation of
A1 by −(t1 · · · tn) moves the above v to (0, t2 · · · tn(1 − t1), . . . , tn(1 − t1 · · · tn−1)) that
defines a Galois equivalent tangential base point defined by (0, t2t3 · · · tn, t3 · · · tn, . . . , tn).
(See, for example, [17, 5.9] for the definition of Galois equivalence of tangential base
points: a version of Deligne’s notion of ‘toroidal transformations’.)

2.2. The geometric part of the fundamental group π1(An
u \D,�b) is then naturally iden-

tified with the profinite completion of the Artin braid group Bn with standard generators
τ1, . . . , τn−1 with relations: τiτj = τjτi, τiτi+1τi = τi+1τiτi+1 (i = 1, . . . , n− 1, i+1 < j).
We have the exact sequence of profinite groups

1 → B̂n → π1(An
u \ D,�b) → GQ → 1.

The geometric part of π1(An
v \ D,�v) is then the profinite completion of the pure braid

group Pn ⊂ Bn.
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2.3. We shall also consider the ‘modulo Gm versions’ of the above discussed spaces,
namely consider An

v := (An
v \ ∆)/Gm and An

u := (An
u \ D)/Gm (as stacks), where the

actions of Gm are given by those induced from (simple) scalar multiplications of the
coordinates of v. This corresponds to neglecting the effect of the coordinate tn in the
definition of �v (or normalizing, say, tn = 1). For abuse of notations, we shall write the
images of �v, �b in An

v , An
u by the same symbols respectively. The geometric part of the

fundamental group π1(An
u,�b) can be identified with B̂n divided by the centre which is

pro-cyclic subgroup generated by ωn := (τ1 · · · τn−1)n.

2.4. It is sometimes useful to consider the deformation retract (An
u \ D)0 of the space

(An
u \ D) by killing the second coefficient u1 of the monic fu(X) via Tschirnhausen

transformation replacing X by X − u1/n. This process does not affect on homotopy
invariants and is obviously defined over Q. Noting also that this retraction is compatible
with the above Gm-action, we may form the quotient stack (An

u)0 := (An
u \ D)0/Gm.

For simplicity, we shall write those images of the tangential base point �b on (An
u \ D)0

and on (An
u)0 by the same symbol as long as no troubles occur from this convention.

Ferrari morphism

2.5. The classical formula (due to Ferrari) tells us how to obtain zeros of any quartic
f(T ) = T 4 + aT 3 + bT 2 + cT + d = 0. After replacing T by T − a/4, we may assume
a = 0. The fundamental observation is that, if T1, T2, T3, T4 are the zeros of f(T ) = 0
(where we are now assuming T1 + T2 + T3 + T4 = 0), then, the resolvents

X1 = ( 1
2 (T1 − T2 − T3 + T4))2 = −(T1 + T4)(T2 + T3),

X2 = ( 1
2 (T1 − T2 + T3 − T4))2 = −(T1 + T3)(T2 + T4),

X3 = ( 1
2 (T1 + T2 − T3 − T4))2 = −(T1 + T2)(T3 + T4)

⎫⎪⎬
⎪⎭ (2.6)

are the zeros of the cubic

(Ff)(X) := X3 + 2bX2 + (b2 − 4d)X − c2. (2.7)

The solutions T1, . . . , T4 are then obtained as linear combinations of square roots
√

Xi

(i = 1, 2, 3) satisfying
√

X1
√

X2
√

X3 = −c.

2.8. We shall consider the above mapping f �→ Ff as a Q-morphism A4
u \D → A3

u \D

and call it the Ferrari morphism. The standard tangential base point �b on A4
u \ D is

equivalent to the image of one on A4
v \ ∆ induced from (v1, v2, v3, v4) = (0, t3, t2, t). Its

image by F is then the image of a tangential base point from (v1, v2, v3) = (t5, t4, t3) on
A3

v \ ∆ which is Galois equivalent to �b on A3
u \ D. Thus, we may consider the Ferrari

morphism F gives a GQ-compatible homomorphism

π1(F) : π1(A4
u \ D,�b) → π1(A3

u \ D,�b).

By simple path tracing, we find on the geometric part of the fundamental groups, π1(F)
maps the generators τ1, τ2, τ3 of B4 respectively to τ1, τ2, τ1 of B3. This surjection
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B4 → B3 was studied closely in Gorin and Lin [4], in which its kernel is shown to be
isomorphic to a free group of rank 2 at discrete level. At the profinite level, it is not
difficult to see that the kernel of π1(F) is a free profinite group of rank 2. In this article,
we prefer to call it the Ferrari kernel F2 and to choose its standard generators as

ξ1 := τ3τ
−1
1 ,

ξ2 := τ1τ2τ1τ
−1
3 τ−1

2 τ−1
1 ,

}
(2.9)

so that a relation [ξ1, ξ2] = (τ1τ2τ3)4(τ1τ2)−6 holds as in [20, (4.2.2)] (dating also back
to [14, § 4] and [16]). It is also useful to consider the reduced form

F0 : (A4
u \ D)0 → (A3

u \ D)0

of F obtained by taking obvious restriction at source space and composition with retrac-
tion at target space. By simple calculation, one finds

F0(T 4 + bT 2 + cT + d) = X3 − ( 1
3b2 + 4d)X − ( 2

27b3 − 8
3bd + c2). (2.10)

In view of Gm-actions, the scalar multiples of zeros of quartics give rise to doubly scalar
multiples of cubic resolvents. So the induced morphism (A4

u)0 → (A3
u)0 factors through

F̄0 : (A4
u)0 → (Ã3

u)0 := (A3
u \ D)0/G2

m.

Finally, we remark that the geometric fundamental group of (Ã3
u)0 based at (the image

of) �b is isomorphic to B̂3/〈ω2
3〉 ∼= ŜL2(Z). The reduced Ferrari morphism F̄0 induces a

surjection from B̂4/〈ω4〉 on it, and its kernel is naturally isomorphic to F2. So we do
identify the Ferrari kernel F2 with its image in B̂4/〈ω4〉 ⊂ π1(A4

u,�b). In summary, we
have the following commutative diagram of exact sequences:

1 �� F2 �� B̂4
��

��

B̂3
��

��

1

1 �� F2 �� B̂4/〈ω4〉 �� B̂3/〈ω2
3〉 ∼= ŜL2(Z) �� 1.

Mordell transformation

2.11. From the above formula of F0, one sees that, for any quartic f(T ) = T 4 + bT 2 +
cT + d, the elliptic curve

Ef : Y 2 = −(Ff)0(−X) = X3 − ( 1
3b2 + 4d)X − (− 2

27b3 + 8
3bd − c2) (2.12)

has always a specific rational point Pf := (X, Y ) = (− 2
3b, c). We shall call this cor-

respondence from f �→ (Ef , Pf ) the Mordell transformation M. In fact, one can eas-
ily verify that the classical birational transformation of [13, p. 77] maps the curve



436 H. Nakamura, H. Tsunogai and S. Yasuda

y2 = f(x) = x4 + bx2 + cx + d with two infinity points (∞+,∞−), where ∞± corre-
sponds respectively to (ξ, η) = (0,±1) after the change of variables ξ = x−1, η = yx−2,
to the elliptic curve Ef : Y 2 = −(Ff)0(−X) with two rational points (Pf , O). In our
notation, this transformation is given explicitly by

x =
−3Y − 3c

6X + 4b
, X = 2x2 − 2y + 1

3b,

y = − 1
2X + 1

6b + x2, Y = 4x(y − x2 − 1
2b) − c.

⎫⎬
⎭ (2.13)

It is probably worth mentioning here that, when (ξ, η) → (0, 1), the quantities (y − x2)
and x(y − x2 − 1

2b) converge to 1
2b, 1

2c respectively.
Conversely, given an elliptic curve E : Y 2 = X3 − γ2X − γ3 with 4γ3

2 − 27γ2
3 �= 0 and

a point P = (X0, Y0) on it, we can form a quartic f(T ) = M−1(E, P ) to be

f(T ) = T 4 − 3
2X0T

2 + Y0T + 1
4 (γ2 − 3

4X2
0 ). (2.14)

We shall call this converse mapping M−1 the inverse Mordell transformation.

2.15. These correspondences M, M−1 can be formulated more conceptually to be
related with F0 by introducing the moduli scheme Mω

1,1 of the pairs (E, ω) of elliptic
curves E with nowhere vanishing invariant differentials ω on E and the total space Mω

1,2
as the universal (once punctured) elliptic curve over Mω

1,1. (See, for example, [9] for Mω
1,1.)

In this article, we do not pursue the most sophisticated treatment of these spaces, but
do note the existence of a natural commutative diagram:

(A4
u \ D)0

M ��

F0

��

Mω
1,2

proj
��

(A3
u \ D)0

ι �� Mω
1,1

where horizontal arrows give isomorphisms of schemes.

Lemniscate and Mordell loci

2.16. We are now ready to introduce our main objects to study in this paper. The
one-parameter family of lemniscate elliptic curves Y 2 = X3 − (s2 − s)X with rational
points (s, s) has discriminant 4s3(s−1)3, hence its inverse Mordell transformation should
give a Q-embedding f lem : P 1

s − {0, 1,∞} → A4
u \ D. It reads

f lem(s) = M−1([Y 2 = X3 − (s2 − s)X], (s, s)) = T 4 − 3
2sT 2 + sT + 1

16s2 − 1
4s. (2.17)

In a parallel way, the one-parameter family of Mordell elliptic curves Y 2 = X3 −(s3 −s2)
with rational points (s, s) has discriminant −27s4(s−1)2, hence produces a Q-embedding
fmor : P 1

s − {0, 1,∞} → A4
u \ D according to

fmor(s) = M−1([Y 2 = X3 − (s3 − s2)], (s, s)) = T 4 − 3
2sT 2 + sT − 3

16s2. (2.18)
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These special families are actually ‘canonical’ in the sense that they have the following
characterization. Before stating it, recall from [20, (3.2), (3.5)] that the triangle group
∆(∞, 2, 4) (respectively ∆(∞, 3, 6)) has a natural normal subgroup of index 4 (respec-
tively 6) corresponding to the fundamental group of lemniscate (respectively Mordell)
elliptic curve minus origin realized as a 4-cyclic (respectively 6-cyclic) cover over P 1

01∞.
We denote by K lem

4 , Kmor
6 these normal subgroups respectively.

Proposition 2.19. The Q-embedding f lem (respectively fmor) : P 1 −{0, 1,∞} → A4
u \

D, together with any geometric path �b � f lem(
−→
01) (respectively �b � fmor(

−→
01)), induces

a commutative diagram of homomorphisms of profinite groups

π1(P 1 − {0, 1,∞},
−→
01)

���������������
�� π1(A4

u,�b)

�����������

GQ

whose geometric part

(i) exactly factors through the triangle group ∆̂(∞, 2, 4) (respectively ∆̂(∞, 3, 6)),

(ii) has the image containing the Ferrari kernel F2 that exactly coincides with the
profinite closures of K lem

4 (respectively Kmor
6 ).

These properties (i), (ii) characterize the embeddings f lem, fmor up to equivalence under
the Gm-action on A4

u \ D.

Proof. We analyse the loci

Llem = {T 4 + bT 2 + cT + d ∈ A4
u \ D | 2

27b3 − 8
3bd + c2 = 0},

Lmor = {T 4 + bT 2 + cT + d ∈ A4
u \ D | 1

3b2 + 4d = 0}

under the Gm-action on A4
u \ D, and find, after simple observation, orbifold isomor-

phisms Llem/Gm
∼= (P 1 −{0, 1,∞})∪ (·/µ2)∪ (·/µ4) and Lmor/Gm

∼= (P 1 −{0, 1,∞})∪
(·/µ2) ∪ (·/µ3). It also follows that the projection images of f lem and fmor in A4

u respec-
tively detect the above loci Llem/Gm, Lmor/Gm. This proves (i). For (ii), we shift our
view on these loci to those images by M and by forgetting the ω-structure correspond-
ing to division by the Gm-action. The image of f lem (respectively fmor) in M1,2 is then
same as that of Llem (respectively Lmor) that is the fibre over the lemniscate modulus
[·/µ4] (respectively Mordell modulus [·/µ6]) on M1,1. This observation verifies the prop-
erty (ii) for our f lem, fmor. To deduce the characterization of these embeddings up to
Gm-equivalence, we note that the properties (i), (ii) and GQ-compatibility of the induced
homomorphisms on fundamental groups force that the arithmetic fundamental groups of
the Q-images of M ◦ f lem, M ◦ fmor in Mω

1,2 should isomorphic to those of the lemnis-
cate and Mordell elliptic curves respectively. The fundamental conjecture of anabelian
geometry solved by Tamagawa and Mochizuki (cf. [12,21]; the affine case needed here
was settled first by [21]) insures that those images must surely lie over the prescribed
loci at geometric level. �
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In [20], we considered a certain one-parameter family of quartics over P 1
t − {0, 1,∞}

given as f lem(1/(1 − t))(−T + 1
2 ) from our f lem(s)(T ) here in the above. In the next

section, we will investigate the family fmor(1/(1− t))(T ) over P 1
t −{0, 1,∞} in a parallel

way to [20].

3. Monodromy of paths between tangential base points

3.1. Now we shall analyse the monodromy properties of zeros of the quartic family

fmor
t (T )

(
= fmor

(
1

1 − t

)
(T )

)
:= T 4 − 3

2
1

1 − t
T 2 +

1
1 − t

T − 3
16

1
(1 − t)2

explicitly by using Cardano–Ferrari formula. The above quartics for t �∈ {0, 1,∞} have
discriminant −27t2/(1 − t)8 and the cubic resolvents are given by

X1 =
1

1 − t
−

3
√

t

1 − t
ω2, X2 =

1
1 − t

−
3
√

t

1 − t
ω, X3 =

1
1 − t

−
3
√

t

1 − t
. (3.2)

We shall take the branches
√

Xi (i = 1, 2, 3) so that, for small positive t, they approxi-
mately take values√

X1 ≈ −1 + 1
2ω2 3

√
t,

√
X2 ≈ 1 − 1

2ω
3
√

t,
√

X3 ≈ 1 − 1
2

3
√

t. (3.3)

Using these, we specify the four zeros of fmor
t (T ) = 0 as

T1 := 1
2 (

√
X3 −

√
X2 −

√
X1) ≈ 1

2 (1 + ω2 3
√

t),

T2 := 1
2 (

√
X1 +

√
X2 +

√
X3) ≈ 1

2 (1 + ω
3
√

t),

T3 := 1
2 (

√
X1 −

√
X2 −

√
X3) ≈ 1

2 (1 + 3
√

t),

T4 := 1
2 (

√
X2 −

√
X1 −

√
X3) ≈ − 3

2 .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.4)

Below we basically consider Ti (i = 1, . . . , 4) as single-valued functions analytically
extended from small positive t to the upper half sphere P 1

t (C)�(t)>0, and then, to multi-
valued functions on P 1

t (C) − {0, 1,∞}. We shall trace the image of the ordered triple
(T1, T2, T3, T4) ∈ A4

v along moves of t ∈ P 1(C) − {0, 1,∞} starting from
−→
01t (whose

image in A4
u is determined by fmor

t (T ) = 0 as a set {T1, T2, T3, T4}).

3.5. Let us first look at the tangential base point �t = (T1, T2, T3, T4) on A4
v lifting

fmor(
−→
01t) on A4

u. It is equivalent to

�t = (T1, T2, T3, T4) ∼ (0, T2 − T1, T3 − T1, T4 − T1)

∼
(

0,
ω − ω2

2
3
√

t,
1 − ω2

2
3
√

t, −2
)

∼ (0, t1t2t3, t2t3, t3)

with t1 = ρ, t2 = −(
√

3/4)ζ12
3
√

t, t3 = −2, where ζ12 = e2πi/12. Set K = −(
√

3/4)ζ12.
Observing

√
3ζ12 = 1

2 (3 +
√

−3) and expansions of the Ti, we find that �t is defined over
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Q(
√

−3). The conjugate �t′ of �t over Q is then easily seen to be the tangential base point
defined by (T2, T1, T3, T4) as

�t′ = (T2, T1, T3, T4) ∼ (0, T1 − T2, T3 − T2, T4 − T2)

∼
(

0,
ω2 − ω

2
3
√

t,
1 − ω

2
3
√

t, −2
)

∼ (0, t1t2t3, t2t3, t3)

with t1 = ρ−1 = ρ̄, t2 = −(
√

3/4)ζ−1
12

3
√

t = K̄ 3
√

t, t3 = −2 (we denote by K̄ the complex
conjugation of K).

3.6. Now, we shall connect by specific paths these �t, �t′ with the Ihara–Matsumoto
tangential base point �v on A4

v defined by v = (0, t1t2t3, t2t3, t3) valued in the Puiseux ring
Q̄{{t1, t2, t3}}. Recall here that we introduced in [19] certain standard paths r :

−→
01 � 1

2
and q : 1

2 � ρ on P 1(C) − {0, 1,∞}, and introduced q̄ : 1
2 � ρ̄ to be the complex

conjugation of q. On the t1-line, we use the compositions (rq)t1 , (rq̄)t1 to move from
−→
01t1

to t1 = ρ, ρ̄ respectively:

(�v)t1 =
−→
01t1

(�t )t1 = (ρ)t1

(�t′)t1 = (ρ̄)t1

−→
01t2 = (�v)t2

K(�t )t2

K̄(�t′)t2

(�t )t2

(�t′)t2

rq

��

rq̄

��

���� ����

����
����

ε ��

ε̄ ��

On the t2-line, the base point �v is defined by the power root system { n
√

t2}n, which must
be regarded as {(K 3

√
t)1/n}n for (�t )t2 and as {(K̄ 3

√
t)1/n}n for (�t′)t2 . Define the path ε

(respectively ε̄) on the t2-line as the shortest path (i.e. the most economical homothety
around 0) from

−→
01t2 to (�t )t2 (respectively (�t′)t2).

3.7. We may consider the composition of the above paths rq (respectively rq̄) and ε

(respectively ε̄) to be a path on A4
u \ D from �b to fmor(

−→
01t). Figure 1 illustrates how the

four zeros of fmor
t (T ) = 0 move along these paths.

3.8. Now, fmor
t embeds P 1

t − {0, 1,∞} into A4
u \ D, so every loop on the former space

based at
−→
01t has an interpretation as a loop on the latter space based at�b after conjugated

by rqε or rq̄ε̄. To understand braids representing those loops, particularly useful is first
to observe how the four zeros of fmor

t (T ) behave along the boundary of the upper half
sphere of P 1

t (C) − {0, 1,∞}. This is illustrated in Figure 2. Note that around t = 1, the
four zeros rotate around T = ∞ because of the denominator of fmor

t (T ).



440 H. Nakamura, H. Tsunogai and S. Yasuda

T4

T4

T4

T4

T4

T4

T3 T3

T3

T3
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q

q
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r

Figure 1. Motion of zeros along paths.
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Figure 2. Motion of zeros on the upper hemisphere.
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Notation 3.9. Let us here introduce notations for several specific braids that will play
important roles in the subsequent discussions:

ξ+ := τ1τ2, ξ+2 := τ−1
2 τ−1

1 τ−1
2 τ−1

1 τ−1
2 τ−1

3 , ξ+3 := τ3τ2τ1τ2,

ξ− := τ2τ1, ξ−2 := τ−1
1 τ−1

3 τ−1
2 τ−1

1 τ−1
1 τ−1

2 , ξ−3 := τ2(τ1τ1τ2τ3)τ−1
2 ,

η := τ1τ2τ1 = τ2τ1τ2,

We shall also frequently use the same notations to denote their images in quotients of
braid groups.

Note that ω3 = ξ3
+ = ξ3

− = η2 generates the centre of B3. It is also easy to see that
ξ2
+2 = ξ2

−2 = ω−1
4 and ξ3

+3 = ξ3
−3 = ω4, both generate the centre of B4. In particular,

〈ξ+, ξ+2, ξ+3〉 generates a group isomorphic to the triangle group ∆(∞, 2, 3) in B4/〈ω4〉.
This was actually motivating observation at our early stage of subsequent studies of [19].

Lemma 3.10. In π1(A4
u \ D,�b), we have

(i) (rqε)x(rqε)−1 = ξ+, (rqε)y(rqε)−1 = ξ+2, (rqε)z(rqε)−1 = ξ+3;

(ii) (rq̄ε̄)x(rq̄ε̄)−1 = ξ−, (rq̄ε̄)y(rq̄ε̄)−1 = ξ−2, (rq̄ε̄)z(rq̄ε̄)−1 = ξ−3;

(iii) rq̄ε̄ · (rqε)−1 = τ2
2 τ1τ

2
2 .

Proof. These follow from observation of behaviours of four zeros of ft(T ) when t moves
along the issued loops. The observation can be done in a way based on Figure 2 of those
four zeros along the boundary segments of the upper half sphere. �

3.11. Finally, taking modulo the action of Gm on the quadruples (T1, T2, T3, T4), we
could work on the spaces A4

v = (A4
v − ∆)/Gm and A4

u = (A4
u − D)/Gm. In this case,

the effect of t3-line on homotopy invariants disappears. We write the images of composed
paths rq and rq̄ on A4

u by the same symbols for simplicity.

Conclusion of this section

The morphism fmor
t and the path rqε geometrically realizes an embedding of the

triangle group ∆(∞, 2, 3) onto 〈ξ+, ξ+2, ξ+3〉/centre ⊂ π1(A4
u,�b).

4. Galois actions in terms of GT-parameters

Mordell curve as a 6-cyclic cover

4.1. In [20, (3.4)], we considered a projective model of Mordell elliptic curve defined
by the equation

Emor : Y 2 = X4 − X.

This curve can be realized as a 6-cyclic cover of P 1
t unramified outside t = 0, 1,∞ by

X = 3
√

t and Y = 6
√

t
√

t − 1. Let the unique point over t = 0 to be the origin O of
Emor, and fix once and for all any lift of the tangential base point

−→
01t on Emor \ O to
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consider its fundamental group. Then, in particular, the geometric fundamental group
πgeom

1 (Emor \ O) is a normal subgroup of

πgeom
1 (P 1

t − {0, 1,∞}; e1|2, e∞|3;
−→
01) = ∆̂(∞, 2, 3) = 〈x, y, z | xyz = y2 = z3 = 1〉

of index 6. The Galois group action on it at the base point
−→
01 can be extended to the

action of GT: each element σ = (λ, f) ∈ GT acts on the generators x, y, z by the
following formula:

x �→ xλ,

y �→ f(y, x)yλf(x, y),

z �→ x(λ−1)/2f(z, x)zλf(x, z)x(1−λ)/2.

⎫⎪⎪⎬
⎪⎪⎭ (4.2)

4.3. We here repeat the discussion in [20, (3.4)] for the sake of notation normalization:
we wish to use x1 := zx−2, x2 := x4z for generators of πgeom

1 (Emor \O) which are related
with those x′

1, x′
2 in [20] by x1 = x2x′

1x
−2, x2 = xx′

2x
−1. Having a generator z0 := x6

for the inertia group over O ∈ Emor, we keep the standard presentation

πgeom
1 (Emor \ O) = 〈x1, x2, z0 | [x1, x2]z0 = 1〉.

The Tate module Tf (Emor) appears as the abelianization of πgeom
1 (Emor \ O). It is iso-

morphic to a subgroup of index 6 of the quotient triangle group ∆̂(6, 2, 3) of ∆̂(∞, 2, 3).
They fit in the following commutative diagram:

1 �� πgeom
1 (Emor − {O}) ��

��

∆̂(∞, 2, 3) ��

��

Z/6Z �� 1

1 �� Tf (Emor) �� ∆̂(6, 2, 3) �� Z/6Z �� 1.

The inner automorphism by x induces an action on Tf (Emor) of order 6, given by ζ6 :
x̄1 �→ −x̄2, x̄2 �→ x̄1 + x̄2. We extend this action naturally to the action of the ring
Ẑ[ζ6] on Tf (Emor). Under these notations, [20, Proposition 3.5] may be rephrased as the
following proposition.

Proposition 4.4. Let x̄1, x̄2 be the basis of the Tate module Tf (Emor) which are the
images of x1, x2 respectively. Then, each element σ = (λ, f) ∈ GT acts on Tf (Emor) by

x̄1 �→ Bσ(ζ6, ζ
2
6 ) · x̄1,

x̄2 �→ ζλ−1
6 Bσ(ζ6, ζ

2
6 ) · x̄2.

Proof. By using (4.2), one computes

σ(x1) = σ(zx−2) = x(λ−1)/2f(z, x)zλf(x, z)x(1−5λ)/2

= (x(λ−1)/2f(z, x)x(1−λ)/2)(x(λ−1)/2z(1−λ)/4)

× (z(5λ−1)/4x(1−5λ)/2)(x(5λ−1)/2f(x, z)x(1−5λ)/2).
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Here, note that z1/4 makes sense as z3 = 1. Denoting by ‘≡’ the congruence modulo
the commutator subgroup of the kernel of ∆̂(∞, 2, 3) → ∆̂(6, 2, 3), we have f(x, z) ≡
Aσ(x, z) · [x, z] (cf. [20, (FA)]). Now, [x, z] = xzx−1z−1 = x−3x2x

3x−1
1 ≡ −x̄2 − x̄1, and

by induction, one easily verifies that

x2az−a ≡ 1 − ζ2a
6

1 − ζ2
6

(−x̄1).

Putting these together into the above computation, we obtain

σ(x̄1) ≡ (1 + Aσ(ζ6, ζ
2
6 )(ζ6 − 1)(ζ2

6 − 1))
1 − ζ2λ

6

1 − ζ2
6

ζ
(λ−1)/2
6 x̄1 ≡ Bσ(ζ6, ζ

2
6 )x̄1.

It follows from x2 = x6x−2x1x
2 that σ(x2) ≡ ζ−2λ+2

6 Bσ(ζ6, ζ
2
6 )x̄2. We then obtain the

desired formula after noting that ζ
3(λ−1)
6 = 1. �

Galois actions in braid configuration space

4.5. Now, we shall make the objects discussed in the previous subsection fit in the braid
configuration space. Let f̄mor : P 1 − {0, 1,∞} → A4

u be the morphism induced from the
one-parameter family fmor(1/(1 − t)) of quartics considered in § 3, and let rqε be the
path from �b to fmor(

−→
01t) introduced in § 2. By Proposition 2.19, f̄mor gives an embedding

of π1(P 1
t − {0, 1,∞}; e1|2, e∞|3;

−→
01) into π1(A4

u, f̄mor(
−→
01)). Conjugation by the path rqε

maps isomorphically this latter fundamental group based at f̄mor(
−→
01) to that based at

�b, and it sends πgeom
1 (Emor \ O) (based at any lift of

−→
01t) to Kmor

6 . We first relate the
generators of it with those of πgeom

1 (A4
u,�b) as follows.

Lemma 4.6. In πgeom
1 (A4

u,�b), we have:

(i) (rqε)x1(rqε)−1 = τ3τ
−1
1 (= ξ1);

(ii) (rqε)x2(rqε)−1 = τ1τ2τ1τ
−1
3 τ−1

2 τ−1
1 (= ξ2);

(iii) (rqε)z0(rqε)−1 = (τ1τ2τ1)4.

Namely, these loops correspond to the generators of the Ferrari kernel F2 given in (2.9).

Proof. These equations follow immediately from Lemma 3.10 and the definition of x1,
x2, z0 in § 4.3. �

Through Lemmas 3.10 and 4.6, if GQ-action on rqε is known, then, GQ-actions at
f̄mor(

−→
01t) on the triangle group ∆̂(∞, 2, 3) and Tf (Emor) described in § 4.1, (4.2), § 4.3

and Proposition 4.4 can be transferred into the GQ-actions of those images in π1(A4
u,�b).

To investigate σ(rqε) for σ ∈ GQ, we introduce a Kummer character for roots of the
coefficient appearing in the t2-component of fmor(

−→
01t) in § 3.

Definition 4.7. Let n
√

K = 31/2n4−1/nζ−5
12n and n

√
K̄ = 31/2n4−1/nζ5

12n. Define the
Kummer character ρK : GQ → Ẑ with respect to the roots of K by

ζρK(σ)
n = σ( n

√
K)/ n

√
σ(K) (σ ∈ GQ).
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One can easily obtain an explicit description of ρK :

ρK(σ) =
ρ3(σ)

2
− 2ρ2(σ) +

−5λσ ± 5
12

(σ ∈ GQ), (4.8)

where ± varies according as λσ ≡ ±1 mod 6.

Lemma 4.9. For each σ ∈ GQ,

σ(ε) = ε±(τ1τ2)3ρK(σ).

Here, ε± denotes ε or ε̄ according as λσ ≡ ±1 mod 6 respectively.

Proof. This follows directly from definitions. �

4.10. As for Galois actions on the path rq, we have from [10,19] the following descrip-
tion:

σ(rq) =

{
hσ(τ2

1 , τ2
2 )−1rq (λσ ≡ 1 mod 6),

hσ(τ2
1 , τ2

2 )−1rq̄ (λσ ≡ −1 mod 6).

Combining Lemma 4.9 and the above information, we obtain the following proposition.

Proposition 4.11. For every σ ∈ GQ, the loop

uσ := σ(rqε) · (rqε)−1

in π1(A4
u) is given explicitly by

uσ =

{
hσ(τ2

1 , τ2
2 )−1(τ1τ2)3ρK(σ) (λσ ≡ 1 mod 6),

hσ(τ2
1 , τ2

2 )−1(τ1τ2)3ρK(σ)(τ2
2 τ1τ

2
2 ) (λσ ≡ −1 mod 6),

= τ
((λσ−1)/2)−3ρ3(σ)
1 fσ(τ1τ2, τ

2
1 )(τ1τ2)3(ρ3(σ)−2ρ2(σ)−((λσ−1)/2)).

In the above proposition, it is rather amazing to observe that uσ has a uniform expres-
sion by fσ unconcerned with congruence classes of λσ modulo 6.

Proof. Lemma 4.9, § 4.10 and Lemma 3.10 (iii) imply that the path rqε is transformed
by σ ∈ GQ as:

σ(rqε) =

{
hσ(τ2

1 , τ2
2 )−1(τ1τ2)3ρK(σ)rqε (λσ ≡ 1 mod 6),

hσ(τ2
1 , τ2

2 )−1(τ1τ2)3ρK(σ)(τ2
2 τ1τ

2
2 )rqε (λσ ≡ −1 mod 6).

This gives the above first expression of uσ. For the second, we employ the formula of [19,
Theorem A (HF1)] which reads:

h(τ2
1 , τ2

2 ) = (ξ±)(λ∓1−6ρ3)/4f(τ2
1 , ξ±)τ3ρ3−((λ∓1)/2)

1 .
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Here, ξ+, ξ− denote τ1τ2, τ2τ1 respectively, and the sign ∓ is taken according as
λ (:= λσ) ≡ ±1 mod 6 respectively. Using this and noting τ1ξ−τ−1

1 = ξ+ and the fact
that ξ3

+ = η2 commutes with τ1 for the case λ ≡ −1 mod 6, we find

uσ = τ
(λ−1)/2−3ρ3
1 f(ξ+, τ2

1 ) ·
{

ξ
(6ρ3−λ−1)/4+3ρK

+ (λ ≡ 1 mod 6),

ξ
(6ρ3−λ−1)/4+3ρK+3
+ (λ ≡ −1 mod 6).

Substituting ρK by the explicit expression (4.8), we find that the exponent of ξ+ in the
last factor coincides with 3(ρ3 − 2ρ2 − 1

2 (λ − 1)) in both cases of λ ≡ ±1 mod 6. This
concludes our second expression of uσ. �

4.12. Now we are ready to give a new description of GQ-actions on the braids ξ+, ξ+2,
ξ+3 under the standard action on B̂4 given by Drinfeld’s formula:

τ1 �→ τλ
1 ,

τ2 �→ f(τ2
1 , τ2

2 )−1τλ
2 f(τ2

1 , τ2
2 ),

τ3 �→ f(η2, τ2
3 )−1τλ

3 f(η2, τ2
3 ).

Proposition 4.13. Under the standard action of GQ on B̂4, the elements ξ+, ξ+2, ξ+3

are transformed in the following ‘power-conjugate’ form:

(i) σ(ξ+) = uσξλσ
+ u−1

σ ;

(ii) σ(ξ+2) = uσfσ(ξ+2, ξ+)ξλσ
+2fσ(ξ+, ξ+2)u−1

σ ;

(iii) σ(ξ+3) = uσξ
(λσ−1)/2
+ fσ(ξ+3, ξ+)ξλσ

+3fσ(ξ+, ξ+3)ξ
(1−λσ)/2
+ u−1

σ ;

for σ ∈ GQ. Here uσ is the loop given in Proposition 4.11.

Proof. According to the work of Ihara and Matsumoto [8], on GQ, Drinfeld’s action
coincides with that given from the tangential base point �b. The above proposition and
§ 4.1 ensure that the above (i), (ii), (iii) hold in πgeom

1 (A4
u,�b) ∼= B̂4/〈ω4〉. So they hold in

B̂4 up to the power of ω4 under the standard GQ-action. The ambiguity of modulo centre
can be killed by comparing both sides in the image of abelianization of B̂4 isomorphic
to Ẑ. �

4.14. Finally, we shall compute a matrix specialization of the parameter hσ for σ ∈ GQ.
Identify πgeom

1 (P 1−{0, 1,∞}, e1|2, e∞|3;
−→
01t) as a subgroup of π1(A4

u,�b) by conjugating it
by the path rqε : �b � fmor(

−→
01t), and the abelian subquotient corresponding to Tf (Emor)

with Ẑ2 by ξ̄1 �→ ( 1
0 ), ξ̄2 �→ ( 0

1 ). Recall that the conjugate actions of τ1, τ2 on 〈ξ1, ξ2〉,
the kernel of Ferrari morphism is given by

Int(τ1) :

{
ξ1 �→ ξ1,

ξ2 �→ ξ2ξ1,
Int(τ2) :

{
ξ1 �→ ξ1ξ

−1
2 ,

ξ2 �→ ξ2
(4.15)

(cf. [14, (4.9.1)] and [20, (5.4.1)], but the latter had a typo in Int(τ2)(ξ1)). Therefore,
their actions on Tf (Emor) are represented by the matrices ( 1 1

0 1 ), ( 1 0
−1 1 ) respectively.
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Theorem 4.16. For each σ ∈ GQ, we have

hσ

( (
1 2
0 1

)
,

(
1 0

−2 1

) )

= (−1)ρK(σ)

(
±1 0
0 1

)
Bσ

( (
0 1

−1 1

)±1

,

(
−1 1
−1 0

)±1 )
·
(

λ−1
σ −8ρ2(σ)λ−1

σ

0 1

)

in GL2(Ẑ), where ± takes the sign simultaneously according as λσ ≡ ±1 mod 6.

Proof. Let σ ∈ GQ act on the both sides of Lemma 4.6 (i), (ii). Then, we obtain

uσ(rqε)σ(xi)(rqε)−1u−1
σ = σ(ξi) (i = 1, 2)

and view it in Ẑ2. For the right-hand side, by [20, Proposition 3.3], the matrix represen-
tation of GQ-action on the basis (ξ̄1, ξ̄2) is given by(

λσ 8ρ2(σ)
0 1

)
.

For the left-hand side, noting that the action of Int(x) is given by left multiplication by
R = ( 0 1

−1 1 ), we see that the pair (σ(x̄1), σ(x̄2)) conjugated by rqε may be given by(
Bσ(R, R2)

(
1
0

)
, Rλ−1Bσ(R, R2)

(
1
0

))
= Bσ(R, R2)Jλ,

where Jλ = ( 1 0
0 1 ) or ( 1 −1

0 −1 ) according as λ(:= λσ) ≡ ±1 mod 6. Combining these with
the expression of uσ, we obtain

(−1)ρK(σ)hσ

( (
1 2
0 1

)
,

(
1 0

−2 1

) )−1

· Vλ · Bσ(R, R2) · Jλ =

(
λ 8ρ2(σ)
0 1

)
,

where Vλ = ( 1 0
0 1 ) or ( −1 1

0 −1 ) according as λ ≡ ±1 mod 6. When λ ≡ −1 mod 6, since
JλRJλ = R−1, J2

λ = 1 and VλJλ = ( −1 0
0 1 ), the left-hand side above turns out to be

(−1)ρK(σ)hσ

( (
1 2
0 1

)
,

(
1 0

−2 1

) )−1 (
−1 0
0 1

)
· Bσ(R−1, R−2).

This completes the proof of our theorem. �

5. Miscellany

We add some corrections of previous articles [20] and [11].

Nakamura and Tsunogai [20]

Page 200:
∏

nc=0 should read
∏n−1

c=0 .
(5.1) (1): the position of ‘,’ should move to the end of line.
(5.4.1): Int(τ2) : ξ1 �→ ξ1ξ

−1
2 .
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Lochak, Nakamura and Schneps [11]

Page 70, (6.5.2): the sign of 1
2 (λ−1) in the exponents of τ1 should be altered as follows:

ξ �→ τ
(λ−1)/2−3ρ3
1 f(ξ, τ2

1 ) · ξλ · f(τ2
1 , ξ)τ3ρ3−((λ−1)/2)

1 (ξ = τ1τ2).

This, of course, is nothing but Proposition 4.13 (i), but an alternative simpler proof
can be given as follows. Regard B̂3/〈ω3〉 as the geometric fundamental group of the
orbifold (P 1 − {0, 1,∞})/S3 based at the image of

−→
01 so that a lift of τ1 (respec-

tively τ2) in the groupoid π1(P 1 − {0, 1,∞},B) are given respectively as τ1 = [0∞
1 ]

(respectively τ2 = 〈0, 1〉[1∞
0 ]〈1,∞〉) in the notation of [14, § 2.6]. Then, τ1τ2 =

[0∞
1 ]〈0,∞〉[∞1

0]〈∞, 1〉 = 〈0, 1〉[10
∞]−1 The standard action of σ ∈ GQ on it is given as

σ(τ1τ2) = fσ(x, y)−1y(1−λ)/2(τ1τ2), where x = τ2
1 , y = τ2

2 . To this first factor, we apply
the equianharmonic equation

f(τ2
1 , τ2

2 ) = τ
−3ρ3−((λ−1)/2)
2 f(τ2

2 , τ1τ2)−1(τ1τ2)(λ−1)/2f(τ2
1 , τ1τ2)τ

3ρ3−((λ−1)/2)
1 (II′)

from [19]. This immediately leads to the desired result.

Acknowledgements. H.N. would like to thank Katsuya Miyake for an account of the
name ‘Mordell elliptic curve’ according to Mordell’s 1913 paper ‘The Diophantine equa-
tion y2 − k = x3’ (cf. [13, Chapter 26]). He also thanks M. Dettweiler and H. Tokunaga
for enjoyable discussions on computations of braid monodromy during preparation of this
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