Some congruence properties of Eisenstein invariants associated to elliptic curves

Hiroaki Nakamura

§1. Introduction

Let π be a free profinite group with free generators $\mathbf{x}_1, \mathbf{x}_2$ and let π' (resp. π'') denote the commutator (resp. double-commutator) subgroup of π . Regard the full automorphism group $\mathsf{A} := \mathrm{Aut}(\pi)$ acting on the left of π . The purpose of this paper is to study some elementary arithmetic properties of a certain series of invariants

$$\mathbb{E}_m:\mathsf{A}\times\hat{\mathbb{Z}}^2\longrightarrow\hat{\mathbb{Z}}\quad(m\in\mathbb{N})$$

reflecting the action of A on the meta-abelian quotient π/π'' . In particular, we shall introduce a canonical series of finite index subgroups of A fully exhausting congruity of the invariants \mathbb{E}_m in a systematical way.

Motivation to this paper came from our previous work [N10] where π was given as the fundamental group of an affine elliptic curve $E: y^2 = 4x^3 - g_2x - g_3$ over a field K of characteristic zero. A choice of a K-rational tangential base point at infinity of the elliptic curve E gives rise to a natural Galois representation $\varphi: \operatorname{Gal}(\bar{K}/K) \to A$. Given π being presented as $\langle \mathbf{x}_1, \mathbf{x}_2, \mathbf{z} \mid [\mathbf{x}_1, \mathbf{x}_2]\mathbf{z} = 1 \rangle$ so that \mathbf{z} generates an inertia over the infinity puncture, we introduced in loc. cit. certain arithmetic invariants

$$\mathbb{E}_m: \operatorname{Gal}(\bar{K}/K) \times \hat{\mathbb{Z}}^2 \longrightarrow \hat{\mathbb{Z}} \quad (m \in \mathbb{N})$$

(induced from φ) that converge to the "Eisenstein measure" \mathcal{E}_{σ} ($\sigma \in \operatorname{Gal}(\bar{K}/K(E_{tor}))$ of [N95]–[N99]. Especially, we showed an explicit formula for \mathbb{E}_m in terms of Kummer properties of modular units evaluated at E. By Galois correspondence, those finite index subgroups of A obtained in this paper yield a sequence of finite Galois extensions of K that

Received May 30, 2011.

Revised February 8, 2012.

This work was partially supported by JSPS KAKENHI 21340009.

can be controlled by the invariants \mathbb{E}_m . We hope to discuss applications to arithmetic of elliptic curves in our future works.

Our first main statement is:

Theorem A. Let $m, M \in \mathbb{N}$, and set $N = 2^{\varepsilon}M$ with $\varepsilon = 0, 1$ according as $2 \nmid M$, $2 \mid M$ respectively. If $(u, v) \equiv (u', v') \mod mN$, then $\mathbb{E}_m(\sigma; u, v) \equiv \mathbb{E}_m(\sigma; u', v') \mod M$ for every $\sigma \in A$.

This theorem improves our previous result in [N10] Corollary 6.9.8 (cf. Remark 3.4.3 in loc.cit.) where the congruence was shown for M square integers by using a geometric method different from the present paper.

By virtue of the above theorem, we can define a map

$$\mathbb{E}_{m,M}: \mathsf{A} \to (\mathbb{Z}/M\mathbb{Z})[(\mathbb{Z}/mN\mathbb{Z})^2]$$

which sends $\sigma \in A$ to an element $\mathbb{E}_{m,M}(\sigma)$ of the finite group ring $(\mathbb{Z}/M\mathbb{Z})[(\mathbb{Z}/mN)^2]$ given by

$$\mathbb{E}_{m,M}(\sigma) \equiv \sum_{\mathbf{a} \in (\mathbb{Z}/mN\mathbb{Z})^2} \mathbb{E}_m(\sigma; u, v) \mathbf{e_a} \mod M.$$

Here $(u,v) \in \hat{\mathbb{Z}}^2$ is chosen to be a representative for any class $\mathbf{a} \in (\mathbb{Z}/mN\mathbb{Z})^2$, while $\mathbf{e_a}$ denotes the symbol for the image of $\bar{\mathbf{x}}_1^u \bar{\mathbf{x}}_2^v$ by the natural projection:

$$\hat{\mathbb{Z}}[[\pi^{\mathrm{ab}}]] \to (\mathbb{Z}/M\mathbb{Z})[\bar{\mathbf{x}}_1,\bar{\mathbf{x}}_2]/(\bar{\mathbf{x}}_1^{mN}-1,\bar{\mathbf{x}}_2^{mN}-1) = (\mathbb{Z}/M\mathbb{Z})[(\mathbb{Z}/mN\mathbb{Z})^2].$$

Next, let $\rho: A \to \operatorname{GL}_2(\hat{\mathbb{Z}})$ be the induced action of A on the abelianization $\pi^{ab} := \pi/\pi'$ as in

(1.1)
$$\rho(\sigma) = \begin{pmatrix} a(\sigma) & b(\sigma) \\ c(\sigma) & d(\sigma) \end{pmatrix} \qquad (\sigma \in \mathsf{A}),$$

so that $\sigma(\mathbf{x}_1) \equiv \mathbf{x}_1^{a(\sigma)} \mathbf{x}_2^{c(\sigma)}$, $\sigma(\mathbf{x}_2) \equiv \mathbf{x}_1^{b(\sigma)} \mathbf{x}_2^{d(\sigma)} \mod \pi'$. Letting $N = 2^{\varepsilon}M$ being as above, we shall consider two subsets $\mathsf{A}''_{m,M} \subset \mathsf{A}'_{m,M}$ of A defined by

$$\mathsf{A}'_{m,M} := \left\{ \sigma \in \mathsf{A} \, | \, \rho(\sigma) \equiv 1 \, \mathrm{mod} \, mN \right\},$$

$$\mathsf{A}''_{m,M} := \left\{ \sigma \in \mathsf{A}'_{m,M} \, \middle| \, \mathbb{E}_m(\sigma; u, v) \equiv 0 \, \mathrm{mod} \, M \, (\forall u, v \in \hat{\mathbb{Z}}) \, \right\}.$$

By definition, $\mathsf{A}'_{m,M}$ obviously forms a finite index subgroup of A .

Theorem B. The mapping $\mathbb{E}_{m,M}$ restricted on $A'_{m,M}$ gives an additive homomorphism

$$\mathsf{A}'_{m,M} \to (\mathbb{Z}/M\mathbb{Z})[(\mathbb{Z}/mN\mathbb{Z})^2]$$

with kernel $A''_{m,M}$. Especially, $A''_{m,M}$ forms a finite index subgroup of $A'_{m,M}$.

The construction of this paper is as follows. In §2, we review the basic definition of our Eisenstein invariants \mathbb{E}_m mostly from [N10]. In §3, we introduce certain arithmetic sums (Fourier–Dedekind-like sums) \mathcal{S}_m and discuss their congruence properties. In §4, the sums \mathcal{S}_m are slotted into certain elementary measures $R_{\alpha,\beta}^{\gamma} \in \hat{\mathbb{Z}}[[\hat{\mathbb{Z}}^2]]$ which will turn out to vanish in reduced group rings $(\mathbb{Z}/M\mathbb{Z})[(\mathbb{Z}/m\mathbb{Z})^2]$ under suitable congruence assumptions on parameters α, β, γ with respect to m, M (Theorem 4.5). We then give a proof of Theorem A. Finally, in §5, making use of Theorem 4.5, we settle a proof of Theorem B.

Acknowledgements. The author would like to thank very much the anonymous referee for many valuable comments including a crucial point which completes the proof of Theorem A in §4.

$\S 2$. The Eisenstein invariants \mathbb{E}_m

In this section, we shall recall the construction of our invariants \mathbb{E}_m and add a couple of basic properties which will be necessary for later sections.

Let π be the free profinite group with given generators $\mathbf{x}_1, \mathbf{x}_2, \mathbf{z}$ and a relation $[\mathbf{x}_1, \mathbf{x}_2]\mathbf{z} = 1$, and denote $\pi \supset \pi' \supset \pi'' \supset \cdots$ the derived series (in the profinite sense). Then, the first quotient π/π' is the abelianization π^{ab} of π and may be regarded as

(2.1)
$$\pi^{\mathrm{ab}}(:=\pi/\pi') = \hat{\mathbb{Z}}\bar{\mathbf{x}}_1 \oplus \hat{\mathbb{Z}}\bar{\mathbf{x}}_2 \qquad (\bar{\mathbf{x}}_i = \mathbf{x}_i \bmod \pi').$$

The second subquotient π'/π'' has a natural action of π^{ab} by conjugation, hence may be regarded as a module over the complete group ring $\hat{\mathbb{Z}}[[\pi^{ab}]]$. The profinite Blanchfield–Lyndon–Ihara exact sequence (cf. [Ih86, Ih99-00]) shows that π'/π'' is a free $\hat{\mathbb{Z}}[[\pi^{ab}]]$ -cyclic module generated by the image $\bar{\mathbf{z}}$ of $\mathbf{z} \in \pi'$ in π'/π'' : Each element of π'/π'' can be written uniquely as $\mu \cdot \bar{\mathbf{z}}$ ($\mu \in \hat{\mathbb{Z}}[[\pi^{ab}]]$).

Notations being as in §1, suppose we are given an automorphism $\sigma \in A$. For each pair $(u, v) \in \mathbb{Z}^2$, observe that

(2.2)
$$\mathcal{S}_{uv}(\sigma) := \sigma(\mathbf{x}_2^{-v}\mathbf{x}_1^{-u}) \cdot (\mathbf{x}_1^{a(\sigma)u+b(\sigma)v}\mathbf{x}_2^{c(\sigma)u+d(\sigma)v})$$

lies in π' . Then, one obtains, by virtue of the above free cyclic $\hat{\mathbb{Z}}[[\pi^{ab}]]$ module structure of π'/π'' , a unique element $G_{uv}(\sigma) \in \hat{\mathbb{Z}}[[\pi^{ab}]]$ determined by the equation

(2.3)
$$S_{uv}(\sigma) \equiv G_{uv}(\sigma) \cdot \bar{\mathbf{z}}$$

in π'/π'' . Note that, by definition, $S_{00}(\sigma) = 1$, hence $G_{00}(\sigma) = 0$.

Now, regard the above element $G_{uv}(\sigma)$ as a measure on the profinite space $\pi^{ab} = \hat{\mathbb{Z}}^2$ and define $\mathbb{E}_m(\sigma; u, v)$ to be the volume of the subspace $(m\hat{\mathbb{Z}})^2 \subset \hat{\mathbb{Z}}^2$ by the measure $G_{uv}(\sigma)$:

(2.4)
$$\mathbb{E}_m(\sigma; u, v) := \int_{(m\hat{\mathbb{Z}})^2} dG_{uv}(\sigma).$$

In general, the integration over $(m\hat{\mathbb{Z}})^2 \subset \hat{\mathbb{Z}}^2$ of the measure $d\mu$ corresponding to an element $\mu \in \hat{\mathbb{Z}}^2[[\pi^{ab}]]$ may be rephrased in the following more down-to-earth terminologies. First, recall that the complete group ring $\hat{\mathbb{Z}}[[\pi^{ab}]]$ is the projective limit of the group rings:

(2.5)
$$\hat{\mathbb{Z}}[[\pi^{ab}]] = \lim_{\substack{\longleftarrow \\ n}} \hat{\mathbb{Z}}[\bar{\mathbf{x}}_1, \bar{\mathbf{x}}_2]/(\bar{\mathbf{x}}_1^n - 1, \bar{\mathbf{x}}_2^n - 1)$$

where the projective system forms over $n \in \mathbb{N}$ multiplicatively. Take the m-th component of μ and write

(2.6)
$$\mu \equiv \sum_{i=0}^{m-1} \sum_{j=0}^{m-1} a_{ij} \bar{\mathbf{x}}_1^i \bar{\mathbf{x}}_2^j \mod(\bar{\mathbf{x}}_1^m - 1, \bar{\mathbf{x}}_2^m - 1)$$

in the group ring $\hat{\mathbb{Z}}[(\mathbb{Z}/m\mathbb{Z})^2] = \hat{\mathbb{Z}}[\bar{\mathbf{x}}_1, \bar{\mathbf{x}}_2]/(\bar{\mathbf{x}}_1^m - 1, \bar{\mathbf{x}}_2^m - 1)$. The issued integral is then nothing but the principal coefficient a_{00} of this expression:

(2.7)
$$\int_{(m\hat{\mathbb{Z}})^2} d\mu = a_{00}.$$

Remark 2.8. In the study of monodromy representations in fundamental groups of once punctured elliptic curves, the subgroup

$$\mathsf{A}^{\flat} := \{ \sigma \in \mathsf{A} | \sigma(\mathbf{z}) = \mathbf{z}^{a} \ (\exists a \in \hat{\mathbb{Z}}^{\times}) \} \subset \mathsf{A}$$

is more essential than A itself. In particular, for $\sigma \in A^{\flat}$ with $\rho(\sigma) = \binom{ab}{c\,d}$, we have Tsunogai's equation ([Tsu95] Prop. 1.12):

$$(2.9) \qquad (\bar{\mathbf{x}}_{1}^{b}\bar{\mathbf{x}}_{2}^{d}-1)G_{-1,0}(\sigma) - (\bar{\mathbf{x}}_{1}^{a}\bar{\mathbf{x}}_{2}^{c}-1)G_{0,-1}(\sigma)$$

$$= (ad-bc) - \frac{(\bar{\mathbf{x}}_{2}^{d}-1)(\bar{\mathbf{x}}_{1}^{a}\bar{\mathbf{x}}_{2}^{c}-1) - (\bar{\mathbf{x}}_{2}^{c}-1)(\bar{\mathbf{x}}_{1}^{b}\bar{\mathbf{x}}_{2}^{d}-1)}{(\bar{\mathbf{x}}_{1}-1)(\bar{\mathbf{x}}_{2}-1)}.$$

This is especially important to relate the invariants $\mathbb{E}_m(\sigma; u, v)$ with Eisenstein measure \mathcal{E}_{σ} studied in [N95], [N99]. However, in the following algebraic arguments, we often do not need to restrict ourselves to A^{\flat} .

Proposition 2.10. For each $\sigma \in A$, we have

$$G_{uv}(\sigma) = \frac{(\bar{\mathbf{x}}_1^{-b}\bar{\mathbf{x}}_2^{-d})^v - 1}{\bar{\mathbf{x}}_1^{-b}\bar{\mathbf{x}}_2^{-d} - 1}G_{01}(\sigma) + (\bar{\mathbf{x}}_1^{-b}\bar{\mathbf{x}}_2^{-d})^v \frac{(\bar{\mathbf{x}}_1^{-a}\bar{\mathbf{x}}_2^{-c})^u - 1}{\bar{\mathbf{x}}_1^{-a}\bar{\mathbf{x}}_2^{-c} - 1}G_{10}(\sigma) - \operatorname{Rest}\binom{ab}{cd}.\binom{u}{v}.$$

Here, $\binom{ab}{c\,d} = \rho(\sigma) \in GL_2(\hat{\mathbb{Z}})$ and $Rest\binom{ab}{c\,d}.\binom{u}{v}$ is an explicit element in $\bar{\mathbf{x}}_1, \bar{\mathbf{x}}_2$ defined by

$$\operatorname{Rest}(_{cd}^{ab}).(_{v}^{u}) := R_{b,d}^{v} + (\bar{\mathbf{x}}_{1}^{-b}\bar{\mathbf{x}}_{2}^{-d})^{v}R_{a,c}^{u} + \frac{\bar{\mathbf{x}}_{1}^{-bv} - 1}{\bar{\mathbf{x}}_{1} - 1}\frac{\bar{\mathbf{x}}_{2}^{-cu} - 1}{\bar{\mathbf{x}}_{2} - 1}\bar{\mathbf{x}}_{2}^{-dv},$$

where, for any $\alpha, \beta, \gamma \in \hat{\mathbb{Z}}$,

$$R_{\alpha,\beta}^{\gamma} := \frac{1}{\bar{\mathbf{x}}_1 - 1} \left(\frac{(\bar{\mathbf{x}}_1^{-\alpha} \bar{\mathbf{x}}_2^{-\beta})^{\gamma} - 1}{\bar{\mathbf{x}}_1^{-\alpha} \bar{\mathbf{x}}_2^{-\beta} - 1} \cdot \frac{\bar{\mathbf{x}}_2^{-\beta} - 1}{\bar{\mathbf{x}}_2 - 1} - \frac{\bar{\mathbf{x}}_2^{-\beta\gamma} - 1}{\bar{\mathbf{x}}_2 - 1} \right).$$

We understand the dot between $\binom{ab}{cd}$ and $\binom{u}{v}$ in the notation $\operatorname{Rest}\binom{ab}{cd}$. $\binom{u}{v}$ separates matrix component and vector component. Namely, Rest is a map from $\operatorname{SL}_2(\hat{\mathbb{Z}}) \times \hat{\mathbb{Z}}^2$ to $\hat{\mathbb{Z}}$.

Proof. This follows exactly in the same manner as [N10] Proposition 3.4.2, though arguments in loc cit. were given for σ coming from the monodromy image in A^{\flat} . That geometric condition is not necessary for this proposition. Q.E.D.

Question 2.11. In [N10] Proposition 3.4.5, it is shown that the collection $\{\mathbb{E}_m(\sigma; u, v) \mid (u, v) \in \hat{\mathbb{Z}}^2, m \geq 1\}$ recovers the action of $\sigma \in \mathsf{A}^\flat$ on π/π'' , equivalently, determines the measures $G_{10}(\sigma)$ and $G_{01}(\sigma)$. Even for general $\sigma \in \mathsf{A}$, the measure $G_{10}(\sigma)$ turns out to be recovered from the collection $\{\mathbb{E}_m(\sigma; u, v)\}$. In the proof of loc.cit., we made use of Tsunogai's equation (2.9) to convert knowledge of $G_{10}(\sigma)$ to that of $G_{01}(\sigma)$ for $\sigma \in \mathsf{A}^\flat$. It seems unclear if there is a detour to it with no use of (2.9) for general $\sigma \in \mathsf{A}$.

$\S f 3.$ Fourier–Dedekind-like sum: \mathcal{S}_m

Define $U: \mathbb{R} \to \mathbb{R}$ to be the upper continuous saw tooth function

(3.1)
$$U(x) = x + \lfloor -x \rfloor + \frac{1}{2} = P_1(x) + \frac{1}{2} \delta_{\mathbb{Z}}(x),$$

where $\lfloor \alpha \rfloor$ denotes the greatest integer not exceeding α , $\delta_{\mathbb{Z}}$ is the characteristic function of the subset $\mathbb{Z} \subset \mathbb{R}$, and $P_1(x)$ is the usual saw tooth function

(3.2)
$$P_1(x) = \begin{cases} x - \lfloor x \rfloor - \frac{1}{2}, & (x \notin \mathbb{Z}), \\ 0, & (x \in \mathbb{Z}). \end{cases}$$

Let ζ_m denote a primitive m-th root of unity. By the standard formula

$$P_{1}(\frac{a}{m}) = \frac{1}{m} \sum_{i=1}^{m-1} \left(\frac{\zeta_{m}^{i}}{1 - \zeta_{m}^{i}} + \frac{1}{2} \right) \zeta_{m}^{ai} = \frac{1}{m} \sum_{i=1}^{m-1} \left(\frac{1}{1 - \zeta_{m}^{i}} - \frac{1}{2} \right) \zeta_{m}^{ai}$$

$$(a \in \mathbb{Z}, m \in \mathbb{N})$$

(cf. [RG72] p.14), it follows that

(3.3)
$$U(\frac{a}{m}) - \frac{1}{2m} = \frac{1}{m} \sum_{i=1}^{m-1} \frac{\zeta_m^{ai}}{1 - \zeta_m^i}.$$

The following lemmas are our basic tools. We shall write (a, m) to denote the greatest common divisor of $a, m \in \mathbb{Z}$.

Lemma 3.4. For $a, b \in \mathbb{Z}$, $m \in \mathbb{N}$, let d := (a, m) > 0. Then, we have

$$\sum_{i=0}^{m-1} U(\frac{ai+b}{m}) = dU(\frac{b}{d}).$$

This formula is essentially equivalent to a well known formula (3.11) appearing later. Here, we shall give a direct proof using the distribution relation of P_1 .

Proof. By (3.1), the left hand side is equal to

$$\sum_{i=0}^{m-1} P_1(\frac{ai+b}{m}) + \frac{1}{2} \sum_{i=0}^{m-1} \delta_{\mathbb{Z}}(\frac{ai+b}{m}).$$

Put $a=\bar{a}d,\, m=\bar{m}d$. The first term can be written $d\sum_{i=0}^{\bar{m}-1}P_1(\frac{\bar{a}i+(b/d)}{\bar{m}})$ which turns out to be $dP_1(\frac{b}{d})$ by the distribution relation of P_1 (cf. [RG78] p.4, Lemma 1). For the second term, we need to count the number of solution $i \mod m$ of the congruence $ai+b\equiv 0 \mod m$. There are none when $b\not\equiv 0 \mod d$, while when $b=d\bar{b}$, the solutions of $ai+b\equiv 0$

mod m are in one to one correspondence to those d classes that lift the unique solution of $\bar{a}i + \bar{b} \equiv 0 \mod \bar{m}$. Thus the above sum equals to

$$d\left(P_1(\frac{b}{d}) + \frac{1}{2}\delta_{\mathbb{Z}}(\frac{b}{d})\right) = dU(\frac{b}{d}).$$

Q.E.D.

Definition 3.5. For $a, c, \alpha, \beta \in \mathbb{Z}$, define

$$S_m(a,c;\alpha,\beta) = \sum_{i=0}^{m-1} \left(U(\frac{ai+\alpha}{m}) - \frac{1}{2m} \right) \left(U(\frac{ci+\beta}{m}) - \frac{1}{2m} \right).$$

Lemma 3.6.

$$S_m(a,c;\alpha,\beta) = \frac{1}{m} \sum_{\substack{\zeta,\xi \in \mu_m \setminus \{1\}\\ \zeta = c - 1}} \frac{\zeta^{\alpha}}{1 - \zeta} \cdot \frac{\xi^{\beta}}{1 - \xi}.$$

Proof. By using (3.3), one computes:

$$\begin{split} \mathcal{S}_m(a,c;\alpha,\beta) &= \frac{1}{m^2} \sum_{i=0}^{m-1} \sum_{s=1}^{m-1} \sum_{t=1}^{m-1} \frac{\zeta_m^{(ai+\alpha)s}}{1-\zeta_m^s} \cdot \frac{\zeta_m^{(ci+\beta)t}}{1-\zeta_m^t} \\ &= \frac{1}{m^2} \sum_{s=1}^{m-1} \sum_{t=1}^{m-1} \frac{1}{1-\zeta_m^s} \frac{1}{1-\zeta_m^t} \left(\sum_{i=0}^{m-1} \zeta_m^{i(as+ct)+\alpha s+\beta t} \right). \end{split}$$

Observe that the last bracket is equal to $m\zeta_m^{\alpha s+\beta t}$ if $as+ct\equiv 0 \mod m$, and to 0 otherwise. The lemma follows immediately from this. Q.E.D.

Question 3.7. In [BR07], studied are certain Fourier–Dedekind sums $s_n(a_1, a_2, \ldots, a_m; b)$ and their reciprocity laws. Its special type reads

$$s_2(a_1, a_2; b) = \frac{1}{b} \sum_{\zeta \in u \cup \{1\}} \frac{\zeta^2}{(1 - \zeta^{a_1})(1 - \zeta^{a_2})}$$

which, according to the above lemma, overlaps with our $S_m(a, c, \alpha, \beta)$ in some special cases. An interesting question will be how to formulate (and prove) a reciprocity law well-suited to $S_m(a, c, \alpha, \beta)$.

Lemma 3.8. Let $m \in \mathbb{N}$ and $a, b, c, x, y, z \in \mathbb{Z}$ such that (a, m) divides y. Then,

$$S_m(a, c, x + y, z) - S_m(a, c, x, z)$$

$$= \sum_{i=0}^{m-1} \left(U(\frac{ai + x + y}{m}) - U(\frac{ai + x}{m}) \right) U(\frac{ci + z}{m}).$$

Proof. It follows from Definition 3.5 and Lemma 3.4 that the difference of both sides amounts to

$$\begin{split} \frac{1}{2m} \sum_{i=0}^{m-1} \left(U(\frac{ai+x+y}{m}) - U(\frac{ai+x}{m}) \right) \\ &= \frac{(a,m)}{2m} \left(U(\frac{x+y}{(a,m)}) - U(\frac{x}{(a,m)}) \right) \end{split}$$

which vanishes under the condition (a, m)|y.

Q.E.D.

Lemma 3.9. For $u, v, s \in \mathbb{Z}$ with (v, m) = 1, we have

$$S_m(v, -1, vu - s, 0) - S_m(v, -1, -s, 0) \equiv \frac{u}{2m} - \frac{vu(u - 1)}{2m} + \frac{su}{m} \mod \frac{\mathbb{Z}}{2}.$$

Proof. By Lemma 3.8, the LHS equals to

$$\begin{split} &\sum_{i=0}^{m-1} U(\frac{v(i+u)-s}{m})U(\frac{-i}{m}) - \sum_{i=0}^{m-1} U(\frac{vi-s}{m})U(\frac{-i}{m}) \\ &= \sum_{i=0}^{m-1} U(\frac{vi-s}{m}) \left(U(\frac{u-i}{m}) - U(\frac{-i}{m})\right) \\ &= \sum_{i=0}^{m-1} U(\frac{vi-s}{m}) \left(\frac{u}{m} + \left\lfloor \frac{i-u}{m} \right\rfloor \right), \end{split}$$

which is, by virtue of Lemma 3.4, congruent to

$$\equiv \frac{u}{m}U(\frac{-s}{(m,v)}) + \frac{v}{m}\sum_{i=0}^{m-1}i\left\lfloor\frac{i-u}{m}\right\rfloor - \frac{s}{m}\sum_{i=0}^{m-1}\left\lfloor\frac{i-u}{m}\right\rfloor \bmod \frac{\mathbb{Z}}{2}.$$

Define $\delta:=\lfloor -u/m\rfloor,\ k:=m(\delta+1)+u$ so that $\delta=\lfloor \frac{-u}{m}\rfloor=\cdots=\lfloor \frac{-u+k-1}{m}\rfloor,\ \delta+1=\lfloor \frac{-u+k}{m}\rfloor=\cdots=\lfloor \frac{-u+m-1}{m}\rfloor.$ Then, noting that (v,m)=1 and $k\equiv u \mod m$, we continue the above computation to

$$\begin{split} &=\frac{u}{m}U(0)\\ &\qquad +\frac{1}{m}\left\{v\delta\frac{m(m-1)}{2}+v\frac{(m+k-1)(m-k)}{2}-s(m\delta+(m-k))\right\}\\ &\equiv\frac{u}{2m}-\frac{vu(u-1)}{2m}+\frac{su}{m}\mod\frac{\mathbb{Z}}{2}. \end{split}$$

Q.E.D.

Lemma 3.10. For $a, c, r, s \in \mathbb{Z}$ and $m \in \mathbb{N}$, we have

$$S_{m}(a, c, a - r, -s) - S_{m}(a, c, -r, -s)$$

$$\equiv \frac{a(m, c)}{2m} \left\{ 2 \left\lfloor \frac{s}{(m, c)} \right\rfloor + 1 \right\} - \frac{c(m, a)}{2m} \left\{ 2 \left\lfloor \frac{r}{(m, a)} \right\rfloor + 1 \right\} + \frac{ac}{2m}$$

$$\mod \frac{\mathbb{Z}}{2}.$$

Proof. Since (a, m)|a, we may apply Lemma 3.8 to see that the LHS equals to

$$\begin{split} &\sum_{i=0}^{m-1} \left(U(\frac{ai+a-r}{m}) - U(\frac{ai-r}{m}) \right) U(\frac{ci-s}{m}) \\ &= \sum_{i=0}^{m-1} \left(\frac{a}{m} + \left\lfloor -\frac{ai+a-r}{m} \right\rfloor - \left\lfloor -\frac{ai-r}{m} \right\rfloor \right) \left(\frac{ci-s}{m} + \left\lfloor -\frac{ci-s}{m} \right\rfloor + \frac{1}{2} \right). \end{split}$$

Moding out half integers, it is congruent to the sum $A + B + C \mod \frac{\mathbb{Z}}{2}$, where

$$\begin{split} A &:= \sum_{i=0}^{m-1} \frac{a}{m} U(\frac{ci-s}{m}) = \frac{a(m,c)}{m} U(\frac{-s}{(m,c)}) \\ &= \frac{a(m,c)}{m} \left(\frac{-s}{(m,c)} + \left\lfloor \frac{s}{(m,c)} \right\rfloor + \frac{1}{2} \right) \\ &= -\frac{as}{m} + \frac{a(m,c)}{2m} \left\{ 2 \left\lfloor \frac{s}{(m,c)} \right\rfloor + 1 \right\}, \\ B &:= -\frac{s}{m} \sum_{i=0}^{m-1} \left(\left\lfloor -\frac{a(i+1)-r}{m} \right\rfloor - \left\lfloor -\frac{ai-r}{m} \right\rfloor \right) \\ &= -\frac{s}{m} \left(\left\lfloor -\frac{am-r}{m} \right\rfloor - \left\lfloor -\frac{-r}{m} \right\rfloor \right) = \frac{as}{m}, \\ C &:= \frac{c}{m} \sum_{i=0}^{m-1} \left(\left\lfloor -\frac{a(i+1)-r}{m} \right\rfloor - \left\lfloor -\frac{ai-r}{m} \right\rfloor \right) i \\ &= \frac{c}{m} \left(\left\lfloor -\frac{am-r}{m} \right\rfloor (m-1) - \sum_{j=1}^{m-1} \left\lfloor -\frac{aj-r}{m} \right\rfloor \right). \end{split}$$

Making use of the convenient formula

(3.11)
$$\sum_{k=0}^{n-1} \left\lfloor \frac{mk+x}{n} \right\rfloor = \frac{(m-1)(n-1)}{2} + \frac{(m,n)-1}{2} + (m,n) \left\lfloor \frac{x}{(m,n)} \right\rfloor$$

$$(m \in \mathbb{Z}, n \in \mathbb{N}, x \in \mathbb{R})$$

(see [Kn73], exercise 2.4.37), we find

$$C = \frac{c}{m} \left\{ \frac{(m-1)(a+1)}{2} - \frac{(m,a)-1}{2} - (m,a) \left\lfloor \frac{r}{(m,a)} \right\rfloor + \left\lfloor \frac{r}{m} \right\rfloor + \left(-a + \left\lfloor \frac{r}{m} \right\rfloor \right) (m-1) \right\}$$

$$\equiv \frac{ac}{2m} - \frac{c(m,a)}{2m} \left\{ 2 \left\lfloor \frac{r}{(m,a)} \right\rfloor + 1 \right\} \mod \frac{\mathbb{Z}}{2}.$$

One concludes the lemma by evaluating A + B + C after the above computation. Q.E.D.

$\S 4.$ Congruence properties of elementary terms: $R^{\gamma}_{\alpha,\beta}$ or $Q^u_{a,c}$

In this section, we shall consider the elementary terms

$$R_{\alpha,\beta}^{\gamma} = R_{\alpha,\beta}^{\gamma}(\bar{\mathbf{x}}_{1}, \bar{\mathbf{x}}_{2}) := \frac{1}{\bar{\mathbf{x}}_{1} - 1} \left(\frac{(\bar{\mathbf{x}}_{1}^{-\alpha} \bar{\mathbf{x}}_{2}^{-\beta})^{\gamma} - 1}{\bar{\mathbf{x}}_{1}^{-\alpha} \bar{\mathbf{x}}_{2}^{-\beta} - 1} \cdot \frac{\bar{\mathbf{x}}_{2}^{-\beta} - 1}{\bar{\mathbf{x}}_{2} - 1} - \frac{\bar{\mathbf{x}}_{2}^{-\beta\gamma} - 1}{\bar{\mathbf{x}}_{2} - 1} \right)$$

introduced in Proposition 2.10 for $\alpha, \beta, \gamma \in \hat{\mathbb{Z}}$. Just for convenience of presentation, we convert $R_{\alpha,\beta}^{\gamma}$ to equivalent $Q_{a,c}^{u}(\bar{\mathbf{x}}_{1}, \bar{\mathbf{x}}_{2}) := R_{-c,-a}^{u}(\bar{\mathbf{x}}_{2}, \bar{\mathbf{x}}_{1})$, i.e., define for $a, c, u \in \hat{\mathbb{Z}}$, (4.1)

$$Q_{a,c}^u = Q_{a,c}^u(\bar{\mathbf{x}}_1, \bar{\mathbf{x}}_2) := \frac{1}{\bar{\mathbf{x}}_2 - 1} \left(\frac{(\bar{\mathbf{x}}_1^a \bar{\mathbf{x}}_2^c)^u - 1}{\bar{\mathbf{x}}_1^a \bar{\mathbf{x}}_2^c - 1} \cdot \frac{\bar{\mathbf{x}}_1^a - 1}{\bar{\mathbf{x}}_1 - 1} - \frac{\bar{\mathbf{x}}_1^{au} - 1}{\bar{\mathbf{x}}_1 - 1} \right).$$

Recall that these are elements of $\hat{\mathbb{Z}}[[\pi^{ab}]]$ where

$$\hat{\mathbb{Z}}[[\pi^{\mathrm{ab}}]] = \hat{\mathbb{Z}}[[\hat{\mathbb{Z}}^2]] = \varprojlim_{m,n} (\mathbb{Z}/m\mathbb{Z})[\bar{\mathbf{x}}_1, \bar{\mathbf{x}}_2]/(\bar{\mathbf{x}}_1^n - 1, \bar{\mathbf{x}}_2^n - 1)$$

and can be regarded as $\hat{\mathbb{Z}}$ -valued measures on $\hat{\mathbb{Z}}^2$. There is a natural immersion of

$$\mathbb{Z}[\mathbb{Z}^2] = \mathbb{Z}\left[\bar{\mathbf{x}}_1, \frac{1}{\bar{\mathbf{x}}_1}, \bar{\mathbf{x}}_2, \frac{1}{\bar{\mathbf{x}}_2}\right]$$

into $\hat{\mathbb{Z}}[[\pi^{ab}]]$ with dense image.

We begin by detecting explicit forms of $Q_{a,c}^u$ evaluated at pairs of roots of unity:

Lemma 4.2. For $(\zeta, \xi) \in \mu_m \times \mu_m$, we have

$$Q_{a,c}^{u}(\zeta,\xi) = \begin{cases} \frac{1}{\xi-1} \left(\frac{(\zeta^{a}\xi^{c})^{u}-1}{\zeta^{a}\xi^{c}-1} \cdot \frac{\zeta^{a}-1}{\zeta-1} - \frac{\zeta^{au}-1}{\zeta-1} \right), & (\zeta \neq 1, \xi \neq 1, \zeta^{a}\xi^{c} \neq 1), \\ \frac{u(\zeta^{a}-1)-(\zeta^{au}-1)}{(\xi-1)(\zeta-1)}, & (\zeta \neq 1, \xi \neq 1, \zeta^{a}\xi^{c} = 1), \\ \frac{cu\zeta^{au}}{\zeta-1} - \frac{c(\zeta^{au}-1)\zeta^{a}}{(\zeta^{a}-1)(\zeta-1)}, & (\zeta \neq 1, \xi = 1, \zeta^{a}\xi^{c} \neq 1), \\ \frac{a}{\xi-1} \left(\frac{\xi^{cu}-1}{\xi^{c}-1} - u \right), & (\zeta = 1, \xi \neq 1, \zeta^{a}\xi^{c} \neq 1), \\ \frac{acu(u-1)}{2}, & (\zeta = \xi = 1, \zeta^{a}\xi^{c} = 1), \\ 0. & (otherwise). \end{cases}$$

Proof. Let us examine $Q_{a,c}^u(\zeta,\xi)$ case by case:

Case 1: $\zeta \neq 1$, $\xi \neq 1$, $\zeta^a \xi^c \neq 1$. In this case, the terms $Q_{a,c}^u(\zeta,\xi)$ remain as they are, i.e.,

$$Q^u_{a,c}(\zeta,\xi) = \frac{1}{\xi-1} \left(\frac{(\zeta^a \xi^c)^u - 1}{\zeta^a \xi^c - 1} \cdot \frac{\zeta^a - 1}{\zeta - 1} - \frac{\zeta^{au} - 1}{\zeta - 1} \right).$$

Case 2: $\zeta \neq 1$, $\xi \neq 1$, $\zeta^a \xi^c = 1$. In this case, using de l'Hospital's rule, we find:

$$Q_{a,c}^u(\zeta,\xi) = \frac{1}{\xi-1} \left(u \frac{\zeta^a - 1}{\zeta - 1} - \frac{\zeta^{au} - 1}{\zeta - 1} \right) = \frac{u(\zeta^a - 1) - (\zeta^{au} - 1)}{(\xi - 1)(\zeta - 1)}.$$

Case 3: $\zeta \neq 1$, $\xi = 1$, $\zeta^a \xi^c \neq 1$. In this case, using de l'Hospital's rule, we find:

$$\begin{split} Q^u_{a,c}(\zeta,\xi) &= \frac{\zeta^{au}cu(\zeta^a-1)-c(\zeta^{au}-1)\zeta^a}{(\zeta^a-1)^2} \cdot \frac{\zeta^a-1}{\zeta-1} \\ &= \frac{cu\zeta^{au}}{\zeta-1} - \frac{c(\zeta^{au}-1)\zeta^a}{(\zeta^a-1)(\zeta-1)}. \end{split}$$

Case 4: $\zeta=1,\,\xi\neq1,\,\zeta^a\xi^c\neq1.$ In this case, it follows that

$$Q_{a,c}^u(\zeta,\xi) = \frac{1}{\xi-1}(a\frac{\xi^{cu}-1}{\xi^c-1}-au) = \frac{a}{\xi-1}(\frac{\xi^{cu}-1}{\xi^c-1}-u).$$

Case 5: $\zeta = \xi = 1$, $\zeta^a \xi^c = 1$. In this case, using de l'Hospital's rule twice, we find:

$$\begin{split} Q^u_{a,c}(\zeta,\xi) &= \lim_{y \to 1} \frac{a}{y-1} \left(\frac{y^{cu}-1-uy^c-u}{y^c-1} \right) \\ &= \lim_{y \to 1} \frac{a(cuy^{cu-1}-cuy^{c-1})}{(c+1)y^c-1-cy^{c-1}} \\ &= \lim_{y \to 1} \frac{a(cu(cu-1)y^{cu-2}-cu(c-1)y^{c-2})}{(c+1)cy^{c-1}-c(c-1)y^{c-2}} \\ &= \frac{a(cu(cu-1)-cu(c-1))}{c^2+c-c^2+c} = \frac{acu(u-1)}{2}. \end{split}$$

Case 6: $\zeta = \xi = 1$, $\zeta^a \xi^c \neq 1$. This case is impossible.

Case 7: $\zeta = 1, \, \xi \neq 1, \, \zeta^a \xi^c = 1$. In this case, it follows that

$$Q_{a,c}^u(\zeta,\xi) = \frac{1}{\xi-1} (\lim_{y^c \to 1} \frac{y^{cu}-1}{y^c-1} \cdot a - \lim_{x \to 1} \frac{x^{au}-1}{x-1}) = \frac{1}{\xi-1} (au-au) = 0.$$

Case 8: $\zeta \neq 1$, $\xi = 1$, $\zeta^a \xi^c = 1$. In this case, it follows that

$$Q_{a,c}^{u}(\zeta,\xi) = \lim_{y \to 1} \left\{ \lim_{x^a \to 1} \frac{(x^a - 1)}{(y - 1)(\zeta - 1)} \left(\frac{(x^a y^c)^u - 1}{x^a y^c - 1} - 1 \right) \right\} = 0.$$

Q.E.D.

Notation 4.4. For $a \in \hat{\mathbb{Z}}$ and $m \in \mathbb{Z}$, we denote by (a, m) the positive greatest common divisor, i.e., the maximal integer dividing both a, m in $\hat{\mathbb{Z}}$.

Theorem 4.5. Let m, N be natural numbers, and suppose that $a, c, u \in \hat{\mathbb{Z}}$ satisfy one of the following conditions:

- (i) $u \equiv 0 \mod mN$;
- (ii) $a \equiv 0 \mod mN$ and (c, m) = 1;
- (iii) $c \equiv 0 \mod mN$ and (a, m) = 1.

Then, for any $r, s \in \hat{\mathbb{Z}}$, we have the congruence

$$\int_{(m\hat{\mathbb{Z}})^2}\bar{\mathbf{x}}_1^{-r}\bar{\mathbf{x}}_2^{-s}dQ^u_{a,c}\equiv 0 \mod N/(N,2).$$

Proof. As recalled in (2.7), the left hand integral $\int_{(m\hat{\mathbb{Z}})^2} \bar{\mathbf{x}}_1^{-r} \bar{\mathbf{x}}_2^{-s} dQ_{a,c}^u$ can be interpreted as the principal coefficient a_{00} of the congruence:

$$\bar{\mathbf{x}}_{1}^{-r}\bar{\mathbf{x}}_{2}^{-s}Q_{a,c}^{u} \equiv \sum_{i=0}^{m-1} \sum_{j=0}^{m-1} a_{ij}\bar{\mathbf{x}}_{1}^{i}\bar{\mathbf{x}}_{2}^{j} \mod(\bar{\mathbf{x}}_{1}^{m} - 1, \bar{\mathbf{x}}_{2}^{m} - 1)$$

in the group ring $\hat{\mathbb{Z}}[(\mathbb{Z}/m\mathbb{Z})^2] = \hat{\mathbb{Z}}[\bar{\mathbf{x}}_1, \bar{\mathbf{x}}_2]/(\bar{\mathbf{x}}_1^m - 1, \bar{\mathbf{x}}_2^m - 1)$. Without loss of generality, we may assume $r, s \in \mathbb{Z}$. By standard Fourier transformation, we then obtain the following expression

(4.6)
$$a_{00} = \frac{1}{m^2} \sum_{\zeta \in \mu_m} \sum_{\xi \in \mu_m} \zeta^{-r} \xi^{-s} Q_{a,c}^u(\zeta, \xi).$$

Case (i): $u \equiv 0 \mod mN$. Using (4.6) and Lemma 4.2, one finds:

$$a_{00} = \frac{1}{m^2} \left(C_2 + C_3 + C_4 + \frac{acu(u-1)}{2} \right),$$

where, denoting by C_i the terms from Case i (i = 2, 3, 4) in (the proof of) Lemma 4.2,

$$C_{2} = u \sum_{\substack{\zeta, \xi \in \mu_{m} \setminus \{1\} \\ \zeta^{a} \xi^{c} = 1}} \frac{\zeta^{a-r} \xi^{-s} - \zeta^{-r} \xi^{-s}}{(\zeta - 1)(\xi - 1)}$$

$$= mu \left(S_{m}(a, c, a - r, -s) - S_{m}(a, c, -r, -s) \right),$$

$$C_{3} = cu \sum_{\zeta \in \mu_{m} \setminus \mu_{(m,a)}} \frac{\zeta^{-r}}{\zeta - 1} = cu \left((m, a)U(\frac{-r}{(m, a)}) - mU(\frac{-r}{m}) \right)$$

$$= \frac{uc(m, a)}{2} \left(2 \left\lfloor \frac{r}{(m, a)} \right\rfloor + 1 \right) - \frac{ucm}{2} \left(2 \left\lfloor \frac{r}{m} \right\rfloor + 1 \right),$$

$$C_{4} = -au \sum_{\xi \in \mu_{m} \setminus \mu_{(m,c)}} \frac{\xi^{-s}}{\xi - 1} = au \left((m, c)U(\frac{-s}{(m, c)}) - mU(\frac{-s}{m}) \right)$$

$$= -\frac{ua(m, c)}{2} \left(2 \left\lfloor \frac{s}{(m, c)} \right\rfloor + 1 \right) + \frac{uam}{2} \left(2 \left\lfloor \frac{s}{m} \right\rfloor + 1 \right).$$

It is then easily seen from Lemma 3.10 that $a_{00} \equiv 0 \mod N/(N,2)$. Case (ii): $a \equiv 0 \mod mN$ and (c,m) = 1. Using (4.6) and Lemma 4.2, one finds:

$$a_{00} = \frac{1}{m^2} \left(C_4' + C_4'' + \frac{acu(u-1)}{2} \right),$$

where

$$C'_{4} = a \sum_{\xi \in \mu_{m} \setminus \{1\}} \frac{\xi^{cu-s} - \xi^{-s}}{(\xi - 1)(\xi^{c} - 1)}$$

$$= am \left(\mathcal{S}_{m}(c, -1, cu - s, 0) - \mathcal{S}_{m}(c, -1, -s, 0) \right).$$

$$C''_{4} = -au \sum_{\xi \in \mu_{m} \setminus \{1\}} \frac{\xi^{-s}}{\xi - 1} = -au \left(\frac{1}{2} - mU(\frac{-s}{m}) \right).$$

$$= -au \left(\frac{1 - m}{2} - m \left\lfloor \frac{s}{m} \right\rfloor + s \right).$$

It then follows easily from Lemma 3.9 (applied for v := c) that $a_{00} \equiv 0 \mod N/(N, 2)$.

Case (iii): $c \equiv 0 \mod mN$ and (a, m) = 1. Using (4.6) and Lemma 4.2, one finds:

$$a_{00} = \frac{1}{m^2} \left(C_3' + C_3'' + \frac{acu(u-1)}{2} \right),$$

where

$$C_3' = -c \sum_{\zeta \in \mu_m \setminus \{1\}} \frac{\zeta^{au-r+a} - \zeta^{-r+a}}{(\zeta - 1)(\zeta^a - 1)}$$

$$= -cm \Big(\mathcal{S}_m(a, -1, au - r + a, 0) - \mathcal{S}_m(a, -1, -r + a, 0) \Big),$$

$$C_3'' = cu \sum_{\zeta \in \mu_m \setminus \{1\}} \frac{\zeta^{au-r}}{\zeta - 1}$$

$$= cu \left(\frac{1 - m}{2} - m \left\lfloor \frac{r - au}{m} \right\rfloor - (au - r) \right).$$

It then follows easily from Lemma 3.9 (applied for $v:=a,\ s:=r-a$) that $a_{00}\equiv 0$ mod N/(N,2). Q.E.D.

Proof of Theorem A. According to Proposition 2.10, $G_{uv}(\sigma)$ is decomposed as a sum

$$\begin{split} G_{uv}(\sigma) = & \frac{(\bar{\mathbf{x}}_1^{-b}\bar{\mathbf{x}}_2^{-d})^v - 1}{\bar{\mathbf{x}}_1^{-b}\bar{\mathbf{x}}_2^{-d} - 1} G_{01}(\sigma) + (\bar{\mathbf{x}}_1^{-b}\bar{\mathbf{x}}_2^{-d})^v \frac{(\bar{\mathbf{x}}_1^{-a}\bar{\mathbf{x}}_2^{-c})^u - 1}{\bar{\mathbf{x}}_1^{-a}\bar{\mathbf{x}}_2^{-c} - 1} G_{10}(\sigma) \\ & - \mathrm{Rest}(_{cd}^{ab}).(_v^u) \end{split}$$

with $\binom{ab}{cd} = \rho(\sigma) \in \mathrm{GL}_2(\hat{\mathbb{Z}})$, where $\mathrm{Rest}\binom{ab}{cd}.\binom{u}{v}$ is a sum

$$\operatorname{Rest}(_{cd}^{ab}).(_{v}^{u}) := R_{b,d}^{v} + (\bar{\mathbf{x}}_{1}^{-b}\bar{\mathbf{x}}_{2}^{-d})^{v}R_{a,c}^{u} + \frac{\bar{\mathbf{x}}_{1}^{-bv} - 1}{\bar{\mathbf{x}}_{1} - 1}\frac{\bar{\mathbf{x}}_{2}^{-cu} - 1}{\bar{\mathbf{x}}_{2} - 1}\bar{\mathbf{x}}_{2}^{-dv}.$$

It suffices to show that the volume $\mathbb{E}_m(\sigma; u, v) = \int_{(m\hat{\mathbb{Z}})^2} dG_{uv}(\sigma)$ does not alter modulo M when (u, v) is replaced by $(u', v') \equiv (u, v) \mod mN$. Let us first consider behaviors of the three terms free from $R^v_{b,d}$, $R^u_{a,c}$ in the above decomposition of $G_{uv}(\sigma)$, namely, the first two terms of $G_{uv}(\sigma)$ and the last term of $\operatorname{Rest}\binom{ab}{cd}.\binom{v}{u}$. Observe that, under our assumption $u \equiv u'$, $v \equiv v' \mod mN$, each of the differences

$$\begin{split} \bullet & \frac{(\bar{\mathbf{x}}_1^{-b}\bar{\mathbf{x}}_2^{-d})^v - 1}{\bar{\mathbf{x}}_1^{-b}\bar{\mathbf{x}}_2^{-d} - 1} - \frac{(\bar{\mathbf{x}}_1^{-b}\bar{\mathbf{x}}_2^{-d})^{v'} - 1}{\bar{\mathbf{x}}_1^{-b}\bar{\mathbf{x}}_2^{-d} - 1} = \frac{(\bar{\mathbf{x}}_1^{-b}\bar{\mathbf{x}}_2^{-d})^v - (\bar{\mathbf{x}}_1^{-b}\bar{\mathbf{x}}_2^{-d})^{v'}}{\bar{\mathbf{x}}_1^{-b}\bar{\mathbf{x}}_2^{-d} - 1}, \\ \bullet & (\bar{\mathbf{x}}_1^{-b}\bar{\mathbf{x}}_2^{-d})^v \frac{(\bar{\mathbf{x}}_1^{-a}\bar{\mathbf{x}}_2^{-c})^u - 1}{\bar{\mathbf{x}}_1^{-a}\bar{\mathbf{x}}_2^{-c} - 1} - (\bar{\mathbf{x}}_1^{-b}\bar{\mathbf{x}}_2^{-d})^{v'} \frac{(\bar{\mathbf{x}}_1^{-a}\bar{\mathbf{x}}_2^{-c})^{u'} - 1}{\bar{\mathbf{x}}_1^{-a}\bar{\mathbf{x}}_2^{-c} - 1} \\ &= (\bar{\mathbf{x}}_1^{-b}\bar{\mathbf{x}}_2^{-d})^v \frac{(\bar{\mathbf{x}}_1^{-a}\bar{\mathbf{x}}_2^{-c})^u - (\bar{\mathbf{x}}_1^{-a}\bar{\mathbf{x}}_2^{-c})^{u'}}{\bar{\mathbf{x}}_1^{-a}\bar{\mathbf{x}}_2^{-c} - 1} \\ &+ \left((\bar{\mathbf{x}}_1^{-b}\bar{\mathbf{x}}_2^{-d})^v - (\bar{\mathbf{x}}_1^{-b}\bar{\mathbf{x}}_2^{-d})^{v'} \right) \frac{(\bar{\mathbf{x}}_1^{-a}\bar{\mathbf{x}}_2^{-c})^{u'} - 1}{\bar{\mathbf{x}}_1^{-a}\bar{\mathbf{x}}_2^{-c} - 1}, \\ &+ \left((\bar{\mathbf{x}}_1^{-b}\bar{\mathbf{x}}_2^{-d})^v - (\bar{\mathbf{x}}_1^{-b}\bar{\mathbf{x}}_2^{-d})^{v'} \right) \frac{(\bar{\mathbf{x}}_1^{-a}\bar{\mathbf{x}}_2^{-c})^{u'} - 1}{\bar{\mathbf{x}}_1^{-a}\bar{\mathbf{x}}_2^{-c} - 1}, \\ &+ \left((\bar{\mathbf{x}}_1^{-b}\bar{\mathbf{x}}_2^{-d})^v - (\bar{\mathbf{x}}_1^{-b}\bar{\mathbf{x}}_2^{-d})^{v'} \right) \frac{(\bar{\mathbf{x}}_1^{-a}\bar{\mathbf{x}}_2^{-c})^{u'} - 1}{\bar{\mathbf{x}}_1^{-a}\bar{\mathbf{x}}_2^{-c} - 1}, \\ &+ \frac{\bar{\mathbf{x}}_1^{-bv} - 1}{\bar{\mathbf{x}}_2 - 1} \bar{\mathbf{x}}_2^{-dv} - \frac{\bar{\mathbf{x}}_1^{-bv'} - 1}{\bar{\mathbf{x}}_1 - 1} \bar{\mathbf{x}}_2^{-dv'} \\ &= \frac{\bar{\mathbf{x}}_1^{-bv} - 1}{\bar{\mathbf{x}}_1 - 1} \frac{\bar{\mathbf{x}}_2^{-cu} - \bar{\mathbf{x}}_2^{-cu'}}{\bar{\mathbf{x}}_2 - 1} \bar{\mathbf{x}}_2^{-dv} \\ &+ \left(\frac{\bar{\mathbf{x}}_1^{-bv} - 1}{\bar{\mathbf{x}}_1 - 1} \left(\bar{\mathbf{x}}_2^{-dv} - \bar{\mathbf{x}}_2^{-dv'} \right) + \frac{\bar{\mathbf{x}}_1^{-bv} - \bar{\mathbf{x}}_1^{-bv'}}{\bar{\mathbf{x}}_1 - 1} \bar{\mathbf{x}}_2^{-dv'} \right) \frac{\bar{\mathbf{x}}_2^{-cu'} - 1}{\bar{\mathbf{x}}_2 - 1} \end{aligned}$$

turns out to be annihilated by reduction modulo the ideal $(N, \bar{\mathbf{x}}_1^m - 1, \bar{\mathbf{x}}_2^m - 1)$ of $\hat{\mathbb{Z}}[[\pi^{ab}]]$. This, together with the expression (2.7), implies that

$$\int_{(m\hat{\mathbb{Z}})^{2}} d\left(\frac{(\bar{\mathbf{x}}_{1}^{-b}\bar{\mathbf{x}}_{2}^{-d})^{v} - 1}{\bar{\mathbf{x}}_{1}^{-b}\bar{\mathbf{x}}_{2}^{-d} - 1} G_{01}(\sigma) + (\bar{\mathbf{x}}_{1}^{-b}\bar{\mathbf{x}}_{2}^{-d})^{v} \frac{(\bar{\mathbf{x}}_{1}^{-a}\bar{\mathbf{x}}_{2}^{-c})^{u} - 1}{\bar{\mathbf{x}}_{1}^{-a}\bar{\mathbf{x}}_{2}^{-c} - 1} G_{10}(\sigma) - \frac{\bar{\mathbf{x}}_{1}^{-bv} - 1}{\bar{\mathbf{x}}_{1} - 1} \frac{\bar{\mathbf{x}}_{2}^{-cu} - 1}{\bar{\mathbf{x}}_{2} - 1} \bar{\mathbf{x}}_{2}^{-dv}\right)$$

is invariant modulo M (a factor of N) as long as $(u,v) \in \mathbb{Z}^2$ belongs to a same congruence class modulo mN. It remains to consider the behavior of $\int_{(m\hat{\mathbb{Z}})^2} d(R^v_{b,d} + (\bar{\mathbf{x}}_1^{-b}\bar{\mathbf{x}}_2^{-d})^v R^u_{a,c})$ under the change from (u,v) to $(u',v') \equiv (u,v) \mod mN$. First, note the general equation: (4.7)

$$R_{\alpha,\beta}^{\gamma} - R_{\alpha,\beta}^{\gamma'} = (\bar{\mathbf{x}}_{1}^{-\alpha}\bar{\mathbf{x}}_{2}^{-\beta})^{\gamma'}R_{\alpha,\beta}^{\gamma-\gamma'} + \bar{\mathbf{x}}_{2}^{-\beta\gamma'}\frac{\bar{\mathbf{x}}_{1}^{-\alpha\gamma'} - 1}{\bar{\mathbf{x}}_{1} - 1} \cdot \frac{\bar{\mathbf{x}}_{2}^{-\beta(\gamma-\gamma')} - 1}{\bar{\mathbf{x}}_{2} - 1}.$$

Applying (4.7) with $(\alpha, \beta) = (b, d)$ and $(\gamma, \gamma') = (v, v')$, we find from Theorem 4.5 (i) that $\int_{(m\hat{\mathbb{Z}})^2} (dR_{b,d}^v - dR_{b,d}^{v'}) \equiv 0 \mod M$. We can also see that the integration of

$$\begin{split} &(\bar{\mathbf{x}}_1^{-b}\bar{\mathbf{x}}_2^{-d})^v R_{a,c}^u - (\bar{\mathbf{x}}_1^{-b}\bar{\mathbf{x}}_2^{-d})^{v'} R_{a,c}^{u'} \\ &= (\bar{\mathbf{x}}_1^{-b}\bar{\mathbf{x}}_2^{-d})^v (R_{a,c}^u - R_{a,c}^{u'}) + ((\bar{\mathbf{x}}_1^{-b}\bar{\mathbf{x}}_2^{-d})^v - (\bar{\mathbf{x}}_1^{-b}\bar{\mathbf{x}}_2^{-d})^{v'}) R_{a,c}^{u'} \end{split}$$

over $(m\hat{\mathbb{Z}})^2$ is congruent to $0 \mod M$, after applying (4.7) with $(\alpha, \beta) = (a, c), (\gamma, \gamma') = (u, u')$ to the first term of the above last line. Thus, summing up these arguments we conclude

$$\mathbb{E}_m(\sigma; u, v) \equiv \mathbb{E}_m(\sigma; u', v') \mod M$$

under the condition $(u, v) \equiv (u', v') \mod mN$.

Q.E.D.

§5. Proof of Theorem B

It suffices to show the following more refined proposition:

Proposition 5.1. Let $m, M \in \mathbb{N}$ and set $N = 2^{\varepsilon}M$ where $\varepsilon = 0, 1$ according as M is odd or even respectively. Let $\sigma, \tau \in A$ satisfy $\rho(\sigma) \equiv \rho(\tau) \equiv 1 \mod mN$. Then, for every pair $(u, v) \in \hat{\mathbb{Z}}^2$,

$$G_{uv}(\sigma\tau) \equiv G_{uv}(\sigma) + G_{uv}(\tau)$$

in $(\mathbb{Z}/M\mathbb{Z})[(\mathbb{Z}/m\mathbb{Z})^2]$. In particular, it holds that

$$\mathbb{E}_m(\sigma\tau) \equiv \mathbb{E}_m(\sigma) + \mathbb{E}_m(\tau) \mod M.$$

In fact, the twisted composition law ([N10] §3.5) implies that, generally for $\sigma, \tau \in A$, $(u, v) \in \hat{\mathbb{Z}}$,

(5.2)
$$G_{\binom{u}{n}}(\sigma\tau) = G_{\binom{u}{n}}^{\rho(\tau)}(\sigma) + \chi(\sigma) \cdot \sigma \left(G_{\binom{u}{n}}(\tau)\right)$$

holds, where

$$(5.3) G_{\binom{u}{v}}^{\rho(\tau)}(\sigma) := \left[(\sigma\tau) \left(\frac{\bar{\mathbf{x}}_2^{-v} - 1}{\bar{\mathbf{x}}_2^{-1} - 1} \right) \right] \cdot G_{\rho(\tau)\binom{0}{1}}(\sigma)$$

$$+ \left[(\sigma\tau) \left(\bar{\mathbf{x}}_2^{-v} \frac{\bar{\mathbf{x}}_1^{-u} - 1}{\bar{\mathbf{x}}_1^{-1} - 1} \right) \right] \cdot G_{\rho(\tau)\binom{1}{0}}(\sigma)$$

$$- \left[\operatorname{Rest}\rho(\sigma\tau) \cdot \binom{u}{v} \right] + \chi(\sigma) \cdot \sigma \left[\operatorname{Rest}\rho(\tau) \cdot \binom{u}{v} \right].$$

(In [N10] §3.5, twisted composition laws were discussed for the monodromy images in A^{\flat} , but the arguments in loc. cit. hold true for general elements of A.) First, Theorem 4.5 (ii), (iii) ensure the following

Lemma 5.4. Assume $A \in GL_2(\hat{\mathbb{Z}})$ satisfies $A \equiv 1 \mod mN$. Then,

$$\int_{(m\hat{\mathbb{Z}})^2} \bar{\mathbf{x}}_1^{-r} \bar{\mathbf{x}}_2^{-s} d \mathrm{Rest} A. (_v^u) \equiv 0 \mod M$$

for all
$$(r,s) \in \mathbb{Z}^2$$
, in other words, Rest $A.\binom{u}{v} \equiv 0$ in $(\mathbb{Z}/M\mathbb{Z})[(\mathbb{Z}/m\mathbb{Z})^2]$.

From this lemma we immediately see that the last two terms of (5.3) vanish in the reduced group ring $(\mathbb{Z}/M\mathbb{Z})[(\mathbb{Z}/m\mathbb{Z})^2]$ and that the proof of the above proposition is reduced to

Lemma 5.5. Suppose $\rho(\sigma) \equiv \rho(\tau) \equiv 1 \mod mN$. Then, for every $(u,v) \in \hat{\mathbb{Z}}^2$, we have

$$G_{\binom{u}{v}}^{\rho(\tau)}(\sigma) \equiv G_{uv}(\sigma)$$

in $(\mathbb{Z}/M\mathbb{Z})[(\mathbb{Z}/m\mathbb{Z})^2]$.

Proof. Again by using Lemma 5.4, we find that Proposition 2.10 implies, for $\sigma \in A$ with $\rho(\sigma) \equiv 1 \mod mN$,

$$G_{uv}(\sigma) = \frac{\bar{\mathbf{x}}_2^{-v} - 1}{\bar{\mathbf{x}}_2^{-1} - 1} G_{01}(\sigma) + \bar{\mathbf{x}}_2^{-v} \frac{\bar{\mathbf{x}}_1^{-u} - 1}{\bar{\mathbf{x}}_1^{-1} - 1} G_{10}(\sigma)$$

in $(\mathbb{Z}/M\mathbb{Z})[(\mathbb{Z}/m\mathbb{Z})^2]$. Assume $\rho(\tau) = \binom{ab}{c\ d} \in \operatorname{GL}_2(\hat{\mathbb{Z}})$ which is assumed $\equiv 1 \mod mN$. In particular, since $(a,c) \equiv (1,0), (b,d) \equiv (0,1) \mod mN$, we have

$$G_{ac}(\sigma) \equiv G_{10}(\sigma), \quad G_{bd}(\sigma) \equiv G_{01}(\sigma) \text{ in } (\mathbb{Z}/M\mathbb{Z})[(\mathbb{Z}/m\mathbb{Z})^2].$$

Putting all together into (5.3), we obtain

$$\begin{split} G_{\binom{u}{v}}^{\rho(\tau)}(\sigma) &\equiv \left[(\sigma \rho(\tau)) \left(\frac{\bar{\mathbf{x}}_2^{-v} - 1}{\bar{\mathbf{x}}_2^{-1} - 1} \right) \right] \cdot G_{bd}(\sigma) \\ &+ \left[(\sigma \rho(\tau)) \left(\bar{\mathbf{x}}_2^{-v} \frac{\bar{\mathbf{x}}_1^{-u} - 1}{\bar{\mathbf{x}}_1^{-1} - 1} \right) \right] \cdot G_{ac}(\sigma) \\ &\equiv \frac{\bar{\mathbf{x}}_2^{-v} - 1}{\bar{\mathbf{x}}_2^{-1} - 1} \cdot G_{01}(\sigma) + \bar{\mathbf{x}}_2^{-v} \frac{\bar{\mathbf{x}}_1^{-u} - 1}{\bar{\mathbf{x}}_1^{-1} - 1} \cdot G_{10}(\sigma) \\ &\equiv G_{uv}(\sigma) \end{split}$$

in $(\mathbb{Z}/M\mathbb{Z})[(\mathbb{Z}/m\mathbb{Z})^2]$. This completes the proof. Q.E.D.

Thus, the proof of Proposition 5.1, and hence that of Theorem B, are settled.

§6. Numerical examples for Theorem A

Before closing this paper, we shall provide some numerical examples illustrating congruence periodicity properties of $\mathbb{E}_m(\sigma; u, v)$ in (u, v) of Therem A. We employ $\sigma \in \operatorname{Aut}(\pi)$ defined as the composite $\sigma := \tau_1^{-2} \tau_2^6 \tau_1^2 \tau_2(\tau_1 \tau_2)^{-3}$ of the basic two automorphisms $\tau_1, \tau_2 \in \operatorname{Aut}(\pi)$:

$$\tau_1: \begin{cases} \mathbf{x}_1 \mapsto \mathbf{x}_1 \mathbf{x}_2^{-1}, \\ \mathbf{x}_2 \mapsto \mathbf{x}_2 \end{cases} \quad \text{and} \quad \tau_2: \begin{cases} \mathbf{x}_1 \mapsto \mathbf{x}_1, \\ \mathbf{x}_2 \mapsto \mathbf{x}_2 \mathbf{x}_1. \end{cases}$$

In [N10] §7, we obtained an explicit formula to calculate $\mathbb{E}_m(\sigma; u, v)$ $(u, v \in \mathbb{Z})$ from the matrix image of σ by $\rho : \operatorname{Aut}(\pi) \to \operatorname{GL}_2(\mathbb{Z})$ (1.1):

$$\rho(\sigma) = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 6 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}^{-3} = \begin{pmatrix} 11 & 5 \\ 24 & 11 \end{pmatrix}$$

through relevant generalized Dedekind sums together with certain other elementary terms. According to this formula, the values $\mathbb{E}_2(\sigma; u, v)$, for m=2 and say in the range $-4 \leq u, v \leq 4$, are given by the following table. More precisely, the matrix $\left[\mathbb{E}_2(\sigma, i-5, j-5)\right]_{i,j=1}^9$ is given by

$$\begin{bmatrix} -1137 & -981 & -812 & -681 & -542 & -436 & -327 & -246 & -167 \\ -783 & -654 & -518 & -414 & -308 & -229 & -153 & -99 & -53 \\ -494 & -393 & -289 & -213 & -139 & -88 & -44 & -18 & -4 \\ -272 & -198 & -127 & -78 & -37 & -13 & -2 & -3 & -22 \\ -115 & -69 & -30 & -9 & 0 & -4 & -25 & -54 & -105 \\ -25 & -6 & 0 & -6 & -30 & -61 & -115 & -171 & -255 \\ 0 & -9 & -35 & -69 & -125 & -184 & -270 & -354 & -470 \\ -42 & -78 & -137 & -198 & -287 & -373 & -492 & -603 & -752 \\ -149 & -213 & -304 & -393 & -514 & -628 & -779 & -918 & -1099 \end{bmatrix}$$

Theorem A tells us certain periodical properties of the above matrix after taking the entries' residues by a fixed modulus: Generally, the residual values " $\mathbb{E}_m(\sigma;u,v)$ mod M" have $mN\times mN$ -periodicity, where $N=2^\varepsilon M$ ($\varepsilon=0,1$ according as $2\nmid M$ or 2|M respectively). In the case $m=2,\ M=3$, the values " $\mathbb{E}_2(\sigma;u,v)$ mod 3" should have 6×6 -periodicity. For the above chosen σ , cutting out the range $-6\leq u,v\leq 6$, we obtain the following matrix $\left[\mathbb{E}_2(\sigma,i-7,j-7)\ \text{mod }3\right]_{i,j=1}^{13}$, where

we find 6×6 -periodicity:

In the case $m=2,\ M=2$ (hence N=4), the values " $\mathbb{E}_2(\sigma;u,v)$ mod 2" should have 8×8 -periodicity. For the above chosen σ , cutting out the range $-8\leq u,v\leq 8$, we obtain the following matrix $\left[\mathbb{E}_2(\sigma,i-9,j-9) \mod 3\right]_{i,j=1}^{17}$, where 8×8 -periodicity is found:

```
        0
        0
        1
        1
        1
        0
        1
        0
        1
        1
        0
        1
        0
        1
        1
        1
        0
        1
        0
        1
        1
        1
        1
        0
        0
        0
        0
        1
        1
        1
        1
        0
        0
        0
        0
        0
        0
        0
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        0
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
```

References

- [BR07] M. Beck and S. Robins, Computing the Continuous Discretely. Integer-Point Enumeration in Polyhedra, Undergrad. Texts Math., Springer-Verlag, 2007.
- [Ih86] Y. Ihara, On Galois representations arising from towers of coverings of $\mathbf{P}^1 \{0, 1, \infty\}$, Invent. Math., **86** (1986), 427–459.
- [Ih99-00] Y. Ihara, On beta and gamma functions associated with the Grothendieck-Teichmüller modular group In: Aspects of Galois Theory, (eds. H. Voelklein et.al), London Math. Soc. Lecture Note Ser., 256, Cambridge Univ. Press, 1999, pp. 144–179; Part II, J. Reine Angew. Math., 527 (2000), 1–11.
- [Kn73] D. E. Knuth, The Art of Computer Programming, Fundamental Algorithms, Vol. 1, 2nd ed., Addison-Wesley, Reading, Mass., 1973.
- [N95] H. Nakamura, On exterior Galois representations associated with open elliptic curves, J. Math. Sci. Univ. Tokyo, 2 (1995), 197–231.
- [N99] H. Nakamura, Tangential base points and Eisenstein power series, In: Aspects of Galois Theory, (eds. H. Völkein, D. Harbater, P. Müller and J. G. Thompson), London Math. Soc. Lecture Note Ser., 256, Cambridge Univ. Press, 1999, pp. 202–217.
- [N10] H. Nakamura, On arithmetic monodromy representations of Eisenstein type in fundamental groups of once punctured elliptic curves, RIMS-1691 preprint, February 2010.
- [Tsu95] H. Tsunogai, On the automorphism group of a free pro-*l* meta-abelian group and an application to Galois representations, Math. Nachr., **171** (1995), 315–324.
- [RG72] H. Rademacher and E. Grosswald, Dedekind Sums, The Carus Mathematical Monographs, 16, The Mathematical Association of America, Washington, DC, 1972.

Department of Mathematics, Faculty of Science Okayama University, Okayama 700-8530 Japan

E-mail address: h-naka@math.okayama-u.ac.jp