Some congruence properties of Eisenstein invariants associated to elliptic curves

Hiroaki Nakamura

§1. Introduction

Let π be a free profinite group with free generators $\mathbf{x}_{1}, \mathbf{x}_{2}$ and let π^{\prime} (resp. $\pi^{\prime \prime}$) denote the commutator (resp. double-commutator) subgroup of π. Regard the full automorphism group $\mathrm{A}:=\operatorname{Aut}(\pi)$ acting on the left of π. The purpose of this paper is to study some elementary arithmetic properties of a certain series of invariants

$$
\mathbb{E}_{m}: \mathrm{A} \times \hat{\mathbb{Z}}^{2} \longrightarrow \hat{\mathbb{Z}} \quad(m \in \mathbb{N})
$$

reflecting the action of A on the meta-abelian quotient $\pi / \pi^{\prime \prime}$. In particular, we shall introduce a canonical series of finite index subgroups of A fully exhausting congruity of the invariants \mathbb{E}_{m} in a systematical way.

Motivation to this paper came from our previous work [N10] where π was given as the fundamental group of an affine elliptic curve $E: y^{2}=$ $4 x^{3}-g_{2} x-g_{3}$ over a field K of characteristic zero. A choice of a $K-$ rational tangential base point at infinity of the elliptic curve E gives rise to a natural Galois representation $\varphi: \operatorname{Gal}(\bar{K} / K) \rightarrow \mathrm{A}$. Given π being presented as $\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{z} \mid\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right] \mathbf{z}=1\right\rangle$ so that \mathbf{z} generates an inertia over the infinity puncture, we introduced in loc. cit. certain arithmetic invariants

$$
\mathbb{E}_{m}: \operatorname{Gal}(\bar{K} / K) \times \hat{\mathbb{Z}}^{2} \longrightarrow \hat{\mathbb{Z}} \quad(m \in \mathbb{N})
$$

(induced from φ) that converge to the "Eisenstein measure" $\mathcal{E}_{\sigma}(\sigma \in$ $\operatorname{Gal}\left(\bar{K} / K\left(E_{t o r}\right)\right)$ of [N95]-[N99]. Especially, we showed an explicit formula for \mathbb{E}_{m} in terms of Kummer properties of modular units evaluated at E. By Galois correspondence, those finite index subgroups of A obtained in this paper yield a sequence of finite Galois extensions of K that

[^0]Revised February 8, 2012.
This work was partially supported by JSPS KAKENHI 21340009.
can be controlled by the invariants \mathbb{E}_{m}. We hope to discuss applications to arithmetic of elliptic curves in our future works.

Our first main statement is:
Theorem A. Let $m, M \in \mathbb{N}$, and set $N=2^{\varepsilon} M$ with $\varepsilon=0,1$ according as $2 \nmid M, 2 \mid M$ respectively. If $(u, v) \equiv\left(u^{\prime}, v^{\prime}\right) \bmod m N$, then $\mathbb{E}_{m}(\sigma ; u, v) \equiv \mathbb{E}_{m}\left(\sigma ; u^{\prime}, v^{\prime}\right)$ mod M for every $\sigma \in \mathrm{A}$.

This theorem improves our previous result in [N10] Corollary 6.9.8 (cf. Remark 3.4.3 in loc.cit.) where the congruence was shown for M square integers by using a geometric method different from the present paper.

By virtue of the above theorem, we can define a map

$$
\mathbb{E}_{m, M}: \mathrm{A} \rightarrow(\mathbb{Z} / M \mathbb{Z})\left[(\mathbb{Z} / m N \mathbb{Z})^{2}\right]
$$

which sends $\sigma \in \mathrm{A}$ to an element $\mathbb{E}_{m, M}(\sigma)$ of the finite group ring $(\mathbb{Z} / M \mathbb{Z})\left[(\mathbb{Z} / m N)^{2}\right]$ given by

$$
\mathbb{E}_{m, M}(\sigma) \equiv \sum_{\mathbf{a} \in(\mathbb{Z} / m N \mathbb{Z})^{2}} \mathbb{E}_{m}(\sigma ; u, v) \mathbf{e}_{\mathbf{a}} \bmod M
$$

Here $(u, v) \in \hat{\mathbb{Z}}^{2}$ is chosen to be a representative for any class a \in $(\mathbb{Z} / m N \mathbb{Z})^{2}$, while $\mathbf{e}_{\mathbf{a}}$ denotes the symbol for the image of $\overline{\mathbf{x}}_{1}^{u} \overline{\mathbf{x}}_{2}^{v}$ by the natural projection:
$\hat{\mathbb{Z}}\left[\left[\pi^{\mathrm{ab}}\right]\right] \rightarrow(\mathbb{Z} / M \mathbb{Z})\left[\overline{\mathbf{x}}_{1}, \overline{\mathbf{x}}_{2}\right] /\left(\overline{\mathbf{x}}_{1}^{m N}-1, \overline{\mathbf{x}}_{2}^{m N}-1\right)=(\mathbb{Z} / M \mathbb{Z})\left[(\mathbb{Z} / m N \mathbb{Z})^{2}\right]$.
Next, let $\rho: \mathrm{A} \rightarrow \mathrm{GL}_{2}(\hat{\mathbb{Z}})$ be the induced action of A on the abelianization $\pi^{\mathrm{ab}}:=\pi / \pi^{\prime}$ as in

$$
\rho(\sigma)=\left(\begin{array}{ll}
a(\sigma) & b(\sigma) \tag{1.1}\\
c(\sigma) & d(\sigma)
\end{array}\right) \quad(\sigma \in \mathrm{A})
$$

so that $\sigma\left(\mathbf{x}_{1}\right) \equiv \mathbf{x}_{1}^{a(\sigma)} \mathbf{x}_{2}^{c(\sigma)}, \sigma\left(\mathbf{x}_{2}\right) \equiv \mathbf{x}_{1}^{b(\sigma)} \mathbf{x}_{2}^{d(\sigma)} \bmod \pi^{\prime}$. Letting $N=$ $2^{\varepsilon} M$ being as above, we shall consider two subsets $\mathrm{A}_{m, M}^{\prime \prime} \subset \mathrm{A}_{m, M}^{\prime}$ of A defined by

$$
\begin{aligned}
& \mathrm{A}_{m, M}^{\prime}:=\{\sigma \in \mathrm{A} \mid \rho(\sigma) \equiv 1 \bmod m N\} \\
& \mathrm{A}_{m, M}^{\prime \prime}:=\left\{\sigma \in \mathrm{A}_{m, M}^{\prime} \mid \mathbb{E}_{m}(\sigma ; u, v) \equiv 0 \bmod M(\forall u, v \in \hat{\mathbb{Z}})\right\} .
\end{aligned}
$$

By definition, $\mathrm{A}_{m, M}^{\prime}$ obviously forms a finite index subgroup of A .

Theorem B. The mapping $\mathbb{E}_{m, M}$ restricted on $\mathrm{A}_{m, M}^{\prime}$ gives an additive homomorphism

$$
\mathrm{A}_{m, M}^{\prime} \rightarrow(\mathbb{Z} / M \mathbb{Z})\left[(\mathbb{Z} / m N \mathbb{Z})^{2}\right]
$$

with kernel $\mathrm{A}_{m, M}^{\prime \prime}$. Especially, $\mathrm{A}_{m, M}^{\prime \prime}$ forms a finite index subgroup of $\mathrm{A}_{m, M}^{\prime}$.

The construction of this paper is as follows. In $\S 2$, we review the basic definition of our Eisenstein invariants \mathbb{E}_{m} mostly from [N10]. In $\S 3$, we introduce certain arithmetic sums (Fourier-Dedekind-like sums) \mathcal{S}_{m} and discuss their congruence properties. In $\S 4$, the sums \mathcal{S}_{m} are slotted into certain elementary measures $R_{\alpha, \beta}^{\gamma} \in \widehat{\mathbb{Z}}\left[\left[\hat{\mathbb{Z}}^{2}\right]\right]$ which will turn out to vanish in reduced group rings $(\mathbb{Z} / M \mathbb{Z})\left[(\mathbb{Z} / m \mathbb{Z})^{2}\right]$ under suitable congruence assumptions on parameters α, β, γ with respect to m, M (Theorem 4.5). We then give a proof of Theorem A. Finally, in $\S 5$, making use of Theorem 4.5, we settle a proof of Theorem B.

Acknowledgements. The author would like to thank very much the anonymous referee for many valuable comments including a crucial point which completes the proof of Theorem A in $\S 4$.

§2. The Eisenstein invariants \mathbb{E}_{m}

In this section, we shall recall the construction of our invariants \mathbb{E}_{m} and add a couple of basic properties which will be necessary for later sections.

Let π be the free profinite group with given generators $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{z}$ and a relation $\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right] \mathbf{z}=1$, and denote $\pi \supset \pi^{\prime} \supset \pi^{\prime \prime} \supset \cdots$ the derived series (in the profinite sense). Then, the first quotient π / π^{\prime} is the abelianization $\pi^{\text {ab }}$ of π and may be regarded as

$$
\begin{equation*}
\pi^{\mathrm{ab}}\left(:=\pi / \pi^{\prime}\right)=\hat{\mathbb{Z}} \overline{\mathbf{x}}_{1} \oplus \hat{\mathbb{Z}} \overline{\mathbf{x}}_{2} \quad\left(\overline{\mathbf{x}}_{i}=\mathbf{x}_{i} \bmod \pi^{\prime}\right) \tag{2.1}
\end{equation*}
$$

The second subquotient $\pi^{\prime} / \pi^{\prime \prime}$ has a natural action of $\pi^{\text {ab }}$ by conjugation, hence may be regarded as a module over the complete group ring $\hat{\mathbb{Z}}\left[\left[\pi^{\mathrm{ab}}\right]\right]$. The profinite Blanchfield-Lyndon-Ihara exact sequence (cf. [Ih86, Ih99-00]) shows that $\pi^{\prime} / \pi^{\prime \prime}$ is a free $\hat{\mathbb{Z}}\left[\left[\pi^{\mathrm{ab}}\right]\right]$-cyclic module generated by the image $\overline{\mathbf{z}}$ of $\mathbf{z} \in \pi^{\prime}$ in $\pi^{\prime} / \pi^{\prime \prime}$: Each element of $\pi^{\prime} / \pi^{\prime \prime}$ can be written uniquely as $\mu \cdot \overline{\mathbf{z}}\left(\mu \in \hat{\mathbb{Z}}\left[\left[\pi^{\mathrm{ab}}\right]\right]\right)$.

Notations being as in $\S 1$, suppose we are given an automorphism $\sigma \in \mathrm{A}$. For each pair $(u, v) \in \hat{\mathbb{Z}}^{2}$, observe that

$$
\begin{equation*}
\mathcal{S}_{u v}(\sigma):=\sigma\left(\mathbf{x}_{2}^{-v} \mathbf{x}_{1}^{-u}\right) \cdot\left(\mathbf{x}_{1}^{a(\sigma) u+b(\sigma) v} \mathbf{x}_{2}^{c(\sigma) u+d(\sigma) v}\right) \tag{2.2}
\end{equation*}
$$

lies in π^{\prime}. Then, one obtains, by virtue of the above free cyclic $\hat{\mathbb{Z}}\left[\left[\pi^{\mathrm{ab}}\right]\right]$ module structure of $\pi^{\prime} / \pi^{\prime \prime}$, a unique element $G_{u v}(\sigma) \in \hat{\mathbb{Z}}\left[\left[\pi^{\mathrm{ab}}\right]\right]$ determined by the equation

$$
\begin{equation*}
\mathcal{S}_{u v}(\sigma) \equiv G_{u v}(\sigma) \cdot \overline{\mathbf{z}} \tag{2.3}
\end{equation*}
$$

in $\pi^{\prime} / \pi^{\prime \prime}$. Note that, by definition, $\mathcal{S}_{00}(\sigma)=1$, hence $G_{00}(\sigma)=0$.
Now, regard the above element $G_{u v}(\sigma)$ as a measure on the profinite space $\pi^{\mathrm{ab}}=\hat{\mathbb{Z}}^{2}$ and define $\mathbb{E}_{m}(\sigma ; u, v)$ to be the volume of the subspace $(m \hat{\mathbb{Z}})^{2} \subset \hat{\mathbb{Z}}^{2}$ by the measure $G_{u v}(\sigma)$:

$$
\begin{equation*}
\mathbb{E}_{m}(\sigma ; u, v):=\int_{(m \hat{\mathbb{Z}})^{2}} d G_{u v}(\sigma) \tag{2.4}
\end{equation*}
$$

In general, the integration over $(m \hat{\mathbb{Z}})^{2} \subset \hat{\mathbb{Z}}^{2}$ of the measure $d \mu$ corresponding to an element $\mu \in \hat{\mathbb{Z}}^{2}\left[\left[\pi^{\mathrm{ab}}\right]\right]$ may be rephrased in the following more down-to-earth terminologies. First, recall that the complete group ring $\hat{\mathbb{Z}}\left[\left[\pi^{\mathrm{ab}}\right]\right]$ is the projective limit of the group rings:

$$
\begin{equation*}
\hat{\mathbb{Z}}\left[\left[\pi^{\mathrm{ab}}\right]\right]={\underset{\check{n}}{ }}_{\lim _{\mathrm{Z}}}\left[\overline{\mathbf{x}}_{1}, \overline{\mathbf{x}}_{2}\right] /\left(\overline{\mathbf{x}}_{1}^{n}-1, \overline{\mathbf{x}}_{2}^{n}-1\right) \tag{2.5}
\end{equation*}
$$

where the projective system forms over $n \in \mathbb{N}$ multiplicatively. Take the m-th component of μ and write

$$
\begin{equation*}
\mu \equiv \sum_{i=0}^{m-1} \sum_{j=0}^{m-1} a_{i j} \overline{\mathbf{x}}_{1}^{i} \overline{\mathbf{x}}_{2}^{j} \quad \bmod \left(\overline{\mathbf{x}}_{1}^{m}-1, \overline{\mathbf{x}}_{2}^{m}-1\right) \tag{2.6}
\end{equation*}
$$

in the group ring $\hat{\mathbb{Z}}\left[(\mathbb{Z} / m \mathbb{Z})^{2}\right]=\hat{\mathbb{Z}}\left[\overline{\mathbf{x}}_{1}, \overline{\mathbf{x}}_{2}\right] /\left(\overline{\mathbf{x}}_{1}^{m}-1, \overline{\mathbf{x}}_{2}^{m}-1\right)$. The issued integral is then nothing but the principal coefficient a_{00} of this expression:

$$
\begin{equation*}
\int_{(m \hat{\mathbb{Z}})^{2}} d \mu=a_{00} \tag{2.7}
\end{equation*}
$$

Remark 2.8. In the study of monodromy representations in fundamental groups of once punctured elliptic curves, the subgroup

$$
\mathrm{A}^{b}:=\left\{\sigma \in \mathrm{A} \mid \sigma(\mathbf{z})=\mathbf{z}^{a}\left(\exists a \in \hat{\mathbb{Z}}^{\times}\right)\right\} \subset \mathrm{A}
$$

is more essential than A itself. In particular, for $\sigma \in \mathrm{A}^{b}$ with $\rho(\sigma)=\binom{a b}{c d}$, we have Tsunogai's equation ([Tsu95] Prop. 1.12):

$$
\begin{align*}
& \left(\overline{\mathbf{x}}_{1}^{b} \overline{\mathbf{x}}_{2}^{d}-1\right) G_{-1,0}(\sigma)-\left(\overline{\mathbf{x}}_{1}^{a} \overline{\mathbf{x}}_{2}^{c}-1\right) G_{0,-1}(\sigma) \tag{2.9}\\
& =(a d-b c)-\frac{\left(\overline{\mathbf{x}}_{2}^{d}-1\right)\left(\overline{\mathbf{x}}_{1}^{a} \overline{\mathbf{x}}_{2}^{c}-1\right)-\left(\overline{\mathbf{x}}_{2}^{c}-1\right)\left(\overline{\mathbf{x}}_{1}^{b} \overline{\mathbf{x}}_{2}^{d}-1\right)}{\left(\overline{\mathbf{x}}_{1}-1\right)\left(\overline{\mathbf{x}}_{2}-1\right)}
\end{align*}
$$

This is especially important to relate the invariants $\mathbb{E}_{m}(\sigma ; u, v)$ with Eisenstein measure \mathcal{E}_{σ} studied in [N95], [N99]. However, in the following algebraic arguments, we often do not need to restrict ourselves to A^{b}.

Proposition 2.10. For each $\sigma \in \mathrm{A}$, we have

$$
\begin{aligned}
G_{u v}(\sigma)=\frac{\left(\overline{\mathbf{x}}_{1}^{-b} \overline{\mathbf{x}}_{2}^{-d}\right)^{v}-1}{\overline{\mathbf{x}}_{1}^{-b} \overline{\mathbf{x}}_{2}^{-d}-1} & G_{01}(\sigma)+\left(\overline{\mathbf{x}}_{1}^{-b} \overline{\mathbf{x}}_{2}^{-d}\right)^{v} \frac{\left(\overline{\mathbf{x}}_{1}^{-a} \overline{\mathbf{x}}_{2}^{-c}\right)^{u}-1}{\overline{\mathbf{x}}_{1}^{-a} \overline{\mathbf{x}}_{2}^{-c}-1} G_{10}(\sigma) \\
& -\operatorname{Rest}\binom{a b}{c d} \cdot\binom{u}{v} .
\end{aligned}
$$

Here, $\binom{a b}{c d}=\rho(\sigma) \in \mathrm{GL}_{2}(\hat{\mathbb{Z}})$ and $\operatorname{Rest}\binom{a b}{c d} \cdot\binom{u}{v}$ is an explicit element in $\overline{\mathbf{x}}_{1}, \overline{\mathbf{x}}_{2}$ defined by

$$
\operatorname{Rest}\binom{a b}{c d} \cdot\binom{u}{v}:=R_{b, d}^{v}+\left(\overline{\mathbf{x}}_{1}^{-b} \overline{\mathbf{x}}_{2}^{-d}\right)^{v} R_{a, c}^{u}+\frac{\overline{\mathbf{x}}_{1}^{-b v}-1}{\overline{\mathbf{x}}_{1}-1} \frac{\overline{\mathbf{x}}_{2}^{-c u}-1}{\overline{\mathbf{x}}_{2}-1} \overline{\mathbf{x}}_{2}^{-d v}
$$

where, for any $\alpha, \beta, \gamma \in \hat{\mathbb{Z}}$,

$$
R_{\alpha, \beta}^{\gamma}:=\frac{1}{\overline{\mathbf{x}}_{1}-1}\left(\frac{\left(\overline{\mathbf{x}}_{1}^{-\alpha} \overline{\mathbf{x}}_{2}^{-\beta}\right)^{\gamma}-1}{\overline{\mathbf{x}}_{1}^{-\alpha} \overline{\mathbf{x}}_{2}^{-\beta}-1} \cdot \frac{\overline{\mathbf{x}}_{2}^{-\beta}-1}{\overline{\mathbf{x}}_{2}-1}-\frac{\overline{\mathbf{x}}_{2}^{-\beta \gamma}-1}{\overline{\mathbf{x}}_{2}-1}\right) .
$$

We understand the dot between $\binom{a b}{c d}$ and $\binom{u}{v}$ in the notation $\operatorname{Rest}\binom{a b}{c d} \cdot\binom{u}{v}$ separates matrix component and vector component. Namely, Rest is a map from $\mathrm{SL}_{2}(\hat{\mathbb{Z}}) \times \hat{\mathbb{Z}}^{2}$ to $\hat{\mathbb{Z}}$.

Proof. This follows exactly in the same manner as [N10] Proposition 3.4.2, though arguments in loc.cit. were given for σ coming from the monodromy image in A^{b}. That geometric condition is not necessary for this proposition.
Q.E.D.

Question 2.11. In [N10] Proposition 3.4.5, it is shown that the collection $\left\{\mathbb{E}_{m}(\sigma ; u, v) \mid(u, v) \in \hat{\mathbb{Z}}^{2}, m \geq 1\right\}$ recovers the action of $\sigma \in$ A^{b} on $\pi / \pi^{\prime \prime}$, equivalently, determines the measures $G_{10}(\sigma)$ and $G_{01}(\sigma)$. Even for general $\sigma \in \mathrm{A}$, the measure $G_{10}(\sigma)$ turns out to be recovered from the collection $\left\{\mathbb{E}_{m}(\sigma ; u, v)\right\}$. In the proof of loc.cit., we made use of Tsunogai's equation (2.9) to convert knowledge of $G_{10}(\sigma)$ to that of $G_{01}(\sigma)$ for $\sigma \in \mathrm{A}^{b}$. It seems unclear if there is a detour to it with no use of (2.9) for general $\sigma \in \mathrm{A}$.

§3. Fourier-Dedekind-like sum: \mathcal{S}_{m}

Define $U: \mathbb{R} \rightarrow \mathbb{R}$ to be the upper continuous saw tooth function

$$
\begin{equation*}
U(x)=x+\lfloor-x\rfloor+\frac{1}{2}=P_{1}(x)+\frac{1}{2} \delta_{\mathbb{Z}}(x) \tag{3.1}
\end{equation*}
$$

where $\lfloor\alpha\rfloor$ denotes the greatest integer not exceeding $\alpha, \delta_{\mathbb{Z}}$ is the characteristic function of the subset $\mathbb{Z} \subset \mathbb{R}$, and $P_{1}(x)$ is the usual saw tooth function

$$
P_{1}(x)= \begin{cases}x-\lfloor x\rfloor-\frac{1}{2}, & (x \notin \mathbb{Z}) \tag{3.2}\\ 0, & (x \in \mathbb{Z})\end{cases}
$$

Let ζ_{m} denote a primitive m-th root of unity. By the standard formula

$$
\begin{array}{r}
P_{1}\left(\frac{a}{m}\right)=\frac{1}{m} \sum_{i=1}^{m-1}\left(\frac{\zeta_{m}^{i}}{1-\zeta_{m}^{i}}+\frac{1}{2}\right) \zeta_{m}^{a i}=\frac{1}{m} \sum_{i=1}^{m-1}\left(\frac{1}{1-\zeta_{m}^{i}}-\frac{1}{2}\right) \zeta_{m}^{a i} \\
(a \in \mathbb{Z}, m \in \mathbb{N})
\end{array}
$$

(cf. [RG72] p.14), it follows that

$$
\begin{equation*}
U\left(\frac{a}{m}\right)-\frac{1}{2 m}=\frac{1}{m} \sum_{i=1}^{m-1} \frac{\zeta_{m}^{a i}}{1-\zeta_{m}^{i}} \tag{3.3}
\end{equation*}
$$

The following lemmas are our basic tools. We shall write (a, m) to denote the greatest common divisor of $a, m \in \mathbb{Z}$.

Lemma 3.4. For $a, b \in \mathbb{Z}, m \in \mathbb{N}$, let $d:=(a, m)>0$. Then, we have

$$
\sum_{i=0}^{m-1} U\left(\frac{a i+b}{m}\right)=d U\left(\frac{b}{d}\right)
$$

This formula is essentially equivalent to a well known formula (3.11) appearing later. Here, we shall give a direct proof using the distribution relation of P_{1}.

Proof. By (3.1), the left hand side is equal to

$$
\sum_{i=0}^{m-1} P_{1}\left(\frac{a i+b}{m}\right)+\frac{1}{2} \sum_{i=0}^{m-1} \delta_{\mathbb{Z}}\left(\frac{a i+b}{m}\right) .
$$

Put $a=\bar{a} d, m=\bar{m} d$. The first term can be written $d \sum_{i=0}^{\bar{m}-1} P_{1}\left(\frac{\bar{a} i+(b / d)}{\bar{m}}\right)$ which turns out to be $d P_{1}\left(\frac{b}{d}\right)$ by the distribution relation of P_{1} (cf. [RG78] p.4, Lemma 1). For the second term, we need to count the number of solution $i \bmod m$ of the congruence $a i+b \equiv 0 \bmod m$. There are none when $b \not \equiv 0 \bmod d$, while when $b=d \bar{b}$, the solutions of $a i+b \equiv 0$
$\bmod m$ are in one to one correspondence to those d classes that lift the unique solution of $\bar{a} i+\bar{b} \equiv 0 \bmod \bar{m}$. Thus the above sum equals to

$$
d\left(P_{1}\left(\frac{b}{d}\right)+\frac{1}{2} \delta_{\mathbb{Z}}\left(\frac{b}{d}\right)\right)=d U\left(\frac{b}{d}\right)
$$

Q.E.D.

Definition 3.5. For $a, c, \alpha, \beta \in \mathbb{Z}$, define

$$
\mathcal{S}_{m}(a, c ; \alpha, \beta)=\sum_{i=0}^{m-1}\left(U\left(\frac{a i+\alpha}{m}\right)-\frac{1}{2 m}\right)\left(U\left(\frac{c i+\beta}{m}\right)-\frac{1}{2 m}\right)
$$

Lemma 3.6.

$$
\mathcal{S}_{m}(a, c ; \alpha, \beta)=\frac{1}{m} \sum_{\substack{\zeta, \xi \in \mu_{m} \backslash\{1\} \\ \zeta^{\top} \xi^{c}=1}} \frac{\zeta^{\alpha}}{1-\zeta} \cdot \frac{\xi^{\beta}}{1-\xi} .
$$

Proof. By using (3.3), one computes:

$$
\begin{aligned}
\mathcal{S}_{m}(a, c ; \alpha, \beta) & =\frac{1}{m^{2}} \sum_{i=0}^{m-1} \sum_{s=1}^{m-1} \sum_{t=1}^{m-1} \frac{\zeta_{m}^{(a i+\alpha) s}}{1-\zeta_{m}^{s}} \cdot \frac{\zeta_{m}^{(c i+\beta) t}}{1-\zeta_{m}^{t}} \\
& =\frac{1}{m^{2}} \sum_{s=1}^{m-1} \sum_{t=1}^{m-1} \frac{1}{1-\zeta_{m}^{s}} \frac{1}{1-\zeta_{m}^{t}}\left(\sum_{i=0}^{m-1} \zeta_{m}^{i(a s+c t)+\alpha s+\beta t}\right)
\end{aligned}
$$

Observe that the last bracket is equal to $m \zeta_{m}^{\alpha s+\beta t}$ if $a s+c t \equiv 0 \bmod m$, and to 0 otherwise. The lemma follows immediately from this. Q.E.D.

Question 3.7. In [BR07], studied are certain Fourier-Dedekind sums $s_{n}\left(a_{1}, a_{2}, \ldots, a_{m} ; b\right)$ and their reciprocity laws. Its special type reads

$$
s_{2}\left(a_{1}, a_{2} ; b\right)=\frac{1}{b} \sum_{\zeta \in \mu_{b} \backslash\{1\}} \frac{\zeta^{2}}{\left(1-\zeta^{a_{1}}\right)\left(1-\zeta^{a_{2}}\right)}
$$

which, according to the above lemma, overlaps with our $\mathcal{S}_{m}(a, c, \alpha, \beta)$ in some special cases. An interesting question will be how to formulate (and prove) a reciprocity law well-suited to $\mathcal{S}_{m}(a, c, \alpha, \beta)$.

Lemma 3.8. Let $m \in \mathbb{N}$ and $a, b, c, x, y, z \in \mathbb{Z}$ such that (a, m) divides y. Then,

$$
\begin{aligned}
& \mathcal{S}_{m}(a, c, x+y, z)-\mathcal{S}_{m}(a, c, x, z) \\
&=\sum_{i=0}^{m-1}\left(U\left(\frac{a i+x+y}{m}\right)-U\left(\frac{a i+x}{m}\right)\right) U\left(\frac{c i+z}{m}\right) .
\end{aligned}
$$

Proof. It follows from Definition 3.5 and Lemma 3.4 that the difference of both sides amounts to

$$
\begin{aligned}
\frac{1}{2 m} \sum_{i=0}^{m-1} & \left(U\left(\frac{a i+x+y}{m}\right)-U\left(\frac{a i+x}{m}\right)\right) \\
& =\frac{(a, m)}{2 m}\left(U\left(\frac{x+y}{(a, m)}\right)-U\left(\frac{x}{(a, m)}\right)\right)
\end{aligned}
$$

which vanishes under the condition $(a, m) \mid y$.
Q.E.D.

Lemma 3.9. For $u, v, s \in \mathbb{Z}$ with $(v, m)=1$, we have
$\mathcal{S}_{m}(v,-1, v u-s, 0)-\mathcal{S}_{m}(v,-1,-s, 0) \equiv \frac{u}{2 m}-\frac{v u(u-1)}{2 m}+\frac{s u}{m} \quad \bmod \frac{\mathbb{Z}}{2}$.
Proof. By Lemma 3.8, the LHS equals to

$$
\begin{aligned}
& \sum_{i=0}^{m-1} U\left(\frac{v(i+u)-s}{m}\right) U\left(\frac{-i}{m}\right)-\sum_{i=0}^{m-1} U\left(\frac{v i-s}{m}\right) U\left(\frac{-i}{m}\right) \\
& =\sum_{i=0}^{m-1} U\left(\frac{v i-s}{m}\right)\left(U\left(\frac{u-i}{m}\right)-U\left(\frac{-i}{m}\right)\right) \\
& =\sum_{i=0}^{m-1} U\left(\frac{v i-s}{m}\right)\left(\frac{u}{m}+\left\lfloor\frac{i-u}{m}\right\rfloor\right),
\end{aligned}
$$

which is, by virtue of Lemma 3.4, congruent to

$$
\equiv \frac{u}{m} U\left(\frac{-s}{(m, v)}\right)+\frac{v}{m} \sum_{i=0}^{m-1} i\left\lfloor\frac{i-u}{m}\right\rfloor-\frac{s}{m} \sum_{i=0}^{m-1}\left\lfloor\frac{i-u}{m}\right\rfloor \bmod \frac{\mathbb{Z}}{2}
$$

Define $\delta:=\lfloor-u / m\rfloor, k:=m(\delta+1)+u$ so that $\delta=\left\lfloor\frac{-u}{m}\right\rfloor=\cdots=$ $\left\lfloor\frac{-u+k-1}{m}\right\rfloor, \delta+1=\left\lfloor\frac{-u+k}{m}\right\rfloor=\cdots=\left\lfloor\frac{-u+m-1}{m}\right\rfloor$. Then, noting that $(v, m)=1$ and $k \equiv u \bmod m$, we continue the above computation to

$$
\begin{aligned}
& =\frac{u}{m} U(0) \\
& \quad+\frac{1}{m}\left\{v \delta \frac{m(m-1)}{2}+v \frac{(m+k-1)(m-k)}{2}-s(m \delta+(m-k))\right\} \\
& \equiv \frac{u}{2 m}-\frac{v u(u-1)}{2 m}+\frac{s u}{m} \quad \bmod \frac{\mathbb{Z}}{2}
\end{aligned}
$$

Q.E.D.

Lemma 3.10. For $a, c, r, s \in \mathbb{Z}$ and $m \in \mathbb{N}$, we have

$$
\begin{aligned}
& \mathcal{S}_{m}(a, c, a-r,-s)-\mathcal{S}_{m}(a, c,-r,-s) \\
& \equiv \frac{a(m, c)}{2 m}\left\{2\left\lfloor\frac{s}{(m, c)}\right\rfloor+1\right\}-\frac{c(m, a)}{2 m}\left\{2\left\lfloor\frac{r}{(m, a)}\right\rfloor+1\right\}+\frac{a c}{2 m} \\
& \bmod \frac{\mathbb{Z}}{2}
\end{aligned}
$$

Proof. Since $(a, m) \mid a$, we may apply Lemma 3.8 to see that the LHS equals to

$$
\begin{aligned}
& \sum_{i=0}^{m-1}\left(U\left(\frac{a i+a-r}{m}\right)-U\left(\frac{a i-r}{m}\right)\right) U\left(\frac{c i-s}{m}\right) \\
& =\sum_{i=0}^{m-1}\left(\frac{a}{m}+\left\lfloor-\frac{a i+a-r}{m}\right\rfloor-\left\lfloor-\frac{a i-r}{m}\right\rfloor\right)\left(\frac{c i-s}{m}+\left\lfloor-\frac{c i-s}{m}\right\rfloor+\frac{1}{2}\right)
\end{aligned}
$$

Moding out half integers, it is congruent to the sum $A+B+C \bmod \frac{\mathbb{Z}}{2}$, where

$$
\begin{aligned}
A & :=\sum_{i=0}^{m-1} \frac{a}{m} U\left(\frac{c i-s}{m}\right)=\frac{a(m, c)}{m} U\left(\frac{-s}{(m, c)}\right) \\
& =\frac{a(m, c)}{m}\left(\frac{-s}{(m, c)}+\left\lfloor\frac{s}{(m, c)}\right\rfloor+\frac{1}{2}\right) \\
& =-\frac{a s}{m}+\frac{a(m, c)}{2 m}\left\{2\left\lfloor\frac{s}{(m, c)}\right\rfloor+1\right\}, \\
B & :=-\frac{s}{m} \sum_{i=0}^{m-1}\left(\left\lfloor-\frac{a(i+1)-r}{m}\right\rfloor-\left\lfloor-\frac{a i-r}{m}\right\rfloor\right) \\
& =-\frac{s}{m}\left(\left\lfloor-\frac{a m-r}{m}\right\rfloor-\left\lfloor-\frac{-r}{m}\right\rfloor\right)=\frac{a s}{m}, \\
C & :=\frac{c}{m} \sum_{i=0}^{m-1}\left(\left\lfloor-\frac{a(i+1)-r}{m}\right\rfloor-\left\lfloor-\frac{a i-r}{m}\right\rfloor\right) i \\
& =\frac{c}{m}\left(\left\lfloor-\frac{a m-r}{m}\right\rfloor(m-1)-\sum_{j=1}^{m-1}\left\lfloor-\frac{a j-r}{m}\right\rfloor\right) .
\end{aligned}
$$

Making use of the convenient formula

$$
\begin{gather*}
\sum_{k=0}^{n-1}\left\lfloor\frac{m k+x}{n}\right\rfloor=\frac{(m-1)(n-1)}{2}+\frac{(m, n)-1}{2}+(m, n)\left\lfloor\frac{x}{(m, n)}\right\rfloor \tag{3.11}\\
(m \in \mathbb{Z}, n \in \mathbb{N}, x \in \mathbb{R})
\end{gather*}
$$

(see [Kn73], exercise 2.4.37), we find

$$
\begin{aligned}
C= & \frac{c}{m}\left\{\frac{(m-1)(a+1)}{2}-\frac{(m, a)-1}{2}-(m, a)\left\lfloor\frac{r}{(m, a)}\right\rfloor\right. \\
& \left.\quad+\left\lfloor\frac{r}{m}\right\rfloor+\left(-a+\left\lfloor\frac{r}{m}\right\rfloor\right)(m-1)\right\} \\
\equiv & \frac{a c}{2 m}-\frac{c(m, a)}{2 m}\left\{2\left\lfloor\frac{r}{(m, a)}\right\rfloor+1\right\} \quad \bmod \frac{\mathbb{Z}}{2}
\end{aligned}
$$

One concludes the lemma by evaluating $A+B+C$ after the above computation.
Q.E.D.
§4. Congruence properties of elementary terms: $R_{\alpha, \beta}^{\gamma}$ or $Q_{a, c}^{u}$
In this section, we shall consider the elementary terms
$R_{\alpha, \beta}^{\gamma}=R_{\alpha, \beta}^{\gamma}\left(\overline{\mathbf{x}}_{1}, \overline{\mathbf{x}}_{2}\right):=\frac{1}{\overline{\mathbf{x}}_{1}-1}\left(\frac{\left(\overline{\mathbf{x}}_{1}^{-\alpha} \overline{\mathbf{x}}_{2}^{-\beta}\right)^{\gamma}-1}{\overline{\mathbf{x}}_{1}^{-\alpha} \overline{\mathbf{x}}_{2}^{-\beta}-1} \cdot \frac{\overline{\mathbf{x}}_{2}^{-\beta}-1}{\overline{\mathbf{x}}_{2}-1}-\frac{\overline{\mathbf{x}}_{2}^{-\beta \gamma}-1}{\overline{\mathbf{x}}_{2}-1}\right)$
introduced in Proposition 2.10 for $\alpha, \beta, \gamma \in \hat{\mathbb{Z}}$. Just for convenience of presentation, we convert $R_{\alpha, \beta}^{\gamma}$ to equivalent $Q_{a, c}^{u}\left(\overline{\mathbf{x}}_{1}, \overline{\mathbf{x}}_{2}\right):=R_{-c,-a}^{u}\left(\overline{\mathbf{x}}_{2}, \overline{\mathbf{x}}_{1}\right)$, i.e., define for $a, c, u \in \hat{\mathbb{Z}}$,

$$
\begin{equation*}
Q_{a, c}^{u}=Q_{a, c}^{u}\left(\overline{\mathbf{x}}_{1}, \overline{\mathbf{x}}_{2}\right):=\frac{1}{\overline{\mathbf{x}}_{2}-1}\left(\frac{\left(\overline{\mathbf{x}}_{1}^{a} \overline{\mathbf{x}}_{2}^{c}\right)^{u}-1}{\overline{\mathbf{x}}_{1}^{a} \overline{\mathbf{x}}_{2}^{c}-1} \cdot \frac{\overline{\mathbf{x}}_{1}^{a}-1}{\overline{\mathbf{x}}_{1}-1}-\frac{\overline{\mathbf{x}}_{1}^{a u}-1}{\overline{\mathbf{x}}_{1}-1}\right) . \tag{4.1}
\end{equation*}
$$

Recall that these are elements of $\hat{\mathbb{Z}}\left[\left[\pi^{\mathrm{ab}}\right]\right]$ where

$$
\hat{\mathbb{Z}}\left[\left[\pi^{\mathrm{ab}}\right]\right]=\hat{\mathbb{Z}}\left[\left[\hat{\mathbb{Z}}^{2}\right]\right]=\underset{m, n}{\lim }(\mathbb{Z} / m \mathbb{Z})\left[\overline{\mathbf{x}}_{1}, \overline{\mathbf{x}}_{2}\right] /\left(\overline{\mathbf{x}}_{1}^{n}-1, \overline{\mathbf{x}}_{2}^{n}-1\right)
$$

and can be regarded as $\hat{\mathbb{Z}}$-valued measures on $\hat{\mathbb{Z}}^{2}$. There is a natural immersion of

$$
\mathbb{Z}\left[\mathbb{Z}^{2}\right]=\mathbb{Z}\left[\overline{\mathbf{x}}_{1}, \frac{1}{\overline{\mathbf{x}}_{1}}, \overline{\mathbf{x}}_{2}, \frac{1}{\overline{\mathbf{x}}_{2}}\right]
$$

into $\hat{\mathbb{Z}}\left[\left[\pi^{\mathrm{ab}}\right]\right]$ with dense image.
We begin by detecting explicit forms of $Q_{a, c}^{u}$ evaluated at pairs of roots of unity:

Lemma 4.2. For $(\zeta, \xi) \in \mu_{m} \times \mu_{m}$, we have

$$
Q_{a, c}^{u}(\zeta, \xi)= \begin{cases}\frac{1}{\xi-1}\left(\frac{\left(\zeta^{a} \xi^{c}\right)^{u}-1}{\zeta^{a} \xi^{c}-1} \cdot \frac{\zeta^{a}-1}{\zeta-1}-\frac{\zeta^{a u}-1}{\zeta-1}\right), & \left(\zeta \neq 1, \xi \neq 1, \zeta^{a} \xi^{c} \neq 1\right) \tag{4.3}\\ \frac{u\left(\zeta^{a}-1\right)-\left(\zeta^{a u}-1\right)}{(\xi-1)(\zeta-1)}, & \left(\zeta \neq 1, \xi \neq 1, \zeta^{a} \xi^{c}=1\right) \\ \frac{c u \zeta^{a u}}{\zeta-1}-\frac{c\left(\zeta^{a u}-1\right) \zeta^{a}}{\left(\zeta^{a}-1\right)(\zeta-1)}, & \left(\zeta \neq 1, \xi=1, \zeta^{a} \xi^{c} \neq 1\right) \\ \frac{a}{\xi-1}\left(\frac{\xi^{c u}-1}{\xi \xi^{c}-1}-u\right), & \left(\zeta=1, \xi \neq 1, \zeta^{a} \xi^{c} \neq 1\right) \\ \frac{a c u(u-1)}{2}, & \left(\zeta=\xi=1, \zeta^{a} \xi^{c}=1\right) \\ 0, & \text { (otherwise) } .\end{cases}
$$

Proof. Let us examine $Q_{a, c}^{u}(\zeta, \xi)$ case by case:
Case 1: $\zeta \neq 1, \xi \neq 1, \zeta^{a} \xi^{c} \neq 1$. In this case, the terms $Q_{a, c}^{u}(\zeta, \xi)$ remain as they are, i.e.,

$$
Q_{a, c}^{u}(\zeta, \xi)=\frac{1}{\xi-1}\left(\frac{\left(\zeta^{a} \xi^{c}\right)^{u}-1}{\zeta^{a} \xi^{c}-1} \cdot \frac{\zeta^{a}-1}{\zeta-1}-\frac{\zeta^{a u}-1}{\zeta-1}\right)
$$

Case 2: $\zeta \neq 1, \xi \neq 1, \zeta^{a} \xi^{c}=1$. In this case, using de l'Hospital's rule, we find:

$$
Q_{a, c}^{u}(\zeta, \xi)=\frac{1}{\xi-1}\left(u \frac{\zeta^{a}-1}{\zeta-1}-\frac{\zeta^{a u}-1}{\zeta-1}\right)=\frac{u\left(\zeta^{a}-1\right)-\left(\zeta^{a u}-1\right)}{(\xi-1)(\zeta-1)}
$$

Case 3: $\zeta \neq 1, \xi=1, \zeta^{a} \xi^{c} \neq 1$. In this case, using de l'Hospital's rule, we find:

$$
\begin{aligned}
Q_{a, c}^{u}(\zeta, \xi) & =\frac{\zeta^{a u} c u\left(\zeta^{a}-1\right)-c\left(\zeta^{a u}-1\right) \zeta^{a}}{\left(\zeta^{a}-1\right)^{2}} \cdot \frac{\zeta^{a}-1}{\zeta-1} \\
& =\frac{c u \zeta^{a u}}{\zeta-1}-\frac{c\left(\zeta^{a u}-1\right) \zeta^{a}}{\left(\zeta^{a}-1\right)(\zeta-1)}
\end{aligned}
$$

Case 4: $\zeta=1, \xi \neq 1, \zeta^{a} \xi^{c} \neq 1$. In this case, it follows that

$$
Q_{a, c}^{u}(\zeta, \xi)=\frac{1}{\xi-1}\left(a \frac{\xi^{c u}-1}{\xi^{c}-1}-a u\right)=\frac{a}{\xi-1}\left(\frac{\xi^{c u}-1}{\xi^{c}-1}-u\right)
$$

Case $5: \zeta=\xi=1, \zeta^{a} \xi^{c}=1$. In this case, using de l'Hospital's rule twice, we find:

$$
\begin{aligned}
Q_{a, c}^{u}(\zeta, \xi) & =\lim _{y \rightarrow 1} \frac{a}{y-1}\left(\frac{y^{c u}-1-u y^{c}-u}{y^{c}-1}\right) \\
& =\lim _{y \rightarrow 1} \frac{a\left(c u y^{c u-1}-c u y^{c-1}\right)}{(c+1) y^{c}-1-c y^{c-1}} \\
& =\lim _{y \rightarrow 1} \frac{a\left(c u(c u-1) y^{c u-2}-c u(c-1) y^{c-2}\right)}{(c+1) c y^{c-1}-c(c-1) y^{c-2}} \\
& =\frac{a(c u(c u-1)-c u(c-1))}{c^{2}+c-c^{2}+c}=\frac{a c u(u-1)}{2} .
\end{aligned}
$$

Case 6: $\zeta=\xi=1, \zeta^{a} \xi^{c} \neq 1$. This case is impossible.
Case 7: $\zeta=1, \xi \neq 1, \zeta^{a} \xi^{c}=1$. In this case, it follows that

$$
Q_{a, c}^{u}(\zeta, \xi)=\frac{1}{\xi-1}\left(\lim _{y^{c} \rightarrow 1} \frac{y^{c u}-1}{y^{c}-1} \cdot a-\lim _{x \rightarrow 1} \frac{x^{a u}-1}{x-1}\right)=\frac{1}{\xi-1}(a u-a u)=0 .
$$

Case 8: $\zeta \neq 1, \xi=1, \zeta^{a} \xi^{c}=1$. In this case, it follows that

$$
Q_{a, c}^{u}(\zeta, \xi)=\lim _{y \rightarrow 1}\left\{\lim _{x^{a} \rightarrow 1} \frac{\left(x^{a}-1\right)}{(y-1)(\zeta-1)}\left(\frac{\left(x^{a} y^{c}\right)^{u}-1}{x^{a} y^{c}-1}-1\right)\right\}=0
$$

Q.E.D.

Notation 4.4. For $a \in \hat{\mathbb{Z}}$ and $m \in \mathbb{Z}$, we denote by (a, m) the positive greatest common divisor, i.e., the maximal integer dividing both a, m in $\hat{\mathbb{Z}}$.

Theorem 4.5. Let m, N be natural numbers, and suppose that $a, c, u \in \hat{\mathbb{Z}}$ satisfy one of the following conditions:
(i) $u \equiv 0 \bmod m N$;
(ii) $a \equiv 0 \bmod m N$ and $(c, m)=1$;
(iii) $c \equiv 0 \bmod m N$ and $(a, m)=1$.

Then, for any $r, s \in \hat{\mathbb{Z}}$, we have the congruence

$$
\int_{(m \hat{\mathbb{Z}})^{2}} \overline{\mathbf{x}}_{1}^{-r} \overline{\mathbf{x}}_{2}^{-s} d Q_{a, c}^{u} \equiv 0 \quad \bmod N /(N, 2)
$$

Proof. As recalled in (2.7), the left hand integral $\int_{(m \hat{\mathbb{Z}})^{2}} \overline{\mathbf{x}}_{1}^{-r} \overline{\mathbf{x}}_{2}^{-s} d Q_{a, c}^{u}$ can be interpreted as the principal coefficient a_{00} of the congruence:

$$
\overline{\mathbf{x}}_{1}^{-r} \overline{\mathbf{x}}_{2}^{-s} Q_{a, c}^{u} \equiv \sum_{i=0}^{m-1} \sum_{j=0}^{m-1} a_{i j} \overline{\mathbf{x}}_{1}^{i} \overline{\mathbf{x}}_{2}^{j} \quad \bmod \left(\overline{\mathbf{x}}_{1}^{m}-1, \overline{\mathbf{x}}_{2}^{m}-1\right)
$$

in the group ring $\hat{\mathbb{Z}}\left[(\mathbb{Z} / m \mathbb{Z})^{2}\right]=\hat{\mathbb{Z}}\left[\overline{\mathbf{x}}_{1}, \overline{\mathbf{x}}_{2}\right] /\left(\overline{\mathbf{x}}_{1}^{m}-1, \overline{\mathbf{x}}_{2}^{m}-1\right)$. Without loss of generality, we may assume $r, s \in \mathbb{Z}$. By standard Fourier transformation, we then obtain the following expression

$$
\begin{equation*}
a_{00}=\frac{1}{m^{2}} \sum_{\zeta \in \mu_{m}} \sum_{\xi \in \mu_{m}} \zeta^{-r} \xi^{-s} Q_{a, c}^{u}(\zeta, \xi) \tag{4.6}
\end{equation*}
$$

Case (i): $u \equiv 0 \bmod m N$. Using (4.6) and Lemma 4.2, one finds:

$$
a_{00}=\frac{1}{m^{2}}\left(C_{2}+C_{3}+C_{4}+\frac{a c u(u-1)}{2}\right)
$$

where, denoting by C_{i} the terms from Case $i(i=2,3,4)$ in (the proof of) Lemma 4.2,

$$
\begin{aligned}
C_{2} & =u \sum_{\substack{\zeta, \xi \in \mu_{m} \backslash\{1\} \\
\zeta^{a} \xi^{\prime}=1}} \frac{\zeta^{a-r} \xi^{-s}-\zeta^{-r} \xi^{-s}}{(\zeta-1)(\xi-1)} \\
& =m u\left(\mathcal{S}_{m}(a, c, a-r,-s)-\mathcal{S}_{m}(a, c,-r,-s)\right), \\
C_{3} & =c u \sum_{\zeta \in \mu_{m} \backslash \mu_{(m, a)}} \frac{\zeta^{-r}}{\zeta-1}=c u\left((m, a) U\left(\frac{-r}{(m, a)}\right)-m U\left(\frac{-r}{m}\right)\right) \\
& =\frac{u c(m, a)}{2}\left(2\left\lfloor\frac{r}{(m, a)}\right\rfloor+1\right)-\frac{u c m}{2}\left(2\left\lfloor\frac{r}{m}\right\rfloor+1\right), \\
C_{4} & =-a u \sum_{\xi \in \mu_{m} \backslash \mu_{(m, c)}} \frac{\xi^{-s}}{\xi-1}=a u\left((m, c) U\left(\frac{-s}{(m, c)}\right)-m U\left(\frac{-s}{m}\right)\right) \\
& =-\frac{u a(m, c)}{2}\left(2\left\lfloor\frac{s}{(m, c)}\right\rfloor+1\right)+\frac{u a m}{2}\left(2\left\lfloor\frac{s}{m}\right\rfloor+1\right) .
\end{aligned}
$$

It is then easily seen from Lemma 3.10 that $a_{00} \equiv 0 \bmod N /(N, 2)$.
Case (ii): $a \equiv 0 \bmod m N$ and $(c, m)=1$. Using (4.6) and Lemma 4.2, one finds:

$$
a_{00}=\frac{1}{m^{2}}\left(C_{4}^{\prime}+C_{4}^{\prime \prime}+\frac{a c u(u-1)}{2}\right)
$$

where

$$
\begin{aligned}
C_{4}^{\prime} & =a \sum_{\xi \in \mu_{m} \backslash\{1\}} \frac{\xi^{c u-s}-\xi^{-s}}{(\xi-1)\left(\xi^{c}-1\right)} \\
& =a m\left(\mathcal{S}_{m}(c,-1, c u-s, 0)-\mathcal{S}_{m}(c,-1,-s, 0)\right), \\
C_{4}^{\prime \prime} & =-a u \sum_{\xi \in \mu_{m} \backslash\{1\}} \frac{\xi^{-s}}{\xi-1}=-a u\left(\frac{1}{2}-m U\left(\frac{-s}{m}\right)\right) \\
& =-a u\left(\frac{1-m}{2}-m\left\lfloor\frac{s}{m}\right\rfloor+s\right)
\end{aligned}
$$

It then follows easily from Lemma 3.9 (applied for $v:=c$) that $a_{00} \equiv 0$ $\bmod N /(N, 2)$.
Case (iii): $c \equiv 0 \bmod m N$ and $(a, m)=1$. Using (4.6) and Lemma 4.2, one finds:

$$
a_{00}=\frac{1}{m^{2}}\left(C_{3}^{\prime}+C_{3}^{\prime \prime}+\frac{a c u(u-1)}{2}\right)
$$

where

$$
\begin{aligned}
C_{3}^{\prime} & =-c \sum_{\zeta \in \mu_{m} \backslash\{1\}} \frac{\zeta^{a u-r+a}-\zeta^{-r+a}}{(\zeta-1)\left(\zeta^{a}-1\right)} \\
& =-c m\left(\mathcal{S}_{m}(a,-1, a u-r+a, 0)-\mathcal{S}_{m}(a,-1,-r+a, 0)\right), \\
C_{3}^{\prime \prime} & =c u \sum_{\zeta \in \mu_{m} \backslash\{1\}} \frac{\zeta^{a u-r}}{\zeta-1} \\
& =c u\left(\frac{1-m}{2}-m\left\lfloor\frac{r-a u}{m}\right\rfloor-(a u-r)\right) .
\end{aligned}
$$

It then follows easily from Lemma 3.9 (applied for $v:=a, s:=r-a$) that $a_{00} \equiv 0 \bmod N /(N, 2)$.
Q.E.D.

Proof of Theorem A. According to Proposition 2.10, $G_{u v}(\sigma)$ is decomposed as a sum

$$
\begin{aligned}
G_{u v}(\sigma)= & \frac{\left(\overline{\mathbf{x}}_{1}^{-b} \overline{\mathbf{x}}_{2}^{-d}\right)^{v}-1}{\overline{\mathbf{x}}_{1}^{-b} \overline{\mathbf{x}}_{2}^{-d}-1} G_{01}(\sigma)+\left(\overline{\mathbf{x}}_{1}^{-b} \overline{\mathbf{x}}_{2}^{-d}\right)^{v} \frac{\left(\overline{\mathbf{x}}_{1}^{-a} \overline{\mathbf{x}}_{2}^{-c}\right)^{u}-1}{\overline{\mathbf{x}}_{1}^{-a} \overline{\mathbf{x}}_{2}^{-c}-1} G_{10}(\sigma) \\
& -\operatorname{Rest}\binom{a b}{c d} \cdot\binom{u}{v}
\end{aligned}
$$

with $\binom{a b}{c d}=\rho(\sigma) \in \operatorname{GL}_{2}(\hat{\mathbb{Z}})$, where $\operatorname{Rest}\binom{a b}{c} \cdot\binom{u}{v}$ is a sum

$$
\operatorname{Rest}\binom{a b}{c d} \cdot\binom{u}{v}:=R_{b, d}^{v}+\left(\overline{\mathbf{x}}_{1}^{-b} \overline{\mathbf{x}}_{2}^{-d}\right)^{v} R_{a, c}^{u}+\frac{\overline{\mathbf{x}}_{1}^{-b v}-1}{\overline{\mathbf{x}}_{1}-1} \frac{\overline{\mathbf{x}}_{2}^{-c u}-1}{\overline{\mathbf{x}}_{2}-1} \overline{\mathbf{x}}_{2}^{-d v}
$$

It suffices to show that the volume $\mathbb{E}_{m}(\sigma ; u, v)=\int_{(m \hat{\mathbb{Z}})^{2}} d G_{u v}(\sigma)$ does not alter modulo M when (u, v) is replaced by $\left(u^{\prime}, v^{\prime}\right) \equiv(u, v) \bmod m N$. Let us first consider behaviors of the three terms free from $R_{b, d}^{v}, R_{a, c}^{u}$ in the above decomposition of $G_{u v}(\sigma)$, namely, the first two terms of $G_{u v}(\sigma)$ and the last term of $\operatorname{Rest}\binom{a b}{c d} \cdot\binom{u}{v}$. Observe that, under our assumption $u \equiv u^{\prime}, v \equiv v^{\prime} \bmod m N$, each of the differences

$$
\begin{aligned}
& \bullet \\
& \bullet \frac{\left(\overline{\mathbf{x}}_{1}^{-b} \overline{\mathbf{x}}_{2}^{-d}\right)^{v}-1}{\overline{\mathbf{x}}_{1}^{-b} \overline{\mathbf{x}}_{2}^{-d}-1}-\frac{\left(\overline{\mathbf{x}}_{1}^{-b} \overline{\mathbf{x}}_{2}^{-d}\right)^{v^{\prime}}-1}{\overline{\mathbf{x}}_{1}^{-b} \overline{\mathbf{x}}_{2}^{-d}-1}=\frac{\left(\overline{\mathbf{x}}_{1}^{-b} \overline{\mathbf{x}}_{2}^{-d}\right)^{v}-\left(\overline{\mathbf{x}}_{1}^{-b} \overline{\mathbf{x}}_{2}^{-d}\right)^{v^{\prime}}}{\overline{\mathbf{x}}_{1}^{-b} \overline{\mathbf{x}}_{2}^{-d}-1} \\
& \text { - }\left(\overline{\mathbf{x}}_{1}^{-b} \overline{\mathbf{x}}_{2}^{-d}\right)^{v} \frac{\left(\overline{\mathbf{x}}_{1}^{-a} \overline{\mathbf{x}}_{2}^{-c}\right)^{u}-1}{\overline{\mathbf{x}}_{1}^{-a} \overline{\mathbf{x}}_{2}^{-c}-1}-\left(\overline{\mathbf{x}}_{1}^{-b} \overline{\mathbf{x}}_{2}^{-d}\right)^{v^{\prime}} \frac{\left(\overline{\mathbf{x}}_{1}^{-a} \overline{\mathbf{x}}_{2}^{-c}\right)^{u^{\prime}}-1}{\overline{\mathbf{x}}_{1}^{-a} \overline{\mathbf{x}}_{2}^{-c}-1} \\
& =\left(\overline{\mathbf{x}}_{1}^{-b} \overline{\mathbf{x}}_{2}^{-d}\right)^{v} \frac{\left(\overline{\mathbf{x}}_{1}^{-a} \overline{\mathbf{x}}_{2}^{-c}\right)^{u}-\left(\overline{\mathbf{x}}_{1}^{-a} \overline{\mathbf{x}}_{2}^{-c}\right)^{u^{\prime}}}{\overline{\mathbf{x}}_{1}^{-a} \overline{\mathbf{x}}_{2}^{-c}-1} \\
& \quad+\left(\left(\overline{\mathbf{x}}_{1}^{-b} \overline{\mathbf{x}}_{2}^{-d}\right)^{v}-\left(\overline{\mathbf{x}}_{1}^{-b} \overline{\mathbf{x}}_{2}^{-d}\right)^{v^{\prime}}\right) \frac{\left(\overline{\mathbf{x}}_{1}^{-a} \overline{\mathbf{x}}_{2}^{-c}\right)^{u^{\prime}}-1}{\overline{\mathbf{x}}_{1}^{-a} \overline{\mathbf{x}}_{2}^{-c}-1} \\
& =\frac{\overline{\mathbf{x}}_{1}^{-b v}-1}{\overline{\mathbf{x}}_{1}-1} \frac{\overline{\mathbf{x}}_{2}^{-c u}-1}{\overline{\mathbf{x}}_{2}-1} \overline{\mathbf{x}}_{2}^{-d v}-\frac{\overline{\mathbf{x}}_{1}^{-b v^{\prime}}-1}{\overline{\mathbf{x}}_{1}-1} \frac{\overline{\mathbf{x}}_{2}^{-c u^{\prime}}-1}{\overline{\mathbf{x}}_{2}-1} \overline{\mathbf{x}}_{2}^{-d v^{\prime}} \\
& \quad+\left(\frac{\overline{\mathbf{x}}_{1}^{-c u}-\overline{\mathbf{x}}_{2}^{-c u^{\prime}}}{\overline{\mathbf{x}}_{2}-1} \overline{\mathbf{x}}_{2}^{-d v}\right. \\
& \quad 1 \\
& \left.\quad\left(\overline{\mathbf{x}}_{2}^{-d v}-\overline{\mathbf{x}}_{2}^{-d v^{\prime}}\right)+\frac{\overline{\mathbf{x}}_{1}^{-b v}-\overline{\mathbf{x}}_{1}^{-b v^{\prime}}}{\overline{\mathbf{x}}_{1}-1} \overline{\mathbf{x}}_{2}^{-d v^{\prime}}\right) \frac{\overline{\mathbf{x}}_{2}^{-c u^{\prime}}-1}{\overline{\mathbf{x}}_{2}-1}
\end{aligned}
$$

turns out to be annihilated by reduction modulo the ideal ($N, \overline{\mathbf{x}}_{1}^{m}$ $1, \overline{\mathbf{x}}_{2}^{m}-1$) of $\hat{\mathbb{Z}}\left[\left[\pi^{\mathrm{ab}}\right]\right]$. This, together with the expression (2.7), implies that

$$
\begin{aligned}
\int_{(m \hat{\mathbb{Z}})^{2}} d(& \left(\overline{\mathbf{x}}_{1}^{-b} \overline{\mathbf{x}}_{2}^{-d}\right)^{v}-1 \\
\overline{\mathbf{x}}_{1}^{-b} \overline{\mathbf{x}}_{2}^{-d}-1 & G_{01}(\sigma)+\left(\overline{\mathbf{x}}_{1}^{-b} \overline{\mathbf{x}}_{2}^{-d}\right)^{v} \frac{\left(\overline{\mathbf{x}}_{1}^{-a} \overline{\mathbf{x}}_{2}^{-c}\right)^{u}-1}{\overline{\mathbf{x}}_{1}^{-a} \overline{\mathbf{x}}_{2}^{-c}-1} G_{10}(\sigma) \\
& \left.-\frac{\overline{\mathbf{x}}_{1}^{-b v}-1}{\overline{\mathbf{x}}_{1}-1} \frac{\overline{\mathbf{x}}_{2}^{-c u}-1}{\overline{\mathbf{x}}_{2}-1} \overline{\mathbf{x}}_{2}^{-d v}\right)
\end{aligned}
$$

is invariant modulo M (a factor of N) as long as $(u, v) \in \hat{\mathbb{Z}}^{2}$ belongs to a same congruence class modulo $m N$. It remains to consider the behavior of $\int_{(m \hat{\mathbb{Z}})^{2}} d\left(R_{b, d}^{v}+\left(\overline{\mathbf{x}}_{1}^{-b} \overline{\mathbf{x}}_{2}^{-d}\right)^{v} R_{a, c}^{u}\right)$ under the change from (u, v) to $\left(u^{\prime}, v^{\prime}\right) \equiv(u, v) \bmod m N$. First, note the general equation:

$$
\begin{equation*}
R_{\alpha, \beta}^{\gamma}-R_{\alpha, \beta}^{\gamma^{\prime}}=\left(\overline{\mathbf{x}}_{1}^{-\alpha} \overline{\mathbf{x}}_{2}^{-\beta}\right)^{\gamma^{\prime}} R_{\alpha, \beta}^{\gamma-\gamma^{\prime}}+\overline{\mathbf{x}}_{2}^{-\beta \gamma^{\prime}} \frac{\overline{\mathbf{x}}_{1}^{-\alpha \gamma^{\prime}}-1}{\overline{\mathbf{x}}_{1}-1} \cdot \frac{\overline{\mathbf{x}}_{2}^{-\beta\left(\gamma-\gamma^{\prime}\right)}-1}{\overline{\mathbf{x}}_{2}-1} . \tag{4.7}
\end{equation*}
$$

Applying (4.7) with $(\alpha, \beta)=(b, d)$ and $\left(\gamma, \gamma^{\prime}\right)=\left(v, v^{\prime}\right)$, we find from Theorem 4.5 (i) that $\int_{(m \hat{\mathbb{Z}})^{2}}\left(d R_{b, d}^{v}-d R_{b, d}^{v^{\prime}}\right) \equiv 0 \bmod M$. We can also see that the integration of

$$
\begin{aligned}
& \left(\overline{\mathbf{x}}_{1}^{-b} \overline{\mathbf{x}}_{2}^{-d}\right)^{v} R_{a, c}^{u}-\left(\overline{\mathbf{x}}_{1}^{-b} \overline{\mathbf{x}}_{2}^{-d} v^{v^{\prime}} R_{a, c}^{u^{\prime}}\right. \\
& =\left(\overline{\mathbf{x}}_{1}^{-b} \overline{\mathbf{x}}_{2}^{-d}\right)^{v}\left(R_{a, c}^{u}-R_{a, c}^{u^{\prime}}\right)+\left(\left(\overline{\mathbf{x}}_{1}^{-b} \overline{\mathbf{x}}_{2}^{-d}\right)^{v}-\left(\overline{\mathbf{x}}_{1}^{-b} \overline{\mathbf{x}}_{2}^{-d}\right)^{v^{\prime}}\right) R_{a, c}^{u^{\prime}}
\end{aligned}
$$

over $(m \hat{\mathbb{Z}})^{2}$ is congruent to $0 \bmod M$, after applying (4.7) with $(\alpha, \beta)=$ $(a, c),\left(\gamma, \gamma^{\prime}\right)=\left(u, u^{\prime}\right)$ to the first term of the above last line. Thus, summing up these arguments we conclude

$$
\mathbb{E}_{m}(\sigma ; u, v) \equiv \mathbb{E}_{m}\left(\sigma ; u^{\prime}, v^{\prime}\right) \quad \bmod M
$$

under the condition $(u, v) \equiv\left(u^{\prime}, v^{\prime}\right) \bmod m N$.
Q.E.D.

§5. Proof of Theorem B

It suffices to show the following more refined proposition:
Proposition 5.1. Let $m, M \in \mathbb{N}$ and set $N=2^{\varepsilon} M$ where $\varepsilon=0,1$ according as M is odd or even respectively. Let $\sigma, \tau \in$ A satisfy $\rho(\sigma) \equiv$ $\rho(\tau) \equiv 1 \bmod m N$. Then, for every pair $(u, v) \in \hat{\mathbb{Z}}^{2}$,

$$
G_{u v}(\sigma \tau) \equiv G_{u v}(\sigma)+G_{u v}(\tau)
$$

in $(\mathbb{Z} / M \mathbb{Z})\left[(\mathbb{Z} / m \mathbb{Z})^{2}\right]$. In particular, it holds that

$$
\mathbb{E}_{m}(\sigma \tau) \equiv \mathbb{E}_{m}(\sigma)+\mathbb{E}_{m}(\tau) \bmod M
$$

In fact, the twisted composition law ([N10] §3.5) implies that, generally for $\sigma, \tau \in \mathrm{A},(u, v) \in \hat{\mathbb{Z}}$,

$$
\begin{equation*}
G_{\binom{u}{v}}(\sigma \tau)=G_{\binom{u}{v}}^{\rho(\tau)}(\sigma)+\chi(\sigma) \cdot \sigma\left(G_{\binom{u}{v}}(\tau)\right) \tag{5.2}
\end{equation*}
$$

holds, where

$$
\begin{align*}
G_{\binom{u}{v}}^{\rho(\tau)}(\sigma):= & {\left[(\sigma \tau)\left(\frac{\overline{\mathbf{x}}_{2}^{-v}-1}{\overline{\mathbf{x}}_{2}^{-1}-1}\right)\right] \cdot G_{\rho(\tau)\binom{(}{1}}(\sigma) } \tag{5.3}\\
& +\left[(\sigma \tau)\left(\overline{\mathbf{x}}_{2}^{-v} \frac{\overline{\mathbf{x}}_{1}^{-u}-1}{\overline{\mathbf{x}}_{1}^{-1}-1}\right)\right] \cdot G_{\rho(\tau)(1)}(\sigma) \\
& -\left[\operatorname{Rest} \rho(\sigma \tau) \cdot\binom{u}{v}\right]+\chi(\sigma) \cdot \sigma\left[\operatorname{Rest} \rho(\tau) \cdot\left(\begin{array}{l}
u \\
v \\
v
\end{array}\right)\right] .
\end{align*}
$$

(In [N10] §3.5, twisted composition laws were discussed for the monodromy images in A^{b}, but the arguments in loc. cit. hold true for general elements of A.) First, Theorem 4.5 (ii), (iii) ensure the following

Lemma 5.4. Assume $A \in \mathrm{GL}_{2}(\hat{\mathbb{Z}})$ satisfies $A \equiv 1 \bmod m N$. Then,

$$
\int_{(m \hat{\mathbb{Z}})^{2}} \overline{\mathbf{x}}_{1}^{-r} \overline{\mathbf{x}}_{2}^{-s} d \operatorname{Rest} A \cdot\binom{u}{v} \equiv 0 \bmod M
$$

for all $(r, s) \in \mathbb{Z}^{2}$, in other words, Rest $A .\binom{u}{v} \equiv 0$ in $(\mathbb{Z} / M \mathbb{Z})\left[(\mathbb{Z} / m \mathbb{Z})^{2}\right]$.

From this lemma we immediately see that the last two terms of (5.3) vanish in the reduced group ring $(\mathbb{Z} / M \mathbb{Z})\left[(\mathbb{Z} / m \mathbb{Z})^{2}\right]$ and that the proof of the above proposition is reduced to

Lemma 5.5. Suppose $\rho(\sigma) \equiv \rho(\tau) \equiv 1 \bmod m N$. Then, for every $(u, v) \in \hat{\mathbb{Z}}^{2}$, we have

$$
G_{\binom{u}{v}}^{\rho(\tau)}(\sigma) \equiv G_{u v}(\sigma)
$$

in $(\mathbb{Z} / M \mathbb{Z})\left[(\mathbb{Z} / m \mathbb{Z})^{2}\right]$.
Proof. Again by using Lemma 5.4, we find that Proposition 2.10 implies, for $\sigma \in \mathrm{A}$ with $\rho(\sigma) \equiv 1 \bmod m N$,

$$
G_{u v}(\sigma)=\frac{\overline{\mathbf{x}}_{2}^{-v}-1}{\overline{\mathbf{x}}_{2}^{-1}-1} G_{01}(\sigma)+\overline{\mathbf{x}}_{2}^{-v} \frac{\overline{\mathbf{x}}_{1}^{-u}-1}{\overline{\mathbf{x}}_{1}^{-1}-1} G_{10}(\sigma)
$$

in $(\mathbb{Z} / M \mathbb{Z})\left[(\mathbb{Z} / m \mathbb{Z})^{2}\right]$. Assume $\rho(\tau)=\binom{a b}{c d} \in \mathrm{GL}_{2}(\hat{\mathbb{Z}})$ which is assumed $\equiv 1 \bmod m N$. In particular, since $(a, c) \equiv(1,0),(b, d) \equiv(0,1) \bmod m N$, we have

$$
G_{a c}(\sigma) \equiv G_{10}(\sigma), \quad G_{b d}(\sigma) \equiv G_{01}(\sigma) \text { in }(\mathbb{Z} / M \mathbb{Z})\left[(\mathbb{Z} / m \mathbb{Z})^{2}\right]
$$

Putting all together into (5.3), we obtain

$$
\begin{aligned}
G_{(u)}^{\rho(\tau)}(\sigma) \equiv & {\left[(\sigma \rho(\tau))\left(\frac{\overline{\mathbf{x}}_{2}^{-v}-1}{\overline{\mathbf{x}}_{2}^{-1}-1}\right)\right] \cdot G_{b d}(\sigma) } \\
& +\left[(\sigma \rho(\tau))\left(\overline{\mathbf{x}}_{2}^{-v} \frac{\overline{\mathbf{x}}_{1}^{-u}-1}{\overline{\mathbf{x}}_{1}^{-1}-1}\right)\right] \cdot G_{a c}(\sigma) \\
\equiv & \frac{\overline{\mathbf{x}}_{2}^{-v}-1}{\overline{\mathbf{x}}_{2}^{-1}-1} \cdot G_{01}(\sigma)+\overline{\mathbf{x}}_{2}^{-v} \frac{\overline{\mathbf{x}}_{1}^{-u}-1}{\overline{\mathbf{x}}_{1}^{-1}-1} \cdot G_{10}(\sigma) \\
\equiv & G_{u v}(\sigma)
\end{aligned}
$$

in $(\mathbb{Z} / M \mathbb{Z})\left[(\mathbb{Z} / m \mathbb{Z})^{2}\right]$. This completes the proof.
Q.E.D.

Thus, the proof of Proposition 5.1, and hence that of Theorem B, are settled.

§6. Numerical examples for Theorem A

Before closing this paper, we shall provide some numerical examples illustrating congruence periodicity properties of $\mathbb{E}_{m}(\sigma ; u, v)$ in (u, v) of Therem A. We employ $\sigma \in \operatorname{Aut}(\pi)$ defined as the composite $\sigma:=$ $\tau_{1}^{-2} \tau_{2}^{6} \tau_{1}^{2} \tau_{2}\left(\tau_{1} \tau_{2}\right)^{-3}$ of the basic two automorphisms $\tau_{1}, \tau_{2} \in \operatorname{Aut}(\pi)$:

$$
\tau_{1}:\left\{\begin{array}{l}
\mathbf{x}_{1} \mapsto \mathbf{x}_{1} \mathbf{x}_{2}^{-1}, \\
\mathbf{x}_{2} \mapsto \mathbf{x}_{2}
\end{array} \quad \text { and } \quad \tau_{2}:\left\{\begin{array}{l}
\mathbf{x}_{1} \mapsto \mathbf{x}_{1} \\
\mathbf{x}_{2} \mapsto \mathbf{x}_{2} \mathbf{x}_{1} .
\end{array}\right.\right.
$$

In [N10] §7, we obtained an explicit formula to calculate $\mathbb{E}_{m}(\sigma ; u, v)$ $(u, v \in \mathbb{Z})$ from the matrix image of σ by $\rho: \operatorname{Aut}(\pi) \rightarrow \mathrm{GL}_{2}(\mathbb{Z})$ (1.1):

$$
\rho(\sigma)=\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 6 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
-1 & 0
\end{array}\right)^{-3}=\left(\begin{array}{cc}
11 & 5 \\
24 & 11
\end{array}\right)
$$

through relevant generalized Dedekind sums together with certain other elementary terms. According to this formula, the values $\mathbb{E}_{2}(\sigma ; u, v)$, for $m=2$ and say in the range $-4 \leq u, v \leq 4$, are given by the following table. More precisely, the matrix $\left[\mathbb{E}_{2}(\sigma, i-5, j-5)\right]_{i, j=1}^{9}$ is given by

$$
\left[\begin{array}{ccccccccc}
-1137 & -981 & -812 & -681 & -542 & -436 & -327 & -246 & -167 \\
-783 & -654 & -518 & -414 & -308 & -229 & -153 & -99 & -53 \\
-494 & -393 & -289 & -213 & -139 & -88 & -44 & -18 & -4 \\
-272 & -198 & -127 & -78 & -37 & -13 & -2 & -3 & -22 \\
-115 & -69 & -30 & -9 & 0 & -4 & -25 & -54 & -105 \\
-25 & -6 & 0 & -6 & -30 & -61 & -115 & -171 & -255 \\
0 & -9 & -35 & -69 & -125 & -184 & -270 & -354 & -470 \\
-42 & -78 & -137 & -198 & -287 & -373 & -492 & -603 & -752 \\
-149 & -213 & -304 & -393 & -514 & -628 & -779 & -918 & -1099
\end{array}\right] .
$$

Theorem A tells us certain periodical properties of the above matrix after taking the entries' residues by a fixed modulus: Generally, the residual values " $\mathbb{E}_{m}(\sigma ; u, v) \bmod M$ " have $m N \times m N$-periodicity, where $N=2^{\varepsilon} M(\varepsilon=0,1$ according as $2 \nmid M$ or $2 \mid M$ respectively). In the case $m=2, M=3$, the values " $\mathbb{E}_{2}(\sigma ; u, v) \bmod 3$ " should have 6×6 periodicity. For the above chosen σ, cutting out the range $-6 \leq u, v \leq 6$, we obtain the following matrix $\left[\mathbb{E}_{2}(\sigma, i-7, j-7) \bmod 3\right]_{i, j=1}^{13}$, where
we find 6×6-periodicity:

$$
\left[\begin{array}{lllllllllllll}
0 & 2 & 2 & 0 & 0 & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 0 \\
0 & 2 & 2 & 0 & 0 & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 & 1 & 0 & 1 & 2 & 0 & 0 & 1 & 0 & 1 \\
1 & 2 & 0 & 0 & 1 & 0 & 1 & 2 & 0 & 0 & 1 & 0 & 1 \\
2 & 2 & 1 & 0 & 2 & 0 & 2 & 2 & 1 & 0 & 2 & 0 & 2 \\
2 & 2 & 1 & 0 & 2 & 0 & 2 & 2 & 1 & 0 & 2 & 0 & 2 \\
0 & 2 & 2 & 0 & 0 & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 0 \\
0 & 2 & 2 & 0 & 0 & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 & 1 & 0 & 1 & 2 & 0 & 0 & 1 & 0 & 1 \\
1 & 2 & 0 & 0 & 1 & 0 & 1 & 2 & 0 & 0 & 1 & 0 & 1 \\
2 & 2 & 1 & 0 & 2 & 0 & 2 & 2 & 1 & 0 & 2 & 0 & 2 \\
2 & 2 & 1 & 0 & 2 & 0 & 2 & 2 & 1 & 0 & 2 & 0 & 2 \\
0 & 2 & 2 & 0 & 0 & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

In the case $m=2, M=2$ (hence $N=4$), the values " $\mathbb{E}_{2}(\sigma ; u, v)$ $\bmod 2 "$ should have 8×8-periodicity. For the above chosen σ, cutting out the range $-8 \leq u, v \leq 8$, we obtain the following matrix $\left[\mathbb{E}_{2}(\sigma, i-\right.$ $9, j-9) \bmod 3]_{i, j=1}^{17}$, where 8×8-periodicity is found:

$$
\left[\begin{array}{lllllllllllllllll}
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0
\end{array}\right]
$$

References

[BR07] M. Beck and S. Robins, Computing the Continuous Discretely. IntegerPoint Enumeration in Polyhedra, Undergrad. Texts Math., SpringerVerlag, 2007.
[Ih86] Y. Ihara, On Galois representations arising from towers of coverings of $\mathbf{P}^{1}-\{0,1, \infty\}$, Invent. Math., 86 (1986), 427-459.
[Ih99-00] Y. Ihara, On beta and gamma functions associated with the Grothendieck-Teichmüller modular group In: Aspects of Galois Theory, (eds. H. Voelklein et.al), London Math. Soc. Lecture Note Ser., 256, Cambridge Univ. Press, 1999, pp. 144-179; Part II, J. Reine Angew. Math., 527 (2000), 1-11.
[Kn73] D. E. Knuth, The Art of Computer Programming, Fundamental Algorithms, Vol. 1, 2nd ed., Addison-Wesley, Reading, Mass., 1973.
[N95] H. Nakamura, On exterior Galois representations associated with open elliptic curves, J. Math. Sci. Univ. Tokyo, 2 (1995), 197-231.
[N99] H. Nakamura, Tangential base points and Eisenstein power series, In: Aspects of Galois Theory, (eds. H. Völkein, D. Harbater, P. Müller and J. G. Thompson), London Math. Soc. Lecture Note Ser., 256, Cambridge Univ. Press, 1999, pp. 202-217.
[N10] H. Nakamura, On arithmetic monodromy representations of Eisenstein type in fundamental groups of once punctured elliptic curves, RIMS-1691 preprint, February 2010.
[Tsu95] H. Tsunogai, On the automorphism group of a free pro-l meta-abelian group and an application to Galois representations, Math. Nachr., 171 (1995), 315-324.
[RG72] H. Rademacher and E. Grosswald, Dedekind Sums, The Carus Mathematical Monographs, 16, The Mathematical Association of America, Washington, DC, 1972.

Department of Mathematics, Faculty of Science
Okayama University, Okayama 700-8530
Japan
E-mail address: h-naka@math.okayama-u.ac.jp

[^0]: Received May 30, 2011.

