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1. Introduction

The purpose of this paper is to show equivalence of two criteria for functional

equations of (complex and ℓ-adic) iterated integrals, one given by D. Zagier in

the case of polylogarithms which we generalize to arbitrary iterated integrals

and the other given by the second named author. We establish a device to

compute a functional equation from a family of morphisms on fundamental

groups of varieties, and present some examples showing how our device works

commonly both in complex and ℓ-adic cases. Some of our ℓ-adic examples al-

ready supply non-trivial arithmetic relations between “ℓ-adic polylogarithmic

characters” — functions on the absolute Galois group Gal(Q/Q) defined by

Kummer properties along towers of certain arithmetic sequences — which were

introduced in [NW] as generalization of so called the Soulé characters studied

by Ch. Soulé [S1], [S2].

Let V := P1−{several points} be a punctured projective line defined over a

subfield K of C. In [W0,2,5], the second named author gave conditions to have

functional equations of iterated integrals on V in terms of induced morphisms

on fundamental groups. In fact, in [W0], he formulated a complex iterated

integral as the image of the (universal) unipotent period along a chain from x

to z on V (C) by a 1-form on the Lie algebra of the pro-unipotent fundamental

group of V . Also in [W5], introduced is an ℓ-adic iterated integral using the

action of the absolute Galois group Gal(K/K) on the torsor of paths from x

————-
This work was partially supported by JSPS KAKENHI 21340009.



Functional equations of ℓ-adic and classical iterated integrals 259

to z (See Section 4 below). Then, the following result has been proved for their

functional equations.

Theorem 1.1 ([W0,2,5]) Let K be a subfield of C, and let {a1, . . . , aN},
{b1, . . . , bM} be respectively N - and M -point subsets of K. Consider X := P1

K−
{a1, . . . , aN ,∞}, Y := P1

K−{b1, . . . , bM ,∞}, and pick any K-rational (possibly

tangential) base point v on X. Suppose we have algebraic morphisms fi : X →
Y (i = 1, . . . ,m) together with homomorphisms ψi : grnΓπ1(Y (C), fi(v)) → Z
and constants c1, . . . , cm ∈ Z satisfying

m∑
i=1

ci ψi ◦ grnΓ(fi∗) = 0.

Here, fi∗ : π1(X(C), v)→ π1(Y (C), fi(v)) denotes the induced homomorphism,

and grnΓ denotes the n-th graded piece with respect to the lower central filtration.

Then, we have a functional equation

m∑
i=1

ci LψY (fi(z), fi(x)) ≡ 0

modulo lower degree terms, where LψY (fi(z), fi(x)) denote, depending on the

context, complex or ℓ-adic iterated integrals on Y . (The lower degree terms will

be specified later in this paper.) □

On the other hand, in [Z], D. Zagier gave conditions for the functional equa-

tions of classical polylogarithms in terms of (generalized) Bloch group [Bl1] that

is a certain tensor of symmetric and wedge products of multiplicative groups

of fields (cf. also [Ga] (1.10)). We generalize Zagier’s conditions from [Z] to

arbitrary iterated integrals in terms of tensor algebra of the abelianization of

π1.

The aim of this paper is, first to show that the condition on fundamental

groups from [W0,2,5] and that on tensor algebras are essentially equivalent

in a generalized setting of the above iterated integrals. Also we generalize re-

sults from [W5] to the case where X is an arbitrary nonsingular variety (not

necessarily a punctured projective line) in ℓ-adic case. See Theorem 4.13 and

Theorem 4.14 for our main statement of this paper.

Our main tool is a multi-linearized version of the classical Kummer pairing

π1(X)ab ×O×X −→ Z

for an algebraic variety X, where π1(X)ab is the abelianized fundamental group

of X and O×X is the unit group of the ring of regular functions on X. The pairing
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in the complex case is given by

(γ, f(x)) 7→ 1

2πi

∫
γ

d log f(x),

and in this paper, both components of γ and f(x) will be multi-linearized to

study informations appearing in the higher graded quotients of the fundamental

group. We make use of this tool to establish a device computing a functional

equation from a family of morphisms satisfying the criteria of Theorem 4.13

and Theorem 4.14.

One new aspect of our device is that it enables us to compute “lower degree

terms” of a functional equation of polylogarithms explicitly from given data in

both complex and ℓ-adic cases. A difference between complex and ℓ-adic cases

appears in that a complex iterated integral is canonically graded while an ℓ-adic

iterated integral is not. This causes us, in ℓ-adic case, to need to introduce an

extra notion of “(ℓ-adic) error term” whose computation involves a choice of

splitting of the lower central filtration in an ℓ-adic fundamental group. Applying

our method developed in this paper, we shall deduce in Section 6 the following

examples of typical functional equations:

Complex case ℓ-adic case

Li2(z) + Li2(1− z) + log z log(1− z) = π2

6
χ̃z
2 + χ̃1−z

2 + ρzρ1−z = 1
24

(χ2 − 1)

Li2(z) + Li2(
z

z−1
) = − 1

2
log2(1− z) χ̃z

2 + χ̃
z

z−1
2 =

ρ1−z

2

(
χ− ρ1−z

)
Lim(z) + (−1)mLim( 1

z
) χ̃z

m + (−1)mχ̃
1/z
m

= − (2πi)m

m!
Bm( log z

2πi
) = − 1

m
{Bm(−ρz)−Bmχm}

Li2(
ξη

(1−ξ)(1−η)
) = Li2(

ξ
1−η

) + Li2(
η

1−ξ
) χ̃

ξη
(1−ξ)(1−η)

2 = χ̃
ξ

1−η

2 + χ̃
η

1−ξ

2

−Li2(ξ)− Li2(η)− log(1− ξ) log(1− η) −χ̃ξ
2 − χ̃η

2 − ρ1−ξρ1−η

Here, χ̃zm : GK → Zℓ (m ≥ 1) (resp. χ : GK → Z×ℓ ; resp. ρz : GK → Zℓ)
denotes the ℓ-adic polylogarithmic character introduced in [NW] (resp. ℓ-adic

cyclotomic character; resp. Kummer 1-cocycle along ℓ-power roots of z) for

any field K(⊂ C) containing z (cf. §5.2), and Bm (resp. Bm(X)) is the m-th

Bernoulli number (resp. polynomial).

The contents of the present paper will be ordered as follows. In Section 2,

we review and study basic properties of the multi-Kummer pairing, and in

Section 3, we detect a tensor of functions as the multi-Kummer dual of a

form on the Lie algebra of the fundamental group. In Section 4, we rephrase

conditions of [W0,2,4] on a collection of homomorphisms of π1(X) in terms

of conditions on tensor and wedge products of functions, and prove our main

statements Theorem 4.13 and Theorem 4.14. As a special case, in Section 5,
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we closely consider the case of polylogarithms. We will present a more refined

statement than Theorem 4.13-14 specialized to this case. Section 6 is devoted

to present several typical examples of functional equations (listed in the above

table) exhibiting computation using our device of this paper.

There is also an important family of functional equations of polylogarithms

called the distribution equations:

Lik(zn) = nk−1

(
n−1∑
i=0

Lik(ζinz)

)
(ζn = e2πi/n)

which, together with their ℓ-adic analogs, will be treated from our point of view

in the forthcoming subsequent paper [NW2].

Acknowledgements: The first named author would like to thank H. Furusho for
useful comments on an early version of this paper. The second named author would
like to thank very much Max-Planck-Institut für Mathematik in Bonn, where several
essential ideas of this paper were worked out during his visits there. Both authors
would like to acknowledge O.Gabber’s discovery of Heisenberg covers (indicated in
[De0]) which gave important inspiration to our previous work [NW] on ℓ-adic poly-
logarithmic characters.

2. Multi-Kummer characters

Let X be a (nonsingular, absolutely irreducible) algebraic variety defined over

a number field K, a subfield of the field of complex numbers C. We denote by

Xan = X(C) the analytic manifold of the complex points of X, and by XK

the algebraic variety obtained as the fiber product X ×K K, where K is the

algebraic closure of K in C. Fix a K-rational (tangential) base point v on X.

(For a definition of tangential base points, see, e.g., [N0].)

2.1. Complex case: We shall write O(Xan) for the ring of holomorphic func-

tions on Xan. If a function f ∈ O(Xan) is everywhere non-vanishing on X(C),

i.e., f belongs to the unit group O(Xan)×, then it gives an analytic morphism

of X to the multiplicative group f : X → Gm(C). Any topological loop γ

based at v on X(C) is mapped by f to a loop f(γ) on the punctured plane

Gm(C) = C− {0} with the winding number

κf (γ) :=
1

2πi

∫
f(γ)

dw

w
=

1

2πi

∫
γ

d log f(x)

that obviously belongs to Z. From this arises the Kummer pairing (in the

complex case)

π1(Xan)ab ×O(Xan)× −→ Z.
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If the function f is of the form exp(g) for some g ∈ O(Xan), then κf kills all

loops γ of π1(X(C)). Define

O×h (Xan) := O(Xan)×/ exp(O(Xan)).

Then, for each positive integer n, we obtain a natural mapping

κ⊗n :

n⊗
i=1

O×h (Xan) −→ Hom(

n⊗
i=1

π1(X(C))ab,Z)

which will play a central role below.

Remark. In the sequel, we shall use both notations A⊗n and
⊗n

i=1A to

denote the n-times tensor product of A.

2.2. ℓ-adic case: By abuse of notations, for an algebraic variety X, we under-

stand O(X) to be the ring of regular (algebraic) functions on X. Recall from

[Roq] (cf. also [La1] Chap.II), the unit group O(X)× modulo K× is finitely

generated, torsion free abelian group.

Let f ∈ O(XK)× and pick any γ from the étale fundamental group

π1(XK , v). Then, we have an algebraic winding number κf (γ) ∈ Ẑ as fol-

lows. Form the fibre product X ′ = X ×Gm Gm induced from the n-power map

Gm → Gm:

X ′
fn−−−−→ Gm

pn(f)

y yn
X

f−−−−→ Gm,

then, pn = pn(f) : X ′ → X is a (not necessarily connected) finite étale cover

of X of degree n. The fundamental group π1(X, v) acts, by definition, on the

n point set p−1n (v), and the action of each loop γ ∈ π1(X, v) is represented by

a certain residue κn ∈ (Z/nZ) that “rotates” the upper Gm through the angle

2πκn/n. Actually, κn is determined up to the residue class of f ∈ O(XK)×

modulo O(XK)×n. Letting n run over all positive integers multiplicatively, the

sequence {κn} defines a coherent element κf (γ) ∈ Ẑ = lim←−n(Z/nZ) according

to any given class of Ô×(XK) := lim←−nO(XK)×/O(XK)×n. Thus, we obtain

the Kummer pairing

π1(XK)ab × Ô×(XK) −→ Ẑ.

If we fix a prime number ℓ and look only at the ℓ-power maps of Gm, then, the
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above pairing terminates at Zℓ and π1(XK) and Ô×(XK) factor through

πℓ1(XK) := the maximal pro-ℓ quotient of π1(XK),

Ô×ℓ (XK) := lim←−
n

(O(XK)×/O(XK)×ℓ
n

)

respectively. We also obtain the natural analog of κ⊗n (written by the same

symbol, for simplicity):

κ⊗n :
n⊗
i=1

Ô×ℓ (XK) −→ Hom(
n⊗
i=1

πℓ1(XK)ab,Zℓ),

where, ⊗ are understood to be taken over Zℓ.

Lemma 2.1 In both complex and ℓ-adic cases, κ⊗n is injective.

Proof. The complex case: Taking the cohomology associated to the exact se-

quence of sheaves 0→ Z→ O exp→ O× → 0 on Xan (and the universal coefficient

theorem for cohomology and the Hurewicz theorem), we have an injection

O×h (Xan) ↪→ H1(Xan,Z)
∼→Hom(π1(Xan)ab,Z).

This settles the case n = 1. For the case n > 1, noting that both O×h (Xan) and

Hom(π1(Xan)ab,Z) are torsion free, i.e, flat Z-modules, we obtain the injection

n⊗
i=1

O×h (Xan) −→
n⊗
i=1

Hom(π1(Xan)ab,Z) = Hom(

n⊗
i=1

π1(Xan)ab,Z)

(cf. [B-1] Chap.2 §4 (23) for the latter equality). The ℓ-adic case: Since

O(XK)×ℓ
n

contains K
×

, Ô×ℓ (XK) is a torsion free Zℓ-module. This is injec-

tively mapped into Hom(πℓ1(XK)ab,Zℓ), as ℓn-th roots of each non-constant

function give non-trivial extensions of the function field of X when n → ∞.

Thus, the case of n = 1 follows. For the case n > 1, noting again that these are

both flat Zℓ-modules, we complete the proof in the same way. □

Remark 2.2 It is known that π1(X(C)) is a finitely generated group (see

[Ra]). Therefore, the domain and the target modules of κ⊗n are finitely gener-

ated torsion free Z- or Zℓ-modules. Moreover, in the complex case, the coho-

mology sequence in the above proof implies that the cokernel of O×h (Xan) ↪→
H1(Xan,Z) is injectively mapped into the complex vector space H1(Xan,O),

hence is a (finitely generated) torsion free Z-module (in particular, it is a “pure”

submodule in the sense of [B-2] Chap. 1 §2 Ex .24). Meanwhile, in the ℓ-adic

case, torsion possibility in the cokernel of O×ℓ (XK) ↪→ Hom(πℓ1(XK)ab,Zℓ) is

a more subtle question.
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Remark 2.3 In our argument below, use of O×h (Xan) may be replaced by

O×(Xalg
C )/C×, the multiplicative group of the algebraic unit functions modulo

constants, as this group is also injectively mapped in O×h (Xan). This injectivity

follows easily from the fact exp(O(Xan)) ∩ O×(Xalg
C ) = C×. In fact, if an

analytic function f on Xan has exp(f) being an algebraic regular function on

X, then, all exp(f/n) (n ≥ 1) must be univalent algebraic functions on X, while

O×(Xalg
C )/C× has no nontrivial divisible elements by the above mentioned

result by Roquette [Roq]. Alternatively, one can use the Kummer sequence

in Galois cohomology to show the injectivity of O×(Xalg
C )/O×(Xalg

C )ℓ
n

into

Hom(πℓ1(XK)ab,Z/ℓnZ), and then take the projective limit n→∞.

3. Multi-Kummer duals

We recall that the lower central series of a group π is defined inductively by

setting

Γ1π := π, Γnπ := (π,Γn−1π) n > 1.

The commutator bracket (x, y) = xyx−1y−1 then induces the Lie algebra struc-

ture on the graded sum

GrLieπ =
∞⊕
n=1

grnπ =
∞⊕
n=1

(Γnπ/Γn+1π)

in such a way that, for α ∈ grnπ, β ∈ grmπ, the Lie bracket is given by

[α, β] := (α, β) mod Γn+m+1π.

We denote by x̄ the image of x ∈ π in the abelianization πab = gr1π.

Definition 3.1 Define a natural map

aaan(π) :

n⊗
i=1

πab −→ grnπ

by induction on n by setting aaa1(π) := identity on πab and

aaan(π)(α1 ⊗ · · · ⊗ αn) := [α1, aaan−1(π)(α2 ⊗ · · · ⊗ αn)]

for n > 1. In the case when π is a pro-ℓ group, we define aaan(π) in exactly

the same way after taking the lower central series and the tensor products

respectively as topological pro-ℓ groups and as Zℓ-modules. It is also impor-

tant to consider the case where π is replaced by its quotient by the (closure of, in
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the pro-ℓ case) double commutator subgroup π′′ of π. It is obvious that the maps

aaan(π), aaan(π/π′′) are surjective, therefore they induce injective homomorphisms

Hom(grnΓ(π/π′′),Z) ↪→ Hom(grnΓπ,Z) ↪→ Hom(
n⊗
i=1

πab,Z).

We denote by aaa∗n(π) (resp. aaa∗n(π/π′′)) the injection of Hom(grnΓπ,Z) (resp.

of Hom(grnΓ(π/π′′),Z)) into Hom(
⊗n

i=1 π
ab,Z) induced by aaan(π) (resp. by

aaan(π/π′′)).

Now, let us consider permutations of components of
⊗n

i=1 π
ab. We introduce

special permutation actions σ, τ by{
σ(η1 ⊗ · · · ⊗ ηn−3 ⊗ a⊗ b⊗ c) = η1 ⊗ · · · ⊗ ηn−3 ⊗ b⊗ c⊗ a,
τ(η1 ⊗ · · · ⊗ ηn−2 ⊗ a⊗ b) = η1 ⊗ · · · ⊗ ηn−2 ⊗ b⊗ a,

and let any permutation ρ ∈ Sn−2 act by

ρ(η1 ⊗ · · · ⊗ ηn−2 ⊗ a⊗ b) = ηρ(1) ⊗ · · · ⊗ ηρ(n−2) ⊗ a⊗ b.

Proposition 3.2 If a homomorphism φ :
⊗n

i=1 π
ab → Z belongs to the image

of aaa∗n(π), then, for η ∈
⊗n

i=1 π
ab,

φ(η) + φ(τ(η)) = 0,(i)

φ(η) + φ(σ(η)) + φ(σ2(η)) = 0.(ii)

If φ :
⊗n

i=1 π
ab → Z belongs moreover to the image of aaa∗n(π/π′′), then,

(iii) φ(η) = φ(ρ(η)) for all ρ ∈ Sn−2.

Proof. The equations (i), (ii) follow immediately from the Lie identities [A,B]+

[B,A] = 0, [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 respectively. The equation

(iii) follows by observing that

[A, [B, [C,D]]] = [[A,B], [C,D]] + [B, [A, [C,D]]

and the fact [[A,B], [C,D]] = 0 in GrLie(π/π′′). □

Remark 3.3 When π is a free group with free generators y1, . . . , yN , the Lie

algebra Gr(π) := ⊕ngrnΓπ can be regarded as the Lie part of the graded free as-

sociative algebra A(π) := ⊕n(πab)⊗n. Therefore, there is a natural embedding

ιn : grnΓπ ↪→ (πab)⊗n. It is known that ιn gives a “ 1
n -splitting” of the above

surjection aaan : (πab)⊗n → grnΓπ (cf. [MKS] Theorem 5.17). For a general group

π, we do not have an analog of the mapping ιn, so we choose to argue in the

principal use of aaan.
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Notation 3.4 For an abelian group A, let the symmetric group Sn of de-

gree n act on A⊗n by the component permutations. We write SymnA (resp.

AltnA) the usual symmetric (resp. alternate) tensor product defined as the

maximal quotient of A⊗n on which Sn acts trivially (resp. by sign-alterations).

On the other hand, we regard the wedge tensor product
∧n

A (resp. the sym-

metric tensor product SymnA) as the submodule of
⊗n

i=1A consisting of those

elements which are sign-alternated (resp. invariant) under the component per-

mutations by Sn. We use the following notations for elements in the latter type

of symmetric and alternative tensor products of an abelian group A:

a ∧ b := a⊗ b− b⊗ a ∈ A ∧A ⊂
2⊗
i=1

A,

a⊙n := a⊗ · · · ⊗ a︸ ︷︷ ︸
n

∈ SymnA ⊂
n⊗
i=1

A.

(The last notation is borrowed from e.g., [Bl2], [Ga], and will be used only later

in §5-§6. In fact, since our SymnA is now given as the invariant subspace of

A⊗n (unlike in the quotient symmetric tensor space SymnA of A⊗n), how to

define a “canonical a1⊙· · ·⊙an” in SymnA becomes a nontrivial question, even

if it may be restricted to our necessary case A ∼= Zr. We leave the question as

a problem for future study when necessity arises.) If A is a Zℓ-module, we shall

understand the tensor ⊗ is taken in the category of Zℓ-modules.

Now, suppose that the above π is given as the fundamental group π1(X(C))
of an algebraic variety X over a field K ⊂ C as in §2. The above properties
(i), (iii) of Proposition 3.2 would lead us to consider the following type of
commutative diagram

⊗n
i=1O

×
h

κ⊗n
−−−−−−→

inj.
Hom((πab

1 )⊗n,Z)xincl.

xincl.

(O×
h )⊗n−2 ⊗ ∧2O×

h −−−−−−→
inj.

Hom((πab
1 )⊗n−2 ⊗ Alt2πab

1 ,Z) incl.←−−−−−− Hom(grnΓπ1,Z)xincl.

xincl.

xincl.

Symn−2O×
h ⊗ ∧

2O×
h −−−−−−→inj.

Hom(Symn−2πab
1 ⊗ Alt2πab

1 ,Z) incl.←−−−−−− Hom(grn(π1/π
′′
1 ),Z)

Here, we should like to relate the homomorphisms in Hom(grnΓπ1,Z) and

Hom(grn(π1/π
′′
1 ),Z) with tensors of the unit functions. But since κ⊗n is not

necessarily surjective in general, we shall first restrict ourselves to the case

where surjectivity of κ⊗n is available: to the special case where π is given

as the fundamental group of the complex points of the projective t-line Y =
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P1
t − {b1, . . . , bN ,∞} (N ≥ 2) with yi a standard loop running once around

the puncture bi based at a fixed (tangential) base point v on Y . Then, π is a

free group, freely generated by the y1, . . . , yN . Set [1, N ] = {1, ..., N}, and, for

any n-tuple kkk = (k1, . . . , kn) ∈ [1, N ]n, write ȳkkk = ȳk1 ⊗ · · · ⊗ ȳkn ∈
⊗n

i=1 π
ab.

Observe that the group of units on Y is given by

(
O(Y an)× ⊃

)
O(YK)× = K

[
t,

N∏
i=1

(t− bi)−1
]×

= K
×

N∏
i=1

(t− bi)Z.

Proposition 3.5 Notations being as above for Y = P1
t − {b1, . . . , bN , ∞}

(N ≥ 2), for any φ :
⊗n

i=1 π1(Y (C), v)ab → Z, we have

φ = κ⊗n

 ∑
kkk∈[1,N ]n

φ(ȳkkk)(t− bk1)⊗ · · · ⊗ (t− bkn)

 .

Also, holds its obvious ℓ-adic analog, where π1(Y (C), v), Z are replaced by

πℓ1(YK , v), Zℓ respectively. In particular, κ⊗n gives an isomorphism:

O×h (Y an)⊗n
∼→Hom(πab

1 (Y (C))⊗n,Z)(
resp. O×ℓ (YK)⊗n

∼→Hom(πab
1 (YK)⊗n,Zℓ)

)
.

Proof. As the right hand side equals to∑
kkk∈[1,N ]n

φ(ȳkkk) κt−bk1
⊗ · · · ⊗ κt−bkn

,

the multi-linearity of φ reduces the proof to showing

κt−bi(ȳj) = δij (1 ≤ i, j ≤ N ; δ = Kronecker’s delta).

But this is immediate from the definition of the loops yj . The ℓ-adic case follows

in the same way as above. □

For Y = P1
t − {b1, . . . , bN ,∞} (N ≥ 2), Proposition 3.2 may be rephrased

in terms of the coefficients of the above proposition as follows. We let the

permutations σ, τ ∈ Sn and ρ ∈ Sn−2 act on kkk = (k1, . . . , kn) ∈ [1, N ]n

by τ(kkk) = (k1, . . . , kn−2, kn, kn−1), σ(kkk) = (k1, . . . , kn−3, kn−1, kn, kn−2) and

ρ(kkk) = (kρ(1), . . . , kρ(n−2), kn−1, kn).

Lemma 3.6 If a homomorphism φ :
⊗n

i=1 π
ab → Z belongs to the image of

aaa∗n(π), then,

φ(ȳkkk) + φ(ȳτ(kkk)) = 0,(i)

φ(ȳkkk) + φ(ȳσ(kkk)) + φ(ȳσ2(kkk)) = 0.(ii)
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If φ :
⊗n

i=1 π
ab → Z belongs moreover to the image of aaa∗n(π/π′′), then,

(iii) φ(ȳkkk) = φ(ȳρ(kkk)) for all ρ ∈ Sn−2.

Corollary 3.7 Notations being the same as in Proposition 3.5, let π denote
π1(Y (C), v) in the complex case, and suppose that φ lies in the image of aaa∗n(π),
i.e., φ ∈ Hom(grnΓπ,Z). Then,

φ = κ
⊗n

∑
kkk

∑
l1<l2

l1,l2∈[1,N]

φ(ȳ(kkk,l1,l2))(t− bk1
)⊗ · · · ⊗ (t− bkn−2

)⊗
(
(t− bl1 ) ∧ (t− bl2 )

)
 ,

where kkk = (k1, . . . , kn−1) runs over all tuples belonging to [1, N ]n−2. If more-

over φ lies in the image of aaa∗n(π/π′′), i.e., φ ∈ Hom(grnΓ(π/π′′), Z), then, the

coefficients φ(ȳ(kkk,l1,l2)) are invariant under the action of Sn−2 on the first n−2

tensor components, so that the above inside of κ⊗n lies in Symn−2O×h (Y an)⊗
∧2O×h (Y an). Exactly parallel statements also hold in the ℓ-adic case after sub-

stituting πℓ1(YK , v), Zℓ and O×ℓ (YK) in the obvious way.

Proof. This follows as a simple combination of Proposition 3.2 (i) and Propo-

sition 3.5. □

Definition 3.8 We shall call the inside of the right hand side of the above

corollary the Kummer dual of φ and write κ̂⊗n(φ)(t). Regarded as an element of

(
⊗n

i=1O
×
h (Y an))⊗

∧2O×h (Y an) in the complex case, and of (
⊗n

i=1 Ô
×
ℓ (YK))⊗∧2 Ô×ℓ (YK) in the ℓ-adic case, the Kummer dual κ̂⊗n(φ)(t) of φ is uniquely

determined by the equality

φ = κ⊗n(κ̂⊗n(φ))

by virtue of the injectivity of κ⊗n shown in Lemma 2.1. Moreover, given a

k-morphism of an algebraic variety X with base point v to the punctured

projective t-line Y :

f : X −→ Y = P1
t − {b1, . . . , bM ,∞}

and φ ∈ Hom(grnΓ(π1(Y (C), f(v))),Z) (or ∈ Hom(grnΓ(π1(YK , f(v))),Zℓ) in the

ℓ-adic case), we shall denote by κ̂⊗n(φ)(f) the pulled back image of the Kum-

mer dual κ̂⊗n(φ)(t) induced by the mapping g 7→ g ◦ f of the unit functions on

Y to those on X.

4. Iterated integrals and their functional equations

We first review the definition of complex and ℓ-adic iterated integrals. For the

reader’s convenience, we make the paper as complete as possible even if this

means that we repeat some arguments from earlier papers of the second named



Functional equations of ℓ-adic and classical iterated integrals 269

author. Let X be an algebraic variety defined over K ⊂ C. We assume, for

simplicity, that X is nonsingular and absolutely irreducible over K.

4.1. Complex iterated integrals. In this subsection, we set K = C and

pick complex points v, z ∈ X(C) and a path p from v to z on X(C). Given a

collection of holomorphic 1-forms w1, . . . , wn on the smooth analytic manifold

X(C), we can form an iterated integral
∫
p
w1 · · ·wn.

Take a smooth compactification X∗ of X with D := X∗−X a normal cross-

ing divisor, and let Ωi(= Ωilog(X)) := Ωi(X logD)(X∗) be the space of (global

sections of) meromorphic i-forms on X∗, holomorphic on X, with logarithmic

singularities along D. It is known that the spaces Ωilog(X) are determined in-

dependently of the choice of the compactification X∗ of X as above (cf. [Ii]

Chap.11).

Let Vi be the dual space of Ωi and K⊥ ⊂ V1 ∧V1 be the orthogonal space to

the kernel of the cup product Ω1 ∧ Ω1 → Ω2.

Definition 4.1 Let Lie(V1) =
⊕∞

n=1 Lie(V1)n be the free Lie algebra gen-

erated by V1 equipped with natural gradation by Lie(V1)n — the part of ho-

mogenous Lie polynomials of degree n. Let L(V1,K
⊥) be the quotient of Lie(V1)

modulo the ideal generated by K⊥ ⊂ Lie(V1)2 = V1 ∧ V1. We denote by LX
the completion of L(V1,K

⊥) with respect to the lower central series, and by

UX (resp. π(X)) the complete Hopf algebra given as the universal enveloping

algebra of LX (resp. the group of the group-like elements of UX).

Note that L(V1,K
⊥) has a natural gradation L(V1,K

⊥) =
∞⊕
n=1

L(V1,K
⊥)n

inherited from that of Lie(V1). There is a natural bijection between LX and

π(X) given by exp and log that also preserves the lower central filtrations of

LX and of π(X) mutually. Thus, we have a canonical identification (cf. also

[De2] §12):

(4.1) π(X)/ΓN+1π(X)
log

⇄
exp

LX/Γ
N+1LX ∼=

N⊕
n=1

L(V1,K
⊥)n.

It is known that the 1-form ωX ∈ V1⊗Ω1 = Hom(Ω1,Ω1) corresponding to the

identity element gives an integrable connection on the trivial principal bundle

X × UX → X, i.e., it satisfies dωX = ωX ∧ ωX = 0 (cf. [H] §4, [W2] §1).

Given a path γ from v to z, the associated horizontal section starting from

(v, 1) ∈ X × UX over γ terminates at a point (z,Λγ(z, v)) that is uniquely

determined as long as γ : v ⇝ z changes in the same homotopy class. From

this, one can define the parallel transport mapping

(4.2) θv,z,X : π1(X, v, z) −→ π(X) (γ 7→ Λγ(z, v)).
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This construction is compatible with composition of paths, i.e., for paths α :

v ⇝ y, β : y ⇝ z, we have

(4.3) Λα(y, v)Λβ(z, y) = Λαβ(z, v).

It is shown by K.-T.Chen that Λγ(z, v) can be expressed in terms of iterated

integrals as

(4.4) Λγ(z, v) = 1 +

∫
γ

ωX +

∫
γ

ωXωX +

∫
γ

ωXωXωX + · · · .

The above constructions of LX , π(X), UX together with Λγ(z, v) are functorial

with respect to morphisms, i.e., for any morphism f : X → Y , the naturally

induced homomorphism f∗ : LX → LY (that can be extended to the homo-

morphism f∗ : UX → UY which also gives f∗ : π(X) → π(Y )) maps each

component of the gradation of LX into the corresponding component of LY ,

and keeps

(4.5) f∗(Λγ(z, v)) = Λf(γ)(f(z), f(v))

(see e.g., Corollary 1.7 of [W3]). In fact, the pull-back of differentials by a

morphism f : X → Y keeps the differentials with log poles, i.e., it holds that

f∗Ω1
log(Y ) ⊂ Ω1

log(X). (cf. [Ii] §11.1c). This, together with the fact f∗ωX =

f∗ωY (where, f∗, f
∗ act on V1 ⊗ Ω1 respectively by f∗ ⊗ id, id ⊗ f∗) implies

(4.5).

When v = z, the monodromy map extends to a surjective homomorphism of

complete Hopf algebras

(4.6) θv,X : Cπ1(X, v)∧ −→ UX .

Notably, R.Hain [H] determined the kernel of θv,X to be the ideal I := F 0 ∩
J + F−1 ∩ J2 + F−2 ∩ J3 + ..., where J is the augmentation ideal and F i are

Hodge filtrations on the Malcev fundamental group algebra Cπ1(X, v)∧.

Remark 4.2 Note that Ω1
log(X) ⊂ H1

DR(X/C) ([De1]). In the above con-

struction, we need not assume the equality of this inclusion. In particular, we

allow the case H1(X∗,OX∗) ̸= {0}.

Example 4.3 Let X be an elliptic curve E := {y2 = x3+ax+b}∪{∞} minus

a set of several points D = {p1, . . . , pN} ∪ {∞}. By Abel’s theorem (cf. [Rob]

p.134), every holomorphic 1-form ω with poles included in D is uniquely written

in the form

ω =

(
df + α

xdx

y

)
︸ ︷︷ ︸

ω2

+

(
β
dx

y

)
︸ ︷︷ ︸

ω1

+

(
N∑
i=1

γi
y + y(pi)

x− x(pi)

dx

y

)
︸ ︷︷ ︸

ω3

,
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with f ∈ O(E \ D)×, α, β, γi ∈ C. If we write ω2, ω1, ω3 respectively for the

above three terms (..), then, ω1 is a differential of the 1st kind, ω2 +ω1 is of the

2nd kind and ω1 +ω3 is of the 3rd kind. (Residues of the differential y+y(pi)x−x(pi)
dx
y

are ±2). The space Ω1
log(E \ D) consists of the differential forms ω with no

ω2, i.e., only of the 1st and 3rd differentials, that is a finite dimensional vector

space. (If we allow the part ω2 to be alive, then we would need to deal with an

infinite dimensional space of forms.) Meanwhile the map Ω1(X logD)(X∗) →
H1
DR(X/C) is injective, but generally has a nontrivial cokernel (corresponding

to the class of anti-holomorphic differentials). For any given morphism f :

E \D → P1
t \{a1, . . . , aM ,∞}, the pullback by f sends each dt

t−ai into Ω1
log(E \

D). This observation exhibits a point that enables us to carry out the above

construction in a functorial way with respect to morphisms, and leads us to

generalize our previous result (cf. Theorem 1.1) in the setting of an arbitrary

variety X accompanied with morphisms to a punctured line.

Now, suppose X = P1 − {a1, . . . , aN ,∞} (N ≥ 2) and that we are given

a form ψ : grnΓπ1(X, v) → Z. In this special case, Hain’s kernel is trivial and

the monodromy representation θv,X gives a canonical isomorphism between

Cπ1(X, v)∧ and UX . Moreover, since K⊥ = 0, one can identify

(4.7) grnθv,X : grnΓπ1(X, v)⊗ C ∼→Lie(V1)n.

Then, the linear form ψC = ψ ⊗ C on grnΓπ1(X, v) ⊗ C composed with (the

splitting of LX/Γ
N+1LX and) log of (4.1) can be regarded as a polynomial

function on π(X)/Γn+1π(X). Note also that one can follow the same story

even when v is a tangential base point on X (See [W3] §3).

Definition 4.4 Assume X = P1 − {a1, . . . , aN ,∞} (N ≥ 2). We may think

of ψC ◦ log as a polynomial function on π(X)/Γn+1π(X) as above. We shall call

LψC(z, v; γ) := ψC
(
log Λγ(z, v)−1 mod Γn+1

)
the complex iterated integral associated to the form ψ ∈ Hom(grnΓπ1(X, v), Z)

and the path γ : v ⇝ z on X.

4.2. ℓ-adic iterated integrals ([W4]). Let v, z be K-rational (possibly tan-

gential) points on X, and p be an étale path from v to z.

There is an isomorphism of pro-ℓ spaces between the pro-ℓ fundamental group

π := πℓ1(XK , v) and the pro-ℓ torsor of paths πℓ1(XK , v, z) from v to z given by

(4.8) π = πℓ1(XK , v)
∼−→πℓ1(XK , v, z) (γ 7→ pγ−1).

Through this identification, the natural Galois action on πℓ1(XK , v, z) induces

a Qℓ-linear Galois representation GK → GL(Û(π)) (σ 7→ σp) in the universal
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enveloping algebra Û(π) of the (complete) ℓ-adic Lie algebra L(π) of π. This

new action generally depends on the choice of path p : v ⇝ y, and is determined

by the formula

(4.9) σp(S) := fpσ · σ(S) (S ∈ πℓ1(XK , v), σ ∈ GK),

where fpσ := p · σ(p)−1. To be distinguished from the above action σp, we shall

also write σv to designate the standard Galois action at v: GK → Aut(Û(π))

(σ 7→ σv).

Definition 4.5 Let {Γi}i=1,2,... denote the lower central filtrations of L(π),

and set

Gi(v) := {σ ∈ GK | σv : trivial on L(π)/Γi+1L(π)};
Hi(z, v) := {σ ∈ Gi(v)|σp : trivial on L(π)/ΓiL(π)}.

It follows from [W4] Lemma 1.0.5 that Hi(z, v) does not depend on the choice

of p. Note that, for i = 1, G1(v) = H1(z, v).

Now, recall that we have a canonical group homomorphism of π into π(Qℓ)
— the (Qℓ-valued points) of the pro-algebraic group formed by the group-like

elements of U(π). There is also a bijective correspondence between π(Qℓ) and

L(π) given by log and exp. In this paper, for any element f ∈ π, we shall write

simply log(f) ∈ L(π) to denote the log of the image of f in π(Qℓ). On the other

hand, the universal enveloping algebra U(π) has the augmentation ideal I and

we have I/I2
∼→ gr1Γ(π) ⊗ Qℓ. A Qℓ-linear automorphism ε of Û(π) is called

unipotent if it acts trivially on I/I2. We write Log(ε) for the Qℓ-linear endo-

morphism obtained as the logarithm of a Qℓ-linear unipotent automorphism ε

of Û(π). The following basic facts were proved in [W4].

Proposition 4.6 Suppose σ ∈ G1(v). Then,

(i) The actions of σv and σp on Û(π) are unipotent.

(ii) (Logσp)(1) ∈ Û(π) is a Lie element, i.e., belongs to the Lie part L(π) ⊂
Û(π).

(iii) Log(σp) = L(Logσp)(1) + Log(σv), where Lλ means the left multiplication

by λ.

(iv) If σ ∈ Hi(z, v), then (Logσp)(1) belongs to ΓiL(π). □

Definition 4.7 For each Qℓ-valued form ψ on L(π), we define the naive ℓ-adic

iterated integral Lψnv(z, v; p) to be the function on GK given by

Lψnv(z, v; p)(σ) := ψ(log(fpσ)−1) (σ ∈ GK),

where fpσ = p · σ(p)−1. The big ℓ-adic iterated integral Lψ(z, v; p) is defined to
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be the function on G1(v) by

Lψ(z, v; p)(σ) := ψ((Logσp)(1)) (σ ∈ G1(v)).

If ψ is a(n induced) form on griΓπ⊗Qℓ ∼= ΓiL(π)/Γi+1L(π), then we define the

ℓ-adic iterated integral Lψ(z, v) to be the restriction of Lψ(z, v; p) on Hi(z, v),

that is,

Lψ(z, v)(σ) := ψ((Logσp)(1)) (σ ∈ Hi(z, v)).

Proposition 4.8 Lψ(z, v) does not depend on the choice of the path p. □

In the special case of X = P1
K − {a1, . . . , aN ,∞} (N ≥ 2), we may proceed

to some more construction: Fix a generator system x⃗ = (x1, . . . , xN ) of the

topological fundamental group π1(X(C), v) so that xi (1 ≤ i ≤ N) is a loop

based at v running around the puncture ai once in the anti-clockwise way. Since

π = πℓ1(XK , v) is canonically isomorphic to the pro-ℓ completion of π1(X(C), v),

we may regard x⃗ as the topological generator system of π. Then, Xi = log(xi)

freely generate the complete ℓ-adic Lie algebra L(π), i.e., every element of L(π)

has an expansion as a formal Lie series in X1, . . . , XN . In particular, we may

define the homogeneous degree n part L(π)n,x⃗ ⊂ L(π) and the decomposition

(4.10) L(π) =

∞∏
n=1

L(π)n,x⃗

depending on the choice of x⃗. Given a Z-valued form ψ : grnπ1(X(C), v) → Z
and a generator system x⃗ = (x1, . . . , xN ) of π1(X(C), v), we obtain a Qℓ-valued

form ψx⃗ (or just written ψ) on L(π) as the composition of

(4.11) ψx⃗ : L(π)
proj.−−−−→ L(π)n,x⃗

∼→ grnπ1(X, v)⊗Qℓ
ψ⊗id−−−−→ Qℓ,

where the middle isomorphism is the one induced by mapping Xi 7→ x̄i ∈
gr1Γ(π1(X, v)). For this ψx⃗, we may apply Definition 4.7 above to define the ℓ-

adic naive iterated integral Lψx⃗
nv (z, v; p), the ℓ-adic big iterated integral

Lψx⃗(z, v; p) and ℓ-adic iterated integral Lψx⃗(z, v).

The graded quotients Gn(v)/Gn+1(v) and Hn(z, v)/Hn+1(z, v) have natural

GK-module structures by conjugation. This action is shown to be factored

through GK/G1(v). Sometimes useful is, denoting by T a finite collection of

pairs (zj , vj) of K-rational (tangential) points on X, to consider the intersection

(4.12) Hn(T ) :=
∩

(zj ,vj)∈T

Hn(zj , vj).

In the case of X = P1
K − {a1, . . . , aN ,∞}, we see that G1(v) = GK(µℓ∞ ) and

that GK/G1(v) = Gal(K(µℓ∞)/K) acts on each graded quotient
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Hn(T )/Hn+1(T ) via multiplication by n-th power of χ : GK → Z×ℓ , the cy-

clotomic character, i.e., makes it isomorphic to a finite sum of the Tate twist

Zℓ(n). The standard weight argument assures

Proposition 4.9 Notations being as above for X = P1
K − {a1, . . . , aN ,∞}

(N ≥ 2), the natural homomorphisms

Hn(T )/Hn+1(T )→ Hn(S)/Hn+1(S)→ Gn(v)/Gn+1(v)

(n = 1, 2, ...) are almost surjective (i.e., have finite cokernels) for any subset

S ⊂ T . □

Let us now take T to be a collection of (z, v) and (a⃗i, v) with a⃗i being any

K-rational tangential base point at ai for 1 ≤ i ≤ N .

Proposition 4.10 Notations being as above, the ℓ-adic iterated integral

Lψx⃗(z, v) on Hn(T ) is independent of the choice of the generator system x⃗

(i.e., depending only on the order of missing points on P1
K).

According to this proposition, we may without ambiguity write Lψ(z, v), ab-

breviating the reference to x⃗ for the ℓ-adic iterated integral on Hn(T ). For

details of the above propositions, see [W4].

Before closing this subsection, we note the following lemma that will be

applied to control a behavior of naive ℓ-adic iterated integrals under changes

of the choice of paths.

Lemma 4.11 Let X/K be any algebraic variety with K-rational base point v,

and let σv denote the action of σ ∈ GK on L(π) at v. Then, for every σ ∈ GK
and s ∈ Γnπℓ1(XK , v), we have

log fspσ ≡ log fpσ + (1− σv) · (log s) mod Γn+1L(π).

In particular, log fpσ is invariant modulo ΓnL(π) under the change of p 7→ sp

(s ∈ Γnπℓ1(XK , v)). In the case X = P1
K − {a1, . . . , aN ,∞} (N ≥ 2), it holds

that

log fspσ ≡ log fpσ + (1− χ(σ)n)(log s) mod Γn+1L(π),

where χ : GK → Z×ℓ is the cyclotomic character.

Proof. We have fspσ = sp · σ(sp)−1 = sfpσs
−1 · sσ(s)−1. Taking log : π → L(π),

we obtain

log fspσ = s(log fpσ)s−1 ⊞ log(s · σ(s)−1),

where ⊞ denotes the Baker-Campbell-Hausdorff sum: S ⊞ T = log(eSeT ). Since

s lies in the center of π/Γn+1π, after taking modulo Γn+1L(π), we see the above

right hand side is congruent to log fpσ + log(s)− log(σ(s)). From this follows the
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first formula. In the special case of the punctured projective line, σ acts on

grnΓπ by χ(σ)n-multiplication. Thus, the proof of Lemma is completed. □

Applying ψx⃗ : L(π)→ Qℓ to the above lemma gives a generalization of [DW2]

Lemma 2.1 to the naive ℓ-adic iterated integrals.

4.3. Functional equations for iterated integrals. Suppose now that we

are given a K-morphism to a punctured projective t-line:

f : X −→ Y = P1
t − {b1, . . . , bM ,∞}.

Then, induced are the homomorphisms

grn(f∗) : grnΓ(π1(X, v))→ grnΓ(π1(Y, f(v)))

(n = 1, 2, ...), where π1 denotes the topological (resp. pro-ℓ) fundamental group

of the complex points of X,Y (resp. of XK , YK) in the complex (resp. ℓ-adic)

case. Also, the pull-back of functions g 7→ g ◦ f gives rise to the mappings

O×h (Y an)→ O×h (Xan) and Ô×ℓ (YK)→ Ô×ℓ (XK) in respective cases.

Lemma 4.12 We have

κ⊗n(g1 ⊗ · · · ⊗ gn)(f∗(α1)⊗ · · · ⊗ f∗(αn))

= κ⊗n(g1 ◦ f ⊗ · · · ⊗ gn ◦ f)(α1 ⊗ · · · ⊗ αn)

for any g1, . . . , gn ∈ O×h (Y an) (resp. ∈ Ô×ℓ (YK)) and for any α1, . . . , αn ∈
π1(X(C), v)ab (resp. ∈ πℓ1(XK , v)ab) in the complex (resp. ℓ-adic) case.

Proof. This follows immediately from the definition of Kummer pairing given

in §2. □

Now we shall state our main theorem. Recall from Definition 3.8 that for any

homomorphism φ : grnΓ(π1(Y, f(v)))→ Z or Zℓ, the symbol κ̂⊗n(φ)(f) denotes

the image of the Kummer dual κ̂⊗n(φ)(t) by the pull-back mapping g 7→ g ◦ f .

Theorem 4.13 Let X be an arbitrary algebraic variety over a subfield K of

C, and let Y := P1
K − {b1, . . . , bM ,∞}, where {b1, . . . , bM} is a subset of K

with cardinality M . Fix any K-rational (possibly tangential) base point v on X.

Then, for a collection of algebraic K-morphisms fi : X → Y (i = 1, . . . ,m),

homomorphisms ψi : grnΓπ1(Y (C), fi(v)) → Z and integers c1, . . . , cm ∈ Z, the
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following conditions (i)C, (ii)C and (iii)C are equivalent:

m∑
i=1

ci ψi ◦ grnΓ(fi∗) = 0 in Hom (grnΓπ1(X(C), v),Z),(i)C

m∑
i=1

ci κ̂⊗n(ψi)(fi) = 0(ii)C

in (
n−2⊗
i=1

O×h (Xan))⊗ (O×h (Xan) ∧ O×h (Xan))

m∑
i=1

ci Lψi

C (fi(z), fi(v); fi(γ)) = 0(iii)C

for each path γ : v ⇝ z on X(C).

The proof of the above theorem will be given soon after stating the next

theorem. In the following ℓ-adic analogs (i)ℓ, (ii)ℓ and (iii)ℓ of the above condi-

tions, we have, in general, the equivalence (i)ℓ ⇔ (ii)ℓ and the implication (i)ℓ
(ii)ℓ ⇒ (iii)ℓ, (iii)nvℓ . If moreover µℓ∞ ̸⊂ K, then we also have (i)ℓ ⇔ (ii)ℓ ⇔
(iii)nvℓ :

In order to state the condition (iii)ℓ, (iii)nvℓ , we need to introduce a precise

notion of “error term” which complement (part of) “lower degree terms” of

ℓ-adic iterated integrals.

Definition of ℓ-adic Error Terms: Let X, v, z be as in §4.2. We shall call

a Qℓ-valued function E(σ, p) on (σ, p) ∈ GK × πℓ1(XK , v, z) an error term of

degree n, if it satisfies

E(σ, p) = 0 for σ ∈ Hn(v, z),(E1)

E(σ, p) = E(σ, sp) for s ∈ Γnπℓ1(XK , v).(E2)

We also introduce some more notations for the above system of a collec-

tion of algebraic morphisms fi : X → Y (i = 1, . . . ,m) with Y := P1
K −

{b1, . . . , bM ,∞}. Fix a K-rational (tangential) base point w on Y , a gener-

ator system y⃗ = (y1, . . . , yM ) of π1(Y (C), w) such that yj turns only around

the puncture bj once, and paths γi : w ⇝ fi(v) for 1 ≤ i ≤ m. Let y⃗i :=

(γ−1i yjγi)
M
j=1 be the generator system of π1(Y (C), fi(v)) induced from γi and

y⃗. We then apply the process of (4.10-11) to obtain a Qℓ-valued form ψi,y⃗i on

the ℓ-adic Lie algebra L(πY,fi(v)) of πℓ1(YK , fi(v)) for each 1 ≤ i ≤ m.

The following theorem refines [W5] Theorem 10.0.7 concerning the functional

equations of ℓ-adic iterated integrals. One of our new ingredients of this paper

is to formulate those functional equations for arbitrary algebraic varieties X,

generalizing results of [W4]-[W5] which were concerned with projective lines
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minus finite number of points. If we restrict ourselves only to σ ∈ Hn(v, z) ∩∩m
i=1Hn(fi(v), fi(z)), then we can deduce those functional equations from (i)ℓ,

(ii)ℓ by simply applying the given conditions to definitions of ℓ-adic iterated

integrals as in loc.cit. But to treat more general σ, we need to employ some

elaborate arguments as presented in the next subsection.

Theorem 4.14 Let X be an arbitrary algebraic variety over a subfield K of

C, and let Y := P1
K − {b1, . . . , bM ,∞}, where {b1, . . . , bM} is a subset of K

with cardinality M . Fix any K-rational (possibly tangential) base point v on X.

Then, for a collection of algebraic K-morphisms fi : X → Y (i = 1, . . . ,m),

homomorphisms ψi : grnΓπ1(Y (C), fi(v)) → Z and integers c1, . . . , cm ∈ Z, the

following conditions (i)ℓ and (ii)ℓ are equivalent:

m∑
i=1

ci ψi ◦ grnΓ(fi∗) = 0 in Hom (grnΓπ
ℓ
1(XK , v),Zℓ),(i)ℓ

m∑
i=1

ci κ̂⊗n(ψi)(fi) = 0 in
(n−2⊗
i=1

Ô×ℓ (XK)
)
⊗ (Ô×ℓ (XK) ∧ Ô×ℓ (XK)).(ii)ℓ

Moreover, these conditions imply the following (iii)ℓ and (iii)nvℓ .

(iii)ℓ There exists an error term E : GK(µℓ∞ ) × πℓ1(XK , v, z) → Qℓ of degree

n such that
∑m
i=1 ci L

ψi,y⃗i (fi(z), fi(v); fi(p))(σ) = E(σ, p) (σ ∈ GK(µℓ∞ )) for

each étale path p : v ⇝ z ∈ X(K).

(iii)nvℓ There exists an error term Env : GK × πℓ1(XK , v, z) → Qℓ of degree n

such that
∑m
i=1 ci L

ψi,y⃗i
nv (fi(z), fi(v); fi(p))(σ) = Env(σ, p) (σ ∈ GK) for each

étale path p : v ⇝ z ∈ X(K).

Finally, if µℓ∞ ̸⊂ K, then (iii)nvℓ implies (i)ℓ, (ii)ℓ.

4.4. Proof of Theorem 4.13 and 4.14. The equivalence of (i) and (ii) follows

from Lemma 2.1, Lemma 4.12 and Corollary 3.7 for both complex and ℓ-adic

case. We prove (i)C implies the functional equation (iii)C by essentially tracing

lines of [W0] Theorem E and [W5] Theorem 11.2.1. Suppose (i)C holds. By

(4.5), we have Λfi(γ)(f(z), f(v)) = fi∗(Λγ(z, v)) for each i = 1, ...,m. Then,

m∑
i=1

ci Lψi

C (fi(z), fi(v); fi(γ)) =
m∑
i=1

ci ψiC
(
fi∗(log Λγ(z, v)−1 mod Γn+1)

)
=

m∑
i=1

ci ψiC ◦ grnΓ(fi∗)
(
[log Λγ(z, v)−1]n

)
= 0.

Here [log Λγ(z, v)−1]n denotes the n-th homogeneous component of

log Λγ(z, v)−1 mod Γn+1. Note that we used here the property that fi∗ pre-
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serves the gradation in the complex case, as remarked just before (4.5). Thus

the functional equation (iii)C follows.

Conversely, if (iii)C holds, then we may argue as in the proof of [W0] Theorem

10.5.1. The composition law (4.3) and the surjectivity of θv,X (4.6) insure the

surjectivity of

θv,z,X : π1(X, v, z)→ π(X) (γ 7→ Λγ(z, v)),

hence the images of paths γ : v ⇝ z in π(X) modulo the lower central subgroups

form Zariski dense subsets. Noticing the remark before Definition 4.4, we see

that ψiC ◦ fi∗ ◦ log give polynomial functions on π(X)/Γn+1π(X). From this

follows that the functional equations for all γ implies the equation (i)C.

Next, suppose (i)ℓ holds. Then, since fi are defined over K, we have

(4.13) log ffi(p)σ = fi(log fpσ) (σ ∈ GK).

Let L(πX,v), L(πY,fj(v)) denote the ℓ-adic (complete) Lie algebras of πℓ1(XK , v),

πℓ1(YK , fi(v)) respectively, and denote the composition of ψi,y⃗i with fi∗ :

L(πX,v)→ L(πY,fi(v)) by:

(4.14) ψi,y⃗i ◦ fi : L(πX,v)→ L(πY,fi(v))→ Qℓ.

Then, from the above (4.13) we see

(4.15) Lψi,y⃗i
nv (fi(z), fi(v); fi(p)) = Lψi,y⃗i

◦fi
nv (z, v; p).

However, the necessity of error terms occurs from the fact that, in the ℓ-adic

case, we do not have a canonical gradation in L(πX,v), although we have chosen

a collection of splittings of L(πY,fi(v)) (via the path system {γi, yj} as above)

which are compatible with each other for i = 1, . . . ,m but not with L(πX,v). We

anyway take and fix one of the (vector space) complements L<n to ΓnL(πX,v) ⊂
L(πX,v):

(4.16) L(πX,v) = L<n ⊕ ΓnL(πX,v),

and write

(4.17) log(fpσ)−1 = [log(fpσ)−1]<n + [log(fpσ)−1]≥n (σ ∈ GK).

Putting this decomposition of log fpσ into the map
∑
i ciψi,y⃗i ◦ fi, and applying
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the condition (i)ℓ, we obtain∑
i

ciL
ψi,y⃗i

◦fi
nv (z, v; p)(4.18)

=
∑
i

ci ψi,y⃗i ◦ fi([log(fpσ)−1]<n) +
∑
i

ci ψi,y⃗i ◦ fi([log(fpσ)−1]≥n)

=
∑
i

ci ψi,y⃗i ◦ fi([log(fpσ)−1]<n) + 0.

Then, noticing that [log(fpσ)−1]<n vanishes for σ ∈ Hn(v, z) and is invariant
under the change p 7→ sp for s ∈ Γnπℓ1(XK , v) (Lemma 4.11), we find the right
hand side above satisfies the conditions (E1)-(E2) of an error term of degree n.
This proves (i)ℓ ⇒ (iii)nvℓ . To deduce (iii)ℓ, we wish to consider the logarithm of
σp for σ ∈ GK(µℓ∞ ), but σp may generally not be a unipotent operator on the

total Ûπℓ1(XK , v). Consider now the diagonal homomorphism into the direct
product:

(4.19) ∆ (:= Πm
i=1fi) : π

ℓ
1(XK , v) −→

m∏
i=1

πℓ
1(YK , fi(v)) (S 7→ (f1(S), . . . , fm(S))),

which naturally induces homomorphisms of the ℓ-adic Lie algebra and of the

universal enveloping algebra into the corresponding products (denoted also ∆):

(4.20) L(πX,v) −→
m⊕
i=1

L(πY,fi(v)), Ûπℓ1(XK , v) −→
m∏
i=1

Ûπℓ1(YK , fi(v)).

Let LX , UX denote the images of the last two homomorphisms, and denote by

f̄i∗, for simplicity, the both maps LX → L(πY,fi(v)) and UX → Ûπℓ1(YK , fi(v))

factoring fi for respective i = 1, . . . ,m. Introduce the filtration {ΓkLX}∞k=1

as the pull-back of the lower central filtration on
⊕

i L(πY,fi(v)). Then, for ψi
extended to the unique Qℓ-linear form on grnΓL(πY,fi(v)) for each 1 ≤ i ≤ m,

the condition (i)ℓ insures

(4.21)
m∑
i=1

ci ψi ◦ grnΓ(f̄i∗) = 0 in Hom(LX ,Qℓ),

whereas the induced operations σ̄v and σ̄p on UX are unipotent for σ ∈ GK(µℓ∞ )

(as their operations on the i-th component are unipotent for every i, cf. Propo-

sition 4.6). Now, since fi are defined over K, we have

(4.22) σfi(p) ◦ fi = f̄i ◦ σ̄p ◦∆ = fi ◦ σp (σ ∈ GK , i = 1, . . . ,m),
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hence it holds on UX that

(Logσfi(p))(1) = f̄i(Logσ̄p(1)) (σ ∈ GK(µℓ∞ ), i = 1, . . . ,m).

Lemma 4.15
(
Logσ̄p

)
(1) belongs to LX .

Proof. In fact, this follows in exactly the same way as the proof of Proposition

4.6 (ii) by taking the logarithm of both sides of σ̄p = Lf̄ ◦ σ̄v, where f̄ denotes

the image of fpσ in ŪX . □

Again, although we have a collection of compatible splittings of L(πY,fi(v)) (via

the path system {γi, yj} as above), it generally does not induce a compatible

splitting on the subspace LX ⊂
⊕

i L(πY,fi(v)). So we take and fix one (vector

space) splitting

(4.23) LX = L<n ⊕ ΓnLX ,

and write

(4.24) (Logσ̄p)(1) = [Logσ̄p(1)]<n + [Logσ̄p(1)]≥n (σ ∈ GK(µℓ∞ )).

To deduce (iii)ℓ from (i)ℓ, it then only remains to repeat the same argument

as above with applying the role of log fpσ to Logσ̄p(1). We may leave the rest to

the reader.

Finally, assume µℓ∞ ̸⊂ K and (iii)nvℓ . Let us fix a path p : v ⇝ z on XK . For

each s ∈ Γnπℓ1(XK , v) and σ ∈ GK , we have from Lemma 4.11:

Lψi,y⃗i
nv (fi(z), fi(v); fi(sp))(σ)

= Lψi,y⃗i
nv (fi(z), fi(v); fi(p))(σ) + (χ(σ)n − 1)ψi,y⃗i(fi(log s))

for i = 1, . . . ,m. Since the error term Env(σ, p) of (iii)nvℓ is invariant under the

change p 7→ sp, putting the above equation into the functional equation yields

(χ(σ)n − 1)

[
m∑
i=1

ci ψi,y⃗i ◦ fi

] (
log(s)

)
= 0.

By assumption of µℓ∞ ̸⊂ K, the factor χ(σ)n−1 (σ ∈ GK) runs over a nontrivial

subset of Zℓ. From this together with the observation that the images of log(s)

(s ∈ Γnπℓ1(XK , v)) generate the vector space grnΓπ
ℓ
1(XK , v) ⊗ Qℓ, we conclude

the equation (i)ℓ.

The proof of Theorems 4.13 and 4.14 is thus completed. The above proof of

Theorem 4.14 also implies the following

Corollary 4.16 Notations being as in Theorem 4.14 and its proof, suppose the

condition (iii)nvℓ holds. Pick a vector space splitting L(πX,v) = L<n⊕ΓnL(πX,v)
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and decompose log(fpσ)−1 = [log(fpσ)−1]<n + [log(fpσ)−1]≥n according to it. Then

the error term of the functional equation is given by

Env(σ, p) =
∑
i

ci ψi,y⃗i ◦ fi([log(fpσ)−1]<n) (σ ∈ GK , p : v ⇝ z).

The similar formula also holds for the condition (iii)ℓ with simple replacements

of L(πX,v), log(fpσ)−1, GK by LX , (Logσ̄p)(1), GK(µℓ∞ ) respectively. □

The above formula gives us a way to calculate the error term E(σ, p) in a

concrete way after picking a splitting of L(π). Note that the error term itself

is independent of the choice of the splitting L(πX,v) = L<n⊕ΓnL(πX,v), since

the left hand sides of the functional equations (iii)ℓ and (iii)nv are independent

of it.

In the above Theorems 4.13 and 4.14, we restricted the coefficients c1, . . . , cm
only to integers. One may ask if a functional equation with more general co-

efficients exists among complex or ℓ-adic iterated integrals. In fact, it turns

out that there are no essentially new such functional equations as shown below

now.

Definition 4.17 Notations being as in Theorems 4.13 and 4.14, we shall say

that a family of complex iterated integrals Lψi

C (fi(z), fi(v); fi(γ)) (resp. ℓ-adic

iterated integrals Lψi,y⃗i (fi(z), fi(v); fi(p)), resp. Lψi,y⃗i
nv (fi(z), fi(v); fi(p)) ) (i =

1, . . . ,m) has a linear functional equation, if a non-trivial linear combination

of them with coefficients in some field F of characteristic 0 becomes zero (resp.

becomes an error term) for all paths γ : v ⇝ z (resp. for all étale paths

p : v ⇝ z) on X with v fixed, z and γ (resp. p) vary.

Let us here consider the following four conditions:

(a) The family {Lψi

C (fi(z), fi(v); fi(γ))}i has a linear functional equation.

(b) The family {Lψi,y⃗i (fi(z), fi(v); fi(p))}i has a linear functional equation for

all ℓ.

(c) The family {Lψi,y⃗i
nv (fi(z), fi(v); fi(p))}i has a linear functional equation for

all ℓ.

(d) The family {Lψi,y⃗i
nv (fi(z), fi(v); fi(p))}i has a linear functional equation for

one ℓ.

Proposition 4.18 (i)The condition (a) implies all the other conditions (b),

(c), (d), and in each case, the linear combination can be replaced by a (non-

trivial) combination with coefficients in Z.

(ii)If µℓ∞ ̸⊂ K, then, the conditions (a), (c), (d) are equivalent, and in each

case, the linear combination can be replaced by a (nontrivial) combination with

coefficients in Z.
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Proof. (i) Suppose the condition (a) holds, i.e., (iii)C holds with coefficients

c1, . . . , cm ∈ F . Then tracing the same argument as in the proof of Theorem

4.13, one can easily see that

m∑
i=1

ciψi ◦ grnΓ(fi∗) = 0

in Hom(grnΓπ1(X(C), v), F ). But since ψi◦grnΓ(fi∗) are defined over Z, it follows

that the coefficients of this linear equation can be replaced by rational numbers,

hence by rational integers. This remark has already been pointed out in [W0]

Corollary 10.6.7. Then, we obtain (i)ℓ for these integer coefficients which implies

(b), (c), (d) with the same coefficients.

(ii) Suppose the condition (d) holds, i.e., (iii)nvℓ holds with coefficients

c1, . . . , cm ∈ F . Then, again, tracing the argument in the proof of Theorem

4.14, one sees

m∑
i=1

ciψi ◦ grnΓ(fi∗) = 0

in Hom(grnΓπ
ℓ
1(XK , v), FQℓ). But recalling that grnΓπ

ℓ
1(XK , v) is isomorphic

to grnΓπ1(X(C), v) ⊗ Zℓ, we may regard ψi ◦ grnΓ(fi∗) as objects coming from

Hom(grnΓπ1(X(C), v),Z). Therefore, by the same reasoning as in (i), we obtain

a linear equation (i)C with rational integers. This and the above (i) conclude

the proof. □

Remark 4.19 The condition “(iii)
∑N
i=1 ni bY (ei)([fi]) = 0” in [W2] Theo-

rem 5.1 should be replaced by the condition:

“(iii)

N∑
i=1

ni κ̂⊗n(e
∗
i )(fi) = 0 in

(
n−2⊗
i=1

O×
h (Xan)

)
⊗
(
O×

h (Xan) ∧ O×
h (Xan)

)
”.

In the proof of [W2] Theorem 5.1, we state that, passing with Lie(H(X)) — free

Lie algebra on a vector space H(X) — to a dual object, we get Lie(H(X)∗) =

Lie(A1(X)) — free Lie algebra on H(X)∗ = A1(X). This is obviously not

correct, as a dual of a free Lie algebra on H(X) is not naturally isomorphic to

a free Lie algebra on a dual H(X)∗. The same remark concerns Theorem 10.8.2

in [W0]; the condition (i) should be replaced by Zagier’s condition.

5. Case of polylogarithms

Now we shall apply results of the previous section in the polylogarithmic case.
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5.1. Review of classical polylogarithms. Let us set

P0 := P1
K − {0, 1,∞}

defined over a field K ⊂ C. Notations being as in 4.1, the space Ω1 = Ω1
log(X),

for X = P0(C), D = {0, 1,∞} and X∗ = P1, is a two-dimensional vector space

generated by the differential form ω0 = dz
z and ω1 = dz

z−1 . We take a basis

(X,Y ) of V1 = (Ω1)∗ dual to the basis (ω0, ω1) of Ω1. In this case, K⊥ = 0 and

L(V1,K
⊥) is just a free Lie algebra generated by the X and Y .

On the other hand, the topological fundamental group π1(P0(C),
−→
01) is a free

group, freely generated by the standard loops x, y running around the punctures

0, 1 once anticlockwise respectively, so that the Lie algebra GrLieπ1(P0(C),
−→
01)

is freely generated by the images x̄ and ȳ. The natural isomorphism

gr1Γπ1(P0,
−→
01)⊗ C ∼→L(V1,K

⊥)1 = V1 of (4.7) gives then the identification:

x̄

2πi
= X,

ȳ

2πi
= Y.

Let us fix a Hall basis of the free Lie algebra GrLieπ1(P0(C),
−→
01) corresponding

to the ordering x̄, ȳ of generators. Then, the special elements e1, e2, ... defined

by

e1 := ȳ, en := [x̄, en−1] = (ad x̄)n−1(ȳ) for n > 1

belong to the Hall basis. Write

φn : grnΓπ1(P0(C),
−→
01) −→ Z

for the linear form dual to en with respect the above Hall basis. Since φn kills

the basis elements other than en, especially those of double commutator type,

it belongs to Hom(grΓ(π1/π
′′
1 ),Z). We find its Kummer dual is then given by

κ̂⊗n(φn) = z⊙n−2 ⊗
(
z ∧ (z − 1)

)
∈ (Symn−2O×h )⊗ (∧2O×h ).

Definition 5.1 We define the complex polylogarithm function lin(z, γ) as the

complex iterated integral associated to the above φn and γ :
−→
01 ⇝ z (cf.

Definition 4.4):

lin(z, γ) := Lφn

C (z,
−→
01; γ)

(
= φn,C(log Λγ(z,

−→
01)−1 mod Γn+1)

)
.

We also recall that classical polylogarithm functions Lin(z, γ) (n = 1, 2, ...) for

a path γ from
−→
01 to z on P0(C) are defined as the iterated integrals

Lin(z, γ) :=

∫
γ

(−w1) · w0 · · ·w0︸ ︷︷ ︸
n−1

.

Note that Li1(z, γ) = − log(1− z).
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The following proposition complements Lemma 10.6.5 of [W0].

Proposition 5.2 Notations being as above, the complex polylogarithm func-

tion is given in terms of the classical polylogarithm functions by the formula:

lin(z, γ) =
(−1)n+1

(2πi)n

n−1∑
k=0

Bk
k!

(log z)kLin−k(z, γ) (n ≥ 1).

Here, log z takes the principal branch along γ, and {Bn}∞n=0 is the sequence of

Bernoulli numbers defined by
∑∞
n=0

Bn

n! T
n = T

eT−1 .

Proof (cf. [W1] Lemma 3.4). We calculate Λ(z) := Λγ(z,
−→
01) for the 1-form

ωP0 := dz
z X+ dz

z−1Y . This is a group-like element in the non-commutative power

series ring C⟨⟨X,Y ⟩⟩ and its coefficients of the terms Xi, Y Xi (i = 0, 1, 2, ...)

look like

Λ(z) = 1 +
∞∑
i=1

(log z)i

i!
Xi −

∞∑
i=0

Lii+1(z)Y Xi + · · · other terms.

(See [F] §3.1 for shapes of coefficients of other terms such as XY , Y 2, XYX,

...) Noting that the above “Xi-part” can be written as e(log z)X − 1 and taking

the logarithm log Λ(z) = (Λ(z)− 1)− 1
2 (Λ(z)− 1)2 + 1

3 (Λ(z)− 1)3 −+ · · · , we

find that the coefficient of Y Xn−1 of log Λ(z) comes from the expansion of the

product of the series

−Li1(z)Y − Li2(z)Y X − Li3(z)Y X2 − · · ·
with

1− 1

2
(e(log z)X − 1) +

1

3
(e(log z)X − 1)2 −+ · · · = (log z)X

e(log z)X − 1
=

∞∑
n=0

Bn

n!
(log z)nXn.

On the other hand, if we express the Lie element log Λ(z) as the Lie se-

ries with respect to the above fixed Hall basis, the term Y Xn−1 arises only as

(−1)n−1-multiple of the term appearing in the expansion of en = ad(x̄)n−1(ȳ) =

(2πi)nad(X)n−1(Y ). The formula follows from this observation and our defini-

tion lin(z, γ) = φn,C(log Λ(z)−1). □

Remark 5.3 As seen from the above proof, we have the equation

log Λγ(z,
−→
01)−1 = − log z

2πi
x̄− log(1− z)

2πi
ȳ +

∑
m≥2

lim(z, γ) em + other terms.

With regard to this equation, we shall write

li0(z, γ) = − log z

2πi
, li1(z, γ) = − log(1− z)

2πi
.

(The latter also follows from Definition 5.1 and the above proposition).
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5.2. ℓ-adic polylogarithms ([W5]). Notations being as in the previous sub-

section, let K be a subfield of C, z ∈ P0(K) and pick an étale path p :
−→
01⇝ z.

Regard the pro-ℓ fundamental group πℓ1(P0/K̄,
−→
01) as the pro-ℓ completion of

π1(P0(C),
−→
01). Let L(π−→

01
) denote the associated complete ℓ-adic Lie algebra

consisting of all the formal Lie series in X := log(x) and Y := log(y); The

fixed generator system x⃗ = (x, y) of π1(P0(C),
−→
01) as in §5.1 defines the natural

extension φn,x⃗ : L(π−→
01

)→ Qℓ of φn as in §4 (4.10-11).

Definition 5.4 ([W5] §11) Write IY for the ideal of L(π−→
01

) generated by the

Lie monomials involving Y twice or more. The ℓ-adic polylogarithm function

ℓin(z, p, x⃗) : GK → Qℓ (n = 1, 2, ...) for a path p from
−→
01 to z on P0(K) is

defined as the naive ℓ-adic iterated integral associated to φn,x⃗:

ℓin(z, p, x⃗)(σ) := Lφn,x⃗
nv (z,

−→
01; p)

(
= φn,x⃗(log(fpσ)−1)

)
(σ ∈ GK).

More directly, the ℓ-adic polylogarithms can be defined as coefficients of the
Lie formal expansion of log(fpσ)−1 in X = log x, Y = log y, i.e.,

log fpσ(x, y)
−1 ≡ ρz(σ)X + ρ1−z(σ)Y(5.1)

+
∑
m≥1

ℓim+1(z, p, x⃗)(σ)ad(X)m(Y ) mod IY

for σ ∈ GK , where IY denotes the ideal generated by the terms with two or

more Y , and ρz (resp. ρ1−z) is the Kummer cocycle along a carefully chosen

system of power roots of z (resp. 1− z). With regard to this formula, we shall

also define

ℓi0(z, p, x⃗)(σ) = ρz(σ), ℓi1(z, p, x⃗)(σ) = ρ1−z(σ).

In [NW], we related the above ℓin(z, p, x⃗) with the ℓ-adic polylogarithmic
character χ̃zm : GK → Zl (m ≥ 1) defined by the Kummer properties for n ≥ 1:

(5.2) ζ
χ̃z
m(σ)

ℓn = σ

(
ℓn−1∏
a=0

(1− ζ
χ(σ)−1a
ℓn z1/ℓ

n

)
am−1

ℓn

) / ℓn−1∏
a=0

(1− ζ
a+ρz(σ)
ℓn z1/ℓ

n

)
am−1

ℓn ,

where (1 − ζαℓnz1/ℓ
n

)
β
ℓn means the β-th power of a carefully chosen ℓn-th root

of (1 − ζαℓnz1/ℓ
n

) as in loc. cit. depending on p :
−→
01 ⇝ z. Note, in particular,

that χ̃z1 = ρ1−z. The formula of [NW] p.293 Corollary gives an expression of

ℓim(z, p, x⃗) in terms of χ̃zm exactly as in a similar way to Proposition 5.2 of the

complex case:

(5.3) ℓim(z, p, x⃗)(σ) = (−1)m+1
m−1∑
k=0

Bk
k!

(−ρz(σ))k
χ̃zm−k(σ)

(m− k − 1)!
(m ≥ 1).
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(Here we point out a misprint
∑m
k=0 in the formula of loc. cit. that should

have read
∑m−1
k=0 as above.) In particular, for σ ∈ GK(z1/ℓ∞ ), we have

(5.4) ℓim(z, p, x⃗)(σ) = (−1)m−1
χ̃zm(σ)

(m− 1)!
(m ≥ 1).

Remark 5.5 The ℓ-adic polylogarithms ℓim(z, p, x⃗) introduced in this paper

are same as ℓzm(σ) defined in [NW]. The functions ℓin(z, p, x⃗) give

homomorphisms on GK(µℓ∞ ,z1/ℓ∞ ), while, by [NW] Prop.1, H2(
−→
01, z) =

G
K(µℓ∞ ,z1/ℓ∞,(1−z)1/ℓ

∞
) . On G1(

−→
01) = GK(µℓ∞ ), one can easily see their relation

to the big ℓ-adic iterated integral:

−ℓin(z, p, x⃗)(σ) = Lφn,x⃗(z,
−→
01; p)(σ) (σ ∈ G1(

−→
01) = GK(µℓ∞ )).

(Cf. [W5] Cor. 11.0.16, or proof of [NW] Lemma 2).

Remark 5.6 The Galois representation in the pro-ℓ fundamental group of

P1
Q−{0, 1,∞} has been studied intensively by Y.Ihara, P.Deligne and other au-

thors (see. e.g., [Ih1-2], [De2], [HM], [MS]). In particular, the filtration

{Gn(
−→
01)}n ofGQ is deeply relevent with arithmetic of (higher) cyclotomic fields.

This would suggest needed is a more consistent study of “z-version” filtrations

of GQ also depending on various quotients of the π1-torsor. One of such impor-

tant aspects is an ℓ-adic analog of Zagier’s conjecture ([W6], [DW2]). Motivic

interpretation of it by Beilinson-Deligne [BD] has inspired creative ideas into

our work very much. The case P1−{0, µn,∞} has already been studied in depth

by A.B.Goncharov [Gon] and the second named author ([DW1-2], [W6-8]).

5.3. Functional equations for polylogarithms. Given a K-morphism f :

X → P0 of an arbitrary algebraic variety X to P0 and a K-rational (tangential)

base point v on X, choose a path δ from
−→
01 to f(v) so that we obtain an

isomorphism

ιδ : π1(P0, f(v))
∼→π1(P0,

−→
01)

by x 7→ δxδ−1. The induced map grnΓ(ιδ) of grnΓ(π1(P0, f(v)))
∼→

grnΓ(π1(P0,
−→
01)) is independent of the choice of δ, as inner automorphisms act

trivially on the graded quotients via the (lower) central filtration. From Corol-

lary 3.7 and the above definition of φn follows that the composition φn(f) :=

φn ◦ grnΓ(ιδ) yields the identity

φn(f) ◦ grnΓ(f∗) = κ⊗n
(
f⊙n−2 ⊗ (f ∧ (f − 1))

)
,(5.5)

i.e., κ̂⊗n(φn(f))(f) = f⊙n−2 ⊗ (f ∧ (f − 1)),

where κ̂⊗n(φn(f))(f) designates the pulled back Kummer dual in the sense of

Definition 3.8.

Nakamura
長方形

Nakamura
長方形
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In the ℓ-adic case, we use the natural extensions φn,x⃗ : L(π−→
01

) → Qℓ and

φn(f)x⃗ : L(πf(v)) → Qℓ with respect to the fixed generator system x⃗ =

(x, y) (cf. (4.11)). They are related by the (naturally induced) isomorphism

ιδ : Û(πf(v))
∼→ Û(π−→

01
) by

φn(f)x⃗(λ) = φn,x⃗(δλδ−1) (λ ∈ L(πf(v))).(5.6)

Now, given a topological or an étale path q from v to z on X, we have classical

and ℓ-adic polylogarithms

lin(f(z), δf(q)), lin(f(v), δ); ℓin(f(z), δf(q), x⃗), ℓin(f(v), δ, x⃗),

where δf(q) denotes the composition of paths δ :
−→
01⇝ f(v) and f(q) : f(v)⇝

f(z). Later in Proposition 5.10, these will be related to the iterated integrals

Lφn

C (f(z), f(v); f(q)), Lφn(f)x⃗
nv (f(z), f(v); f(q)).

that appear in the direct application of functional equations of theorems 4.13

and 4.14 to this special case of polylogarithms, that is:

Theorem 5.7 Let V be an arbitrary algebraic variety over a subfield K of

C with a K-rational (possibly tangential) base point v on V , and let P0 =

P1
K − {0, 1,∞}. Then, for algebraic morphisms fi : V → P0 (i = 1, . . . ,m)

and integers c1, . . . , cm ∈ Z together with paths δi :
−→
01 ⇝ fi(v), the following

conditions (i)C, (ii)C and (iii)C are equivalent:

m∑
i=1

ci φn(fi) ◦ grnΓ(fi∗) = 0 in Hom (grnΓπ1(V (C), v),Z),(i)C

m∑
i=1

ci f
⊙n−2
i ⊗ (fi ∧ (fi − 1)) = 0(ii)C

in Symn−2O×h (V an)⊗ (O×h (V an) ∧ O×h (V an)),
m∑
i=1

ci Lφn

C (fi(z), fi(x); fi(γ)) = 0(iii)C

for each path γ : x⇝ z on V (C).

For the following ℓ-adic analogs (i)ℓ, (ii)ℓ and (iii)ℓ of the above conditions, we

have, in general, the equivalence (i)ℓ ⇔ (ii)ℓ and the implication (i)ℓ (ii)ℓ ⇒
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(iii)ℓ. If µℓ∞ ̸⊂ K, then we have also (i)ℓ (ii)ℓ ⇔ (iii)ℓ:

m∑
i=1

ci φn(fi) ◦ grnΓ(fi∗) = 0 in Hom (grnΓπ
ℓ
1(VK , v),Zℓ),(i)ℓ

m∑
i=1

ci f
⊙n−2
i ⊗ (fi ∧ (fi − 1)) = 0(ii)ℓ

in Symn−2Ô×ℓ (VK)⊗ (Ô×ℓ (VK) ∧ Ô×ℓ (VK)),

There exists an error term E : GK × πℓ1(VK , v, z)→ Qℓ(iii)ℓ

of degree n such that
m∑
i=1

ci Lφn(fi)x⃗
nv (fi(z), fi(v); fi(p))(σ) = E(σ, p) (σ ∈ GK)

for each étale path p : x⇝ z.

Proof. This is only a special case of Theorem 4.13 and Theorem 4.14. □

We remark that, in the above conditions (i)C and (i)ℓ, Hom(grnΓπ1,−) may

be replaced by Hom(grnΓ(π1/π
′′
1 ),−) according to the last half statement of

Corollary 3.7. For later convenience of computing the error term E(σ, p) in ℓ-

adic cases, we shall rephrase Corollary 4.16 in this special case using (5.6). Let

πV,v be the pro-unipotent completion of the pro-ℓ fundamental group πℓ1(VK , v)

over Qℓ, and let L(πV,v) denote its (complete) Lie algebra equipped with the

lower central filtration L(πV,v) = Γ1L(πV,v) ⊃ Γ2L(πV,v) ⊃ · · · .

Corollary 5.8 Notations being as in above theorem, suppose the condition

(iii)ℓ holds. Pick a vector space splitting L(πV,v) = L<n ⊕ ΓnL(πV,v) and de-

compose log(fpσ)−1 = [log(fpσ)−1]<n + [log(fpσ)−1]≥n according to it. Then the

error term of the functional equation is given by

E(σ, p) =
∑
i

ci φn,x⃗
(
δi · fi([log(fpσ)−1]<n) · δ−1i

)
(σ ∈ GK , p : v ⇝ z).

Next, we shall consider the problem of expressing the iterated integrals in the

functional equations (iii)C, (iii)ℓ by polylogarithms explicitly. For this purpose,

we shall introduce a useful series of polynomials in several variables as follows.

Proposition 5.9 (Polylog-BCH formula) Let {ai}∞i=0, {bi}∞i=0 be countably

many mutually commuting variables, and let X,Y be non-commutative vari-

ables. Consider the Lie algebra consisting of the Lie formal series in X and Y

with coefficients in the polynomial ring Q[ai, bi]
∞
i=0. Then, there exists a unique
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sequence of polynomials

Pn = Pn({ai}ni=0, {bi}ni=0) (n = 0, 1, 2, . . . )

characterized by(
a0X + a1Y +

∞∑
i=1

ai+1 ad(X)i(Y )

)
⊞
(
b0X + b1Y +

∞∑
i=1

bi+1 ad(X)i(Y )

)

≡ P0X + P1Y +

∞∑
i=1

Pi ad(X)i(Y ) mod IY ,

where ⊞ denotes the Baker-Campbell-Hausdorff sum: S ⊞ T = log(eSeT ), and

IY is the ideal generated by the Lie monomials having Y twice or more.

Proof. We put S = a0X+
∑
i≥0 aiad(X)i(Y ) and T = b0X+

∑
i≥0 biad(X)i(Y )

into the Baker-Campbell-Hausdorff formula:

S ⊞ T = S + T +
1

2
[S, T ] +

1

12
[S[S, T ]]− 1

12
[T [S, T ]]− 1

24
[S[T [S, T ]]] + · · · .

Observing [S, T ] ≡ (a0b1 − b0a1)[X,Y ] + a0
∑
i≥2 bi ad(X)i(Y ) (mod IY ), we

have only to treat the terms of the form [U1[U2[· · · [Un, [S, T ]]..]] where Ui = S

or T , because the other type of terms vanish modulo IY . Further calcula-

tions show that each of these term with k + 1-times of S and l + 1-times of

T contributes bl0
∑∞
j=0(a0bj+1 − b0aj+1)ad(X)k+l+j(Y ) in regardless with the

order of S, T . So, these terms having the same numbers of S and T can be

counted together, especially, their appearances are summed up as the coeffi-

cient of Sk+1T l+1 of S⊞T (in the non-commutative power series ring in S and

T ) multiplied by (−1)l. The coefficients of these terms are explicitly calculated

by K.Goldberg [Gol, Th. 3 and (10)] (see also [K]) telling that those coefficients

c(s, t) of SsT t in S ⊞ T and their generating function are given by :

c(s, t) =
(−1)s

s! t!

t∑
i=1

(
t

i

)
Bs+t−i (s, t ≥ 1),(G1)

uv

∞∑
k,l=0

c(k + 1, l + 1)ukvl =
ueu(ev − 1)− vev(eu − 1)

eu − ev
(G2)

(
=: uv G(u, v)

)
Putting these together, if we write G(a0t,−b0t) =

∑∞
i=0 Ci(a0, b0)ti, then, we

obtain,

Pn = an + bn + (a0b1 − b0a1)Cn−2(a0, b0) + · · ·+ (a0bn−1 − b0an−1)C0(a0, b0)

for n ≥ 2. This completes the proof of our proposition. □



290 Hiroaki Nakamura and Zdzis law Wojtkowiak

Example 5.10 Notations being as in the above proof, one can write

(5.7) G(a0t,−b0t) =
∞∑
i=0

Ci(a0, b0)ti =
1

b0t

(
1− ea0t − 1

a0
· a0 + b0
e(a0+b0)t − 1

)
which is more useful in computer calculations (The above form of the right hand

side is derived in [K]). The last equation in the above proof yields a formula

for the generating function of the polynomials {Pn} of the above proposition

as follows:

(5.8)
∞∑
n=0

Pnt
n =

∞∑
n=0

(an+bn)tn+t

(
a0

∞∑
n=1

bnt
n − b0

∞∑
n=1

ant
n

)
·G(a0t,−b0t).

The first several polynomials Pn’s read:

P0 =a0 + b0,

P1 =a1 + b1,

P2 =a2 + b2 +
1

2
(a0b1 − b0a1),

P3 =a3 + b3 +
1

2
(a0b2 − b0a2) +

1

12
(a20b1 − a0a1b0 − a0b0b1 + a1b

2
0)

P4 =a4 + b4 +
1

2
(a0b3 − b0a3) +

1

12
(a20b2 − a0a2b0 − a0b0b2 + a2b

2
0)

− 1

24
(a20b0b1 − a0a1b20),

P5 =a5 + b5 +
1

2
(a0b4 − b0a4) +

1

12
(a20b3 − a0a3b0 − a0b0b3 + a3b

2
0)

− 1

24
(a20b0b2 − a0a2b20)− 1

180
(a0a1b

3
0 − a20a1b20 − a20b20b1 + a30b0b1)

− 1

720
(a1b

4
0 − a0b30b1 − a30a1b0 + a40b1).

Concerning symmetric properties of our polynomials Pn’s, it firstly follows from

(eSeT )−1 = e−T e−S that

(5.9) Pn({ai}ni=0, {bi}ni=0) = −Pn({−bi}ni=0, {−ai}ni=0).

For our later calculations, useful are also the formulas of G(a0t, b0t) in special

cases of a0 or b0 = 0. These are easily obtained from de l’Hospital’s formula as

follows:

(5.10) G(0,−b0t) = −
∞∑
n=1

Bn
n!

(b0t)
n−1, G(a0t, 0) = 1 +

∞∑
n=1

Bn
n!

(a0t)
n−1.

Note B1 = −1
2 so that the above series both start from the constant term 1

2 .
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Now we arrive at the stage where available are translations of the functional

equations (iii)C, (iii)ℓ of Theorem 5.6 in terms of polylogarithms:

Proposition 5.11 Given a K-morphism f : V → P0 as in the beginning
of this subsection, we can express the complex and ℓ-adic iterated integrals as-
sociated to φn and the image of a path q : v ⇝ z on V in P0 in terms of

polylogarithms along the paths δ :
−→
01⇝ f(v) and δf(q) :

−→
01⇝ f(z) as follows:

Lφn
C (f(z), f(v); f(q)) = Pn

(
{lii(f(z), δf(q))}ni=0, {−lii(f(v), δ)}ni=0

)
,(i)

Lφn(f)x⃗
nv (f(z), f(v); f(q)) = Pn

(
{−ℓii(f(v), δ, x⃗)}ni=0, {ℓii(f(z), δf(q), x⃗)}ni=0

)
.(ii)

For the definitions of li0, li1, ℓi0 and ℓi1, see Remark 5.3 and Definition 5.4.

Proof. By the chain rule (4.3), we have

Λf(q)(f(z), f(q))−1 = Λδf(q)(f(z),
−→
01)−1 ·

(
Λδ(f(v),

−→
01)−1

)−1
.

Hence

log(Λf(q)(f(z), f(q))−1)

=
(

log(Λδf(q)(f(z),
−→
01)−1)

)
⊞
(
− log(Λδ(f(v),

−→
01)−1)

)
.

Expanding the above both sides as Lie formal series in x̄ and ȳ modulo IY , we

obtain (i). For the ℓ-adic case, since f
δf(q)
σ = δf

f(q)
σ δ−1fδσ, we have

log(δ(ff(q)σ )−1δ−1) =
(
− log(fδσ)−1

)
⊞
(

log(fδf(q)σ )−1
)
.

By Definition 4.7 and (5.6), the left hand side of (ii) may be written as

Lφn(f)x⃗
nv (f(z), f(v); f(q))(σ) = φn(f)x⃗(f(log(fqσ)−1))

= φn,x⃗(δ log(ff(q)σ )−1δ−1).

These equations complete the proof of (ii). □
The following proposition computes the “BCH-conjugation” of polylog Lie

series:

Proposition 5.12 Suppose that A, B are Lie formal power series in X,Y in

the form modulo IY :{
A ≡ a0X + a1Y +

∑∞
i=1 ai+1 ad(X)i(Y ),

B ≡ b0X + b1Y +
∑∞
i=1 bi+1 ad(X)i(Y ).

Then, we have

log(eAeBe−A) ≡ B +

∞∑
n=1

∞∑
k=1

(a0bn − b0an)
a0

k−1

k!
(adX)n+k−1(Y ) mod IY .
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In particular, if a0 = 0, then, log(eAeBe−A) ≡ B − b0[X,A] mod IY .

Proof. This follows from the well known formula eAeBe−A =
∞∑
n=0

(adA)n(B)
n! by

simple computation. □

5.4. Drinfeld associators under S3. We may consider Λγ(w, v) for any path

γ : v ⇝ w between tangential basepoints

v, w ∈ B := {−→01,
−→
0∞,−→∞1,

−→
10,
−→
1∞,−→∞0}.

See [De2], [W3] for precise definitions. We shall call Λγ := Λγ(w, v) the Drin-

feld associator for γ. The fundamental groupoid π1(P0(C),B) is generated by

the standard paths ⟨a, b⟩, [acb] ({a, b, c} = {0, 1,∞}), where ⟨a, b⟩ denotes the

path from
−→
ab to

−→
ba along P1(R), and [acb] denotes the half anticlockwise rota-

tion from
−→
ab to −→ac (cf. [N2-I]). By the chain rule (4.3) and the pushforward

property (4.5) (extended to those Λγ between tangential base points), we may

compute any Drinfeld associator by compositions of the S3-transforms of Λ⟨0,1⟩,

Λ[0∞1 ] = eπiX . Usually, the non-commutative power series Λ(X,Y ) := Λ⟨0,1⟩ is

called ‘the’ Drinfeld associator whose coefficients are given by multiple zeta

values ([Dr]; see, e.g., [F]). For the sequel of this article, we only recall its

polylogarithmic part:

log(Λ⟨0,1⟩)
−1 ≡

∞∑
m=2

(−1)m+1ζ(m)(adX)m−1(Y ) mod IY .

It is useful to recall the following action of S3-automorphisms of P0 on X,Y to

compute the other Λγ .

f(z) z z
z−1

1
z 1− z 1

1−z
z−1
z

f∗(X) X X −X − Y Y Y −X − Y
f∗(Y ) Y −X − Y Y X −X − Y X

For our later application, let us illustrate the computation of the polylog part

of log(Λγ)−1 for δ = ⟨0, 1⟩[1∞0 ]⟨1,∞⟩. By the chain rule and the pushforward

property, it follows that

Λδ = Λ⟨0,1⟩e
πiY f∗(Λ⟨0,1⟩)

−1 = Λ(X,Y )eπiY Λ(−X − Y, Y )−1,
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where f(z) = 1
z . Evaluating log(Λδ)

−1 after the polylog BCH formula (Prop.

5.9), we find from ζ(2n) = (2πi)2n −B2n

2·(2n)! :

log(Λ⟨0,1⟩[1∞0 ]⟨1,∞⟩)
−1 ≡

∞∑
n=1

(2πi)n
Bn
n!

(adX)n−1(Y )(5.11)

≡
∞∑
n=1

Bn
n!

(ad x̄)n−1(ȳ) mod IY .

As the ℓ-adic correspondent of Drinfeld associators, we may consider the func-

tions fγσ (σ ∈ GQ) for γ ∈ π1(P0/Q,B). The basic associator is fσ := f
⟨0,1⟩
σ

whose polylog part is known essentially by Ihara’s work (cf. [NW]) as:

log(fσ)−1 ≡
∑
m≥1

ℓi
−→
10
m+1(σ)(adX)m(Y )(5.12)

≡
∑
m≥1

(−1)m
χ̃
−→
10
m+1(σ)

m!
(adX)m(Y ) mod IY

for σ ∈ GQ. The coefficient character χ̃
−→
10
m is the (1 − ℓm−1)−1-multiple of the

so-called Soulé character χm which, over GQ(ζℓ∞ ), vanishes for even m ≥ 2,

and is non-trivial for odd m ≥ 3. Precise formulas for the Soulé characters

of even degrees m = 2k (k = 1, 2, . . . ) over GQ have also been calculated by

several authors. For m = 2, [LS] p.582-583 expressed χ̃
−→
10
2 (σ) as 1

24 (χ(σ)2 − 1)

by using the ℓ-adic cyclotomic character χ : GQ → Z×ℓ , and [Ih1] Theorem

(p.115) remarked a complete formula for all m (without proof). In [W10], the

second named author gave a proof for the case of even degrees m ≥ 2 which

has essentially the same nature as the first one below. Note that these formulae

should be regarded as the ℓ-adic analogs of the classical formulae ζ(2k) =

−(2πi)2k B2k

2·(2k)! for which a “geometric proof” via the use of associators was

presented in [De2] §18.17.

Proposition 5.13 For k = 1, 2, . . . , we have

χ̃
−→
10
2k(σ) =

B2k

2(2k)
(χ(σ)2k − 1) (σ ∈ GQ).

First Proof. Fix σ ∈ GQ and consider the power-conjugate form of the σ-

action on the standard loop z := (xy)−1 around the puncture ∞ in the pro-ℓ

fundamental group πℓ1(P0/Q,
−→
01). This is known, e.g., from [Ih1] p.106, [N1]

(A10), [N2-I] Prop.2.11, and the σ-actions on both sides of z = y−1x−1 yield

the equation:

Gσ z
χ(σ)G−1σ = fσ(y, x) y−χ(σ) fσ(y, x)−1 · x−χ(σ)
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where Gσ := fσ(y, x)y
1−χ(σ)

2 fσ(z, y). We shall evaluate the log of both sides of

the above equation modulo IY . First, by a similar computation to (5.11), it

follows that

logGσ ≡
1− χ(σ)

2
Y +

∞∑
n=1

2ℓi
−→
10
2n(σ)(adX)2n−1(Y ) mod IY .

Applying this and the well known formula: log(eαeβ) ≡ β +
∞∑
n=0

Bn

n! (adβ)n(α)

mod deg(α) ≥ 2 to Proposition 5.12, we obtain the following congruence mod-

ulo IY :

log(Gσ · (xy)−χ(σ) ·G−1σ ) ≡ χ(σ) log(y−1x−1) + χ(σ)(adX) logGσ

≡ −χ(σ)X +
∞∑
n=0

(−1)n+1χ(σ)
Bn
n!

(adX)n(Y )

+ χ(σ)(adX)

{
1− χ(σ)

2
Y + 2

∞∑
n=1

ℓi
−→
10
2n(σ)(adX)2n−1(Y )

}
.

On the other hand, since log fσ and log(yχ(σ)) have no terms of X, by Propo-

sition 5.12, it follows that log(fσ(y, x) y−χ(σ) fσ(y, x)−1) ≡ −χ(σ)Y , hence the

log of LHS is congruent to

log(y−χ(σ)x−χ(σ)) ≡ −χ(σ)X +

∞∑
n=0

(−χ(σ))n+1Bn
n!

(adX)n(Y )

≡ −χ(σ)X − χ(σ)Y − χ(σ)2

2
[X,Y ] +

∞∑
n=1

(−χ(σ)2n
B2n

(2n)!
(adX)2n(Y )

modulo IY . Comparing the coefficients of (adX)2n(Y ) of the RHS’s settles the

desired formula. □

Second Proof. We shall make use of the explicit formula (5.2) for χ̃2k := χ̃
−→
10
2k:

(5.13) ζ
χ̃2k(σ)
ℓn =

σ
(∏ℓn−1

a=0 (1− ζχ(σ)
−1a

ℓn )
a2k−1

ℓn

)
∏ℓn−1
a=0 (1− ζa+ρz(σ)ℓn )

a2k−1

ℓn

.

Fix any σ ∈ GQ and set c := χ(σ) ∈ Z×ℓ . Pick c̄ ∈ Z>0 such that cc̄ ≡ 1 mod

ℓ2n. Choose any decomposition of the index set

S+ ⊔ S− ⊔ S0 = {1, . . . , ℓn − 1}, S0 :=

{
∅ (ℓ ̸= 2),

{ 12ℓ
n} (ℓ = 2),

so that a ∈ S+ if and only if ℓn − a ∈ S−. We are going to rewrite both of the
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numerator and the denominator of RHS of (5.13) by using

(5.14) (1− ζ−aℓn )
1
ℓn = (1− ζaℓn)

1
ℓn · ζℓ

n−2a
2ℓ2n .

We remark that, for any a ∈ S+, the quotient of factors corresponding to

ℓn − a ∈ S− in the numerator and denominator of (5.13) may be replaced by

that of factors corresponding to −a. Therefore, we may and do regard the set

S− to be {−a | a ∈ S+}. First we shall consider the case ℓ ̸= 2. It is easy to see

that the denominator of (5.13) amounts to the product∏
a∈S+

ζ2a
2k−a2k−1ℓn

2ℓ2n

To apply (5.14) for the numerator of (5.13), we first need to replace the expo-

nent c−1a of ζℓn by the least residue modulo ℓn, i.e., by c̄a− [ c̄aℓn ]ℓn (we denote

by [∗] the largest integer ≤ ∗). From this remark, it easily amounts to∏
a∈S+

ζ
2a2k−ca2k−1ℓn−2cℓna2k−1[ c̄aℓn ]

2ℓ2n .

Thus, writing the fractional part as {∗} := ∗ − [∗], we obtain the congruence

modulo ℓn

χ̃2k(σ) ≡
∑
a∈S+

a2k−1
(
−c
[ c̄a
ℓn

]
− c

2
+

1

2

)
≡
∑
a∈S+

a2k−1
(
c
{ c̄a
ℓn

}
−
{ a
ℓn

}
+

1− c
2

)
Observe that in the above sum S+ may be replaced by S− (i.e., giving the same

sum). So we may take 1
2

∑
a∈S instead of

∑
a∈S+

. Then, applying [La2] p.39

and then p.36, we find

χ̃2k(σ) ≡ 1

2

∑
a∈S

ℓn(2k−1)

2k

[
c2kB2k

({ c̄a
ℓn

})
−B2k

({ a
ℓn

})]
≡ 1

2

c2k − 1

2k
B2k(0)

modulo ℓn

2(2k)Dk
Z (Dk: the least common multiple of the denominators of coef-

ficients of the polynomial B2k(X)). Letting then the projective limit n → ∞,

we obtain the desired formula. In the case of ℓ = 2, we have to take care of the

factor coming from the index set S0. But it turns out to form only a bounded

value on S0 converging to “measure zero”, having no essential affects on the

final conclusion of the above argument. □.
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Remark 5.14 Let δ be a path from
−→
01 to z = −1 on P1(C) − {0, 1,∞}

defined as the composition of the anticlockwise half turn around z = 0 and

the simple move to z = −1 along the reals. By a similar method to the above

Second Proof of Proposition 5.13, one can show

χ̃z=−12 (σ) = − 1

48
(χ(σ)2 − 1)− χ(σ)

2
ρ2(σ) (σ ∈ GQ),

where χ̃z=−12 is taken along the above δ. (If we change δ to its complex conjugate

δ̄, then altered is the sign of χ(σ)
2 ρ2(σ) in above RHS.) We point out that

1
48 (χ(σ)2 − 1) is generally not in Z2, while 1

48 (χ(σ)2 − 1) ± χ(σ)
2 ρ2(σ) does

always belong to ∈ Z2 . This is the ℓ-adic analog of the well known formula

“Li2(−1) = −π
2

12 ” in the complex case (cf. [Le]).

6. Examples

6.1. Li2(z) + Li2(1− z). Let V = P0 = P1
z −{0, 1,∞} defined over a subfield

K ⊂ C, and consider two morphisms f1, f2 : V → P0 defined by f1(z) = z,

f2(z) = 1 − z. Then, the images of v =
−→
01 on V by these morphisms are

given by f1(v) =
−→
01 and f2(v) =

−→
10. Let x, y be the standard loops based at−→

01 on V = P0 taken as in 5.1, and x̄, ȳ be their images in gr1π1(P0(C),
−→
01).

The space gr2π1(P0(C),
−→
01) is a free Z-module generated by [x̄, ȳ], and φ2 :

gr2π1(P0(C),
−→
01) → Z is just taking the coefficient of [x̄, ȳ]. To connect

−→
01

to fi(v) (i = 1, 2), we take the path δ1 :
−→
01 ⇝ f1(v) to be trivial and the

path δ2 :
−→
01 ⇝ f2(v) to be the real segment [0, 1] (i.e., δ2 = ⟨0, 1⟩ in the

notation of §5.4). In the sequel, we shall write δ := δ2. It is easy to see that

φ2(f1) ◦ gr2Γ(f1∗)([x̄, ȳ]) = 1 and φ2(f2) ◦ gr2Γ(f2∗)([x̄, ȳ]) = −1, hence that the

condition (i)C of Theorem 5.7 holds in the above setting, i.e.,

(6.1) φ2(f1) ◦ gr2Γ(f1∗) + φ2(f2) ◦ gr2Γ(f2∗) = 0

in Hom(gr2Γπ1(P0(C),
−→
01),Z). This just reflects the simple equation (ii)C:

(6.2) z ∧ (z − 1) + (1− z) ∧ (−z) = 0

in ∧2O×h (V an). The ℓ-adic analogs (i)ℓ, (ii)ℓ also hold in the obvious way.

Now, we shall consider the functional equation (iii)C in Theorem 5.7. For any

path γ : v ⇝ z, it reads

(6.3) Lφ2

C (z,
−→
01; γ) + Lφ2

C (1− z,−→10; f2(γ)) = 0.

Let us apply Proposition 5.11 (i) to each term of the above. Since f1(v) =
−→
01

and δ1 is trivial, for the first term, the sequence {bi} = {0}. This implies
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Lφ2

C (z,
−→
01; γ) = li2(z, γ). For the second term, to apply Proposition 5.11, we

must calculate P2({ai}2i=0, {bi}2i=0) for

{ai}2i=0 = {li0(1− z, δf2(γ)), li1(1− z, δf2(γ)), li2(1− z, δf2(γ))},(6.4)

{bi}2i=0 = {0, 0,−li2(
−→
10, δ)}(6.5)

to get Lφ2

C (1 − z,−→10; f2(γ)) = li2(1 − z, δf2(γ)) − li2(1, δ). Thus we obtain a

functional equation of complex dilogarithms:

(6.6) li2(z, γ) +
(

li2(1− z, δf2(γ))− li2(1, δ)
)

= 0.

We may further rewrite it in terms of classical dilogarithms using Proposition

5.2. Noting the Bernoulli numbers B0 = 1, B1 = −1/2, we find that

li2(z, γ) =
1

4π2

(
Li2(z) +

1

2
log(1− z) log z

)
,(6.7)

li2(1− z, δf2(γ)) =
1

4π2

(
Li2(1− z) +

1

2
log(1− z) log z

)
,(6.8)

li2(
−→
10, δ) =

1

4π2
Li2(1).(6.9)

Summing up, we obtain the well known equation (cf. [Le]):

(6.10) Li2(z) + Li2(1− z) + log z log(1− z) = Li2(1).

Note that Li2(1) = ζ(2) = π2

6 .

Next, we shall consider the ℓ-adic analog in this case. Theorem 5.7 (iii)ℓ
reads:

(6.11) Lφ2(f1)x⃗
nv (z,

−→
01; γ)(σ) + Lφ2(f2)x⃗

nv (1− z,−→10; f2(γ))(σ) = E(σ, γ)

for σ ∈ GK . Let us first examine the above LHS. From (5.3) it follows imme-

diately that the first term is equal to

(6.12) ℓi2(z, p, x⃗) = −
{
χ̃z2(σ) +

1

2
ρz(σ)ρ1−z(σ)

}
.

The second term can be calculated after Proposition 5.11 as

P2({ai}2i=0, {bi}2i=0) with

ai = −ℓii(
−→
10, δ, x⃗), bi = ℓii(1− z, δf2(γ), x⃗) (i = 0, 1, 2).
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Writing X = log x, Y = log y, we know (cf. (5.1), (5.4))

log(fδσ)−1 ≡
∑
m≥1

ℓi
−→
10
m+1(σ)(adX)m(Y )

≡
∑
m≥1

(−1)m
χ̃
−→
10
m+1(σ)

m!
(adX)m(Y ) mod IY .

It follows then from Proposition 5.13 that (a0, a1, a2) = (0, 0, 1
24 (χ(σ)2 − 1))

and hence, the second term of LHS of (6.11) turns out to be

ℓi2(1− z, δf2(γ), x⃗)(σ)− ℓi2(
−→
10, δ, x⃗)(σ)

=−
(
χ̃1−z
2 (σ) +

1

2
ρz(σ)ρ1−z(σ)

)
+

1

24
(χ(σ)2 − 1).

To estimate E(σ, γ), the RHS of (6.11), we shall make use of Corollary 5.8. Let

us take a decomposition of the ℓ-adic Lie algebra

(6.13) L(πV,v) = L<2 ⊕ Γ2L(πV,v), L<2 := Qℓ log x+ Qℓ log y

according to the Lie series expansion with respect to (log(x), log(y)) in the

sense of (4.10). Now, for the generator system x⃗ = y⃗1 = (x, y), it is easy to

see φ2,x⃗([log(fγσ)−1]<2) = 0, as by definition φ2(f1)y⃗1 quarries out the degree 2

part. For y⃗2 = δ−1(x, y)δ = (f2(y), f2(x)), since f2(log fγσ) is just obtained from

log fγσ after replacing log(x), log(y) by log(f2(x)), log(f2(y)) respectively, we see

also φ2,x⃗(δ[log(fγσ)−1]<2δ
−1) = 0. Therefore, in this special case, the error term

vanishes for all σ ∈ GK . Summing up our above arguments, we obtain the

functional equation

(6.14) χ̃z2(σ) + χ̃1−z
2 (σ) + ρz(σ)ρ1−z(σ) =

1

24
(χ(σ)2 − 1) (σ ∈ GK).

Question. The above ℓ-adic functional equation (6.14) suggests a possibility

of reducing Galois transformations of

ℓn−1∏
a=0

(1− ζaℓnz1/ℓ
n

)
a
ℓn (1− ζaℓn(1− z)1/ℓ

n

)
a
ℓn

to simpler invariants ρz, ρ1−z and χ, in a somewhat purely arithmetic way as

in the second proof of Proposition 5.13. It seems to the authors a nontrivial

question.
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6.2. Li2(z) + Li2(z/(z− 1)). We apply a similar argument to the above sub-

section to f1(z) = z and f2(z) = z
z−1 . In this case, f2(v) =

−→
0∞, so we substitute

the half anti-clockwise rotation from
−→
01 to

−→
0∞ for δ2 :

−→
01⇝ f2(v), and set δ :=

δ2 which is [0∞1 ] in the notation of §5.4. Then, (f2(x), f2(y)) = δ−1(x, y−1x−1)δ.

For (i)C, observing that gr2γ(ιδ ◦f2) sends [x̄, ȳ] to [x̄,−x̄− ȳ], we find (6.1) also

holds in this case. The condition (ii)C can be checked by

(6.15) (z) ∧ (z − 1) + (
z

z − 1
) ∧ (

z

z − 1
− 1) = 0.

The consequent functional equation (iii)C reads

(6.16) Lφ2

C (z,
−→
01; γ) + Lφ2

C (
z

z − 1
,
−→
10; f2(γ)) = 0.

for any path γ : v ⇝ z. Let us apply Proposition 5.11 (i). In the same way

as in the previous example, Lφ2

C (z,
−→
01; γ) = li2(z, γ). For the second term, we

calculate P2({ai}2i=0, {bi}2i=0) = a2 + b2 + 1
2 (a0b1 − b0a1), where

{ai}2i=0 =

{
li0

(
z

z − 1
, δf2(γ)

)
, li1

(
z

z − 1
, δf2(γ)

)
, li2

(
z

z − 1
, δf2(γ)

)}
,(6.17)

{bi}2i=0 = {−li0(
−→
0∞, δ),−li1(

−→
0∞, δ),−li2(

−→
0∞, δ)} = { πi

2πi
, 0, 0},(6.18)

to get

Lφ2
C (

z

z − 1
,
−→
10; f2(γ))

= li2

(
z

z − 1
, δf2(γ)

)
− 1

2
(−li0(

−→
0∞, δ)) · li1

(
z

z − 1
, δf2(γ)

)
= li2

(
z

z − 1
, δf2(γ)

)
− 1

4
li1

(
z

z − 1
, δf2(γ)

)
=

1

4π2

(
Li2(

z

z − 1
) +

1

2
log(

z

z − 1
) log(

1

1− z
)

)
+

1

4

(
1

2πi
log(

1

1− z
)

)
.

Putting these into (6.16) combined with our choice of logarithmic branches

log( z
z−1 ) = log z − log(1 − z) + πi, we obtain a classical functional equation

from [Le]:

(6.19) Li2(z) + Li2(
z

z − 1
) = −1

2
log2(1− z).

We next consider the ℓ-adic analog. The condition (iii)ℓ of Theorem 5.7 reads

in this case:

(6.20) Lφ2(f1)x⃗
nv (z,

−→
01; γ)(σ) + Lφ2(f2)x⃗

nv (
z

z − 1
,
−→
10; f2(γ))(σ) = E(σ, γ)
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The first term of LHS is the same as (6.12). For the second term, noting that

fδσ = δ · σ(δ)−1 = x
1−χ(σ)

2 , we have

(6.21) ℓi0(
−→
0∞, δ, x⃗) =

{
χ(σ)−1

2 , k = 0,

0, k ≥ 1.

Hence, by Proposition 5.11 (ii), it follows that

Lφ2(f2)x⃗
nv (

z

z − 1
,
−→
10; f2(γ))(σ) = P2

(
{1− χ(σ)

2
, 0, 0}, {ℓii(

z

z − 1
, δf2(γ), x⃗)}2i=0

)
= ℓi2(

z

z − 1
, δf2(γ), x⃗) +

1

2

(
1− χ(σ)

2

)
ℓi1(

z

z − 1
)

= −
(
χ̃

z
z−1
2 (σ) +

1

2
ρ z

z−1
(σ)ρ 1

1−z
(σ)

)
+

1

2

(
1− χ(σ)

2

)
ρ 1

1−z
(σ).

To evaluate the error term RHS of (6.20), we employ the same splitting of

L(πX,v) as (6.13). We calculate:

E(σ, γ) = φ2,x⃗(δ f2([log(fγσ)−1]<2) δ−1)

= φ2,x⃗(δ f2(ρz(σ) log x+ ρ1−z(σ) log y) δ−1)

= φ2,x⃗

(
ρz(σ) log x+ ρ1−z(σ) log(y−1x−1)

)
= φ2,x⃗

(
1

2
ρ1−z(σ)[log x, log y]

)
=

1

2
ρ1−z(σ).

Taking care of the choice of paths to fix branches of the involved Kummer

characters such as ρ z
z−1

= ρz − ρ1−z + χ−1
2 , ρ 1

1−z
= −ρ1−z, we obtain from

(6.20) the following functional equation:

χ̃z2(σ) + χ̃
z

z−1

2 (σ) +
1

2
ρ1−z(σ)2 − χ(σ)− 1

2
ρ1−z(σ) =

1

2
ρ1−z(σ),

or equivalently,

(6.22) χ̃z2(σ) + χ̃
z

z−1

2 (σ) =
ρ1−z(σ)

2

(
χ(σ)− ρ1−z(σ)

)
(σ ∈ GK).

Note the ℓ-integrality, i.e., ∈ Zℓ of the above RHS for all σ ∈ GK even when

ℓ = 2, as should be expected from the definition of ℓ-adic polylogarithmic

character appearing in the LHS. This appeals to us the necessity of existence

of the error term E(σ, γ). Concerning the above functional equation (6.22), one

may also ask a question similar to what was raised just after (6.14).
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6.3. Inversion formula. Here, we consider two automorphisms f1(z) = z

and f2(z) = z−1 of P0. Take δ1 : v =
−→
01 ⇝ f1(v) to be the trivial path, and

δ2 : v ⇝ f1(v) =
−→∞1 to be ⟨0, 1⟩[1∞0 ]⟨∞, 1⟩ in the notation of §5.4. Then,

δ := δ2 is the same as the path δ illustrated in loc. cit. Let n ≥ 2. In the tensor

space (Symn−2O×h )⊗ (∧2O×h ) of O×h = O×h (V an), since

(
1

z
)⊙n−2 ⊗ (

1

z
∧ 1− z

z
) = (−1)n−1z⊙n−2 ⊗ (z ∧ (1− z)),

we find Theorem 5.7 (ii)C holds for c1 = 1, c2 = (−1)n. Consequently, for any

path γ :
−→
01⇝ z on P0, we have the functional equation (iii)C in the form

(6.23) Lφn

C (z,
−→
01; γ) + (−1)nLφn

C

(
1

z
,
−→∞1; f2(γ)

)
= 0 (n ≥ 2).

The first term Lφn

C (z,
−→
01; γ) = lin(z, γ) is already calculated in Proposition 5.2.

For the second, applying Proposition 5.11 (i) with the chain rule, we wish to

compute the BCH-sum

(6.24) Lφn

C

(
1

z
,
−→∞1; f2(γ)

)
= Pn({ai}ni=0, {bi}ni=0),

where

{ai}ni=0 = {lii
(

1

z
, δf2(γ)

)
}ni=0

=

{
(−1)i+1

i−1∑
k=0

Bk
k!

(
− log z

2πi

)k
Lii−k(z−1, δf2(γ))

(2πi)i−k

}n
i=0

,

{bi}ni=0 = {−lii(
−→∞1, δ)}ni=0 = {0,−B1,−

B2

2!
, . . . ,−Bn

n!
} by (5.11).

It now turns out that we should work inductively on n. Let us set

L0 :=
− log z

2πi
, L1 :=

Li1(z)

2πi
=

− log(1− z)

2πi
, Lk :=

Lik(z)

(2πi)k
(k ≥ 2);

L̄0 :=
log z

2πi
, L̄1 :=

Li1(z
−1)

2πi
=

log z − log(z − 1)

2πi
, L̄k :=

Lik(z
−1)

(2πi)k
(k ≥ 2);

so that

a0 = L̄0 = −L0, a1 = L̄1 = −L0 + L1 −
1

2
, b0 = 0;

ak = (−1)k+1
k−1∑
i=0

Bi
i!
Li0L̄k−i (k ≥ 2), bk = −Bk

k!
(k ≥ 1).

Consider then the generating functions:

(6.25) L(t) :=

∞∑
i=0

Li+1t
i, L̄(t) :=

∞∑
i=0

L̄i+1t
i, B(t) :=

t

et − 1
=

∞∑
i=0

Bi
i!
ti,

2
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and define the quantities Di, Pi (i ≥ 1) by:

D(t) :=
∞∑
i=1

Dit
i = tB(L0t)L(−t),

P(t) :=

∞∑
i=0

Pit
i = tB(−L0t)L̄(−t) + L0tB(t)− B(t)B(−L0t) + B(−L0t).

Then, from (5.8) and (5.10) follows that this Pn coincides with

Pn({ai}ni=0, {bi}ni=0) for n ≥ 2, and it turns out that the functional equation

(6.23) is reduced to the equation P(−t) + D(t) = 0. After computations, we

obtain

L̄(t)− L(−t) =
eL0t

e−t − 1
+ t−1 =

∞∑
n=1

Bn(−L0)

n!
(−t)n−1.

Comparing the coefficients, we get L̄n + (−1)nLn = (−1)n−1Bn(−L0)/n!, i.e.,

what is called the inversion formula of polylogarithms:

(6.26) Lin(z) + (−1)nLin(
1

z
) = − (2πi)n

n!
Bn(

log z

2πi
) (n ≥ 2).

Next, we consider the ℓ-adic version (iii)ℓ:

(6.27) Lφn(f1)x⃗
nv (z,

−→
01; γ)(σ) + (−1)nLφn(f2)x⃗

nv (
1

z
,
−→∞1; f2(γ))(σ) = E(σ, γ)

for σ ∈ GK , n ≥ 2 (z ∈ K ⊂ C). In the below, we shall occasionally omit σ

for simplicity. The first term is ℓim(z, γ, x⃗) that is expressed by ℓ-adic polylog-

arithmic characters as in (5.3). For the second, applying Proposition 5.11 (ii),

one can write

(6.28) Lφn(f2)x⃗
nv

(
1

z
,
−→∞1; f2(γ)

)
= Pn({ai}ni=0, {bi}ni=0),

with

{ai}ni=0 = {−ℓii(
−→∞1, δ)}ni=0 = {0, B1(χ− 1),

B2

2!
(χ2 − 1), . . . ,

Bn

n!
(χn − 1)},

{bi}ni=0 = {ℓii
(
1

z
, δf2(γ)

)
}ni=0 =

{
(−1)i+1

i−1∑
k=0

Bk

k!
(ρz)

k χ̃
1/z
i−k

(i− k − 1)!

}n

i=0

.

(In the above expression of ai, we used the chain rule to find that

fδσ = fσ(y, x−1y−1)y
1−χ(σ)

2 fσ(x, y). This differs from G−1σ of the first proof of
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Proposition 5.13 only in the sign of 1−χ(σ)
2 .) Let us set

L0 := ρz, L1 := χ̃z1 = ρ1−z, Lk :=
χ̃zk

(k − 1)!
(k ≥ 2);

L̄0 := −ρz, L̄1 := χ̃
1/z
1 = −ρz + ρ1−z +

χ− 1

2
, L̄k :=

χ̃
1/z
k

(k − 1)!
(k ≥ 2);

so that

ak =
Bk
k!

(χk − 1) (k ≥ 0);

b0 = L̄0 = −L0, b1 = L̄1 = −L0 + L1 +
χ− 1

2
;

bk = (−1)k+1
k−1∑
i=0

Bi
i!
Li0L̄k−i.

Keeping L(t), L̄(t) as in (6.25), introduce the quantities Di, Pi (i ≥ 1) by:

D(t) :=
∞∑
i=1

Dit
i = tB(L0t)L(−t),

P(t) :=
∞∑
i=0

Pit
i = tB(−L0t)L̄(−t) + (B(χt)− B(t))B(−L0t).

Then, Dn = ℓin(z, γ, x⃗) (n ≥ 1), and Pn = Pn({ai}ni=0, {bi}ni=0) (n ≥ 1) as seen

from (5.8) and (5.10). Thus, the functional equation (6.27) turns out to be in

the form

(6.29) Dn + (−1)nPn = (−1)nEn (n ≥ 2),

where the error term of RHS is evaluated by Corollary 5.8 as follows:

En := φn,x⃗(δ f2([log(fγσ)−1]<n) δ−1).

Observing that δf2(x)δ−1 = yzy−1 = x−1y−1, δf2(x)δ−1 = y, we see from

(5.1) that

(6.30) En = φn,x⃗(ρz log(x−1y−1)) = − Bn−1
(n− 1)!

ρz (n ≥ 2).

If we extend the above expression of En also for n = 1, then we still have

D1 − P1 + E1 = 0. Summing up our discussions, we obtain from (6.29) the

functional equation of generating functions

D(t) + P(−t) =

∞∑
n=1

(−1)nEnt
n = ρz tB(−t),

Nakamura
線

Nakamura
テキストボックス
y



304 Hiroaki Nakamura and Zdzis law Wojtkowiak

which yields

L(−t)− L̄(t) = −
(
−χ t

e−χt − 1

)
−
(

eL0t

e−t − 1

)
.

Comparing the coefficients of the above, we get

(−1)n−1Ln − L̄n = (−1)n
{
Bn(−L0)

n!
− χnBn

n!

}
from which we finally conclude the ℓ-adic inversion formula:

χ̃zn(σ) + (−1)nχ̃1/z
n (σ) = − 1

n
{Bn(−ρz(σ))−Bnχ(σ)n}(6.31)

(σ ∈ GK , n ≥ 1).

Remark. In [W9] Theorem 2.6, an inversion formula without lower degree

terms was obtained. Note however that, in loc. cit., one must have taken certain

“suitable” ℓ-adic paths to determine those ℓim(z) and ℓim( 1
z ). Compared to it,

in the above functional equations (6.27), (6.31), the ℓ-adic polylogarithms or

ℓ-adic polylogarithmic characters of LHS’s are taken along the explicit paths

composed of γ, δ and f2(γ), for which non-trivial lower degree terms must

appear as in the RHS’s.

Remark. Applying z =
−→
10 to the above inversion formula (6.31) reproves

Proposition 5.13, where our above argument specialized to this case is es-

sentially of the same (geometric) nature as the first proof presented in §5.4.

Note also that, putting n = 2 and z = −1 in (6.31) confirms the formula

given in Remark 5.14, where we also apply the formula χ̃z=−12 (σ;x−1p) =

χ̃z=−12 (σ; p) + χ(σ) · ρ2(σ) (σ ∈ GQ) for p = [0∞1 ]⟨0,−1⟩. (cf. [NW2])

6.4. Abel’s equation. In this subsection, we take for V the moduli space

M0,5 of the isomorphism classes of the projective line with ordered 5 marked

points (P1; a1, . . . , a5). We consider V = M0,5 to be a variety defined over

a subfield K ⊂ C equipped with a standard tangential base point v⃗ deter-

mined by the K(t)-rational point (P1; 0, t2, t, 1,∞). The topological fundamen-

tal group π1(V (C), v⃗) is known to be a quotient of pure sphere braid group

with 5 strings. We fix a standard generator system {xij |i, j = 1, ..., 5} of it as

in [Ih1] or [N1] (3.1.4). Regard now P0 = P1 − {0, 1,∞} as the moduli space

of the (P1; b1, . . . , b4), i.e., of the isomorphism classes of the projective line

with ordered 4 marked points, and consider, for each i = 1, . . . , 5, the mor-

phism fi : V → P0 obtained by forgetting the marked point ai and leaving the

other aj (j ̸= i) as b1, . . . , b4 so that the order is preserved. It is easy to check

that fi(v⃗) =
−→
01, hence we can take all connecting paths δi :

−→
01 ⇝ fi(v) to be

Nakamura
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trivial. We refer the reader to [N1], [N2] for basic properties of these forgetful

morphisms with respect to the generator systems of the fundamental groups.

For example, one can compute f2(x24) = 1, f2(x14) = (xy)−1, f3(x15) = y

and so on; fk(xij) is equal to one of the x, y, (xy)−1 depending on the choice

of (i, j, k) with 1 ≤ i, j, k ≤ 5. The graded quotient gr2(π1(V (C)), v⃗) is a 4-

dimensional vector space with a basis [x̄12, x̄23], [x̄15, x̄25], [x̄15, x̄35], [x̄25, x̄35].

We summarize their images by gr2Γ(fi∗) (i = 1, . . . , 5) in the following table:

♯ gr2Γf1∗(♯) gr2Γf2∗(♯) gr2Γf3∗(♯) gr2Γf4∗(♯) gr2Γf5∗(♯)

[x̄12, x̄23] [x̄, ȳ] −[x̄, ȳ] 0 0 0

[x̄15, x̄25] 0 −[x̄, ȳ] [x̄, ȳ] 0 0

[x̄15, x̄35] 0 [x̄, ȳ] 0 −[x̄, ȳ] 0

[x̄25, x̄35] 0 −[x̄, ȳ] 0 0 [x̄, ȳ]

Consequently, we see that
∑5
i=1(−1)i−1gr2Γ(fi∗) = 0 as a homomorphism of

gr2Γπ1(V (C), v) to gr2Γπ1(P0(C),
−→
01)) = C · [x̄, ȳ].

Now, let us apply Theorem 5.7, and compute the functional equations (iii)C
and (iii)ℓ. Pick a point z ∈ V (K) representing (P1; 0, st, s, 1,∞) with s = ξ

1−η ,

t = η
1−ξ . (ξ, η ∈ K − {0, 1}). Then, the images of z by the above morphisms

f1, . . . , f5 are calculated as:

f1(z) =

[
(P1; 0,

s(1− t)
1− st

, 1,∞)

]
= ξ;

f2(z) =
[
(P1; 0, s, 1,∞)

]
=

ξ

1− η
;

f3(z) =
[
(P1; 0, st, 1,∞)

]
=

ξη

(1− ξ)(1− η)
;

f4(z) =
[
(P1; 0, t, 1,∞)

]
=

η

1− ξ
;

f5(z) =

[
(P1; 0,

t(1− s)
1− st

, 1,∞)

]
= η.

Therefore, (iii)C leads to

li2(ξ, f1(γ))− li2

(
ξ

1− η
, f2(γ)

)
+ li2

(
ξη

(1− ξ)(1− η)
, f3(γ)

)
− li2

(
η

1− ξ
, f4(γ)

)
+ li2(η, f5(γ)) = 0.
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Applying (6.7) to each term of the above, we obtain what is called the Abel’s

equation:

Li2(
ξη

(1− ξ)(1− η)
) =Li2(

ξ

1− η
) + Li2(

η

1− ξ
)(6.32)

− Li2(ξ)− Li2(η)− log(1− ξ) log(1− η).

Next, we consider the ℓ-adic version. We shall state it as a theorem:

Theorem 6.1 (Abel’s equation for ℓ-adic polylogarithms) Notations
being as above, we have

ℓi2(ξ, f1(γ), x⃗)(σ)− ℓi2

(
ξ

1− η
, f2(γ), x⃗

)
(σ) + ℓi2

(
ξη

(1− ξ)(1− η)
, f3(γ), x⃗

)
(σ)

− ℓi2

(
η

1− ξ
, f4(γ), x⃗

)
(σ) + ℓi2(η, f5(γ), x⃗)(σ) = 0 (σ ∈ GK).

Remark 6.2 This functional equation seems to be nicer than the one proved

in [W5] Theorem 11.1.14 for σ ∈ GK(µℓ∞ ), because in the present approach we

have no lower degree terms even for σ ∈ GK .

Proof. The condition (iii)ℓ reads:

ℓi2(ξ, f1(γ), x⃗)(σ)− ℓi2

(
ξ

1− η
, f2(γ), x⃗

)
(σ) + ℓi2

(
ξη

(1− ξ)(1− η)
, f3(γ), x⃗

)
(σ)

(6.33)

− ℓi2

(
η

1− ξ
, f4(γ), x⃗

)
(σ) + ℓi2(η, f5(γ), x⃗)(σ) = E(σ, γ)

for all σ ∈ GK . To estimate the error term E(σ, γ) of (6.33), set S = {(1, 2),

(2, 3), (1, 5), (2, 5), (3, 5)} so that the x̄ij ((i, j) ∈ S) form a basis of π1(V (C))ab

and fix a splitting of the ℓ-adic Lie algebra L(πV,v) = L<2 ⊕ Γ2L(πV,v) such

that L<2 =
∑

(i,j)∈S QℓXij where Xij = log xij . Write

[log(fzσ)−1]<2 =
∑

(i,j)∈S

Cij(σ)Xij .

Then, by Corollary 5.8, we have

(6.34) E(σ, γ) =

5∑
k=1

(−1)i−1φ2,x⃗(fk([log(fzσ)−1]<2)).
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Noting that fk(Xij) (k = 1, . . . , 5, (i, j) ∈ S) are summarized as:

fk(Xij) X12 X23 X15 X25 X35

f1 0 X 0 Y log(y−1x−1)

f2 0 0 Y 0 log(y−1x−1)

f3 X 0 Y log(y−1x−1) 0

f4 X Y Y log(y−1x−1) X

f5 X Y 0 0 0

,

we find that the RHS of (6.34) applied to φ2,x⃗ ◦ fk raises non-vanishing terms

from Cij(σ) only when the degree 2 term of fk(Xij) keeps alive, i.e., fk(Xij) =

log(y−1x−1) = −X − Y − 1
2 [X,Y ] + · · · , in which case −1

2Cij(σ) occurs. Sum-

ming up, we obtain

E(σ, γ) = −1

2
C35(σ) +

1

2
C35(σ)− 1

2
C25(σ) +

1

2
C25(σ) = 0,

namely, the error term vanishes in the RHS of (6.33). □

Remark 6.3 In the above discussion, it is, in fact, not difficult to deter-

mine the individual coefficient characters Cij : GK → Qℓ as Kummer cocycles

along roots of certain values (and paths from
−→
01) depending on (ξ, η). This can

be done only by observing Galois actions on the image of those paths in the

abelianized fundamental groups after projections fk : V → P0. We leave such

enjoyable calculations to interested readers.

Finally, applying (6.12) allows us to interpret the LHS of the above theorem

in terms of χ̃z2 and ρzρ1−z. By simple calculations, we deduce the following

Abel’s equation for ℓ-adic polylogarithmic characters of degree 2:

(6.35) −χ̃ξ2(σ)+χ̃
ξ

1−η

2 (σ)−χ̃
ξη

(1−ξ)(1−η)

2 (σ)+χ̃
η

1−ξ

2 (σ)−χ̃η2(σ) = ρ1−ξ(σ)ρ1−η(σ)

which holds for all σ ∈ GK .
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