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GALOIS RIGIDITY OF PROFINITE FUNDAMENTAL GROUPS 

HIROAKI NAKAMURA 

Every nonsingular complete curve over the algebraic closure Q of the rationals 
can be realized as a three-point ramified cover over the projective line. This is a fa­
mous theorem discovered by G.V. Belyi [Be]. In this striking fact, A. Grothendieck 
found a clue to a wonderful new world of mathematics, and indicated the possibility 
of a so-called "anabelian" algebraic geometry in his mysterious note "Esquisse d'un 
Programme" [G3]. About ten years have passed since copies of [G3] were circulated. 
Unfortunately, due to his subsequent silence, we do not have precise formulations 
of the lines suggested in [G3], yet we are increasingly fascinated by its mysterious 
impression. However, the recent related work by other people seems to enable us 
to obtain some possible ideas, or at least vague images, on this subject. 

Especially, arithmetic studies of "exterior Galois representations" initiated by Y. 
Ihara [Ih1], from his own motivation independent of Grothendieck, have involved 
many domestic and foreign mathematicians in this area, and have played a unique 
role in forming a mathematical crystallization of Grothendieck's dreams. In this 
article, we shall give an introductory sketch of the present stage of this process 
from the viewpoint of the "Galois rigidity" phenomenon of a profinite fundamental 
group which the author has been concerned with for several years. The author would 
like to apologize that his viewpoint here is restricted so that many other important 
aspects of Grothendieck's anabelian world are ignored, mainly due to the limitation 
of his knowledge. Moreover, due to the author's style of exposition, readers may 
get the impression that the following sections are just a simple enumeration of 
independent topics, although they are in fact closely related by a single stream of 
thinking. The author hopes that the reader will accept these limitations of this 
paper. 

§1. ANABELIAN ALGEBRAIC GEOMETRY ( [G3], [G4]) 

(1.1) Primitive stage P1 - {0, 1, oo }, dessin d'enfant. Let us denote by Xk 
the P1 - {0, 1, oo }, for a subfield k of the complex number field C. By Belyi's theo­
rem, there appear abundant nonsingular (irreducible) curves over number fields in 
the family of finite etale covers over Xq. They correspond to (connected) unram­
ified finite covers of X (C) ( = C - { 0, 1}) bijectively, and by the Galois theory of 
covers, their equivalence classes correspond to the conjugacy classes of finite index 
subgroups of the discrete fundamental group 1r1 (X (C)). Since each cover can be 
expressed by algebraic equations with coefficients in Q, the absolute Galois group 
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Gq = Gal(Q/Q) of the rationals gives rise to permutations on the classes of covers 
through coefficient transformations. 

In terms of algebraic fundamental groups, this is explained as follows. First, 
the algebraic fundamental group 1ft (Xq-) of Xq- is the profinite completion of the 
discrete fundamental group 7rt(X(C)) (i.e., the compact totally disconnected topo­
logical group obtained as the projective limit of the finite quotient groups), and the 
finite index subgroups of 1ft (X (C)) correspond bijectively to the open subgroups 
of Ht (Xq-). On the other hand, the etale fundamental group 1rt (Xq) of Xq is a 
natural group extension of 1ft (Xq-) by Gq, fitting into the homotopy exact sequence 

(1.1.1) 1 ------t 1ft (Xq-) ------t 1ft (Xq) � Gq ------t 1. 

The operation of Gq on the set of equivalence classes of finite covers over X (C) is 
obtained from the conjugacy action of an inverse image (J of 0' E Gq via Px (i.e., 
a transformation of the form * f----7 (j * o--t) on the open subgroups of Jrt (Xq-). 

A naive observation of Grothendieck at an early stage was that an unramified 
finite cover f : Yc _, Xc can be reconstituted from the (bipartite) graph Dt = 

f-t ( [0, 1]) on the closed compactification [Yc] of Yc, which is named a des sin 
d'enfant (child's drawing) by Grothendieck. (Here, [0, 1] = {t E pt(C) ItER, 0:::; 
t :::; 1}.) This is easy to see, because the monodromy permutation representation 
by the standard generators x,y E 7rt(X(C) , t0) on the fibre set f-t(t0) can be 
described by observing the graph Dt C [Yc], if we take x (resp. y) to be the 
loop turning around the puncture 0 (resp. 1) which originates at the base point 
to on the open interval (0, 1) and runs along the interval. A dessin d'enfant is 
an equivalence class of a pair consisting of a connected graph and its embedding 
in a topological surface enjoying simple axioms, and if it is given, the complex 
structure of the surface and the morphism to the projective line with a three-point 
ramification are determined ( cf. [JS]). For a given dessin, this morphism is called 
the associated Belyi function ([SV]), and the genus of the surface or the valency list 
of the graph (the list of the numbers of edges adjacent to vertices) are called those 
of the dessin. Thus the dessins correspond bijectively to the equivalence classes of 
the unramified finite covers of Xc. Since the Gq-action on the dessins preserves 
the genus and the valency list of each dessin, the orbits are finite sets; hence with 
each dessin an algebraic number field (of finite degree) is associated as the fixed 
field of the stabilizer of the Galois action on it. It is an interesting problem to 
identify the associated number field by the combinatorial structure of each dessin. 
See, e.g., [SV], [Sch], [Cou], [BPZ] for experimental computations. Recalling that 
for each j E Q there is a standard elliptic curve with minimum field of definition 
Q(j) (see, e.g., [Sh], 4.1), we see that the Galois group Gq acts faithfully on the 
set of dessins of genus 1 as a corollary of Belyi's theorem. (Recently, L. Schneps 
[Sch] also showed that Gq acts on the genus 0 dessins faithfully.) 

We say that an automorphism of a group 1r is an inner automorphism if it is 
written as the conjugate action by an element of Jr. The collection Int(1r) of the 
inner automorphisms forms a normal subgroup of the automorphism group Aut(1r), 
and the quotient group Out(1r) = Aut(7r)/Int(7r) is called the outer automorphism 
group of Jr. Taking an inverse image of each element 0' E Gq in the sequence 
(1.1.1) viapx, and considering its conjugate action on 7rt(Xq-), we obtain an outer 
automorphism of 1ft (Xq-) well-defined for 0', and hence the Galois representation 

(1.1.2) <p: Gq _, OutJrt(Xq-). 
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This will be called the exterior Galois representation arising from ( 1.1.1). 
The faithfulness of the action of Gq on the dessins described above enables us 

to get Belyi's striking observation that the representation <p is injective. This is 
remarkable because it suggests the possibility of describing the huge Galois group 
Gal(Q/Q) by a finite number of parameters of finitely generated profinite groups. 
We shall return to this topic later in (1.4) in the context of moduli spaces of curves. 

(1.2) Galois rigidity of mixed fundamental groups. The above phenomenon 
means especially that in the "mixed" fundamental group n1(Xq) (1.1.1) which 
consists of the Galois group Gq and the fundamental group n1 (XQ), the arithmetic 
quotient and the geometric subgroup are fused together in a strong manner far from 
being just a direct product of groups. Their strong links will be inherited by each 
of the open subgroups of n1 (Xq) in a more and more complicated fashion in our 
nonabelian fundamental group, where a lot of fundamental groups of arithmetic 
curves appear as its open subgroups (as explained above). 

Now we consider an arbitrary hyperbolic curve C over a number field k. Here 
"hyperbolic" means that C is uniformized by the complex upper half-plane. Then 
there exists an exact sequence similar to (1.1.1): 

(1.2.1) 

If the Riemann surface associated with C has genus g and n punctures, then the 
geometric fundamental group n1 ( C10) is isomorphic to the profinite completion of 
the discrete group 

(1.2.2) 
- \ xl, . . .  ,x9,x9+l,···,x2g l [ ] [ ] _

1
) 

II9,n - X1, Xg+l · · · X9, X2g Z1 · · · Zn- , 
Zl, . .. 'Zn 

and it depends only on the topological type (g, n) of the C-valued points of C. 
Supposing that the mixed fundamental group n1 (C) is structured as a strong fusion 
of this and the arithmetic quotient Gk, we may expect that the structure of the 
group extension involves delicate information on the algebraic structure of the curve 
C j k. In other words, the exterior Galois representation induced from (1.2.1), 

may involve a certain proper structure (a kind of rigidity) from which one may 
effectively extract algebraic properties of the curve. Pursuing this possibility will 
lead us to the following series of conjectures. 

(1.3) Fundamental conjecture, anabelian Tate conjecture ((G3],[G4]). By 
Faltings' theorem that solved the Tate conjecture on homomorphisms of abelian 
varieties ( [Fa1]), the Galois representations on the 1-dimensional l-adic homology 
groups determine the isogeny classes of the abelian varieties, and the set of Galois 
equivariant homomorphisms between them is naturally isomorphic to the l-adic 
completion of the module of homomorphisms between the corresponding abelian 
varieties. The 1-dimensional homology of an abelian variety is nothing but its fun­
damental group. Comparing this with the Galois rigidity of fundamental groups of 
hyperbolic curves far from being abelian (1.2) leads us to the following Grothendieck 
conjectures: 
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(1.3.1) Fundamental conjecture. The isomorphism class of a hyperbolic curve 
C over a field k that is finitely generated over the rationals can be reconstituted from 
the structure of the miud funclamerdal group 1r1 (C) as an extension group over the 
Galuts (ji'O up Ch. 

(1.3.2) Anabelian Tate conjecture. If C, C' are two hyperbolic curves over a 
field k finitely generated oveT /.he rationals, then the natural mapping 

gives a bijection between the dominant k-morphisms and the classes of Gk-compat­
ible open hom.unw1phisms. Here, "/Int1r1 ., means the quotient by the natural actions 
by the inner autornorphisms of 1T1. 

If J is the Jacobian \'ariety of the smooth compactification of the curve C', then 
the 1-dimensional homology group H 1 ( J k) appears as a natural abelian quotient of 
1r1 (C'1J. The Tate conjecture proved by Faltings asserts that for Jacobian varieties 
J, J', 

Homh(J, J') ® Zz � Homck (Hl (Jk), Hl (Jf)). 

So, the conjecture (1.3.2) could be regarded as a noncommutative lifting of the Tate 
conjecture. 

There are some affirmative results on the fundamental conjecture (1.3.1) in the 
cases of genus 0 and genus 1 ( [N1], [N6]), whereas there are no examples supporting 
the anabclian Tate conjecture as it is. For the latter , there is also a formulation by 
Grothendieck in the case where C is a point. Recently, an approach to the pro-l 
variant for the case C = C' was given in [NT1]; this will be explained in detail later 
in §3. 

So far, we have mainly discussed curves, although Grothendieek actually pre­
sumed that, even in the higher-.dimensional varieties, there should be a class of 
varieties whose geometric properties can be reconstituted from the group struc­
tures of their mixed fundamental groups. He called varieties in such a hypothetical 
class '' anabclian algebraic varieties", because they should have fundamental groups 
far from being abelian. Hyperbolic curves, their iterated fibration spaces, or the 
moduli spaces of curves are suggested as candidates for anabelian varieties. 

In number theory, the reconstitution of geometry from group theory has been 
known for algebraic number fields by the Neukirch-Ikeda-Iwasawa-Uchida theorem. 
Namely, if k and k' are number fields of finite degree over Q, the isomorphy of the 
Galois groups G k � G k' implies the isomorphy of fields k � k', and the outer auto­
morphism group of G k recovers the automorphism group of the field k ( cf. [Neu], [U]; 
note that G k is the fundamental group of the point Speck). It is unknown to the 
author whether Grothendieck knew this fact when he considered his conjectures 
above. However, Grothendieck more generally conjectured that the category of the 
fields finitely generated over Q should be embedded into the category of profinite 
groups ace om paniecl by augmentation homomorphisms into G Q (the fundamental 
conjecture for birational anabelian algebraic geometry [G4]). For this, there are 
affirmative results in the relative dimension-one case ([Po1-2]), and some ambitious 
approaches can be found in [Bog1-3]. 

(1.4) Playing Lego with Galois-Teichmiiller. In the light of the fundamental 
conjecture (1.3.1), the exterior Galois representation 'P: Cq � Out7T1(Xq) (1.1.2) 
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in the primitive stage X= P1- {0, 1, oo} acquires fundamental significance, as the 
Belyi theorem assures that the subquotients of 1r1 (Xq) contain information on all 
the complete hyperbolic curves definable over number fields. As a first question on 
rp, we ask the following: 

(1.4.1) Problem. How is the Galois image rp(Gq) characterized as a subgroup of 
Out 1r1 (Xq-)? 

Now 1r1(Xq-) is a free profinite group F2(x,y) of rank 2 with free generators 
x, y taken as in (1.1), and rp can be uniquely lifted to a representation 0 : Gq ----+ 

Aut1r1 (Xq-) (CT �----+ 0a) under the normalization conditions ( [Be]): (1) 0a(x) = xx(a), 

(2) 0a(Y) = f;;1yx(a) fa Ua E [1r1, 1r1]). We shall call this lift 0 the Belyi lifting of 
rp. Here x: Gq----+ zx is the cyclotomic character obtained from the Galois action 
on roots of unity, and [1r1, 1r1] denotes the (closure of the) commutator subgroup 
of 1r1 (Xq-) = F2(x, y). Since fa E F2(x, y) is uniquely determined by (2) for each 
element CT E Gq, the problem (1.4.1) is equivalent to the problem of determining the 
image of the parameter f : Gq ----+ F2(x, y). The symmetry of X = P1 - {0, 1, oo} 
under the symmetric group of degree 3 forces this parameter to satisfy the two 
conditions: 

(1.4.2) 

(1.4.3) 

fa(x, y) = fa(Y, x)-1; 
fa(z,x)zba fa(y,z)yba fa (x, y)xba = 1, 

where z = y-1x-1, ba = (X(CT)- 1)/2 (see, e.g., [Ihll] or [N3], Appendix). 
In [G3], Grothendieck pointed out that X = P1 - {0, 1, oo} is nothing but the 

moduli of the 4-pointed genus 0 curves, M0,4, and that it should be regarded as 
the primitive stage ( "premier etage") of the tower of the moduli spaces M9,n of 
n-pointed genus g curves. (We shall simply call M9,n the moduli of type (g, n).) 
Moreover, he conjectured that the tower of the fundamental group(oids) of the Mg,n 
(the Teichmiiller modular tower) can be understood by analyzing only the four types 
(g, n) = (0, 4), (0, 5), (1, 1), (1, 2). V. G. Drinfeld, in his famous paper [Dr], gave a 
beautiful interpretation of the genus 0 tower in the context of conformal field the­
ory, obtained a third (pentagonal) condition supplementing (1.4.2-3) from a study 
corresponding to M0,5, and defined the Grothendieck- Teichmiiller group "GT" to 
be the subgroup of AutF2(x, y) of the elements enjoying these three conditions. 
Since the group GT turned out to have natural actions on the Teichmiiller groups 
of types (0, n) (n = 4, 5, . . .  ), Drinfeld's work supports Grothendieck's conjecture 
affirmatively in that only the types (0,4) and (0,5) are fundamental in the genus 0 
tower of moduli. Although 0(Gq) C GT was not proved in [Dr], a geometric proof 
( [Ih7], [Ihll]) and a group-theoretical proof ( [N3], Appendix) of it were published 
later. Recently, Lochak and Schneps [LS] showed that GT can be regarded as the 
automorphism group of a certain tower of braid groups, simplifying the categorical 
treatment of GT given by Drinfeld. Precise definition of the Teichmiiller tower 
including higher genera has not been published yet, though some people say that it 
would be formed by putting together Mg,n in some ways through infinity structures 
along degeneration of curves, modeling on the dw;tlity groupoid of Moore-Seiberg 
[MS] in physics. 
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§2. HYPERBOLIC VARIETIES, MORPHISM-RIGIDITY 

(2.1) Center-triviality of profinite fundamental groups. One reason why the 
fundamental groups of hyperbolic Riemann surfaces are "far from being abelian" 
is that the subgroups of finite index have trivial centers. This is explained by 
Gottlieb's theorem [Go] in topology asserting that if a finite simplicial complex is 
K(1r, 1) and has nonzero Euler characteristic, then its fundamental group has trivial 
center. Notice that the assumptions of this theorem are obviously inherited by the 
finite covers of the complex. The finiteness and the K(1r, 1)-ness of the complex are 
equivalent to the (FL)-ness of its fundamental group r in the sense of Serre [Se2], 
i.e., the property that the trivial r-module z has a resolution of finite length by 
finitely generated free Z[r]-modules. 

Suppose we are given a nonsingular variety Xk over an algebraically closed sub­
field k of C whose associated analytic manifold X (C) satisfies Gottlieb's conditions. 
Although the profinite fundamental group 1r1 (Xk) is isomorphic to the profinite 
completion f' of r = 1r1 (X (C)), we still cannot guarantee in general that the open 
subgroups of 1r1 (Xk) have trivial centers. A sufficient condition given in [N3] (1.3.3) 
for this is that r = 1r1(X(C)) is, in addition, good in the sense of Serre [Se], that is, 
has the property that the natural isomorphism Hi (f, M) � Hi (r, M) of cohomol­
ogy groups holds for every continuous finite f-module M. From this we see that the 
hyperbolic curves and their iterated fibration spaces (Artin neighborhoods of hy­
perbolic type) have geometric pro finite fundamental groups whose open subgroups 
are always center-free. The fundamental groups of moduli of curves, namely, the 
Teichmiiller modular groups, are virtually of type (FL) with nonzero Euler char­
acterisitic (see [Harv], [Iv3], [HZ]), but it does not seem to be known whether, in 
general, they are good or not (see [Oda1]). Precise conditions characterizing an­
abelian algebraic varieties in higher dimensions have not yet been proposed. The 
author suspects that the center-triviality of open subgroups of profinite fundamen­
tal groups would be one of the main features of such varieties. This will be indicated 
also from our discussions in (2.2) and (3.1) below. 

(2.2) An application to Sunada's conjecture ([N5]). In the Nevanlinna the­
ory, a principle enunciated by L. V. Ahlfors says that "the negative curvature of 
the image manifold restricts a holomorphic mapping" ([Sugaku], 21-N), while in 
the context of complex geometry, T. Sunada [Sun] conjectured that any surjective 
holomorphic mapping onto a hyperbolic manifold should have strong rigidity. As an 
analog of these phenomena in the algebraic context, we shall discuss a homotopical 
hyperbolicity property of an algebraic variety, which has a slightly different taste 
from Lang's conjecture on the distribution of rational points in hyperbolic varieties 
([Lan],[Voj]). 

In fact, through the exterior Galois actions on profinite fundamental groups, we 
can deduce the following purely geometric statement. A morphism f : X ----+ Y of 
nonsingular algebraic varieties over C is said to have (algebraic) strong rigidity, if 
every morphism homotopic to f must coincide with f. 

(2.2.1) Theorem. IfY is a finite etale cover of an Artin neighborhood of hyper­
bolic type, then every morphism f : X ----+ Y with n1 (f) dominant (i. e. , having open 
image)has strong rigidity. 
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When Y is "K(1r, 1)", a morphism f: X ----> Y has strong rigidity if and only if 
f is mapped injectively by 

(2.2.2) 

i.e., <I>-1<I>(J) = {!} holds. By a standard descent argument on fields of definition, 
our problem is reduced to showing that if fo : X0 ----> Yo is a 1r1-dominant morphism 
of algebraic varieties over k0 finitely generated over Q, then the mapping 

(2.2.3) 

is injective at fo. (Here, - means 0ko.) Moreover, if HomGaJ (7rlXo , 1r1Y0) denotes 
the space of Galois-compatible homomorphisms defined as the inductive limit of 
the spaces of the Gk-compatible homomorphisms 1r1(Xo 0 k) ----> 1r1 (Y0 0 k) along 
the finite extensions k/ko in k0, then <I>geom can be decomposed as a composite of 
the two mappings 

'th - - - - -
(2.2.3) <I>an : Hom(Xo, Yo)----> HomGaJ(7rlXo, 7rlYo)/Int7rlYo, 

(2.2.4) Res : HomGal (7rlXo, 7rlYo)/Int7rlYo ----> Hom(7r1Xo, 7r1Yo)/Int7r1Yo. 

Our theorem is then a consequence of the following two lemmas. 

(2.2.5) Lemma (Grothendieck) . IfY is a subvariety of a quasi-abelian variety 
or a finite etale cover of an Artin neighborhood of hyperbolic type, then <I>arith is 
injective. 

(2.2.6) Lemma. If every open subgroup of 1r1 Y has trivial center, then the map 
Res is injective on the open homomorphisms of 1r1. 

The conclusion of Lemma (2.2.5) is needless to say a necessary condition to be 
assured before one expects (a higher-dimensional version of) the anabelian Tate 
conjecture. Observe also that one may utilize the profinite Gottlieb theorem (2.1) 
when checking the assumption of Lemma (2.2.6). 

It is also possible to apply our method to the similar problem on morphisms 
having the same image at a given point. In fact, in an early stage, Grothendieck 
[Gl] considered the pointed version in the case of moduli of abelian varieties, and 
Borel-Narasimhan [BN] generalized his result in the context of hyperbolic geometry. 
These kinds of morphism-rigidity together with certain kinds of "boundedness" lead 
to finiteness theorems of de Franchis type (see, e.g., [ZL], [No], [Suz], [Fa2], [Sa], 
[ImS], etc.) Parshin [Pa] gave suggestive comments on [G4] from the viewpoint of 
hyperbolic geometry. 

§3. AUTOMORPHISMS, ALGEBRAIC CURVES 

(3.1) Galois centralizers. As explained in (1.2), a basic theme of anabelian alge­
braic geometry is the reconstitution of "geometry" from fundamental groups. But 
which kind of geometry should be considered in our first stage of investigation? 
Consulting early stages of the Kobayashi hyperbolic geometry [Ko] or Iitaka's pro­
gram [Ii], one may learn to begin with "automorphism groups" at the first step 
toward a new geometry. So, we shall set up our problem as follows. 
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Let )( be a nonsingular algebraic variety over a number field k, and Q: a class 
of finite groups closed under the formation of subgroups, quotients and group ex­
tensions. We define the pro-Q: fundamental groups 1rf(X1J and Jrf(X); the former 
is the maximal pro-Q: quotient of the geometric fundamental group Jr1(X,<), and 
the latter is the quotient of the mixed funda!T!ental group 1r1 (X) fitting into the 
following natural exact sequence: 

(3.1.1) 
e: Px;k 

---+ Gk ---+ 1. 
We say an automorphism f of 1rf(X) is Gk-compatible if it satisfies p�/k = p�/k of. 
Write Autck 1rf(X) for the collection of Gk-compatible automorphisms of 1rf(X) 
and set 

£�(X) := Autck Jrf(X)/IntJrf(Xk). 
On the other hand, letting 
(3.1.2) 
be the exterior Galois representation associated with (3.1.1), we denote by 

Outck 1rf(Xk) 
the centralizer of the image ��(Gk) in OutJrf(Xk), and call it the Galois central­
izer. Both £�(X) and Outck 1rf(Xk) are naive candidates for "the group of Galois­
compatible homotopy equivalence classes" when the variety X is assumed to be 
more or less negatively curved and hence to be almost K ( 1r, 1) by the Hadamard­
Cartan principle ([Sugaku], 178 B). We have a natural restriction mapping £�(X) --+ 
OutckJrf(Xk), which gives a bijection if the center of 1rf(Xk) is trivial (cf. [N4], 
1.5). Thus, when the center triviality of the fundamental group is established, 
the pro-Q: automorphy version of the anabelian Tate conjecture is reduced to the 
problem of estimating the following canonical mapping: 

<I>�: Autk(X) --+ OutckJrf(Xk)· 
In most cases, X is of log general type and has finite Auh(X) ([Ii]). So our main 
questions are: 
Question (3.1.3) . Which kinds of pairs (X/k, Q:) can have bijective <I>�? 
Question (3.1.4). More basically, can the Galois centralizer Outck 1rf(Xk) be finite 
even when Jrf(XJ;;) is (uncountably) infinite? 

A verification of Question (3.1.3) for a class of finite groups Q: means a recon­
stitution of the geometry "Autk(X)" from the mixed fundamental group of X. In 
addition to our discussion in §2 on the injectivity of <I>�, Borel's criterion [Bor2] 
is known (see [CR]). The geometric fundamental group 1rf(Xk) turns out to be a 
characteristic subgroup of the mixed fundamental group 1rf(X), and when the for­
mer is center-free, the outer automorphism group of the mixed fundamental group 
is a group extension of the Galois centralizer by a subgroup of Out(Gk) ([N3], 1.6). 
By Uchida's theorem (see [Neu], [U]), Out(Gk) is isomorphic to Aut(k), which is 
finite, so Question (3.1.4) is equivalent to asking whether the outer automorphism 
group of the mixed fundamental group 1rf(X) is finite. 

In the remainder of this section, we shall discuss these questions in the case 
where X is a hyperbolic curve, and in (4.1) we shall present affirmative examples 
of higher-dimensional varieties for Question (3.1.3). 
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(3.2) P RO-l MAPPING CLASS GROUPS 

In order to describe the exterior Galois representation for a curve, we shall 
explain the "coordinatization" of the representation space. Fix a rational prime l, 
and let (l) denote the class of finite l-groups. We call the pro-l completion of the 
surface fundamental group IT9,n (1.2.2) the pro-l fundamental group, and denote it 
by II���-1. The method of "coordinates" in the study of the outer automorphism 
group of the pro-l fundamental group was initiated by Ihara [Ih1-2] in the genus 
0 case, and was developed by Oda, Asada, Kaneko ([Oda2], [AK], [Ka]) and by 
Nakamura and Tsunogai [NT1-2]. 

First, we shall call the group of the outer automorphisms of II���-1 that preserve 
the union of the conjugacy classes of the cyclic subgroups (z1), ... , (zn) the pro-l 
mapping class group (denoted by r���-1). In these groups II���-1, r���-1, there are 
good descending filtrations by normal subgroups {II���-1(m)}�=l> {r���-1(m)}�=O> 
called the weight filtrations, with the following properties: 
(3.2.1) gr0r���-1 � GSp(2g, Z1) x Sn. (We designate this group simply by GSp(2g, 

n), which we understand to be Gm x Sn when g = 0.) 
(3.2.2) Form ::=::.1, grmrr���-1 and grmr���-1 are finitely generated free Z1-modules 

on which the group GSp(2g, n) naturally acts algebraically. The action of 
the latter comes from the conjugate action inside q��-1. 

(3.2.3) If a matrix A E GSp(2g) has a characteristic polynomial with rational 
integer coefficients and has eigenvalues with the same complex absolute 
value N, then the complex absolute values of eigenvalues of the action of A 
on grmrrpro-1 and grmrpro-1 are all equal to N m. g,n g,n 

(3.2.4) nm 
rr���-1(m) = {1}, nm r���-1(m) = {1}. 

In fact, we have explicit descriptions of the graded quotient modules grmrr���-1 
(m;:::: 1) as GSp(2g, n)-modules, through the study by Witt and Labute (see [Bou], 
[Lab], [KO], [NT1], [AN]). By using these grmrr���-1, we can introduce the coordi­
nate module cm(2g, n) (m::::: 1) by 

g,n ' g,n l ' g,n ' { Hom(grl rrpro-1 grm+ 1 rrpro-1) EB Hom(zn grm rrpro-1) 

cm(2g, n) = Hom(grl rrpro-1 gr3rrpro-1) ffi ffin Hom(Z gr 2rrpro-1
m
/ (:.)

2
)
, 

g,n ' g,n w Wy=l 1, g,n J > 
m = 2. 

There is a natural "diagonal" embedding of grmrr���-1 into cm(2g, n), and we call 
the quotient module 

the reduced coordinate module. Then, the graded quotient grmr���-1 of the pro­
l mapping class group can be embedded into "EF'(2g, n) as a GSp(2g, n)-module, 
and the cokernel is isomorphic to grm+2rr���-1 ( -1). (This embedding is the pro­
l analog of the Johnson homomorphism studied by D. L. Johnson, S. Morita in 
topology. In the discrete case, the problem of determining the cokernel of the 
Johnson homomorphism is still open; see [J], [Mo1-2], [AN], [N7], [H].) We call such 
a system of the weight filtration on the pro-l mapping class group equipped with the 
GSp(2g, n)-equivariant coordinatizations of its graded quotient modules the graded 
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coordinate system or weight coordinate system on the pro-l mapping class group. 
One can compute explicitly the characters of the representations of GSp(2g) x Sn 
on these ®Q1 which have stable irreducible decompositions for sufficiently large g 
and n. For example, 

gr1f���-l 0 Q l � [13]sp(2g) + {(n)sn + (n - 1, 1)sn} 0 [1]sp(2g)> 
gr2f���-l 0 Ql � [22]sp(2g) + {(n)sn + (n - 1, 1)sn} 0 [12]sp(2g) 

+ {(n)sn + (n- 1, 1)sn + (n- 2, 2)sn} 0 [O]sp(2g)> 
gr3r�:�-l 0 Q l � [3, 12]sp(2g) + [3]sp(2g) + {(n)sn + (n - 1, 1)sn} 0 [2, 1]sp(2g) 

+ {(n- 2, 12)sn + (n- 1, 1)sn} 0 [1]sp(2g)· 

Here {A}sp(Zg) and (J-L)sn denote the irreducible characters corresponding to the 
Young diagrams >. and J-l respectively. For small g, n, one can apply the special­
ization rule of Koike and Terada [KT] and the sign rule of Murnaghan [Mu] for 
computing the irreducible decompositions. For the explicit character formulae, the 
reader may refer to [AN]. By using a computer, we obtain an atlas of the graded 
quotient modules of pro-l fundamental groups and pro-l mapping class groups in 
terms of Young diagrams for m::::; 17, 15 respectively ( [NT2]). 

(3.3) Duplicate "weight" arguments. The problem of estimating Galois cen­
tralizers in pro-l fundamental groups of curves was studied in [N2-3], and a general 
framework was given in [NT1]. Our approach depends on two different kinds of 
weight filtrations -the weight filtration in the pro-l mapping class group of (3.2) 
and the anabelian weight filtration explained below. 

Let X be a complete nonsingular curve defined over a number field k of genus 
g, S a  finite set of closed points of X with geometric cardinality J S(k)J = n. The 
complement curve C = X \ S is of hyperbolic type if and only if the Euler charac­
teristic 2 - 2g - n is negative. We assume this hyperbolicity condition. If the pro-l 
fundamental group of ck is identified with II���-l in such a way that Zl' .. . 'Zn 
represent parabolic elements, then it is well known that the associated exterior 
Galois representation t.p�) : Gk -+ Outii���-l has its image contained in the pro-l 
mapping class group r���-l (branch cycle argument [Fr]; cf. also [Matz]). On the 
other hand, we have 

(3.3.1) Theorem. The Galois centralizer Outckii���-l is also contained in the 
pro-l mapping class group r���-l . 

This theorem means that the union Z of the cyclic subgroups conjugate to one 
of (z1), ... , (zn) is distinguished from its complement in the free pro-l group II���-l 
under the operation of the Galois group. In fact, the subset Z c rr�:�-l can be 
characterized as the "weight ( -2) subset" with "weight ( -1) complement" ([N1]; 
[N3], 2.1). We shall call this characterization property of the inertia subgroups 
in 1r1 (C) the anabelian weight filtration, because the filtered components are not 
closed under the group operation (a union of conjugacy classes). 

By the above theorem, we can encircle the Galois image t.p�)(Gk) and the Galois 
centralizer Outck II���-l in the net of the coordinate system on the pro-l mapping 
class group r�:�-�. By definition, the conjugate action of the Galois image is 
trivial (namely idling) on the· Galois centralizer, while it has weight ( -m) on each 
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graded quotient grmr���-l (m 2 1) by the Riemann-Weil hypothesis and (3.2.3). 
Therefore the Galois centralizer and the "Torelli subgroup" rpro-l (1) c rpro-z , g�n gln 
have necessarily trivial intersection. This is the effect of the weight filtration of 
the pro-l mapping class group of (3.2). Our argument so far can be summarized as 
follows. 

(3.3.2) Theorem. The Galois centralizer Outckrrr�-l is injectively mapped into 
gr0r���-z � GSp(2g,n). 

The classical Hurwitz theorem says that the automorhism group Autk (C) of a 
curve C is embedded into Sp(2g). So Theorem (3.3.2) is necessary for everyone who 
was led to Question (3.1.3-4) after the anabelian Tate conjecture expecting that the 
Galois centralizer approximates Aut( C). As explained above, it is a consequence 
of the two kinds of weight concepts. 

(3.4) Torelli-Galois images, and first examples of Galois rigidity. We shall 
continue to estimate the Galois centralizer 

Outck II���-z ( <---> GSp(2g, n) by (3.3.2)) 

associated with the curve Cjk. Immediately, we notice that, by Faltings' theorem, 
the Galois centralizer must be contained in the closure of the endomorphism ring of 
the Jacobian variety in the l-adic Tate module. But this is not enough for finiteness 
of the Galois centralizer, since it may still involve scalar multiplications. A natural 
second step is to observe the commutativity of the Galois centralizer with the Galois 
images lying inside the Torelli subgroup r���-z (1) of the pro-l mapping class group 
(we call such Galois images the Torelli-Galois images). 

If one finds a Torelli-Galois image lying in r�:�-l ( m) but not in r�:::;>-1 ( m + 
1) for some m 2 1 and identifies its coordinates in grmr���-l, then the above 
commutativity restricts the Galois centralizer within the stabilizer of that image in 
GSp(2g, n) through the graded coordinate system. The Torelli-Galois images reflect 
proper information on the curve rather than its Jacobian variety, and construction 
and identification of the Torelli-Galois images in the graded coordinate system are 
basic themes of the theory of exterior Galois representations. It is known that 
every smooth curve over a number field has nontrivial Torelli-Galois images (see 
4.2 below), but it is more desirable that various kinds of Torelli-Galois images 
should be constructed so that their distribution in the graded coordinate systems 
on the pro-l mapping class groups can be described explicitly. 

The following examples of estimates of Galois centralizers are obtained from 
various kinds of Torelli-Galois images. (Although Example (3.4.5) includes Exam­
ples (3.4.2-3), they were historically obtained from different kinds of Torelli-Galois 
images.) 

Example (3.4.1). C = Pl- {a1, ... , an}· (Here a; E P1(k), i = 1, .. . , n; n 2 3.) 
In this case, the Galois centralizer is isomorphic to a subgroup of Sn. 

Example (3.4.2). C = E- {a1, ... , an}· (Here E is an elliptic curve over k 
with Endk(E) � Z, and a; E E(k), i = 1, . . .  , n; n 2 1.) In this case, the Galois 
centralizer is isomorphic to a subgroup of {±1} x Sn. 
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Example (3.4.3). Let C = X� S be as in (3.3), and assume that the Jacobian 
variety J of X has good reduction at a prime of k but X has stable bad reduction 
at the same prime of k. If moreover Endk(J) � Z, then the Galois centralizer is 
isomorphic to a :mbgroup of {±1} x Sn. 

Example (3.4.4). Let C =X �S be as in (3.3) and assume that the Jacobian J of 
X is k-simple and S(k) has at least two points whose difference in J is non-torsion. 
Then, the Galois centralizer is isomorphic to a subgroup of Sn. 

Example (3.4.5). In general, the Galois centralizer of C = X �S (3.3) is contained 
in Sp(2g, Zt) x S11• In particular, if the Jacobian J satisfies Endk ( J) � Z, the Galois 
centralizer is isomorphic to a subgroup of { ±1} x Sn. 

Let us explain Torelli-Galois images corresponding to the above examples. 
Example (3.4.1) can be essentially reduced to the case of C = P1 � {0, 1, oo}. 

In this case, Y.  Ihara [Ih1] constructed a natural homomorphism 1 : rgr�-l ( 1) -> 

Q1 [[U, V]] x from the Torelli subgroup to the power series ring of two variables, and 
conjectured the explicit formula 

(3.4.6) 

which was proved independently by Anderson [A], Coleman [C], Ihara-Kaneko­
Yukinari [IKY]. Here, Xm: Gq(J-LL=) ---> Zt is a character constructed from a system 
of circular 1-units, which is known to be nontrivial for odd m � 3 by Soule [So] 
(cf. [IS]). From this, we obtain Torelli-Galois images in gr4k+2rgr�-l (k = 1, 2, . . .  ). 
The above power series has a functional equation and a relatior't to the arithmetic 
of Jacobi sums. Moreover, the coefficient characters Xm are known to be important 
as l-adic realizations of mixed Tate motives ([Ih7], [De], etc.). 

Example (3.4.2) is an application of Torelli-Galois images obtained from a power 
series in the genus 1 case : C = E � { 0} ( cf. [Bl], [Tsu1], [N6]). This is the analog of 
the above power series in genus 0. In this case, there is also a natural homomorphism 
into the power series ring of two variables 1 : rf'"�-t (1) ---> Qt[[U, VJ], and the 
following explicit formula holds: 

' 

(3.4. 7) 

Here, the coefficient character K,iJ Gk(E1=) ---> Z1 is obtained from a system of 
certain special values of theta functions. These K,ij are known to be nontrivial (at 
least partially) so that they give nontrivial Torelli-Galois images in (a subsequence 
f)  2k+2rrro-l (k _ ) o gr 1 1 . - 1, 2, . . . . 

Example (3.4.3) has a different nature from the above two, and depends on the 
anabelian analog of the good reduction criterion for abelian varieties of Serre-Tate 
type [ST] realized by T. Oda [Oda2-3] in the exterior pro-l Galois representations 
(see also Tamagawa [Ta] for open curves). When the claimed assumptions on 
reductions are satisfied, nontrivial images of inertia subgroups appear in gr2r���-1 • 



GALOIS RIGIDITY OF PROFINITE FUNDA!IIENTAL GROUPS 207 

Example (3.4.4) is an application of the simplest Torelli-Galois images ([NTl]). 
Given two points P, Q E S, one can construct a Kummer character 

from the l-power division points of P - Q in J, which turns out to be related 
to Torelli-Galois images in gr1 r�:�-1. If P - Q E J is non-torsion, the Kummer 
character gives nontrivial images (see [Ba]). 

The last Example (3.4.5) is obtained from the Torelli-Galois images lying in the 
Gal(k(Jzoo )/k(p.,z= ))-fixed part of gr4k+2q��-l (k = 1, 2, . . .  ), which are assured to 
exist universally by moduli-theoretic considerations. Later in (4.2), we shall explain 
them in more detail. 

The five kinds of Torelli-Galois images above are primitive ones constructed 
directly in the graded quotients grm r�:�-l ( m = 1, 2, . . .  ) of the pro-l mapping class 
groups. Occasionally, it is possible to construct secondary Torelli-Galois images by 
taking iterated Lie brackets of the above primitive ones in the graded Lie algebra 
EBm grmr���-�- Standard methods for showing nontriviality of such Lie brackets 
are kinds of "coordinate calculus" in graded coordinate systems ([Ih5], [Mats1], 
[IhT], [Tsu2], [AN], [NTl]). 

§4. GALOIS THEORY OF MODULI OF ALGEBRAIC C URVES 

( 4.1) Profinite version of the Ivanov-McCarthy rigidity. The history of 
analogues between Teichmiiller modular groups and arithmetic subgroups is long 
and still developing. In the late 1960s, A. Borel [Borl] showed that non-exceptional 
arithmetic subgroups have only finitely many outer automorphisms. (Nowadays, 
this can be regarded as a consequence of Mostow's rigidity.) The analogue of 
this on the side of Teichmiiller modular groups was shown by N. V.  Ivanov [Ivl-
2] and J. D. McCarthy [Me], who utilized the classification theory of Thurston 
[Th] together with the theory of essential reduction systems of surface mapping 
classes due to Birman-Lubotzky-McCarthy [BLM]. On the other hand, the moduli 
space M9,n of the n-pointed smooth curves of genus g is a stack over Q, and its 
fundamental group 1r1 (M9,n) is known to be isomorphic to an extension group 
of the profinite completion r g,n of the Teichmiiller modular group r g,n by Gq 
([Oda1]). By Uchida's theorem [U], every automorphism of Gq is inner, so if f9,n 
has trivial center, then this mixed fundamental group has outer automorphism 
group isomorphic to the Galois centralizer OutcQ fg,n (3.1). It is also known by 
Royden [R] and Earle-Kra [EK] that the automorphisms of the Teichmiiller spaces 
are only the obvious ones. Therefore, we are led to the following conjecture, in 
which k is a number field. 

Conjecture (4.1.2). The Galois centralizer Outck fg,n is isomorphic to Sn if 
(g, n) is a pair of nonnegative integers with 2 - 2g- n < 0 (except for a small 
number of exceptional pairs). 

In the case where g = 0, we may consider the pro-It version of this conjecture for 
various classes of finite groups <t. The space lvfo,n is in the form of the projective 
space pn-3 minus certain hyperplanes, and its fundamental group ro,n is a (quo­
tient by the center of a) pure braid group. So the genus 0 case is easier to treat 
than the other cases. 
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(4.1.3) Theorem [N3]. Assume that a class ([ of finite groups is closed un­
der the formation of quotients, subgroups and group extensions, and satisfies cer­
tain admissibility conditions for braid groups ( cf. lac. cit. )  If the conjecture 
OutaJ'0,4(<t) � S3 for the primitive stage M0,4 � P1- {0,1,oo} is true, then 
the conjectures OutcJ'o,n(<t) � Sn (n ;::: 5) for Mo,n are all true. In particular, 
these conjectures are true for the class ([ of finite l-groups (l a prime): cf. 3.4.1. 

This theorem is proved by showing that every homologically trivial element of 
the Galois centralizer preserves the conjugacy class of the Dehn twist along a simple 
closed curve cutting a pantalon off from the n-holed sphere. This can be seen by 
lifting anabelian weight filtrations (3.3) along the Teichmiiller tower of genus 0 in 
"various" ways. 

(4.2) Field towers associated with universal monodromies. Fix a rational 
prime l. The universal family of curves over the moduli space M9,n has the n-point 
punctured genus g curves as fibres. If we identify II9,n (1.2.2) with the fundamental 
group of the fibre curve in a standard way, then taking monodromy we obtain a 
natural representation 

(4.2.1) . (M ) rpro-l (c 0 tiipro-t) '/)g,n · 1fl g,n -+ g,n U g,n · 

In the topological context, this corresponds to an isomorphism by the Dehn-Nielsen 
theorem, but in our algebraic context of pro-l models over Q, it differs from an 
isomorphism in a delicate way. Now, pulling back by cp9,n the weight filtrations 
in r���-t to introduce a filtration in 1r1(M9,n) as 7r1(M9,n)(m) = 'P9,�(r���-1(m)), 
and then pushing out the filtration by the natural augmentation homomorphism 
Pg,n : 1r1 ( M9,n) ----+ GQ, we can define a tower of number fields (depending on l): 

(4.2.2) Q C Q9,n(1) C Q9,n(2) C Q9,n(3) C ... 

by GQg,n(m) = P9,n(1rr(M9,n)(m)). 
(4.2.3) Problem (see [Oda5]). Does the field tower {Q9,n(m)}�=l have stability 
with respect to (g, n)? 

One observes immediately that Q9,n(l) is the l-cyclotomic field Q(f.lt=), inde­
pendently of (g, n). This corresponds to the fact that the field of Siegel modular 
functions of l-power levels has a canonical model over the l-cyclotomic field inde­
pendently of the ranks of Sp. The above problem is therefore asking about stability 
properties of natural fields of definition of the "Teichmiiller modular function fields" 
with l-power level structures and "weight structures". 

In fact, we can prove the following facts. 

(4.2.4) Theorem. Let 2- 2g- n < 0, m;::: 1 and n;::: 1. Then, 
(1) Q9,n(m) is independent of n ([NTU]). 
(2) Q9r,n(m) C Q9,n(m) (r;::: 0, 2- 2gr - n < 0) ([N7]). 
The number fields Q9,n(m) here are all pro-l Galois extensions of the l-cyclotomic 

field and unramified outside l, and are distributed as intermediate fields of the ex­
tension Qo,3 (m) C Q1,1 (m) in the "genus-multiplicative" way. The graded quotient 
Galois groups Gal(Q9,n(m+1)/Q9,n(m)) (m;::: 1) are finitely generated Z1-modules 
whose free Zz-ranks r9,n(m) turn out to satisfy r0,3(m):::; r9,n(m):::; r1,1(m) by a 
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certain weight argument. Since the r0,3(m) (m = 1, 2, . . .  ) measure the Torelli­
Galois images in grmr0,3 which have been estimated as in (3.4.6), the above sta­
bility insures the universal existence of the Torelli-Galois images for all hyperbolic 
affine curves (cf. 3.4.5). Finally, the field Q0,3(oo) is known to be generated by the 
so-called "higher circular [-units" which are produced from {0, 1, oo} by iterated 
processes of taking [-power roots and cross ratios (Anderson-Ihara [AI]), and is 
expected to involve interesting number-theoretic properties still veiled in mystery. 
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NOTES ADDED IN TRANSLATION 

After the original manuscript in Japanese was submitted to Sugaku (March 
31, 1994), several essentially related papers appeared. It would be appropriate 
to summarize some of these developments and their relations to the present article. 

(Al). M. Matsumoto [Ma] studied Galois representations in profinite braid groups 
of curves, and generalized Belyi's injectivity of (1.1.2) to any affine curve over a 
number field. His method can also be applied in the pro-l context to give an 
alternative proof of the inclusion Q0,3(m) C Q9,n(m), which is a special case of 
Theorem (4.2.4)(2). 

(A2). Y. Ihara and the author [IN] studied the local monodromy representations 
arising from the local neighborhood of a maximally degenerate stable curve. They 
proved that then Q9,n(oo) is independent of (g,n), and the field extensions in 
(4.2.4)(2) are finite extensions (for n;:: 1, but see (A4)). One finds also that the 
power series (3.4. 7) degenerates to the "logarithmic partial derivative" of the power 
series (3.4.6) in the local neighborhood of the Tate elliptic curve over Q. 

(A3). N. Takao and the author [NTa] generalized the pro-l version of Theorem 
( 4.1.3) as follows. Namely, the pro-l Galois centralizers for the higher-dimensional 
configuration spaces of a curve over a number field can be effectively estimated 
by that for the base curve. So, in the pro-l case, the questions (3.1.3-4) for the 
configuration spaces of curves are reduced to those for single curves. 

(A4). N. Takao [Tak] analyzed in detail braid-relations between the fundamental 
group of a complete curve and that of its affine open piece in a braid group, and 
showed that the condition n ;:: 1 in Theorem ( 4.2.4) can be dropped. 

(A5). F. Pop [Po3] solved the birational conjecture of anabelian algebraic geom­
etry (cf. 1.3). Namely, the absolute Galois groups of fields finitely generated over 
Q determine the fields, and the outer isomorphisms among the Galois groups bi­
jectively correspond to the isomorphisms of the fields. 

(A6). A. Tamagawa [Ta2] succeeded in proving the fundamental conjecture of 
anabelian algebraic geometry (1.3.1) and the anabelian Tate conjecture (1.3.2) in 
the case C � C' for affine curves over number fields and finite fields. S. Mochizuki, 
then managed to treat the case of proper curves over number fields [Moch1], and 
also found that Grothendieck's conjecture can hold true for the pro-p fundamental 
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groups of hyperbolic curves over p-adic fields [Moch2]. One can also plug these 
results into Question (3.1.3) for higher-dimensional configuration spaces of curves 
by (4.1.3), (A3). 
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