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Polylogarithmic analogue of

the Coleman-Ihara formula, II

By
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Abstract

In this paper, generalizing our result in Part I, we show a formula that expresses a certain

linear sum of Galois polylogarithms as a corresponding sum of the Coates-Wiles homomor-

phisms multiplied by Coleman’s p-adic polylogarithms. These linear sums are characterized by

tensor conditions of Zagier’s conjecture on Bloch groups.

§ 1. Introduction

Let p be an odd prime and F a finite unramified extension of Qp with the ab-

solute Galois group GF := Gal(F/F ). In [NSW], we showed a formula (the poly-

logarithmic Coleman-Ihara formula) that connects the ‘ℓ-adic’ Galois polylogarithm

ℓim(z) : GF → Qp (for m ≥ 1 and ℓ = p) with the Coates-Wiles homomorphism multi-

plied by Coleman’s p-adic polylogarithm Lip-adicm (z) in the case z is a root of unity in

F (necessarily of order prime to p). In this paper, we shall extend our result there in a

form involving more general z ∈ F satisfying |z|p = |z − 1|p = 1.

Let us fix a coherent system {ζpr}r≥0 of p-power roots of unity and regard ζp∞ :=

(ζpr )r≥0 as a Zp-basis of the Galois module Zp(1) := lim←−r
µpr . We often identify Qp

∼=
Qp(m) := Zp(1)

⊗m ⊗Zp
Q by the fixed basis ζp∞ of Zp(1).
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For general z ∈ F \ {0, 1}, the Galois polylogarithm ℓim(z) = ℓiF,m,γ(z) is defined

as a 1-cochain GF → Qp(m) cutting out a certain coefficient of a power series (called the

Galois associator) that expresses GF -transformation of a path γ :
−→
01⇝z on P1 \{0, 1,∞}.

Meanwhile, in a paper [DW] by J.-C.Douai and the last author, it is shown that a

suitable linear sum (divisor) of points on F \ {0, 1} has a good choice of paths from
−→
01

to the points so that the associated linear sum of Galois polylogarithms gives rise to a 1-

cocycle GF → Qp(m). Our main result in the present paper extends the Coleman-Ihara

formula to those 1-cocycles obtained in this manner.

To be more precise, let P1
01∞ := P1−{0, 1,∞}, and let Z[P1

01∞(F )] denote the

abelian group formed by the Z-linear sums of symbols {z} (z ∈ P1
01∞(F )), i.e.,

Z[P1
01∞(F )] :=

⊕
z∈P1

01∞(F )

Z{z}.

Following ideas of Beilinson-Deligne [BD] and Zagier [Z], we will define two subgroups

Rℓ-adic
m (F ) ⊂ Aℓ-adic

m (F ) ⊂ Z[P1
01∞(F )] and the ℓ-adic Bloch groups

Bℓ-adic
m (F ) := Aℓ-adic

m (F )/Rℓ-adic
m (F )

satisfying the following conditions:

• For any ξ =
∑

i ai {zi} ∈ Z[P1
01∞(F )], there exist (Qp-rational) paths γi :

−→
01 ⇝ zi

such that
∑

i ai ℓiF,m,γi
(zi) : GF → Qp(m) is a 1-cocycle if and only if ξ ∈ Aℓ-adic

m (F )

(cf. Theorem 3.2). Further, the cohomology class of this 1-cocycle in H1(F,Qp(m))

does not depend on the choice of paths.

• For any ξ =
∑

i ai {zi} ∈ Aℓ-adic
m (F ) and for any collection of paths γi :

−→
01⇝ zi such

that
∑

i ai ℓiF,m,γi
(zi) is a 1-cocycle, this 1-cocycle is a 1-coboundary if and only if

ξ ∈ Rℓ-adic
m (F ).

Note that the above two properties imply that there is induced a well-defined group

homomorphism

L ℓ-adic
m : Bℓ-adic

m (F )→ H1(F,Qp(m))

which sends the class of
∑

i ai{zi} to the class of the 1-cocycle
∑

i ai ℓiF,m,γi(zi).

On the other hand, in order to relate the ℓ-adic polylogarithms to Coleman’s p-adic

polylogarithms, we extend the Coleman function ([C1])

L p-adic
m (z) :=

m−1∑
k=0

Bk

k!
logkp(z)Li

p-adic
m−k (z)

linearly to

L p-adic
m : Z[P1

01∞(OF )]→ F

(∑
i

ai{zi} 7→
∑
i

aiL
p-adic
m (zi)

)
.
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Here, Bk’s are Bernoulli numbers with t
et−1 =

∑∞
k=0

Bk

k! t
k. Note also that, on the region

|z|p = |z − 1|p = 1, logp(z) and Lip-adick (z) have their canonical values (cf. e.g., [KN]

p.425). Our main result is then:

Theorem 1.1. Let p be an odd prime, and let F be a finite unramified extension

of Qp with ring of integers OF and σF ∈ Gal(F/Qp) the Frobenius substitution. Let

m ≥ 1 and let ϕCW
m,F : GF (µp∞ ) → F ⊗Zp

Zp(m) be the m-th Coates-Wiles homomorphism

for the local field F (canonically extended to GF (µp∞ ) as in [BK]). Then, for ξ =∑
i ai{zi} ∈ Aℓ-adic

m (F ) with zi ∈ P1
01∞(OF ) = O×

F ∩ (1 +O×
F ), we have

(1.1) L ℓ-adic
m (ξ)(σ) =

−1
(m− 1)!

TrF/Qp

({(
1− σF

pm

)
L p-adic

m (ξ)

}
ϕCW
m,F (σ)

)
for any σ ∈ GF (µp∞ ).

Note that (1.1) implies also an equality of cohomology classes in H1(GF ,Qp(m))

induced from the both sides, as the restriction map to GF (µp∞ ) is injective.

If z is a non-trivial root of unity in F then the symbol {z} ∈ Z[P1
01∞(F )] is contained

in Aℓ-adic
m (F ) and the value L p-adic

m (z) coincides with Lip-adicm (z). If z is an element of

P1
01∞(OF ), then {z} ∈ Aℓ-adic

1 (F ) when m = 1. The formula in Theorem 1.1 thus

generalizes our formulas in Part I [NSW] in these special cases.

The content of this paper is as follows. First, in Section 2, we develop a framework

on abstract polylogarithms for a mixed Tate category. Then, in Section 3 (resp. 4), we

apply it to Galois theoretic (resp. crystalline) realizations of polylogarithms. Much of

Section 4 follows courses of the foundational work by M.Kim [Kim1-3] and is closely

related to a recent remarkable paper [DCW] by I.Dan-Cohen and S.Wewers. We then

settle the proof of Theorem 1.1 in Section 5. Finally, Appendix will be devoted to

proving Proposition 4.5 with technical details.

In a separate paper, we will discuss relations between Bℓ-adic
m (F ) and other versions

of Bloch groups introduced by D. Zagier [Z] and A.Goncharov [Go1]. It enables us to

show that classical examples of elements in Bloch groups also satisfy the assumption of

Theorem 1.1. For basic materials leading to our present work, we refer the reader to

articles [C2], [Ih], [W1-3] and [NSW] and references therein.

Notation: In this paper, we fix a rational odd prime p. For a field F , write F

for a fixed separable closure with GF := Gal(F/F ) the absolute Galois group of F .

Let χcyc(= χp-adic
cyc ) : GF → Z×

p be the p-adic cyclotomic character. For any topological

group G equipped with a continuous action of GF , H
1(F,G) denotes the continuous first

Galois cohomology (set). For a set S, we put Z[S] := ⊕s∈SZ{s} the free abelian group

generated by the symbols {s}. Let V be a finite dimensional vector space over a field

k of characteristic zero equipped with an algebraic action of Gm,k. Then, we denote
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by V (−2n) the subspace of V on which Gm,k acts via the n-th power of the standard

character std := idGm,k
: Gm,k → Gm,k. For a commutative ring K, let µ(K) denote

the maximal torsion subgroup of K×. If R is a K-algebra and X is a K-scheme, then

we denote by XR or X ⊗K R the base change of X to Spec(R). For an affine scheme

X, we denote by O(X) the ring of regular functions on X. We write P1
01∞ for the

scheme P1 \{0, 1,∞} = SpecZ[T, 1
T ,

1
T−1 ]. For K as above, the set of K-rational points

P1
01∞(K) is identified with K× ∩ (1 +K×).

Acknowlegement: The authors would like to thank the referee for several crucial

remarks which were useful to improve the presentation of this paper. This work was

supported by JSPS KAKENHI Grant Numbers: 26287005, 26287006.

§ 2. Abstract polylogarithms on a mixed Tate category

§ 2.1. Set up: mixed Tate category

Let k be a field of characteristic zero andM a mixed Tate category over k with the

invertible object k(1) (cf. [Go2] Appendix). Let π1(M, ω) be the Tannakian fundamental

group ofM with respect to the (canonical) fiber functor ω : X 7→
⊕

n∈Z HomM(k(−n),
grW2n(X)). As is well-known, there exists a natural splitting π1(M, ω) = Gm,k ⋉ U(M)

where U(M) is the pro-unipotent radical of π1(M, ω). Write U(M) = lim←−α
Uα with

an inverse system {Uα}α of unipotent algebraic groups over k. The fundamental Lie

algebra Lie(M) of M is defined to be the inverse limit of Lie algebras Lie(Uα). The

action of Gm,k on U(M) defines a positive grading on the fundamental coLie algebra

coLie(M) := lim−→
α

Homk(Lie(Uα), k) =
∞⊕

n=1

coLie(M)(2n)

of M, where coLie(M)(2n) is the subspace of coLie(M) on which Gm,k acts by the

(−n)-th power of the standard character std := idGm,k
.

We denote the dual of the Lie bracket [ , ] : ∧2 Lie(M)→ Lie(M) by

dM : coLie(M)→
2∧
coLie(M)

and call it the co-bracket on coLie(M).

Lemma 2.1 ([BD, Section 2.1]). We have a canonical identification

coLie(M)(2n),dM=0 = Ext1M(k(0), k(n))⊗ std−n

as Gm,k-modules. Here, we regard Ext1M(k(0), k(n)) as a k-vector space equipped with

the trivial action of Gm,k.
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§ 2.2. Abstract Albanese maps and polylogarithms

Now, let us formulate a concept of polylogarithmic quotient inM. First, we intro-

duce

pMm := k(1)⋉
( m⊕
i=1

k(i)
)

to designate the Lie algebra object inM such that k(1) acts on⊕m
i=1k(i) by the canonical

homomorphism k(1)⊗ k(i) ∼−→ k(i+ 1) for i < m and annihilates k(m).

For any Lie algebra object L of M such that ω(L) is nilpotent, we shall denote

by exp(L) (or sometimes LCH) the associated algebraic group object in M with the

Campbell-Hausdorff product.

Definition 2.2. For m ≥ 0, we define the m-th polylogarithmic quotient PM
m

inM, which is an algebraic group inM, by

PM
m := exp(pMm ) = exp

(
k(1)⋉

( m⊕
i=1

k(i)
))

=

(
k(1)⋉

( m⊕
i=1

k(i)
))CH

.

We understand PM
0 as k(1).

Recall that H1(M,PM
n ) is the set of isomorphism classes of right PM

n -torsors in

M. The set {H1(M,PM
n )}n≥0 forms an inverse system with respect to n, as {PM

n }n≥0

forms an inverse system of algebraic groups inM.

Now, we give a concept of series of abstract Albanese maps:

Definition 2.3 (Abstract Albanese maps). Let K be a commutative ring and S

a subset of P1(K). Suppose that Alb = {Albn : S → H1(M,PM
n )}n≥0 is a set of maps

compatible with n, namely, the following diagram commutes for each n > 0 :

S
Albn //

Albn−1 ((QQ
QQQ

QQQ
QQQ

QQQ
QQ H1(M,PM

n )

��

H1(M,PM
n−1).

We say that Alb is a series of abstract Albanese maps on S forM, if the following two

conditions hold:

• (Hom) The restriction of Alb0 to S1 := S∩Gm(K) factors through an injective ho-

momorphism from ⟨S1⟩⊗ZQ to H1(M, k(1)), where ⟨S1⟩ is the subgroup of Gm(K)

generated by S1.

• (Ref) For each z ∈ S with 1 − z ∈ S, Alb1(z) = (Alb0(z),Alb0(1 − z)) in

H1(M,PM
1 ) ∼= H1(M,PM

0 ) ⊕ H1(M,PM
0 ). Here we naturally identify PM

1 =

exp(k(1)⋉ k(1)) with PM
0 ⊕PM

0 = k(1)⊕ k(1).
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To cut out polylogarithm parts from a non-abelian cohomology class, we make

use of the following lemma. For nilpotent Lie algebras L1, L2 over k, define the set of

exterior Lie homomorphisms Homext
k-Lie(L1, L2) by

Homext
k-Lie(L1, L2) := LCH

2 \Homk-Lie(L1, L2).

Here, LCH
2 is the set of k-valued points of exp(L2) with the Campbell-Hausdorff product,

and its action on the set of Lie homomorphisms Homk-Lie(L1, L2) is induced by the

adjoint action of LCH
2 on L2.

Lemma 2.4. There exist canonical maps

rm : H1(M,PM
m )→ H0(Gm,k,Homext

k-Lie(Lie(M), ω(pMm )))→ coLie(M)(2m+2ϵ)

for m ≥ 0, where ϵ denotes 0 and 1 respectively when m > 0 and m = 0.

To show the above lemma, let us take a standard basis {e0, e1, . . . , em} of ω(pMm ):

(2.1) ω(pMm ) = HomM(k(1), k(1))⋉⊕m
i=1HomM(k(i), k(i)) = ke0

⊕
(ke1⊕· · ·⊕kem)

by employing elements corresponding to 1 ∈ k
∼−→ HomM(k(i), k(i)). It follows that

ei = (ade0)
i−1(e1) for i ≥ 1. It is also crucial to consider the dual object pM,∨

m :=

coLie(PM
m ) ∈ Obj(M) that has the basis {e∗0, e∗1, . . . , e∗m} ⊂ ω(pM,∨

m ) dual to {ei}i.

Proof of Lemma 2.4. Let H1(π1(M, ω), ω(PM
m )) be the first rational cohomology

of π1(M, ω) with coefficients in ω(PM
m ). (For a quick account on the first rational

cohomology, we refer the reader to Appendix A6.2.) The first map factors through

restriction map

H1(M,PM
m ) ∼= H1(π1(M, ω), ω(PM

m ))→ H0(Gm,k,H
1(U(M), ω(PM

m )))

via the isomorphism of H1(U(M), ω(PM
m ))) ∼= Homext

k-Lie(Lie(M), ω(pMm )). The sec-

ond map is defined as follows. Take an exterior Lie homomorphism l contained in

H0(Gm,k,Homext
Lie(Lie(M), ω(pMm ))) and let h : Lie(M) → ω(pMm ) be a Lie homomor-

phism which represents l. The second map sends l to e∗m+ϵ ◦ h|Lie(M)(−2m−2ϵ) . To settle

the well-definedness of rm, it suffices to see that e∗m+ϵ ◦ h|Lie(M)(−2m−2ϵ) does not de-

pend on the choice of the representative h of l. If m = 0, ω(pM0 ) is an abelian Lie

algebra, hence Homext
k-Lie = Homk-Lie; r0 is well-defined. For m > 0, the assertion follows

inductively from the fact that ω(k(m)) is contained in the center of ω(pMm ).

Definition 2.5 (Abstract polylogarithm). Given a series of abstract Albanese

maps Alb = {Albn : S → H1(M,PM
n )}n≥0 on S ⊂ P1(K) for a mixed Tate category

M, we call the composite

rm ◦Albm : S → coLie(M)(2m+2ϵ) (m ≥ 0, ϵ = max{0, 1−m})
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the m-th abstract polylogarithm. We extend this map to Z[S] linearly and denote it by

Lm : Z[S]→ coLie(M)(2m+2ϵ).

As shown in [BD] Prop. 2.3, we have the following differential formula

(2.2) dM ◦Lm = Lm−1 ∧L0 (m ≥ 1).

§ 2.3. Bloch groups

Let K be a commutative ring and let S := P1
01∞(K) = K× ∩ (1 +K×). Suppose

we are given a series of abstract Albanese maps Alb = {Albn : S → H1(M,PM
n )}n≥0

on S for a fixed mixed Tate categoryM over a field k.

Definition 2.6. For m ≥ 1, we define two subgroups Rm and Am of Z[S] as
follows: First Rm (called the space of functional equations of Albm) is defined by

Rm := Ker
(
Lm : Z[S]→ coLie(M)(2m)

)
.

We shall denote by {x}m the image of x ∈ S in Z[S]/Rm. Second A1 is defined to be Z[S]
and Am is defined to be the kernel of δm for each m ≥ 2, where δ2 : Z[S]→ ∧2K×⊗Z Q
and δm : Z[S]→ ((Z[S]/Rm−1)⊗Z K

×)⊗Z Q (m > 2) are given by

δm({x}) :=

{
(1− x) ∧ x if m = 2,

{x}m−1 ⊗ x if m > 2,

for all x ∈ S = P1
01∞(K).

Lemma 2.7. The abelian group Rm is a subgroup of Am. Moreover, each ξ ∈
Z[P1

01∞(K)] is contained in Am if and only if Lm(ξ) is contained in coLie(M)(2m),dM=0

= Ext1M(k(0), k(m)).

Proof. By the assumptions (Hom) and (Ref) in Definition 2.3, the assertion of the

lemma holds when m = 1. Recall that ⟨S⟩ denotes the subgroup of Gm(K) generated

by S. For any m > 1, put

Tm :=

(
∧2 ⟨S⟩)⊗Z Q if m = 2,

((Z[S]/Rm−1)⊗Z K
×)⊗Z Q if m > 2.

Then, we have the following commutative diagram from (2.2), where ε = 0 or 1 when

m > 2 or m = 2 respectively:

(2.3) Z[S] δm //

Lm

��

Tm_�

Lm−1−ε∧L0

��

coLie(M)(2m) dM //
∧2

coLie(M)(2m−2).



40 H.Nakamura, K.Sakugawa and Z.Wojtkowiak

Note that we also use (Ref) for proving the commutativity of the diagram when m = 2.

The injectivity of the right vertical map follows from the definition of Rj . We conclude

the lemma from the diagram chasing.

Definition 2.8 (Bloch groups). For m ≥ 1, we define

Bm := Am/Rm,

where Rm ⊂ Am ⊂ Z[S] are as above.

Proposition 2.9. The abstract polylogarithm Lm defines a well-defined injec-

tive homomorphism

Lm : Bm ↪→ Ext1M(k(0), k(m)).

Proof. We show the assertion inductively. If m = 1, there is nothing to prove

because coLie(M)(2) = Ext1M(k(0), k(1)) ⊗ std−2. Thus, we assume m > 1. By

the assumption that Rm = Ker(Lm), Lm induces a well-defined injective homomor-

phism Z[S]/Rm → coLie(M)(2m). That the image of Am lies in coLie(M)(2m),dM=0 =

Ext1M(k(0), k(m)) follows from Lemma 2.7.

Note 2.10. It is crucial to note that Ext1M(k(0), k(m)) is a k-vector space whereas

Bm is only a Z-module: In particular, if k is strictly bigger than Q, then it is a sub-

tle question to ask whether the above Lm extends to a k-linear injection Bm ⊗ k →
Ext1M(k(0), k(m)). Suppose now that K is a number field of finite degree and let r1 and

r2 be the numbers of real and complex places of K, respectively. The case where M
is the category of real mixed Hodge-Tate structures is classical and the above question

may be reduced to a version of Zagier’s conjecture that Lm induces an isomorphism

of Bm ⊗ R to the Deligne cohomology H1
D(K ⊗ R,R(m))+ ∼= Rdm for m > 1 (where

dm = r1 + r2 or r2 according as m is odd or even respectively) discussed in [BD], [Go1],

[Z]. In the case whereM is the category of mixed Tate ℓ-adic Galois representations of

GK , a relevant question is posed in [DW] and investigated in [S2].

§ 3. ℓ-adic Galois polylogarithms

In this section, we fix a field K of characteristic zero such that the p-adic cyclo-

tomic character χp-adic
cyc : GK → Z×

p has an open image. We denote by RepQp
(GK) the

category of continuous representations of GK on finite dimensional Qp-vector spaces.

LetMT Qp
(GK) ⊂ RepQp

(GK) be the full subcategory consisting of those GK-modules

with weight filtrations having finite sums of Qp(n) := Qp(1)
⊗n (n ∈ Z) as the graded

pieces. As is easily seen,MT Qp
(GK) forms a mixed Tate category over Qp.
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§ 3.1. Unipotent Albanese maps of M.Kim

As constructed in Definition 2.2, the polylogarithmic quotient Pet
m inMT Qp

(GK)

is an algebraic group over Qp of the form Qp(1)⋉⊕m
n=1Qp(n). As is well-known, Pet

m is

a quotient of the unipotent fundamental group πun
1 (P1

K
\{0, 1,∞};−→01) of P1

K
\{0, 1,∞}

which is the Tannakian fundamental group of the category of unipotent Qp-smooth

sheaves over P1
K
\{0, 1,∞} (cf. e.g. [Kim2, §2]). Let um : πun

1 (P1
K
\{0, 1,∞};−→01)↠Pet

m

be the canonical GK-equivariant surjection. Then, for any K-rational base point z of

P1
K \{0, 1,∞}, we define the right Pet

m-torsor Pet
m(
−→
01, z) in RepQp

(GK) by

Pet
m(
−→
01, z) := um,∗(π

un
1 (P1

K
\{0, 1,∞};−→01, z)).

Here, we allow z to be tangential. According to [W1, §4-5], Pet
m(
−→
01, z) has a natural

structure of Pet
m-torsor inMT Qp

(GK). Similarly, we can define Pet
m(z′, z) for the other

K-rational base point z′ as the push-out of the path torsor πun
1 (P1

K
\{0, 1,∞}; z′, z) by

um (cf. [Kim2, p.100, l.27]).

Definition 3.1 ([Kim2, Section 2]). The etale unipotent Albanese map

AlbetK,m : P1
01∞(K)→ H1(MT Qp

(GK),Pet
m)

is defined by

AlbetK,m(z) := [Pet
m(
−→
01, z)] (z ∈ P1

01∞(K)).

By construction, the sequence of etale unipotent Albanese maps {AlbetK,m}m≥0

forms an inverse system with respect to m. As is well-known (cf. e.g., [NW, Prop. 1]),

the first two etale Albanese maps are given by

(3.1)

 AlbetK,0(z) is the Kummer 1-cocycle attached to z,

AlbetK,1(z) = (AlbetK,0(z),AlbetK,0(1− z))

for z ∈ P1
01∞(K). Thus, we may apply the formalism of abstract Albanese maps in the

previous section to {AlbetK,m}m, and can linearize AlbetK,m to obtain

L ℓ-adic
m : Z[P1

01∞(K)]→ coLie(MT Qp
(GK))(2m).

§ 3.2. ℓ-adic Bloch groups

Define subgroups Rℓ-adic
m (K) ⊂ Aℓ-adic

m (K) ⊂ Z[P1
01∞(K)] and the ℓ-adic Bloch

groups Bℓ-adic
m (K) := Aℓ-adic

m (K)/Rℓ-adic
m (K) from {AlbetK,m}m according to Definition

2.6 and Definition 2.8. Then, by Proposition 2.9, the above L ℓ-adic
m induces

L ℓ-adic
m : Bℓ-adic

m (K) ↪→ Ext1MT Qp (GK)(Qp,Qp(m)) = H1(K,Qp(m)).
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Now, we shall relate L ℓ-adic
m to ℓ-adic polylogarithms. Recall that we have two

fiber functors ω0, ω : MT Qp
(GK) → VecQp

, the forgetful functor ω0 associating the

underlying vector space of any GK-module in MT Qp
(GK) and the canonical func-

tor ω associating the graded sum of its ‘weight pieces’. Denote by U(K) the pro-

unipotent radical of the Tannakian fundamental group π1(MT Qp
(GK), ω) = Gm,Qp

⋉
U(K). Pick any isomorphism Γ between ω and ω0 such that the induced isomorphism

π1(MT Qp
(GK), ω) ∼= π1(MT Qp

(GK), ω0) is compatible with the projections to Gm,Qp
.

Then, since π1(MT Qp
(GK), ω0) is canonically isomorphic to the weighted completion of

GK with respect to χp-adic
cyc : GK → Gm(Qp), the representation ρ : GK(µp∞ ) → U(K)(Qp)

induced from Γ has a Zariski dense image (cf. [HM, Proposition 7.1]). Let uK be the

Lie algebra of the image of ρ so that log(ρ) : uK
∼−→ Lie(U(K)). Then, the natural

grading of Lie(U(K)) and log(ρ) give rise to the weight filtration W−2nGK of GK satis-

fying grW−2nGK ⊗Zp Qp
∼= grW−2n(uK) for each n ∈ Z (cf. [HM, Section 7.3]). Note that

the weight filtration on GK and the homomorphisms grW−2nGK → grW−2nLie(U(K)) =

Lie(U(K))(−2n) induced from log(ρ) do not depend on the choice of Γ: ω ∼= ω0 because

the representation ρ is determined up to inner automorphisms of elements of U(K)(Qp).

Let z be a K-rational point of P1
01∞(K). We mean by a Qp-rational path from

−→
01

to z an element of πun
1 (P1

K
\{0, 1,∞};−→01, z)(Qp). (This is nothing but what is called a

Qℓ-path (for ℓ = p) in [DW, p.66]). For any integer m ≥ 1 and a Qp-rational path γ

from
−→
01 to z, the ℓ-adic (Galois) polylogarithm ℓiK,m,γ(z) is by definition a function

GK → Qp obtained by assigning to σ ∈ GK the coefficient of (adX)m−1(Y ) in expansion

of the Lie formal series log(γ · σ(γ)−1) in the complete universal enveloping algebra of

πun
1 (P1

K
\{0, 1,∞},−→01)(Qp) with two (standard) free generators eX , eY chosen as in

[NSW, §2.1].
Let ξ =

∑
i ai{zi} be an element of Z[P1

01∞(K)]. Then, by definition, L ℓ-adic
m (ξ)

is a Qp-linear homomorphism L ℓ-adic
m (ξ) : Lie(U(K))(−2m) → Qp. Meanwhile, any ℓ-

adic polylogarithm ℓiK,m,γ(z) : GK → Qp vanishes on W−2m−2GK , and induces a group

homomorphism from W−2GK/W−2m−2GK to Qp. By the definition of ℓ-adic polyloga-

rithms, the restriction of
∑

i aiℓiK,m,γi(zi) to grW−2mGK coincides with the pull-back of

L ℓ-adic
m (ξ) by the above homomorphism grW−2mGK → Lie(U(K))(−2m). The following is

a consequence of [DW, Theorem 2.3].

Theorem 3.2. Let ξ =
∑

i ai{zi} be an element of Z[P1
01∞(K)].

(i) For ξ to lie in Aℓ-adic
m (K), it is necessary and sufficient that there exist Qp-

rational paths γi :
−→
01 ⇝ zi such that the linear sum

∑
i aiℓiK,m,γi(zi) : GK → Qp(m) is

a 1-cocycle.

(ii) Suppose ξ ∈ Aℓ-adic
m (K). Then, the cohomology class of a 1-cocycle given in

(i) is uniquely determined independently of the choice of paths {γi} and coincides with

L ℓ-adic
m (ξ).
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§ 4. Coleman’s p-adic polylogarithms

In this section, we encode Coleman’s p-adic polylogarithms in the framework of

Tannakian category. Fix a finite extension F of Qp and let F0 be the maximal subfield

of F unramified over Qp. We denote by MF ad
F (φ) the category of weakly admissible

filtered φ-modules over F in the sense of Fontaine (cf. [Fo, Section 4, Definition 4.4.3]).

Remark that MF ad
F (φ) is a Tannakian category over Qp (cf. [CF, Thèoréme A]).

§ 4.1. Mixed Tate filtered φ-modules

First, we introduce a p-adic Hodge theoretic analogue ofMT Qp
(GK). Let RepcrysQp

(GF )

be the category of crystalline representation of GF , which is known to be a Tannakian

category ([Fo] Prop. 1.5.1; cf. e.g. also [Y] 4.1). Recall that the functor

Dcrys,F : RepcrysQp
(GF )

∼−→MF ad
F (φ)

has a natural quasi-inverse, which we will denote Vcrys : MF ad
F (φ)→ RepcrysQp

(GF ). For

each integer n, we put ζ⊗n
p∞ /tn which is a basis of the underlying F0-vector space of

F0⟨n⟩ := Dcrys(Qp(n)) ∈ Obj(MF ad
F (φ)). Here, t ∈ Bcrys is a p-adic period ‘2π

√
−1’

defined by the fixed coherent system {ζpr}r≥0 of p-power roots of unity. By using this

fixed basis ζ⊗n
p∞ /tn, we sometimes identify F0⟨n⟩ with F0 (and accordingly F ⟨n⟩ = F ).

Definition 4.1. We define the full subcategory MT ad
F (φ) of MF ad

F (φ) to be the

minimal full subcategory of MF ad
F (φ) containing {F0⟨n⟩}n∈Z and closed under exten-

sions.

Since Vcrys(F0⟨n⟩) = Qp(n), we have:

Ext1MT ad
F (φ)(F0⟨0⟩, F0⟨n⟩)

∼−→ Ext1Repcrys
Qp

(GF )(Qp(0),Qp(n))

= H1
f (F,Qp(n))

∼−→ DdR(Qp(n))/F
0DdR(Qp(n)),

where the last isomorphism is the Bloch-Kato logarithmic map. Consequently, we find

that the pair (MT ad
F (φ), F0⟨1⟩) is a mixed Tate category over Qp. We shall write

ω : MT ad
F (φ)→ VecQp

for the canonical fiber functor.

§ 4.2. Crystalline polylogarithmic quotient

We introduce the crystalline polylogarithmic quotient.

Definition 4.2. We define the polylogarithmic quotient Pcrys
m , which is an al-

gebraic group in MT ad
F (φ), to be exp (F0⟨1⟩⋉⊕m

n=1F0⟨n⟩).
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Recall that the polylogarithmic quotient Pcrys
m is a quotient of the unipotent

crystalline fundamental group πcrys
1 (P1

k \{0, 1,∞},
−→
01) where k is the residue field of

F . Let um : πcrys
1 (P1

k \{0, 1,∞},
−→
01) ↠ Pcrys

m be the canonical surjection. For each

z ∈ P1
01∞(OF ), define the right torsor Pcrys

m (
−→
01, z) under the algebraic group Pcrys

m

over F0 in the usual sense by

Pcrys
m (
−→
01, z) := um,∗(π

crys
1 (P1

k \{0, 1,∞};
−→
01, z)).

We can define Pcrys
m (z, z′) as a push-out of πcrys

1 (P1
k \{0, 1,∞}; z, z′) for every pair of

OF -rational base points z, z′ similarly.

As the ring of regular functions of πcrys
1 (P1

k \{0, 1,∞};
−→
01) has a structure of ind-

filtered φ-module over F (cf. [De]), the structure ring of each torsor O(Pcrys
m (
−→
01, z))

is also an ind-filtered φ-module over F . It is ind-admissible for each z ∈ P1
01∞(OF )

according to [S1, Proposition 3.3, Remark 6]. Moreover, O(Pcrys
m (
−→
01, z)) is an object of

the ind-category of MT ad
F (φ) (cf. [S1, Corollary 1]). Thus, we obtain the crystalline-de

Rham unipotent Albanese map of M.Kim type:

Albcr-dRF,m : P1
01∞(OF )→ H1(MT ad

F (φ),Pcrys
m )

defined by Albcr-dRF,m (z) := [Pcrys
m (
−→
01, z)]. At this stage then, it is noteworthy to realize

the target set of Albcr-dRF,m identified as

(4.1) H1(MT ad
F (φ),Pcrys

m ) ∼= Pcrys
m (F ) =

(
F ⟨1⟩⋉

m∏
n=1

F ⟨n⟩

)CH

∼= F ×
m∏

n=1

F.

See [S1, Remark 6, Corollary 1] for a detailed account with more general results.

The following fact is crucial to characterize the crystalline-de Rham Albanese map

Albcr-dRF,m : P1
01∞(OF )→ H1(MT ad

F (φ),Pcrys
m ).

Lemma 4.3 (cf. [Fu, Theorem 2.3], [Kim2]). Let z be an element of P1
01∞(OF ).

Under the canonical isomorphism (4.1), the crystalline-de Rham Albanese map is cal-

culated as follows:

(4.2) Albcr-dRF,m (z) =
(
logp(z);−Li

p-adic
1 (z), . . . ,−Lip-adicm (z)

)
.

Here, logp is the p-adic logarithm and Lip-adicn is Coleman’s n-th p-adic polylogarithm.

Remark that these functions are uniquely determined on the region z ∈ P1
01∞(OF ). As

Lip-adic1 (z) = − logp(1−z) (cf. [Fu, p.263]), we see that {Alb
cr-dR
F,m }m satisfies our axioms

of abstract Albanese maps (Definition 2.3) on S = P1
01∞(OF ).



Polylogarithmic analogue of the Coleman-Ihara formula, II 45

§ 4.3. p-adic polylogarithms on Bloch groups

Applying our abstract formalism in Section 2 to the series of crystalline-de Rham

unipotent Albanese maps on P1
01∞(OF ) for the mixed Tate category MT ad

F (φ), we

obtain, for each m ≥ 0, the linearization homomorphism

L ad
m : Z[P1

01∞(OF )]→ coLie(MT ad
F (φ))(2m).

Theorem 4.4. Suppose that F is a finite unramified extension of Qp, and put

Aℓ-adic
m (OF ) := Aℓ-adic

m (F ) ∩ Z[P1
01∞(OF )].

Then:

(1) The homomorphism L ad
m induces a homomorphism

Aℓ-adic
m (OF )→ coLie(MT ad

F (φ))(2m),d=0 = Ext1MT ad
F (φ)(F ⟨0⟩, F ⟨m⟩).

(2) For every ξ =
∑

i ai{zi} ∈ Aℓ-adic
m (OF ), we have

L ad
m (ξ) = −L p-adic

m (ξ)

(
:= −

∑
i

ai

m−1∑
k=0

Bk

k!
logkp(zi)Li

p-adic
m−k (zi)

)

under the canonical identification Ext1MT ad
F (φ)(F ⟨0⟩, F ⟨m⟩) = F .

We postpone the proof of Theorem 4.4 (1) until Section 5.

Proof of Theorem 4.4 (2) assuming (1).

Let ξ =
∑

i ai{zi} ∈ Aℓ-adic
m (OF ). We shall compute its image by

L ad
m : Z[P1

01∞(OF )]→ coLie(MT ad
F (φ))(2m)

that is the formal linearization of the composition rm ◦ Albcr-dRF,m of the two maps:

rm : Pcrys
m (F )→ coLie(MT ad

F (φ))(2m) and

Albcr-dRF,m : P1
01∞(OF )→ H1(MT ad

F (φ),Pcrys
m ) ∼= Pcrys

m (F ).

We need to take care of the fact that the latter map Albcr-dRF,m is not a homomorphism

(i.e., only a map of sets) for m ≥ 2. By virtue of our assuming Theorem 4.4 (1),

L ad
m (ξ) is contained in coLie(MT ad

F (φ))(2m),d=0 = Ext1MT ad
F (φ)(F0⟨0⟩, F0⟨m⟩) ∼= F ⟨m⟩.

Now, pointwisely for each zi, Lemma 4.3 implies Albcr-dRF,m (zi) is given to be (logp(zi);

−Lip-adic1 (zi), . . . ,−Lip-adicm (zi)) in Pcrys
m (F ) =

(
F ⟨1⟩ ⋉

∏m
i=1 F ⟨i⟩

)CH ∼= F ×
∏m

i=1 F .

Consider the underlying Lie algebra

(4.3) pcrysm := F ⟨1⟩⋉⊕m
i=1F ⟨i⟩ = Fε0

⊕
(Fε1 ⊕ · · · ⊕ Fεm)
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with a basis ε0 := ζp∞/t, εi := ζ⊗i
p∞/ti (1 ≤ i ≤ m). Noticing εi = (adε0)

i−1(ε1)

for i ≥ 1 and the Baker-Campbell-Hausdorff formula: exp(aε0) · exp
(∑

i≥1 µiεi

)
=

exp(aε0 +
∑

j≥1 λjεj) with
∑∞

i=1 µiT
i = eaT−1

aT

∑∞
j=1 λjT

j (cf. [BD] (1.5.4)), we find

that the image of Albcr-dRF,m (zi) under log : Pcrys
m (F )→ pcrysm is given by

(4.4) log ◦Albcr-dRF,m (zi) = logp(zi)ε0 −
m∑
j=1

L p-adic
j (zi)εj (∈ pcrysm ).

To proceed the computation, we make use of the following key proposition. Let

projm : pcrysm = F ⟨1⟩⋉⊕m
i=1F ⟨i⟩ → F ⟨m⟩ denote the projection homomorphism to the

last component. Then,

Proposition 4.5. There exists a retraction homomorphism

retm : coLie(MT ad
F (φ))(2m) → coLie(MT ad

F (φ))(2m),d=0

(i.e., it restricts to the identity on coLie(MT ad
F (φ))(2m),d=0) that makes the following

diagram commute:

H1(MT ad
F (φ),Pcrys

m (F )) ∼= Pcrys
m (F )

log

��

rm // coLie(MT ad
F (φ))(2m)

retm ∪
��

pcrysm = F ⟨1⟩⋉⊕m
i=1F ⟨i⟩

projm // F ⟨m⟩ = coLie(MT ad
F (φ))(2m),d=0.

We shall postpone a proof of this proposition until Appendix. Using (4.4) and Propo-

sition 4.5, we find

retm ◦L ad
m (zi) = retm ◦ rm ◦Albcr-dRF,m (zi) = projm ◦ log ◦Albcr-dRF,m (zi) = −L p-adic

m (zi).

By taking the linear combination ξ =
∑

i ai{zi}, we therefore obtain

retm ◦L ad
m (ξ) = −L p-adic(ξ).

At this stage, however, the assumption ξ ∈ Aℓ-adic
m (OF ) tells that L ad

m (ξ) already lies

in coLie(MT ad
F (φ))(2m),d=0 on which retm is just the identity map. Thus, L ad

m (ξ) =

−L p-adic(ξ) as desired in Theorem 4.4 (2) .

§ 5. Coleman-Ihara formula

§ 5.1. Comparison of AlbetF,m and Albcr-dRF,m .

Throughout this section, we assume that F is a finite unramified extension of Qp

and look closely at the two Albanese maps of Minhyong Kim ([Kim1], [Kim2]):

AlbetF,m : P1
01∞(F )→ H1(MT Qp

(GF ),P
et
m),

Albcr-dRF,m : P1
01∞(OF )→Pcrys

m (F ) ∼= H1(MT ad
F (φ),Pcrys

m ).
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These two maps are fitting in the following fundamental diagram:

(5.1) P1
01∞(OF )

Albet
F,m

ttjjjj
jjjj

jjjj
jjjj

j

Albcr-dR
F,m

//

��

Pcrys
m (F )

H1(MT Qp
(GF ),Pet

m) ⊃ H1(MT crys
Qp

(GF ),Pet
m)

Dcrys,F

66mmmmmmmmmmmmmm

whereMT crys
Qp

(GF ) :=MT Qp
(GF ) ∩ RepcrysQp

(GF ). M. Kim showed in [Kim2] the com-

mutativity (and the existence of dotted arrow) of the above type diagram for quotients

of unipotent fundamental groups of smooth curves with good reduction based at usual

points. As mentioned above, the same type of diagrams with tangential base points

are generally unknown to exist in literatures. We shall prove the commutativity of the

above diagram (5.1) together with factorization by the dotted arrow, first for z ∈ µ(F )
by using our result of previous paper [NSW], and then extend it to general z by apply-

ing a comparison theorem of path torsors proved by M. Olsson [O1], [O2]. Note that

Olsson’s comparison theorem is proved only for path torsors between usual base points.

Review on Bloch-Kato exponential maps. In [S1, Theorem 1.1], [Kim3, Prop. 1.4],

we studied a general theory extending the Bloch-Kato exponential map to any unipotent

algebraic group object G in RepcrysQp
(GF ). It relates (right cosets of) the F -valued points

of Dcrys,F (G) to the non-abelian Galois cohomology set H1
f (F,G(Qp)). If we apply this

theory to G = Pet
m , then the exponential map expPet

m
provides a bijection from the set

of F -rational points of Dcrys,F (G) = Pcrys
m to the corresponding cohomology:

(5.2) expPet
m
: Pcrys

m (F )→ H1(MT crys
Qp

(GF ),P
et
m(Qp)).

In the most classical case of G = Qp(n), it is reduced to

expQp(n) : F ⟨n⟩
∼→H1

f (F,Qp(n)) = Ext1MT crys
Qp

(GF )(Qp(0),Qp(n))

which has the following explicit description (what is known as the Bloch-Kato explicit

reciprocity law [BK] Theorem 2.1 and (4.8.2)):

(5.3) expQp(n)

(
a ·

ζ⊗n
p∞

tn

)
=

1

(n− 1)!
TrF/Qp

({(
1− σF

pn

)
· a
}
ϕCW
n,F

)
for n ≥ 1 and a ∈ F . Here, σF is the arithmetic Frobenius automorphism on F

(unramified over Qp) and ϕ
CW
n,F is the Coates-Wiles homomorphism.

The commutativity of the diagram (5.1) is rephrased as follows:

Proposition 5.1. (i) The path torsor Pet
m(
−→
01, z) is an affine scheme lying in

RepcrysQp
(GF ). Hence, AlbetF,m factors through P1

01∞(OF )→ H1
f (F,P

et
m(Qp)).

(ii) Dcrys,F ◦Alb
et
F,m = Albcr-dRF,m .
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Before settling a proof of Proposition 5.1, we now recall from [Gi, Chap.III, Defini-

tion 1.3.1], the concept of a composition of torsors: If X (resp. X ′) is an affine scheme

with a right (resp. left) action of an affine group scheme G in a Tannakian category, then

the contraction X ∧G X ′ is defined as the quotient of X ×X ′ by the natural G-action

defined by (x, x′) 7→ (xg, g−1x′). This construction gives a (G1, G2)-bitorsor X ∧G X ′

from a (G1, G)-bitorsor X and a (G,G2)-bitorsor X
′.

Proof of Proposition 5.1. (i) First, consider the case z = z0 ∈ µ(F ) \ {1}. In

this case, by the equality (5.3), the assertion of Proposition 5.1 is equivalent to the

assertion Theorem 1.1 for ξ = {z0} ∈ Aℓ-adic
m (F ). Hence, it is reduced to [NSW, Theo-

rem 1.1]. Indeed, we have shown that the isomorphism class of the torsor Pet
m(
−→
01, z0)

coincides with the image of Albcr-dRF,m (z0) under the non-abelian exponential map (5.2),

hence that Pet
m(
−→
01, z0) lies in RepcrysQp

(GF ). Next, we show the commutativity of the

diagram for general z. Let z be an arbitrary element of P1
01∞(OF ), and consider a

composition of paths
−→
01⇝z0 and z0⇝z passing an intermediate point z0 ∈ µ(F ) \ {1}.

As seen above, we know Pet
m(
−→
01, z0) ∈ RepcrysQp

(GF ). On the other hand, we also know

the path torsor Pet
m(z0, z) between usual points lies in RepcrysQp

(GF ), as proved in greater

generality by M.Olsson [O1, Theorem 1.11]. Therefore, one can execute the path com-

position constructions: Pet
m(
−→
01, z0) ∧Pet

m(z0, z)
∼→ Pet

m(
−→
01, z), and find Pet

m(
−→
01, z) lies

in RepcrysQp
(GF ). This settles the existence of the dotted arrow in the diagram (5.1).

(ii) It remains to show the commutativity of the right hand triangle. Since the

functor Dcrys,F commutes with any composition of torsors, we have

Dcrys,F (P
et
m(
−→
01, z0)) ∧Dcrys,F (P

et
m(z0, z))(5.4)

∼= Dcrys,F (P
et
m(
−→
01, z0) ∧Pet

m(z0, z)) ∼= Dcrys,F (P
et
m(
−→
01, z)).

According to Olsson’s comparison theorem, we have Dcrys,F (P
et
m(z0, z)) ∼= Pcrys

m (z0, z)

in MF ad
F (φ). On the other hand, we have already shown that Dcrys,F (P

et
m(
−→
01, z0)) ∼=

Pcrys
m (
−→
01, z0) in MF ad

F (φ) in the first step. Hence, the left hand side of (5.4) is canon-

ically isomorphic to Pcrys
m (
−→
01, z), hence the assertion.

§ 5.2. Proof of Main Theorem

In this subsection, we give a proof of Theorem 1.1. First, we give a linearization

of Kim’s fundamental commutative diagram (5.1) (cf. Proposition 5.1). Recall that the

Fontaine functor Vcrys : MF ad
F (φ) → RepQp

(GF ) induces a functor between two mixed

Tate category over Qp: Vcrys : MT ad
F (φ)→MT Qp

(GF ). It is easily checked that Vcrys

is compatible with the canonical fiber functors of two mixed Tate categories. Thus, by

Tannakian duality, we have a homomorphism π1(MT Qp
(GF ), ω) → π1(MT ad

F (φ), ω)

of pro-algebraic groups over Qp. Since Vcrys is fully-faithful, this homomorphism is
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surjective. Hence, we obtain an injective homomorphism of coLie algebras

Vcrys,∗ : coLie(MT ad
F (φ)) ↪→ coLie(MT Qp

(GF )).

Proposition 5.2. Under the same assumption of Proposition 5.1, we have the

commutative diagram:

Z[P1
01∞(OF )]

L ad
m //

_�

��

coLie(MT ad
F (φ))(2m)

_�

Vcrys,∗

��

F ⟨m⟩? _oo

expQp(m)

��

Z[P1
01∞(F )]

L ℓ-adic
m // coLie(MT Qp

(GF ))
(2m) H1(F,Qp(m))? _oo

Here, expQp(m) is the Bloch-Kato exponential map.

Proof. According to Proposition 5.1, we have the following commutative diagram:

P1
01∞(OF )

Albcr-dR
m,F

//

Albet
F,m ((QQ

QQQ
QQQ

QQQ
QQQ

H1(MT ad
F (φ),Pcrys

m )
rm //

Vcrys,∗

��

coLie(MT ad
F (φ))(2m)

Vcrys,∗

��

H1(MT Qp
(GF ),Pet

m)
rm // coLie(MT Qp

(GF ))
(2m).

Here, rm, Vcrys,∗ are induced maps from Lemma 2.4 and Vcrys respectively, and the

restriction of Vcrys,∗ to F ⟨m⟩ coincides with expQp(m) by [S1, Theorem 1.1 (ii)] (cf. [Kim3,

Proposition 1.4]). Extending the above commutative diagram linearly, we conclude the

proposition.

Remark 5.3. By virtue of the above proposition, we see that both series of

Albanese maps {Albcr-dRF,m }m and {AlbetF,m}m define the same subgroups Rm ⊂ Am ⊂
Z[P1

01∞(OF )] giving the same Bloch groups arising from Aℓ-adic
m (OF ) of Theorem 4.4.

Proof of Theorem 4.4 (1): As the degree 2-part of the fundamental coLie algebra

coincides with Ext1MT ad
F (φ)(F ⟨0⟩, F ⟨1⟩), there is nothing to prove whenm = 0, 1. Hence,

we may assume thatm > 1. Pick any element ξ ofAℓ-adic
m (OF ). Then, by Lemma 2.7, the

image of ξ in coLie(MT Qp
(GF ))

(2m) lies in H1(F,Qp(m)) = coLie(MT Qp
(GF ))

(2m),d=0.

Noting that expQp(m) is an isomorphism from DdR(Qp(m)) to H1(F,Qp(m)), we see

that L ad
m (ξ) is contained in F ⟨m⟩ ∼= coLie(MT ad

F (φ))(2m),d=0 from the injectivity of

the middle vertical homomorphism of the diagram in Proposition 5.2.

Proof of Theorem 1.1: Let Aℓ-adic
m (OF ) be the same as in Theorem 4.4 and take an

element ξ ∈ Aℓ-adic
m (OF ). Then, by Proposition 5.2 and Theorem 4.4 (2), we have the

following equality in H1(F,Qp(m)):

(5.5) L ℓ-adic
m (ξ) = expQp(m)(L

ad
m (ξ)) = expQp(m)(−L p-adic

m (ξ)).
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By (5.3), the RHS of (5.5) is equal to −1
(m−1)!TrF/Qp

({
(1− σF

pm )L p-adic
m (ξ)

}
ϕCW
m,F

)
. This

completes the proof of Theorem 1.1.

§ 6. Appendix: Proof of Proposition 4.5

A6.1. In this Appendix, we assume that F is unramified over Qp. LetM be an object in

MT ad
F (φ) and M = ⊕n∈ZM

[n] the slope decomposition of M as a φ-module. Remark

that the graded F -vector space M = ⊕n∈ZM
[n] has a natural Qp-structure as M [n] =

Mφ=pn ⊗Qp F (n ∈ Z). Now we fix a Qp-basis {α1, . . . , αd} of F where d = [F : Qp].

Note that giving a Hodge filtration on the graded F -vector space ⊕nM
[n] =(

⊕nM
φ=pn) ⊗Qp F is equivalent to giving a collection of F -linear endomorphisms

{Nk :M [∗] →M [∗−k]}k≥1 on M . Write pi for the projection F = ⊕iαiQp → αiQp and

define Nk,αi
:= α−1

i (idV• ⊗ pi) ◦ Nk|V• for the graded Qp-vector space V• = ⊕nVn :=

⊕nM
φ=pn

. Therefore, giving an object M of MT ad
F (φ) is equivalent to giving a tuple

{V•, Nk,αi
}1≤i≤d,k∈Z>0

such as

• A finite dimensional graded Qp-vector space V• = ⊕nVn,

• Qp-linear endomorphisms Nk,αi
of V• of degree −k.

Given the above collection {V•, Nk,αi
}, the Hodge filtration on V• ⊗Qp

F is explicitly
delineated by

(6.1) Fn(V• ⊗Qp F ) =

[
exp

( ∞∑
k=1

d∑
i=1

αiNk,αi

)]⊕
j≥n

Vj ⊗Qp F

 .

Example 6.1.

(1) Let V = Vn = Qpen and Nk,αi = 0 for all i, k. Then, the corresponding admissible

filtered φ-module is F ⟨ − n⟩.

(2) Let x =
∑d

i=1 xiαi ∈ F with xi ∈ Qp and let V be the two-dimensional graded vector

space V0 ⊕ V−1 = Qpe0 ⊕Qpe−1. We define N1,αi
: V0 → V−1 by N1,αi

(e0) = xie−1

and define Nk,αi
= 0 if k > 1. Then, the corresponding admissible filtered φ-module

M to (V, {Nk,αi
}) is two-dimensional F -vector space M := Fe0 ⊕ Fe−1 equipped

with the semi-linear action φ : e0 7→ e0, e−1 7→ p−1e−1 and with the filtration F •M

defined by

(6.2) F iM =


M if i ≤ −1,
F (e0 + xe−1) if i = 0,

0 if i ≥ 1.

The admissible filtered φ-module M is an extension of F ⟨0⟩ by F ⟨1⟩ and represents

the isomorphism class x ∈ F = Ext1MT ad
F (φ)(F ⟨0⟩, F ⟨1⟩).
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Lemma 6.2. The fundamental Lie algebra Lie(MT ad
F (φ)) is canonically iso-

morphic to the complete free Lie algebra Lie⟨⟨Nk,αi⟩⟩k>0, 1≤i≤d over Qp generated by

those symbols Nk,αi
, where completion is taken with respect to the quotients modulo the

ideals generated by Lie monomials in Nk,αi ’s whose total weights in k are bounded below.

Proof. This lemma is more or less well-known (e.g., [DCW] 4.4 when F = Qp).

Indeed, for M = MT ad
F (φ), let π1(M, ω) = Gm ⋉ U(M) be the splitting of §2.1

providing the pro-unipotent radical U(M) and the fundamental Lie algebra Lie(M).

Let Ln be the quotient of Lie⟨⟨Nk,αi
⟩⟩k>0, 1≤i≤d modulo the ideal generated by the Lie

monomials of weights > n. Then, Ln is a finite dimensional Qp-vector space which

has a natural grading by the negative of total weights (i.e., Ln =
⊕n

k=1 V−k with

V−k :=
∑d

i=1 QpNk,αi +
∑d

i,j=1 Qp[Nk−1,αi , N1,αj ] + · · · etc.), and has a collection of

endomorphisms by ad(Nk,αi
) : Ln → Ln of degree −k (k = 1, 2, . . . ). Noting this and

the above description of MT ad
F (φ), we see that Ln (n ≥ 1) are objects in MT ad

F (φ)

and that the representation of Lie(M) (resp. Gm) on them are given through those

adjoint endomorphisms {ad(Nk,αi)}k,i (resp. through the weight gradation). Letting

n→∞ along with those Lie homomorphisms Lie(M)→ EndQp
(Ln) yields a Lie algebra

isomorphism Lie(M)
∼→Lie⟨⟨Nk,αi⟩⟩k>0, 1≤i≤d.

Remark 6.3. By construction, the image Nk,αi of Nk,αi in the abelianization

Lie(MT ad
F (φ))ab =

∞∏
l=1

Ext1MT ad
F

(φ)(F ⟨0⟩, F ⟨l⟩)∨ =
∞∏
l=1

HomQp(F ⟨l⟩,Qp)

is characterized by: Nk,αi(αjζ
⊗l
p∞/tl) =

{
0, if j ̸= i or l ̸= k;

1, if j = i and l = k.

A6.2. We recall the first rational cohomology of an algebraic group quickly. Let π be a

pro-algebraic group over Qp and G an algebraic group over Qp with an algebraic action

of π. Then, a rational 1-cocycle c of π with coefficients in G is a morphism of schemes

c : π → G satisfying the usual 1-cocycle relation. We say that two rational 1-cocycles

c, c′ are equivalent if there exists g ∈ G(Qp) such that c′(σ) = σgc(σ)g−1 for any σ ∈ π.
We denote by H1(π,G) the set of equivalence classes of rational 1-cocycles of π with

coefficients in G and call it the first rational cohomology of π with coefficients in G.

It is easily checked that H1(MT ad
F (φ),Pcrys

m ) is canonically isomorphic to the first

rational cohomology H1(π1(MT ad
F (φ), ω), ω(Pcrys

m )) where ω : MT ad
F (φ) → VecQp

is

the canonical fiber functor.

A6.3. The following lemma enables us to interpret the pointed setH1(MT ad
F (φ),Pcrys

m )

as a set of the homomorphisms between two Lie algebras.

Lemma 6.4. We have a canonical isomorphism of pointed sets

ψm : HomGm,Qp -Lie
(Lie(MT ad

F (φ)), ω(pcrysm ))
∼−→ H1(MT ad

F (φ),Pcrys
m )
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satisfying rm ◦ ψm(f) = ResLie(MT ad
F (φ))(−2m)(f).

Proof. Let f be an element of HomGm,Qp -Lie
(Lie(MT ad

F (φ)), ω(pcrysm )). Then, we

define a rational 1-cocycle cf : π1(MT ad
F (φ), ω) = Gm,Qp

⋉ U(MT ad
F (φ)) → ω(Pcrys

m )

by (x, y) 7→ x exp(f)(y). Here, exp(f) : U(MT ad
F (φ)) → ω(Pcrys

m ) is the algebraic

group homomorphism defined by the Lie homomorphism f . We define ψm(f) to be the

cohomology class [cf ] of cf . By construction, ψm are compatible with the short exact

sequence of pointed sets

1→ H1(MT ad
F (φ), F ⟨m⟩)→ H1(MT ad

F (φ),Pcrys
m )→ H1(MT ad

F (φ),Pcrys
m−1)→ 1

(cf. (4.1)). Then, by induction on m, we can show that ψm are isomorphisms of pointed

sets for all m.

A6.4. We now calculate the composite of the isomorphism in Lemma 6.4 and the iso-

morphism induced from (4.1): log ◦ψm : H1(MT ad
F (φ),Pcrys

m ) ∼= Pcrys
m (F )

∼−→ pcrysm .

Proposition 6.5. For f ∈ HomGm,Qp -Lie
(Lie(MT ad

F (φ)), ω(pcrysm )), we have

log ◦ψm(f) =
m∑

k=1

∑
1≤i≤d

f(Nk,αi
)⊗ αi.

Here, pcrysm = F ⟨1⟩ ⊕ (⊕m
j=1F ⟨j⟩) is identified with ω(pcrysm )⊗Qp F via

ι : ω(pcrysm )⊗Qp
F

∼−→ pcrysm ;
(
el ⊗ 1 7→ εl, l = 0, . . . ,m

)
,

where {el}, {εl} are fixed bases in (2.1), (4.3) respectively.

Proof. We denote by λ ∈ pcrysm the image of f under the isomorphism in the
proposition and by Pcrys

m (λ) the corresponding Pcrys
m -torsor. Recall from [S1, Proof

of Proposition 3.3] that the underlying φ-scheme structure of Pcrys
m (λ) is Pcrys

m and
the Hodge filtration on O(Pcrys

m (λ)) = O(Pcrys
m ) is given by the ‘left translation’ by

exp(λ), i.e., Fn(O(Pcrys
m (λ))) = [exp(λ)]♯Fn(O(Pcrys

m )). On the other hand, it follows

from (6.1) that the Hodge filtration on the ind-object O(Pcrys
m (λ)) of MT ad

F (φ) is given
by:

Fn(O(Pcrys
m (λ))) =

exp
∑

k,i

f(Nk,αi)⊗ αi

♯ (
Fn(O(Pcrys

m ))

)

with the identification O(Pcrys
m (λ)) ∼= O(ω(Pcrys

m )) ⊗Qp F given via ζ⊗l
p∞/tl (l ∈ Z).

Thus the two points exp(λ), exp
(∑

k,i αif(Nk,αi)
)
∈Pcrys

m (F ) define the same torsor

in H1(MT ad
F (φ),Pcrys

m ), and coincide with each other according to (4.1).
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Proof of Proposition 4.5: We define the map retm : coLie(MT ad
F (φ))(2m) → F ⟨m⟩

by

retm(f) :=

d∑
i=1

αi f(Nm,αi)
ζ⊗m
p∞

tm

for each f ∈ coLie(MT ad
F (φ))(2m), i.e., for f : Lie(MT ad

F (φ))(−2m) → Qp. Then, on

F ⟨m⟩ = coLie(MT ad
F (φ))(2m),d=0, we see from Remark 6.3 that the map retm restricts

to identity. The commutativity of the diagram in Proposition 4.5 follows from Lemma

6.4 and Proposition 6.5. This completes the proof of Proposition 4.5.
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