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§1. Conjecture and result Let U be an (absolutely irreducible, nonsingular)
algebraic curve defined over a number field k. It is well known that the etale
fundamental group π1(U) is naturally regarded as a group extension of the ab-
solute Galois group Gk := Gal(k̄/k) by a finitely generated topological group.
We shall consider a question of how much the equivalence class of this group
extension depends on the isomorphism class of the issued curve.

First, let us recall that the etale fundamental group of the algebraic curve
U/k is a profinite topological group defined as the projective limit of finite
groups as follows:Note 1

π1(U) := lim←−−
Y

AutU(Y),

where Y runs over the projective system of the connected finite etale Galois
covers of U. If we restrict the projective system to a subsystem consisting
of the covers of the form {Y = U ⊗ K | K/k : finite Galois extension} and
note that AutU(U ⊗ K) � Gal(K/k), then we obtain a canonical surjective
homomorphism

pU/k : π1(U) −→ Gk(:= Gal(k̄/k)).

We will treat π1(U) as an object associated with the “augmentation map” pU/k

onto Gk. The kernel (= ker pU/k) is isomorphic to π1(U⊗k̄), which in this article
will often be denoted simply by π1. In fact, we may present it by generators
and relations as a topological group:
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(Π) π1 = π1(U ⊗ k̄) =
⟨α1, . . . , αg

β1, . . . , βg

γ1, . . . , γn

∣∣∣∣∣∣ α1β1α
−1
1 β

−1
1 · · ·αgβgα

−1
g β

−1
g ·

·γ1 · · · γn = 1

⟩
top
.

Here, αi, βi and γ j (1 ≤ i ≤ g, 1 ≤ j ≤ n) are taken as suitable loops at a base
point on the associated complex curve Uan

C
with U, which is assumed to be a

Riemann surface of genus g with n punctures. The suffix top designates the
profinite completion. Note here that in our issued group extension

1−→ π1 −→ π1(U)−→Gk −→ 1 (exact),

the kernel part π1 is a group whose isomorphism class is determined only by
the topological type (g, n), hence may be written as π1 = Πg,n. In other words,
whenever a topological space of type (g, n) gets a structure of an algebraic
curve over k, it gives rise to a group extension of Gal(k̄/k) by Πg,n.

Conjecture (Part of Grothendieck’s fundamental conjecture of “anabelian” al- Note 2
gebraic geometry [2]) WhenΠg,n is non-abelian, namely, (g, n) , (0, 0), (0, 1),
(0, 2), (1, 0), the above correspondence

algebraic curve U/k group extension π1(U)/Gk

is faithful.

In this note, we would like to report the following result.

Theorem Conjecture is true for (g, n) = (0, n) (n ≥ 3) and (1, 1).

§2. Finiteness for π1 modulo π′′1 As a non-abelian profinite group π1 = Πg,n

is so large, a basic approach to the above problem would be to look at suitable
quotients of it. For any class of finite groups C, set

JC :=
∩
G∈C

∩
f∈Hom(π1,G)

ker( f ).

Noting that JC is a characteristic subgroup of π1 determined by the class C, we
obtain an exact sequence

(1) 1−→ π1/JC −→ π1(U)/JC −→Gk −→ 1.

(Here, π1/JC is so called the maximal pro-C quotient of the topological group
π1. In a particular case when C = {all l-groups} for a fixed rational prime
l, π1/JC (written πpro-l

1 ) is called the pro-l fundamental group, and the Galois
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representation Gk → Out(πpro-l
1 ) associated with the above exact sequence have

been studied in depth by Y. Ihara and other authors (cf. [3])).
For two algebraic curves U/k and U′/k, if there is a commutative diagram

of profinite groups

π1(U)/JC

pU/k
$$HHHHHHHHH
∼ // π1(U′)/JC

pU′/k
zzuuuuuuuuu

Gk

with the horizontal arrow being an isomorphism, then U and U′ are called
π1-equivalent modulo JC and written

π1(U)/JC �Gk π1(U′)/JC.

In the case C being the class of all finite groups, we find JC = {1}. In this case,
we just say that they are π1-equivalent. It is obvious that

(2) π1(U) �Gk π1(U′)⇒ π1(U)/JC �Gk π1(U′)/JC.

Let us first consider the case C = {abelian groups}. In this case, JC =
[π1, π1] = π′1 is the (closure of the) commutator subgroup of π1, and π1/π

′
1 =

πab
1 can be identified with the etale homology group H1(U ⊗ k̄, Ẑ). It then fol-

lows from (2) that

π1(U) �Gk π1(U′) =⇒H1(U ⊗ k̄) � H1(U′ ⊗ k̄).

⟨as Gk-modules⟩

When U has genus ≥ 1, a rough application of the finiteness theorem ofNote 3
Shafarevich–Faltings implies finiteness of U′/k that are π1-equivalent over k
to a fixed U/k. However, when U has genus 0, it is impossible to deduce such
finiteness only from H1. In fact, suppose Λ is a finite subset of P1(k) with car-
dinality n(≥ 4) and let U = P1

k −Λ. Then, one should ask how the equivalence
class of the group extension

(3)
1−→ H1 −→ π1(U)/π′1 −→Gk −→ 1

≀∥
Ẑ⊕n−1

varies according to the relative position of the point set Λ on P1. But one finds
that (3) has no more information on the cardinality of Λ, immediately after
observing that the above (3) splits and the associated Galois representation
Gk → GLn−1(Ẑ) is a direct sum of the 1-dimensional scalar representation
realized as multiplication by the cyclotomic character.



On Galois rigidity of fundamental groups of algebraic curves 59

distribution of
points on P1

So, in the case of genus 0, let us take C to be the class of
meta-abelian groups, i.e., finite solvable groups of derived
length ≤ 2. Then, JC becomes the double commutator sub-
group π′′1 = [π′1, π

′
1].

Notation For any finite subset Λ = {0, 1,∞, λ1, . . . , λm}
(λi ∈ k), define the multiplicative subgroup Γ(Λ) of k× to
be that generated by

{−1, λi, 1 − λi, λi − λ j | 1 ≤ i , j ≤ m}.

Remark The group Γ(Λ) ⊂ k× is independent of the choice of (the coordi-
nate of P1 such that) {0, 1,∞} ⊂ Λ.

Then we have the following theorem.

Theorem 1 ([6]) Let Λ, Λ′ be finite subsets of P1(k) containing {0, 1,∞},
and set U = P1

k − Λ, U′ = P1
k − Λ′. Then,

π1(U)/π′′1 �Gk π1(U′)/π′′1 =⇒ Γ(Λ) = Γ(Λ′).

(not only �)

For a finitely generated multiplicative subgroup Γ ⊂ k×, it is known as
Siegel’s theorem (cf. [5]) that the set of solutions (x, y) to the equation x+y = 1
(x, y ∈ Γ) is (effectively) finite. From this follows that, for any fixed U, there
are only a finite number of U′ satisfying the assumption of Theorem 1. Note 4

§3. Rigidity of π1 with no modding out When a nonsingular algebraic curve
U/k is not complete, the fundamental group π1(U ⊗ k̄) is a free profinite group
of finite rank. The famous paper of Belyi [1] considers the group extension

1−→ π1 −→ π1(U)−→Gk −→ 1

without taking reduction of π1 modulo any nontrivial subgroups. (It seems that
there are not many other papers treating it in this way.)

In this note, we should like to report the following nature of π1(U). If the
complex Riemann surface associated with U is of type (g, n), then one finds a
subset I in π1 = Πg,n which is the conjugacy union of the inertia subgroups
corresponding to n punctures. It can be written in the presentation of §1 (Π) as

I = {xγa
i x−1 | x ∈ Πg,n, a ∈ Ẑ, i = 1, 2, . . . , n}.

Note that this is only a subset of π1 (not closed under the group operation) of
the form of a union of certain conjugacy classes. We shall call I the inertia
subset of π1(U). Then we have the following result.
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Key lemma ([7]) The inertia subset I ⊂ π1 can be characterized in terms Note 5
of the Galois augmentation π1(U) � Gk by a “non-abelian” weight filtra-
tion. Therefore, any Galois compatible isomorphism of topological groups
f : π1(U)

∼−→
Gk
π1(U′) should precisely keep their inertia subsets I ⊂ π1(U) and

I′ ⊂ π1(U′), i.e., should induce f (I) = I′.

This lemma enables us to control in a purely group-theoretical way, say,
open immersions of algebraic curves, or residue fields of cusps on finite etale
covers of a curve. To prove this lemma, we need to use properly non-abelian
phases such as: any open subgroup of a free profinite group is again profinite
free; the ranks of those open subgroups increase in proportion to their indices
(Schreier’s formula). Therefore we could not prove similar characterization
of inertia in the meta-abelian quotients of π1. Still, we can show the similar
lemma for the case of pro-l fundamental groups, where the proof turns out
rather simpler than the profinite case as a consequence of a strong property of
the pro-l free groups. However, for the pro-nilpotent π1 (which is the direct
product of πpro-l

1 for all primes l), the corresponding lemma is not true. But if
we take larger pro-solvable or profinite π1, then, the lemma holds true again.
By virtue of such characterization of inertia subsets in full profinite (or pro-
solvable) π1 beyond pro-nilpotent π1, one could “interrelate” information of
inertia subsets of πpro-l

1 among different primes l. This was an important point
to enable us to scoop up a powerful essence of profinite non-abelianity, that
has led us to the following result.

Theorem 2 ([7]) Let U and U′ be genus zero curves defined over a number
field k with π1(Uan

C
) non-abelian. Then,

π1(U) �Gk π1(U′) =⇒ U �k U′.

Note In the above statement, the converse implication⇐ trivially holds.
Note By rigidity we mean uniqueness rather than finiteness.

§4. Case of elliptic curves Let E be an elliptic curve with origin O ∈ E(k).
Then, π1(E) is an extension of the absolute Galois group Gk by π1(E⊗k̄), where
the kernel group can be identified with H1(E ⊗ k̄, Ẑ) � Ẑ⊕2:

1−→ π1 −→ π1(E)−→Gk −→ 1.
≀∥
Ẑ⊕2

The existence of the rational point O ∈ E(k) implies its splitness, so that con-
sidering the equivalence class of the above group extension is equivalent to
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considering that of the associated Galois representation

Gk −→GL2(Ẑ) =
∏

l

GL(TlEk̄).

Then, when E has no complex multiplication, Faltings’ theorem (Tate conjec-
ture) implies that the group extension π1(E)/Gk determines the elliptic curve
E/k. However, when E does have complex multiplication, it is not necessarily
the case. For example, one can construct lots of pairs of elliptic curves (E, E′)
over a sufficiently large number field k with Ean

C
� E′ an

C
admitting k-isogeny

maps f : E → E′, g : E′ → E with mutually prime degrees. For such a pair
(E, E′), the Galois representations Gk → GL(TlEk̄) and Gk → GL(TlE′k̄) turn
out to be equivalent for every l through f or g, although E and E′ are not
isomorphic over k.

Thus we are led to removing the origin O from E so as to consider π1(E−O)
instead of π1(E). Note that π1(E − O) is a group extension of Gk by a free
profinite group F̂2 of rank 2 (which is obviously non-abelian).

Theorem 3 Let (E,O), (E′,O′) be elliptic curves defined over k. Then,

π1(E − O) �Gk π1(E′ − O′) =⇒ E �k E′.

Over the curve E − O one has an etale cover E − 4E (where 4E is a divisor
on the elliptic curve E consisting of 16 geometric points of order dividing 4)
which can be regarded naturally as a Kummer cover of P1 − {0, 1,∞, λ}. Using
this trick, the proof of Theorem 3 may be reduced to the case of genus 0. Note 6

§5. On automorphisms According to theorems by Neukirch, Ikeda, Iwasawa,
Uchida (cf. [8]), for algebraic number fields k, k′, we know not only

π1(Spec k) � π1(Spec k′)⇐⇒ Spec k � Spec k′

(i.e., Gal(Q/k) � Gal(Q/k′)⇐⇒ k and k′ are Q-isomorphic),

but also

Out
(
π1(Spec k)

)
� Aut(k).

Regarding this as 0-dimensional case, we may expect the following for alge-
braic curves.

Problem X For U/k an algebraic curve with π1(Uan
C

) non-abelian, could Note 7

AutGkπ1(U)
Inn π1

� Autk(U)

hold true? (In fact, Grothendieck conjectures such a phenomenon for a more
general class of morphisms.)
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Now, let us consider U = P1
Q − {0, 1,∞}. The exact sequence

1−→ π1 −→ π1(U)−→GQ −→ 1

0

1

8

base

x

y

z

yields a big Galois representation

φQ : GQ −→Out(π1).

Presenting π1 by use of the loops in the figure as

π1 = ⟨x, y, z | xyz = 1⟩top,

one can lift the representation φQ to a unique repre-
sentation φ̃Q : GQ → Aut(π1) whose Galois image
lies in

Brd(π1) :=


f ∈ Aut(π1)

∣∣∣∣∣∣∣∣∣∣∣∣
∃α ∈ Ẑ×,∃ s ∈ π1,∃ t ∈ π′1 s.t.

f (x) = sxαs−1;
f (y) = tyαt−1;

f (z) = zα.


(Belyi [1]). Recalling that Belyi showed the injectivity of φ̃Q, one of our next
interests is to ask “how much the representation image Im φ̃Q is smaller than
Brd π1?” This last question is indeed related to the above mentioned Problem
X as follows.

Proposition 4 To verify Problem X for U = P1
Q−{0, 1,∞} affirmatively, it is

necessary and sufficient to show that the centralizer of Im φ̃Q in Brd(π1) is {1}.

Here, the center of Im φ̃Q ≈ GQ is known to be trivial. One can also show that
the centralizer Z in the above proposition has trivial image in Brd(π(l)

1 /π
(l)′′
1 )

(π(l)
1 = π

pro-l
1 ) for every prime l. Finally, we note that the problem of seeking the

image of pro-l Galois representation φ(l)
Q

: GQ → Brd(π(l)
1 ) has been approached

by several other authors by the use of lower central filtration (see e.g., [4]).Note 8

Complementary notes

The text above is one of the earliest publications of anabelian research, in the
late 1980s in Japanese, which indicates some of the atmosphere of the dawn
of investigations around Grothendieck’s conjecture on fundamental groups of
“anabelian” curves. As indicated in the introduction of [6], the research started
under the strong influence of techniques from studies of Galois representations
in π1(P1 − {0, 1,∞}) by Ihara [3] and Anderson–Ihara [9], of inverse Galois
problems (especially Mike Fried’s intensive use of the branch cycle argument
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[17]) and analogous results in Hodge theory by Hain and Pulte [20]. In this
complementary section, we shall add several notes to describe miscellaneous
facts and later developments (with apologies for missing citations of many
important works to be mentioned).

Throughout these notes, k denotes a number field (a finite extension of Q).

Note 1
Here AutU(Y) should be understood to denote the opposite group of the cov-
ering transformation group of Y over U. As is well known, the theory of etale
fundamental groups was established by A. Grothendieck and his collaborators
in SGA1 [18]. Especially, the notion of Galois category in loc. cit. presents ax-
ioms unifying classical Galois theory of covers of a topological space and that
of field extensions. This serves as a base for introducing our main mathemati-
cal object of study – an ‘arithmetic’ fundamental group equipped with a mixed
structure as a group extension of the absolute Galois group of a number field
by the profinite completion of a discrete fundamental group of the associated
complex manifold.

Note 2
The fundamental conjecture of anabelian geometry was posed in Grothen-
dieck’s letter to Faltings [19] for hyperbolic curves (i.e., nonsingular algebraic
curves of negative Euler characteristic). The references [19] and [2] had not
been published for many years until the appearance of the proceedings volume
[41] edited by L. Schneps and P. Lochak. As described in [19], Grothendieck
proposed to study “extraordinary rigidity” of those arithmetic fundamental
groups as the non-abelian analog of Faltings’ theorem for abelian varieties
[16]:

Homk(A, A′) ⊗ Zl
∼−→HomGk (TlA,TlA′).

The fundamental conjecture (saying that the geometry of “anabelian varieties”
should be reconstituted from their arithmetic fundamental groups) is only one
aspect of his circle of ideas (anabelian philosophy) generalizing Belyi’s the-
orem [1] to a vast theme extending from “Grothendieck dessin d’enfant” to
“Galois–Teichmüller Lego”. Grothendieck used the term “anabelian” to in-
dicate “very far from abelian groups” ([2], p. 14). Typical candidates for an-
abelian varieties are hyperbolic curves, successive fiber spaces of them (Artin
elementary neighborhoods), and moduli spaces of hyperbolic curves. At a very
early stage, virtual center-triviality of geometric profinite fundamental groups
was studied as a main feature of anabelianity (e.g., [32], [33], [24]). Belyi’s
injectivity result has been generalized to arbitrary hyperbolic curves by Mat-
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sumoto [28] and Hoshi–Mochizuki [22]. The status of the fundamental con-
jecture has been pushed forward to ideal solutions by Tamagawa [45] and
Mochizuki [30]. See Note 7. The Galois–Teichmüller Lego philosophy has
been taken up by Drinfeld [14] and Ihara [23] in the genus zero case by intro-
ducing what is called the Grothendieck–Teichmüller group ĜT . For a survey
including higher genus formulations of ĜT , see [27].

Note 3
If U/k is π1-equivalent over k to U′/k, then H1(U ⊗ k̄) � H1(U′ ⊗ k̄) as Gk-
modules. Then, as their weight (−1) quotients (obtained by modding out the
weight (−2) submodules after tensoring with Zl), the l-adic Tate modules of the
Jacobian varieties of the smooth compactifications of U and of U′ turn out to be
equivalent Gk-modules. Faltings’ theorem [16], together with the good reduc-
tion criterion of Neron–Ogg–Shafarevich, implies then finiteness of those com-
plete curves which have Gk-equivalent l-adic Tate modules. When the genus
≥ 2, Faltings’ theorem also guarantees finiteness of points of bounded degree
(Mordell conjecture), and so finiteness of possible punctures giving the same
arithmetic fundamental group. To see finiteness of such possible punctures on
genus 1 curves, however, would involve the problem of bounding heights of
punctured points from a given class in ExtGk (TlE,Zr

l (1)) (if we restrict our-
selves to the use of only H1(U)). This has apparently not been confirmed yet.
We refer to a recent important paper of M. Kim [25] that, in turn, uses an-
abelian ideas to deduce finiteness of Diophantine problems.

Note 4
The clue to this modest result was to observe the Galois action on H1 of the
elementary abelian (Z/NZ)n−1-cover of P1

k̄
−{n points} so as to look at the kernel

of its weight (−2) part, i.e., the kernel of the Galois permutation of cusps on
the cover. A subtle point is that the Galois action depends on the choice of
k-models of that cover, so that we need to extract a common invariant for all
those possible k-models. At one other point, a technical lemma was employed
“k× ∩ k(µlr )×lr = k×lr for a number field k ∋

√
−1 and prime powers lr” from

Rubin’s paper (Invent. math. 89 (1987), 511–526, lemma 5.7), accidentally
found on the library bookshelves of the University of Tokyo. On a later day,
I found the lemma traced back to Weil [47] chap. XIII, §8 lemma 9 (p. 273),
while Rubin gave a much simpler proof by using Galois cohomology.

In the simplest caseΛ = {0, 1,∞, λ}, one has the multiplicative group Γ(Λ) =
⟨−1, λ, 1 − λ⟩ ⊂ k×. When k = Q or many quadratic fields, this can determine
the isomorphism class of P1 − {0, 1,∞, λ}. But already when k = Q(

√
2), it

fails: λ = −1+
√

2, λ′ = (2−
√

2)/2 giving the same Γ(Λ) but non-isomorphic
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P1−Λ ([6], example (4.6)). Efforts to improve the results of [6] required that we
treat the Galois permutations of cusps directly, not only the kernel information
about them. This motivated the group-theoretical characterization of the inertia
subgroups in arithmetic fundamental groups described in §3, Key lemma. See
also the next note.

weight −2
weight −2 weight −2

1

weight −1

Note 5
In the non-abelian free profinite group Πg,n

(n ≥ 1), the inertia subgroups over n punctures
form a union I of conjugacy classes. Any in-
dividual inertia subgroup I ⊂ I is isomorphic
to Ẑ, which has a big normalizer in π1(U) of
the form of an extension of the Galois group by
Ẑ(1) (branch cycle argument). The Key lemma
asserts the converse of this property, i.e., I
can be characterized as the weight (−2) subset
with weight (−1) complement in Πg,n. This an-
abelian weight filtration was introduced in [7], [33] with certain techniques
that pay careful attention to open neighborhoods.

It should be noted that this, in turn, can be used for a purely group-theoretical
characterization of the set of sectional homomorphisms at infinity

Sect∞ :=
{

s : Gk → π1(U)

∣∣∣∣∣∣ s(Gk) lies in a decomposition
subgroup at a cusp

}
as the set of those sections s : Gk → π1(U) each of which has a nontrivial
pro-cyclic subgroup in Πg,n stabilized and acted on by s(Gk) via multiplication
by the cyclotomic character. This set includes sections arising from tangen-
tial base points formulated by Deligne [13] and Anderson–Ihara [9]. Recently,
Esnault–Hai [15] shed new light on the set Sect∞ and its cardinality. See also
Koenigsmann [26] and Stix [43] for related discussions.

Note 6
The following argument was behind this passage. Let (E,O) be an elliptic
curve over a number field k with lambda invariant λ ∈ k̄. The 2-isogeny and
the 4-isogeny induce etale covers E − 2E and E − 4E of the punctured curve
E − {O} respectively. Their function fields over k̄ can be written as

k̄(E − 2E) = k̄
(
t,
√

t(t − 1)(t − λ)),
k̄(E − 4E) = k̄

(√
t,
√

t − 1,
√

t − λ).
Let ∆ = (Z/2Z)2 be the covering group between E − 4E and E − 2E over k̄, and
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regard the l-adic homology group H1(E − 4E,Zl) as a (Gk · ∆)-module. Then,
(after taking a finite extension of k if necessary) the maximal ∆-coinvariant
torsion-free quotient fits in the following exact sequence:

0−→Zl(1)3 −→H1

(
E − 4E,Zl

)
∆

/
torsion −→H1(E,Zl)−→ 0.

The group H1(E − 4E,Zl) has another interpretation as the Galois group of the
maximal abelian pro-l extension of k̄(E−4E) unramified outside the divisor 4E.
It has a remarkable weight (−2) quotient corresponding to the Galois extension
k̄( 2l∞√t, 2l∞√t − 1, 2l∞√t − λ), which provides a canonical splitting of the above
sequence. Once we know the sequence splits, we can recover the splitting
uniquely by the weight argument, from which follows the group-theoretical
characterization of the series of subgroups of π1(E − {O}) corresponding to
k̄( 2ln√t, 2ln√t − 1, 2ln√t − λ). Plugging this into the argument of looking at Galois
permutations of cusps on abelian covers of P1 − {0, 1,∞, λ} discussed in §3,
we conclude reconstitution of the cross ratio class of λ (hence j(λ) ∈ k) solely
from information about π1(E − {O}). This, together with k-isogeny E ∼k E′

from Faltings’ theorem, implies E �k E′. One finds related extensions of this
argument in Asada [10] §5.2 and Stix [43] §10.5.

The arithmetic fundamental group π1(E − {O}) is a basic and fascinating
object to study as well as π1(P1 − {0, 1,∞}). For instance, an elliptic analog of
Ihara’s theory [3] on Jacobi sum power series has been developed in [34], [36].

Note 7
Rigidity assertion discussed in §3:

(Equiv)U π1(U) �Gk π1(U′) =⇒ U �k U′

combined with the automorphism assertion of Problem X:

(Aut)U
AutGkπ1(U)

Inn π1
� Autk(U) : a finite group!

implies the isomorphism version of Grothendieck’s conjecture:

Isomk(U,U′) � IsomGk (π1(U), π1(U′))/Inn(π1(U′ ⊗ k̄)).

This has been settled by Tamagawa [45] and Mochizuki [29]. In both works,
the assertions (Equiv)V for finite etale covers V of U follow all together. Here
remains a little open question. Does a collection of assertions (Equiv)V for
sufficiently many finite etale covers V of U imply (Aut)U automatically?

Grothendieck suggested in [19](6) more generally to consider the mapping

(∗) Homk(U,U′) −→ HomGk (π1(U), π1(U′))/Inn(π1(U′ ⊗ k̄)).
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The Hom-version of Grothendieck’s conjecture asserts that the above mapping
gives a bijection between the set of dominant k-morphisms U → U′ and the
set of classes of the Gk-compatible open homomorphisms π1(U) → π1(U′).
This has been settled by Mochizuki [30].

See also [38] for a review of works by Tamagawa and Mochizuki (and of the
author) till 1997, where it was found important to investigate Grothendieck’s
conjecture after replacing the base number field k by other arithmetic fields
(finite fields, sub-p-adic fields). Here, we do not enter into any more details.
For further developments, see also the articles by Tamagawa, Saidi–Tamagawa,
and Mochizuki contained in the book [42].

Grothendieck’s section conjecture [19](7) comes from a special case of (∗)
where U = Spec(k) and U′ is a hyperbolic curve (written U instead of U′).
Then, we obtain a mapping of the set of k-rational points U(k) into
Sect(π1(U)/Gk)/conj, where Sect denotes the set of sectional homomorphisms
and ‘/conj’ means modulo conjugacy by elements of π1(U ⊗ k̄). The section
conjecture asserts the bijection of U(k) onto those sections outside Sect∞ of
Note 5, namely,

U(k)
∼−→
(
Sect(π1(U)/Gk) − Sect∞

)
/conj.

Injectivity for the section conjecture and its close relationship with injectivity
for the general Hom-conjecture or with the above mentioned Equiv-conjecture
under anticipated anabelian situations have been known at early stages of in-
vestigation (cf. [19], [32]). The section conjecture is still an open problem,
but recently important evidence has appeared, such as Stix [44] and Harari–
Szamuely [21].

Finally, one may consider cases where both U and U′ are spectra of function
fields of varieties in (∗). The 0-dimensional case is nothing but the Neukirch–
Uchida theorem. For function field cases, there have been intensive studies and
results initiated by Pop [40], Bogomolov [11] and their further developments
(cf. the article by F. Pop in this volume).

Note 8
The left-hand side of Problem X turns out to be naturally isomorphic to the
centralizer of the Galois image in Out(Πg,n) called the Galois centralizer. By
virtue of the anabelian weight filtration, the Galois centralizer as well as the
Galois image lies in OutI(Πg,n) defined as the group of outer automorphisms
of Πg,n stabilizing the inertia subset I. The pro-l version of Problem X men-
tioned here considers estimating the Galois centralizer in Γpro-l

g,n := OutI(Πpro-l
g,n ),

where we set up a certain natural filtration by normal subgroups having graded
quotients gr0 � GSp(2g,Zl)×S n and gri (i ≥ 1) isomorphic to free Zl-modules
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of finite ranks. By conjugation, each gri (i ≥ 1) turns out to get a structure of
“weight (−i)” GSp-module. Since the Galois centralizer is a priori of weight
zero, it must inject into gr0, i.e., into Aut(H1(U ⊗ k̄)) (cf. [37], [35]).

gr

gr

gr

3

5

4

2
gr

gr1 weight −1

weight −2

weight −3

weight −4

weight −5

weight 0

wt=0

wt=0

Galois centralizer

GSp(2g)xSn

Indeed, more constraints to approximate the Galois centralizer to Autk(U)
should be obtained from its commutativity with nontrivial Galois images dis-
tributed in Γpro-l

g,n . The Galois image in gr0 = GSp(2g) × S n is within standard
knowledge from the theory of l-adic Galois representations on torsion points
of Jacobians (e.g., Tate conjecture proved by Faltings), which also spreads
weighted carpets on gri (i ≥ 1) in the above sense according to Frobenius
eigen-radii (Riemann–Weil hypothesis). On the other hand, to find Galois im-
ages submerging in negative weights (called Torelli–Galois images) requires
new knowledge about Galois representations on fundamental groups. Deligne
[12] and Oda [39] suggested that one could lift Ihara’s theory on πpro-l

1 (P1 −
{0, 1,∞}) to any hyperbolic curve; namely, there should be a common factor
for all Galois actions on pro-l fundamental groups (independent of the moduli)
of hyperbolic curves. After the efforts of several authors, the last remaining
case of this prediction – that of complete curves – has been settled (up to finite
torsion) by Takao [46] (cf. [35], note (A4) added in English translation). Con-
sequently, we have Torelli–Galois images in weights −6,−10,−14, . . . origi-
nated from Soule’s cyclotomic characters, and find the pro-l Galois centralizer
injected in Sp(2g) × S n. In the original case g = 0, n = 3 considered here, it
follows that the pro-l Galois centralizer for P1 − {0, 1,∞} coincides with S 3 as
expected.
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