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§1. Introduction 


In [Gl-2], Grothendieck conjectured that smooth (possibly non-complete) 
irreducible hyperbolic curves X over a finitely generated field (say, over 
a fixed algebraic number field k) are determined uniquely by their alge
braic fundamental groups n1(X) (which are naturally extensions of Gk = 
Gal(k/k) by n1(X), where k is an algebraic closure of k and X =  X x k). 
This means, for example, that the cross ratio of four k-rational points 
a1, ... , a4 on IP1 should be determined by 1r1(IP1 - { a1, . .. , a4}). This con
jecture of Grothendieck was first proved in the case of genus 0 ( [N 1]), then 
by Tamagawa in the case of arbitrary non-complete curves ( [Tl]), and fi
nally, by Mochizuki [Ml] [M2] in all cases (even over local fields). On the 
other hand, Pop has proved that finitely generated fields I< over a prime 
field (say, over Q) are determined uniquely by their absolute Galois groups 
GK = Gal(K/K)(= 1r1(SpecK)) [P] . So, if we call, after Grothendieck, a 
class X of algebraic varieties anabelian, when the functor 

X 3 X 1-----t 1r1 (X) E {Profinite groups} 

(where, by definition, the only morphisms are isomorphisms (and those 
modulo inner automorphisms)) is fully faithful, then all hyperbolic curves 
over k, as well as spectra of local rings at the generic points of any ir
reducible algebraic varieties over k, form anabelian classes. By using the 
term "anabelian" , Grothendieck seems to suggest that one could expect 
such phenomena to occur even in higher dimensional situations, and that 
whether this holds or not would be tightly related to whether the geometric 
part n1(X) of n1(X) is "far from" being an abelian group. 

Thus, the main problems are (i) to find wider classes of anabelian varieties 
( "only" the higher dimensional case is left open), and ( ii) to see how the 
geometry of X is reflected in the group theory of n1(X). This note is to 
give two types of examples in the higher dimensional case, one being an 
"alarming example" , and the other, "supporting" . 

Among the first things to note is that Pop's theorem suggests a possibil
ity that every irreducible variety over k has a non-empty open subvariety 
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which is "anabelian" (including Artin type neighborhoods of each nonsin
gular closed point [AGV) Exp.XI, Prop.3.3, cf. also [N4])1. Another is 
that by Lefschetz' theorem, general hyperplane cuts of quasi-projective va
rieties of dimension > 2 leave fundamental groups invariant, warning us 
that one should choose a good model from each equivalence class of vari
eties having the same "anabelian" fundamental groups. (Should they always 
be K(1r, 1)?) About hyperbolicity, since varieties of general type and hy
perbolic manifolds (in the sense of [Ii) [Ko]) are natural higher dimensional 
generalizations of hyperbolic curves, one asks what additional conditions 
would be necessary in order that these varieties be anabelian. As a test, 
we examine whether the "automorphism group" of 1r1(X) (one can put sev
eral different senses in this) is canonically isomorphic to AutkX. We shall 
show that some Shimura varieties of the most classical split type, namely 
the Hilbert modular varieties (e.g. surfaces) and the Siegel modular va
rieties, cannot be anabelian2. Finally, we shall also show, as a "favorable 
anabelian example" , that if X is a braid configuration of a hyperbolic curve, 
then 'Aut'1r1(X) corresponds bijectively with AutkX, by combining a pre
vious result of the second named author (partly with Takao) and the (above 
mentioned) result of Tamagawa and Mochizuki. Of course, these are only 
two (types of) examples, but it might be worthwhile to keep them in mind 
(somewhere in the corner) in studying "higher anabelian varieties" . 

§2. Group of self-equivalence classes 

In this article, we only consider smooth algebraic varieties X over a num
ber field k which is embedded in the field C of complex numbers. Given 
such an Xjk, identify 1r1(X) with the total Galois group of the tower of all 
finite etale coverings of X. Then, since the tower consists of the constant 
field extension and the geometric covering extension, we have a canonical 
exact sequence of Galois groups: 

(2.1) 

Here, the kernel group 1r1(X) classifies the geometric covering extensions 
over X = X x k and is isomorphic to the profinite completion of the usual 

1 In Grothendieck [G2] p.3, one reads "Andernteils sehe ich eine Mannigfaltigkeit je
denfalls dann als "anabelsch" (ich konnte sagen "elementar anabelsch") an, wenn sie sich 
durch successive (glatte) Faserungen aus anabelschen Kurven aufbauen lasst. Demnach 
(einer Bemerkung von M.Artin zufolge) hat jeder Punkt einer glatten Mannigfaltigkeit 
X/K ein Fundamentalsystem von (affinen) anabelschen Umgebungen." 

2 Unexpectedly from a (vague) statement by Grothendieck "ich wurde annehmen, 
class dasselbe (i.e., anabelianity) auch fur die Modulmultiplizitaten polarisierter abelscher 

Mannigfaltigkeiten gelten durfte" ([G2] p.3). 



129 Anabelian Geometry 

discrete fundamental group of the associated manifold X(<C). Every auto
morphism f E AutkX induces an element of Autk(X), which in turn induces 
(by extension and conjugation) an automorphism of 1r1(X) determined up 
to inner automorphisms by elements of 1r1 (X). This automorphism of 1r1(X) 
reduces to the identity on Gk, as f is defined over k. In other words, we 
have a natural homomorphism 

where Autak(ni(X)) := {a E Aut(n1(X)) I PX/k = PX/k oa} and lntn1(X) 
is its subgroup of the inner automorphisms by the elements of 1r1(X). The 
first naive criterion for anabelianity of X would be to check whether the 
group Ek(X) recovers (or, in the strongest sense, is isomorphic to) AutkX. 

Another candidate for approximating AutkX in terms of 1r1 is what is 
called the Galois centralizer: The exact sequence (2.1) induces the exterior 
Galois representation 

which associates to each 0' E Gk the outer class of the conjugate actions on 
1r1(X) by the preimages of 0' in 1r1 (X). The Galois centralizer Outak 1r1(X) 
is, by definition, the centralizer of the image of r.pX/k in Outn1(X). Every 
element of Ek(X) gives, by restriction, an element of Outak n1(X); thus, 
having obtained a diagram of group homomorphisms 

we may also ask whether Outak n1(X) recovers AutkX. 
The two groups Ek(X) and Outak n1(X) are isomorphic if the center Z 

of n1(X) is trivial. In fact, we have the following exact sequence (a profinite 
version of Wells' exact sequence, see [N3) 1.5.5) 

(2.2) 

where the arrows are homomorphisms except for the last one which is merely 
a mapping of sets preserving origins, and G k acts on Z by conjugation. As a 
third candidate for approximating AutkX, we define Ek(X) to be the image 
of the homomorphism Ek(X) --+ Outak 1r1(X). 

A test for anabelianity. If Xjk deserves to be called anabelian, then at 
least one of Outak n1(X), Ek(X), Ek(X) should coincide with AutkX. 
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§3. Locally symmetric spaces 

We shall give two "alarming examples" of varieties which are "hyperbolic" 
in the usual sense but not "anabelian" in the sense of the above test. First, 
we discuss the case of Siegel modular varieties, and then the Hilbert modular 
case. 
Example (S). Let A9,n be the Siegel modular variety of degree g 2: 2 and 
level n 2: 3 defined over the cyclotomic field k = Q(J.Ln)· Then none of 
Ek(A9,n), Outah 1T"I(A9,n) , Ek(A9,n) is isomorphic to Autk(A9,n )· 

For 'hyperbolists', Ag,n is a very "pleasant" object; the associated mani
fold A9,n (C) is the quotient of the Siegel upper half space by a torsion-free 
discrete subgroup rg(n) = {A E Sp(2g, Z) I A- lzg mod n} c Sp(2g, ); 
hence it is a locally symmetric space having negative curvature. In partic
ular, it is K(r9(n),1). Moreover, A9,n (C) is a hyperbolic complex manifold 
in the sense of Kobayashi [Ko], and is a variety of log general type in the 
sense of Iitaka [Ii] ( cf. [Mu] §4). Therefore, Autc(A9,n) is a finite group. By 
rigidity theorems for locally symmetric spaces, Autc(A9,n) amounts to 'a 
half' of the finite group Outr 9(n) ( [Mo], [Ma]; [No]). One encounters Ag,n 
as a typical example of a hyperbolic variety in text books of hyperbolic 
geometry. 

Meanwhile, for 'anabelianists', two "unpleasant" phenomena occur in 
Ag,n · Although n!(A9,n (C)) = r9(n) has trivial center and is residually 
finite, its profinite completion 1T"I(A9,n) = f'9(n) has a big center when 
g > 1. In fact, since Sp(2g, Z) (g > 1) has the congruence subgroup prop
erty (Bass-Lazard-Serre[BLS], Mennicke[Me]), 

pfn pin 

So, the center Z of 1T"I(A9,n) is an infinite group that corresponds via (3.1) 
to the infinite product IJ {±1} of the center {±1} of Sp29(Zp), where p 

runs over all primes p f n, with an addition of p = 2 when 2 I I  n. On 
the other hand, k has infinitely many quadratic extensions. Therefore, the 
cohomology group H:ont( Gk, Z) is infinite. Therefore, by (2.2), Ek(A9,n) is 
also infinite and hence cannot approximate the finite group Aut(A9,n)· 

Remark. Existence of non-trivial torsions in f'9(n) (n 2: 3) implies that 
Sp(2g, Z) is not a good group in the sense of Serre [Se1j3. This is also rele

3 A discrete group is called good if the Galois cohomology of its profinite completion 
coincides with the corresponding (discrete) group cohomology. The cohomological di
mension of f9 (n) is infinite due to the raised torsion, while that of the K (r9 (n) , 1)-space 
A9,n(C) (for n 2 3) is bounded ([T2]) . 
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vant to the goodness condition appearing in the profinite Gottlieb theorem 
[N3] 1.3. 

On the other hand, the image of the exterior Galois representation cp : 
Gk -t Out1r1 (A9,n) is an infinite abelian group. To see this, let Kg,N be 
the function field of Ag,N over Q(pN) (N 2: 1), and let L9 denote the 
composite of Kg,N for all N 2: 1. Then, according to Shimura ([Sh1] Th.3 
(brief account), [Sh2] Th. 7.2 (details)), L9 is a Galois extension of K9,1 with 
exact constant field Q(p=), and moreover, there is an equivalence of two 
short exact sequences of profinite groups 

(3.2) 1-t Gal(L9/K9,1 (p=)) -t Gal(L9/K9,I) -t Gal(Q(p=)/Q) -t 1 
-J.- I -J.-1 -!-IX 

(3.3) 1-t Sp(2g,Z)/{±1} -t GSp(2g,Z)/{±1}  zx -t 1. 

Here, X is the cyclotomic character, GSp is the group of (symplectic) simil
itudes, and vis the multiplier. Now let n 2: 3 and N run over all multiples 
of n. Then Ag,N is the finite etale covering of Ag,n that corresponds to the 
open normal subgroup f'9(N) of 1r1(A9,n),....., f'9(n), and by the congruence 
subgroup property, every finite etale covering of Ag,n is a subcovering of 
some Ag,N. Therefore, by the above result of Shimura, the exterior ac
tion of Gk = GQ{JLn) on 7ri(A9,n) factors through Gal(Q(p=)/Q(pn)) and 
is given by the exterior action of 

{a E Z x; a - 1(mod n)} = II Z; x II{a E Z;; a = 1 (mod n)} 
pfn pin 

on f'9(n) (see (3.1)) via the "129 (mod n ) part" of (3.3). But the kernel of 
the exterior action of z; on Sp(2g, Zp)j{±I} is exactly (z;)2, because the 
centralizer of Sp(2g, Zp)/{±I} in GSp(2g, Zp)/{±I} consists only of scalar 
matrices aP · I29(ap E z;) (whose multiplier being a;). Therefore, cp(Gk) 
contains an infinite abelian group 

II(z;/(z;)2). 
pfn 

Now since cp(Gk) is abelian, Outck(7ri(A9,n)) contains cp(Gk) itself which 
is infinite. Therefore, AutkAg,n cannot be isomorphic to Outck (7ri(A9,n)). 

It remains to examine whether the group Ek(A9,n) happens to approxi
mate Autk(A9,n) or not. But this is again negative: In fact, Ek(A9,n) still 
contains the exterior Galois image cp( Gk), because of the following 
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Lemma. Suppose that the projection PX/k : 1r1(X) --+ Gk has a splitting ho
momorphisms : Gk --+ 1r1(X) such that the induced lift rjJ : Gk --+ Aut7ri(X) 
of 'PX/k: Gk--+ Out1r1(X) vias has an abelian image. Then, 'PX/k(Gk) is 
contained in Ek(X) . 

When X = A9,n, k = Q(pn), the assumption of the Lemma is satisfied 
by taking the preimages of the matrices diag(a, . .. , a, 1 . .. , 1) for s(Gk). 

Proof of the lemma. It is not difficult to see from the assumption that, for 
any fixed (To E G k, the map 

gives a group automorphism of 1r1(X) = 1r1(X) ><l s(Gk). This provides us 
with a desired preimage of c.p((To ) in Ek(X). () 

Example (H). Let F be a totally real number field of finite degree g over 
Q, 0F be the ring of integers ofF, and for each positive integer n, let ,6.p( n) 
be the Hilbert modular group of level n; 

,6.p(n) ={A E SL(2,0p); A 12(modn)}. 

Then the group ,6.p(n) acts on the product 1-£9 of g copies of the complex 
upper half plane 1-l, in the usual manner, and if n 2: 3, ,6.p(n) is torsion
free. In this case, the quotient ,6.p( n) \1-£9 is also known to be Kobayashi
hyperbolic and of log-general type. 

The congruence subgroup property for S L( 2, 0 F) is also valid if g > 1 
[Se2). Moreover, by Shimura ([Sh2) Th.7.2), ,6.p(n)\1-£9 has a standard 
model AF,n over Q(pn) (not F(pn)), and if KF,n denotes its function field, 
and Lp = U KF,n, then there is again an equivalence of two short exact 

n 
sequences: 

1--+ Gal(Lp/KF,I(Poo))--+ Gal(Lp/KF,I)--+ Gal(Q(p00)/Q) --+1 
-!- 1 -!-I -!-lx 

A A det A/{±1} --+ zx --+1. 

Using those primes p that decompose completely in F, we see easily that 
the image of GQ(Jln) in Out1r1 (AF,n) is again an infinite abelian group. 

Now it follows by the arguments parallel to those used in the Siegel mod
ular case, that AF,n also fails the anabelianity test of §2. 
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§4. Braid configuration spaces 

In this section, we consider braid configuration spaces of hyperbolic curves 
as typical candidates for higher dimensional anabelian varieties. Let r ;:::: 1 
and C be a hyperbolic curve over a number field k. The r-dimensional (pure) 
braid configuration space C(r) is defined to be the product of r copies of C 
minus all the weak diagonals: 

For this type of variety, n1 ( C( r) ) is a successive extension of free profinite 
groups (and a profinite surface group), and hence has trivial center ( cf. e.g. 
[N3] 1.2). Therefore, three groups considered in the previous section coincide 
for braid configuration spaces: Ek( C(r)) = Ek( C(r)) = Outak n1 ( C(r)). We 
may also consider the 'pro-1 version' of these groups for any fixed prime 
, 1 · 1 · y· y Its maxima pro- quotient n1ro-l(C(r)) 

using a naturally induced exact sequence from (2.1) for X = C(r) : 
l by rep acmg 1r1 (C(r)) b · l p and b  

In the similar way, Ek1)(C(r)), Ek1)(C(r)), Outaknro-l(C(r) ) are defined 
and again these three groups are isomorphic. Thus, our anabelianity test 
(§2) for C(r) is reduced to the following 

Question. Does Outak n1 ( C(r) ) or Outak nro-t( C(r)) recover Autk( C(r))? 

Before discussing the above question, we shall summarize recent achieve
ments by Tamagawa and Mochizuki for Grothendieck's fundamental conjec
ture of anabelian geometry ([G1][G2]). Let C, C' be hyperbolic curves over 
k. Then, 

Theorem A. (Tamagawa [T1]: affine case, Mochizuki [M1]: proper case) 
The natural mapping 

is a bijection. 

Theorem B. (Mochizuki [M2]) The natural mapping 

' Isomk ( C, C') --+ Isomak (nit)(C), nil) ( C'))/Intnro-l ( c ) 

is a bijection. 
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Notes: The above works by Tamagawa and Mochizuki include much more 
essential ingredients beyond the number-basefield case. In effect, Tamagawa 
[T1] established new aspects of the finite-basefield case and Mochizuki [M2] 
introduced new ideas for the p-adic-basefield case. The statements of The
orems A, B can be divided into the following two forms respectively. 

(A) : { (Equiv) : If 1r1 (C) "" 1r1 ( C') over G k, then C  C' over k. 

(Aut) : Autk(C) ""Outak 1r1(C). 


(B) { (Equiv ) : If 1ri1)(C) "" 1ri1)(C') over Gk, then C ""  C' over k.: 1(Aut ) : Autk(C) ""Outak1fro-t(C). t
Prior to [T1], [M1-2], some special cases had been studied by the second 

named author and H. Tsunogai for the number-basefield case of (Equiv) and 
(Aut ). See ([AI] [N] "") [N1-7] [NT] (cf. [V]).t


For the above Question, we have two kinds of results as follows. 


Theorem C. ([T1] + [N3]) 
Autk( C(r) ) "" Outak 1r1 ( C(r) ) for C = IP1 - {0, 1, oo }, r  1. 

In fact, prior to [T1], the problem for general r had been reduced to the 
case of r = 1 in [N3]. This, combined with [T1], settles Theorem C. In the 
case of C = IP1 - {0, 1, oo }, C(r) can be regarded as the moduli space Mo,n 
of the n-pointed projective lines with n = r + 3, whose automorphism group 
is isomorphic to Sn, the symmetric group of degree n, for n  5. Applying 
Theorem C and the triviality4 of OutGQ to a group theoretical lemma ([N3] 
1.6.2), we obtain a Galois analog of Ivanov's rigidity theorem ([lv])5: 

Corollary C. Out 1r1 (Mo,n/Q)  Sn (n  5), ("" S3 (n = 4)). 

For general hyperbolic curves C, we also have 

Theorem D. ([M2] + [NTa]) 
Autk(C(r) )  Outak1fro-t(c(r) ) for r  1. 

In fact, in a joint article with Takao [NTa], we had shown the following 
sequence of injective homomorphisms: 

AutkC x S Y Autkc(r) YOutak7fro-t(C(r) ) Y Outak1fro-l(C) x Sr r 
4 Neukirch"' Komatsu, Ikeda, Iwasawa, Uchida, cf. [Ne]. 
5 Ivanov's rigidity asserts that the outer automorphism group of 1r1 (Mo,n (C)) is an 

extension of {± 1} by Sn for n 2:: 5 ([I v]). This result is generalized to the surface mapping 
class groups ([Iv] [Me]) . Our Corollary C particularly indicates that Galois compatibility 
condition drives out 'anti-holomorphic' self-equivalences from Outrr1 . 
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for any hyperbolic curve C of non-exceptional type. (For exceptional hyper
bolic curves whose geometric types are JP>1- { 0, 1, oo} or one-point punctured 
elliptic curves, we need some modifications to the above sequence.) This, 
combined with [M2], settles Theorem D. Curiously, the following purely 
geometric statement follows immediately from this combination. 

Corollary D. Autk(C(r))  Autk(C) x Sr, unless C is isomorphic to 
JP>1 - { 0, 1, oo} or an elliptic curve minus one point. In the latter of the 
exceptional cases, the statement holds if Sr is replaced by Sr+I· 

These results apparently suggest that the Galois fundamental groups of 
braid configuration varieties6 differ from those of Hilbert/Siegel modular 
varieties in group-theoretical nature. We observe, especially, the following 
distinguished anabelian (=far from abelian) properties of the former funda
mental groups: 

(E1) Every open subgroup of the geometric profinite fundamental group 
has trivial center ( cf. [N3] 1.3, [N4]). 

(E2) 	The Galois image in the outer automorphism group of the geomet
ric profinite fundamental group has only finitely many centralizing 
elements. 

Problem. Prove these two properties (El-2} for the 'Galois- Teichmiiller 
modular group' 7ri(M9,n/Q) ( [G1] [02]). 

Problem. Find new examples of algebraic varieties possessing the proper
ties (El-2}. 

6 Some analogous statements also hold for products of configuration varieties of hy
perbolic curves as results of Theorems A, B, C, D. 
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