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§1. Introduction 

Let M9,1 be the moduli stack over Q of the one point marked smooth 
projective curves of genus g � 1. Then, the Galois-Teichmiiller modular 
group '1r1 (M9,I)' is a group extension of GIQ = Gal(Q/Q) by the profinite 
completion of the mapping class group r� of a 1-pointed genus g surface 
( cf. [Oda]): 

( 1.1) 

It is well known that r� has a finite number of generators al' ... 'a2g' d 
which are Dehn twists along simple closed curves a1 , ... , a29, 6 in the fol­
lowing figure respectively (Lickorish [L], Humphries [Hu]). 

In this note, we prove the following 

Theorem A. There exists a good splitting homomorphism s : GIQ --+ 1r1 ( M9,1) 
of (1.1} such that the conjugate action* f--+ s(a) * s(a)-1 (a E GIQ) trans­
forms the twist generators al' ... 'a2g' d of r� as follows. 

_ dX(u) - ' 
f ( 2)-1 x(u)f ( 2) = u Yi, ai ai u Yi, ai (1 � i � 2g). 

Here, X : GIQ --+ Z x is the cyclotomic character acting on the roots of unity, 

Yl = 1, Yi =ai-l·· ·a1 · a1· ··ai-l (2 � i � 2g), 

* The author was partially supported by Yoshida Foundation for sciences and technology. 
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and fa-(X, Y) is a unique "pro-word" in X, Y defined as an element of the 
commutator subgroup of the free profinite group 1!"} (JPij- {0, 1, 00 }, m) on 
the standard loops X, Y turning around the punctures 0, 1 respectively, on 
which (Y E GQ acts as CY(X) = xx(o-), CY(Y) = fa-(X, Y)-Iyx(o-)fo-(X, Y). 

Our splitting homomorphisms in Theorem A is provided by a sophisti­
cated use of Deligne's notion of "tangential base points" ([De]). In fact, we 
construct two tangential base points lying on the hyperelliptic locus 'Hg,I of 
M9,1. One is the image of a tangential base point on the "braid configura­
tion space" , originated from Drinfeld [Dr], Ihara-Matsumoto [IM] , which a 
priori succeeds to a Galois action of desired form on a1, ... , a29. The other 
is the one induced from a certain maximally degenerate hyperelliptic curve 
over Q[[q]] whose special fibre is in the form where the simple closed curves 
<S"±i (1 :S i :S g), Ej (1 :S j :S g- 1) indicated below vanish: 

E3 � E2 �=� El 

�-g 
We construct such a curve in §3 by using Grothendieck's formal patching 

technique in a very similar way to Ihara-Nakamura [IN] ( cf. also Harbater 
[Ha]). At the second tangential base point, GQ acts a priori via the cyclo­
tomic character on the Dehn twists d±i, e j corresponding to those simple 
closed curves <S"±i, E j respectively. We then estimate these two tangential 
base points in the local neighborhood of a maximally degenerate oo-point 
of Mo,2g+2, and show that the differences of the corresponding two Galois 
actions preserve the d±i, ej's respectively. From this we conclude that the 
desired Galois action is obtained from the first tangential base point (twisted 
by a dummy 1-cocycle on the "hyperelliptic involution" .)  Especially, our 
proof shows more information on our Galois action: 

Theorem A'. The Galois action given in Theorem A on f'� transforms the 
Dehn twists d±*, e* 's (corresponding to 6±*, E* 's respectively) by the cyclo­
tomic character: 

In [Dr], Drinfeld introduced what is called the Grothendieck-Teichmiiller 
group GT, into which, thanks to Belyi [Be], GQ is embedded by the pa-
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rameters (x(o-), fu) of Theorem A (cf. [Ih2], [N, Appendix]). The group 
r� is known to be finitely presented (A.Hatcher-W.Thurston), and the re­
lations for the Humphries' generators are listed in Wajnryb [W]. Only by 
using defining relations of GT, one can check directly that our GQJ-action of 
Theorem A preserves almost all Wajnryb's relations except for the lantern 
relation (due to M.Dehn, D.Johnson). These calculations are relevant to the 
problem of approximating GQI by GT which was taken up also by L.Schneps, 
P.Lochak at the Luminy conference in several contexts. See the article [S] ---
by L. Schneps in this volume for various background materials on GT. 

At the same conference, M.Matsumoto posed a remarkable approach to 
genus 3 case from his E7-singularity viewpoint, which motivated the author 
to make the present work. Matsumoto also worked out his resultant article 
[M2] soon in which another type of tangential base point on M3 is displayed 
in connection with the Artin group of type E7. 

§2. Hyperelliptic locus 

Let A�g+l be the (2g+ 1 )-dimensional affine space over Q with coordinates 
V = (VI, . . .  , V2g+I) and 6_ = ui�j 6_ij be the weak diagonal divisor on it, 
where 6.ij = { v I Vi = Vj }. The symmetric group S2g+l acts naturally 
on A�g+I - 6., and its quotient variety is in the form of A!g+l minus the 
discriminant locus D. The points u = ( u1, ... , u29+1) E A!g+l are identified 
with the monic polynomials fu(x) = x29+1 +u1x29 + · · · +u2g+I, and u f:_ D 
if and only if the equation f u ( x) = 0 has only simple zeros. We have 
then a family of hyperelliptic curves {y2 = fu(x)}u over A!g+l - D each 
fibre of which has oo as a specially attached point. Thus, there exists a 
representing morphism from A!g+l - D to the hyperelliptic locus H9,1 of 
the moduli stack M9,1 whose point represents, by definition, a hyperelliptic 
curve Y with one marked point fixed by the hyperelliptic involution. Every 
such [Y] E H9,1 can be realized as a double cover of IP1 with 2g + 2 branch 
points (one of which is distinguished from others as the point oo) so that 
there exists a natural morphism H9,1 -+ Mo,2g+2/ S2g+l, where Mo,2g+2 is 
the moduli of (ordered) 2g + 2-pointed projective lines and S2g+l is the 
automorphism group of Mo,2g+2 "fixing the (2g + 2)-nd marking point oo" . 
We also have an obvious morphism A�9+1 \6.-+ M0,2g+2 mapping v to the 
class of (IP\ VI, . . .  , v2g+I, oo) so as to fit into the commutative diagram: 

(2.1) 
--+ Mo,2g+2 

t. 2ug+l \ D '1J AI jS fi. -7 TL g,l -+ 1V.IQ,2g+2 2g+l· 

Now, the geometric fundamental group of A�g+I \ D is the profinite braid 
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group B2g+l with standard generators o-1, ... , o-2g and relations O"iO"j = O"jO"i 
(li- jl � 2), O"iO"i+IO"i = O"i+IO"iO"i+l (i = 1, . . .  , 2g- 1), and its center is a 
free procyclic subgroup generated by w2g+l = ( o-1 · · · o-2g )2g+� . The lower 
horizontal arrows of the above diagram induce projections of B2g+I leading 
to 

Moreover, the natural homomorphism 1r1 (Hg,I) --? 1r1 (Mg,I) maps O"i to ai 
for i = 1, . ..  , 2g ( cf. [BH] ). In B2g+l, we have a distinguished commutative 
subgroup generated by Yi = O"i-1 · · · o-1 · o-1 · · · O"i-1 (2 ::=; i ::=; 2g + 1). When 
mapped into ni(Mg,I) , these Yi (2 ::=; i ::=; 2g) coincide with those of The­
orem A, while w2g+l = Y2g+1 · · · Y2 gives a topological mapping class of a 
"hyperelliptic involution". 

§3. Hyperelliptic stable curve 

In this section, we shall construct a certain hyperelliptic curve over Q[[q]] 
with a special type of maximal degeneration. Our construction process goes 
on exactly parallel to that of Ihara-Nakamura [IN] §2, with an additional 
care to the hyperelliptic involution making the curve be a double-cover of 
a degenerate projective line ( cf. also [Ha]). In [IN], we showed an explicit 
method for constructing a curve over Q[[q1, . . .  , qm'] ] from a maximally de­
generate stable marked curve - "Ir�1=-diagram" - over Q and its "distin­
guished coordinates" of the irreducible components. In this note, we present 
a variant of this method by introducing a certain Ir�±l=-diagram Y0 ap­
pearing as a double cover of a standard Ir�1=-tree X0. This variant is useful 
when extending the natural involution on Y0 to that on the deformed family 
over Q[[q]]. 

Now, let us start from the definition of X0. It is a connected stable curve 
over Q consisting of rational irreducible components X� (>. E A), ordinary 
double points P� (p E M) and marking points Q� (v E N) such that 

and the incidence relations are given by 

(3.2) { 
pi/ >.i, pi/ Ai+I (1 :::; i :::; 2g- 1), 
VI, v2IA1, vi/Ai-1 (3:::; i:::; 2g), V2g+1, V2g+21A2g, 

where pI>. ( resp. vI>.) means that P� ( resp. Q�) lies on X�. The dual 
graph of X0 (with "legs" corresponding to Q�) is as follows. 
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For each incidence pair p,j >., v / >., we introduce distinguished coordinates 
til/>. (resp. tv;>.) of X� which has value 0 at P� (resp. Q�) and 1, oo at the 
other distinguished points (i.e., double/marking points) on X�. Regarding 
the above figure as a plane tree, we introduce such coordinates in the way 
that the values at the distinguished points on each X� are anticlockwise 
arranged in the same cyclic order as 0, 1, oo except for 

{ 
t/-l2i/A2i+I (Q�2;+J = 00 (1:::; i:::; g- 1), 
t I ( Qo ) = t ( Qo ) = oo VI ),.1 V2 V2g+l I ),.2g V2g+2 • 

Next, we construct a double cover Y0 over X0 also as a connected stable 
curve. Its irreducible components Y� (>. E A) are again all rational compo­
nents, and the marking points R� (v E N) lie on them in the same incidence 
relations vj>. as in (3.2) above. But the double points {P�} (K: E K) on Y0 
are more complicated. The index set ]{ is taken to be 

{K:i; lil :::;2g+ 1, odd}U{K:i; 2:::;i::=;2g-2, even} 

and the incidence relations are given by l'i:j />.Iii, >.lil+l for all J . . 

)(_3 

Since each Y� has 4 distinguished points, we need to impose some condi­
tion on the relative locations of them on each component. This is done by 
introducing distinguished coordinates s,..;>., Svj>. in compatible ways so that 
their values at the distinguished points are {0, ±1, oo }. We define them by 
s,..;>.(P�) = 0, Svj>.(R�) = 0 and 

s,..;�>.(P�_;j>.) = oo, s,..;f>.lil (R�Iil+l) = s,..;/>..l il +l (R�Iil+2) = -1 (i =odd), 

s,..;j>.(P�odd>O) = 1, s,..;j>.(P�odd<O) = -1 (i = even), 
Sv;j>.(P�odd>o) = 1, Sv;j>.(P�odd<o) = -1 (1 :::; i :::; 2g + 2). 
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Checking the compatibilities amounts to the fact that the transformations 
s f---t -s, �' �+: keep {0, ±1, oo} invariant. We then define the covering 
morphism w : Y0 -t X0 by 

(3.3) { 
P�±i f---t P�lil (i =odd), 
S�.:;f>.. f---t s�;f>.. = t11;�>.. (i = even), 
Svj>.. f---t s� j>.. = iv;>.. (v = v1 , V2g+2) · 

Note that w : Yo -t Xo is ramified at all the Q� 's and the P�even 's so that 
each component of Y0 is a double cover of the corresponding component of 
X0 ramified over exactly two points. 

Let us then deform Y0 to a !-parameter family YI Q[[q]] of hyperelliptic 
curves, by Grothendieck's formal patching technique ([G] EGA III Sect. 5.4; 
cf. also [DR], [Ha], [IN]). We prepare the following Q[[q] ]-algebras as parts 
of Y: 

(al) 

(a2) 

(a3) 

A" = Q[s, s', -1-, -1-][[q]]l(ss'- q) 1 ± s 1 ± s' 
S = S�.:j>.., 51 = S,.;j)..' (,\ i- A1), 

1 Av = Q[s, l ± ) [[q]] (v E N), 
S = Svj>.., 

1 1 
A>.. = Q[s, -;' 1 ± s ][[q]] (>. E A), 

(A; E K), 

Then, since A�.:[�]lqN � Q[s, �' 1�8][[q]]lqN etc., the first two kinds of 
spectrums Spec (A�.:I qN) (A; E K) and Spec (AvlqN) (v E N) are glued 
together by identifying their open parts with Spec (A>.. I qN) (). E A) along 
the diagram Y0 so as to produce a scheme �N over Q[q]lqN (N 2: 1). 
The resulting sequence Y0 = �1 C �2 C · · · over artinian schemes are 
compatible to form a proper regular formal scheme � over Spf Q[[q]]. We 
denote the algebraization of � by YI Q[[q]], and identify its special fibre 
with Y0 in the obvious manner. 

Observe that in each step of the above process, we have an involution on 
� N interchanging local data compatibly as 

s B -s in A�.:; (i: even), Av, A>.. 
A�.:; B A�.:_;; S�.:;f>.. B s�.:_;f>.., s�.:;fN B s�.:_;fN (i: odd). 

These involutions on �N (N 2: 1) define an involution on YI Q[[q]] extending 
the covering transformation of Y0 I X0. Moreover, each marking point R� 
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has natural extensions Rfj E �N (Q[q] / qN) and hence Rv E Y (Q[[q]] ) fixed 
under the respective involutions. In particular, the generic fibre Y 11  is a 
complete smooth curve over Q((q)) with 2g + 2 fixed Q((q))-points under 
an involution, hence is a hyperelliptic curve of the form 

y2 = (x- v1(q)) · · · (x- Vzg+1(q)), 

where vi(q) E Q((q)) corresponds to the branch at Re; (i = 1, . . .  , 2g + 1). 
These coordinates v(q) = (vl(q), ... , vz9+1(q)) give a Q((q))-valued point of 
A;Y+1 \ 6. We have thus obtained a tangential base point if on A;9+1 \ 6 
induced from the Q( ( q) )-rational point v( q). 

§4. Tangential base points 

In the previous section, we constructed a deformation of a double cover 
Y0 over X0 using a single deformation parameter q to control all parts 
of the deformation procedure. In this section, we shall consider another 
direct construction of an explicit deformation of X0 - a chain of JP1 's - by 
allowing each singular point to deform independently by its own deformation 
parameter qi. This construction provides a universal deformation of X0 
which will be related with the former deformation later in ( 4.3). 

What we wish to be concerned with here is a standard tangential base 
point b on A;9+1 \6 having the following two properties (4.1) and (4.2). 

( 4.1) b induces a sectional homomorphism sb : GIQ -+ 1r1 (A�9+1 \D) such 
that the conjugate action by sb( O") ( O" E GrQ) on the standard gener-
ators 0"1, . . .  , O"zg E Bzg+1 is given by 

(1 :S i :S 2g), 

where Y1 = 1, Yi = O"i-1 · · · o-1 · 0"1 · · · O"i-1 (2 :S i :S 2g). 

(4.2) In Mo,Zg+2, the image of b coincides with the tangential base point 
coming from a 1-parameter family X b  over Q[[q]] of deformation of 
X0 constructed explicitly, as in [IN] §2, from a system of distin­
guished coordinates {r11;.x}11;.x such that the values at the points 
Qe2, • • •  , Qe29+1 are always 1 and with {rv;.x := tv;.xL;.x- (In [IN], 
we called {r11;.x}11;.x a tangential structure on the 'IPln00-diagram' 
xo.) 
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This kind of (tangential) base point was suggested by Drinfeld [Dr] after 
interpreting Grothendieck [ G3], whose Galois property ( 4.1) was established 
by Ihara-Matsumoto [IM] in detail. Forb satisfying both (4.1) and (4.2), one 
may employ the image, via a natural open immersion M0,2g+4 4 A29+1 \ 
�' of the tangential base point in Mo,2g+4 constructed from the similar 
tangential-structured (2g+ 4)-pointed lfDln00-tree as in Ihara-Nakamura [IN]. 
Here, however, we shall look at a way to attach the property ( 4.2) to the 
tangential base point of Ihara-Matsumoto [IM], by introducing a canonical 
coordinate system of [IN] §2 on the formal neighborhood of the locus of X0 
in the moduli stack 9J10,2g+2 of the stable (2g+2)-pointed lfD1-trees. Namely, 
gluing the following Q[[q1, ... , Q2g-1 ]]-algebras 

(bl) 

(b2) 

(b3) 

B11; =Q[r, r', -
1

- , -
1
-, ][[q1, ... , Q2g-I]]/ (rr'-Qi) , 

1-r 1-r 
r = r11;f>..p r' = r11;f>..;+1 (1 ::S i ::S 2g- 1) , 

1 
Bv; =Q[r, -- ] [[q1, ... , Q2g-I]], 1-r 

r = rv;f>.. (1 ::S i ::S 2g + 2), 
1 1 

B>..; =Q[r, -, -1 -][[q1, ... , Q29-d], r - r 
r = r11if>..; (1 ::S j ::S i ::S 2g) 

along X0, and applying Grothendieck's formal geometry, we obtain a se­
quence X0 = X1 C X2 C · · · over the sequence of artinian schemes 
{SpecQ[[qJ, . . .  , Q2g-d]/qN}N�I, where q = (qJ, . .. , Q2g-I) , and hence a 
universal deformation X --+Spec Q[[q1, ... , Q2g-d] of X0 jQ. The represent­
ing morphism for this X gives a local coordinate system of the locus of X0 in 
m1o,2g+2· Our !-parameter family xb over Q[[q]] (4.2) is the pull back of X 
by the diagonal specialization Q[[ql, . . .  , Q2g-1 ]] --+ Q[[q]] (Vqi t-+ q). Mean­
while, by simple calculations, we see that the local universal family X generi­
cally parameterizes (2g+2)-pointed projective lines (lfD1; Q1, ... , Q2g+2) with 
Q1 = 0, Q2g+I = 1, Q2g+2 = oo and Qi = Qi-1 · · · Q2g-1 (i = 2, . . .  , 2g). 
From this and the relations Q i = (Vi -v1) / ( v2g+ 1 -v1), we can conclude 
that our Qi coincides with Ihara-Matsumoto's "ti'' (cf. [IM] p.l79). 
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Let us compare the images of v and b on Mo,2g+2. Recall that v cor­
responds to the 1-parameter family Xv/t!J![[q]] obtained from the sequence 
{X;;'} N2:b where X;;' is the quotient of �N by the hyperelliptic involution. 
Since this is also a deformation of X0, there is a specialization homomor­
phism representing X v/t!J![[q]] in the form of 

Q[[q1, .. · , q2g-1]] ---+Q[[q]] 
qif---7fi(q) 

where fi(q) is a power series with fi(O) = 0. 

(1 � i � 2g - 1 ), 

Lemma ( 4.3) (i) fi( q) = q2 + {higher terms} (i =even). 
(ii) fi(q) = 16q +{higher terms} (i =odd). 

Proof. Let ro : Y0 -+ X0 be the double covering morphism constructed in 
§3, and let U� c X0 denote the affine open Spec (B11jq). Then, X;;'IU� is 
the spectrum of the ring of invariant functions on ro-1 (U�) mod qN under 
the hyperelliptic involution. 

(i) When i is even, this ring is Q[t, t', 1�t, 12t' ][[q]]/ ( tt'- q2, qN) by (3.3), 
where t = t Jli (>..;, t' = t 11;� >..;+1• By assumption, this ring has to be isomor­
phic to Q[r,r', 1�r' 12r, ][[q]]/(rr ' - fi(q), qN) (r = r11;j>..;, r' = r11;j>.;+J 
via some variable transformations of the form r - t�1, r' - t'�1 mod q. 
Observing this isomorphism localized at (t, t'), we get fi(q) = q2 + O(q3). 

(ii) When i is odd, we may employ a more a posteriori argument. On 
U�, the sequence {X;;'IU�}N2:1 coincides with that induced from the Tate 
elliptic curve of level 2 ([DR]) modulo {±1 }. In this case, the Legendre 
function .X(q) = 16q+ · · · (q = e1rv'-Ir) uniformizing IP'1- {0, 1, oo} measures 
the difference between {X;;'IU�} N2:1 and {Xi" IU�} N2:1 ( cf. [N3] §4). Since 
different values of J: (0) give different deformation rings of Q[[t, t']]/ (tt') over 
Q[q]/ qN (N � 2) near P�, we conclude that 16 is the exact value. () 

§5. End of the proof 

The fundamental group of the local neighborhood Spec Q[[ q]] (where q = 
( q1, ...  , q29-d) within Mo,2g+2 can be identified with Aut(Q{{ q}} /Q[[q]]), 
where Q{{ q}} is the union of the rings k[[q:fn, . .. , q��:1]] (n � 1, [k : 
Q] < oo). It has an abelian normal subgroup Z(1?g-1 with independent 

t h . . 1/n 1/n;--1 (' _ 21rv'-I/n ) genera ors w2, ... , w29, w ere Wz+1 . qi f---1- qi '>n '>n - e , 

q�/n f---1- q�/n (j -::J. i), and fits into the following exact sequence: 

(5.1) 1-+ Z(1)29-1 -+ Aut(Q{{q}}/Q[[q]])-+ GQ-+ 1. 
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The image of Wi via the natural map Aut(Q{ { q}} /Q[[q]] ) -t 1r1 (Mo,2g+2, b) 
corresponds to the monodromy around the singular divisor 'qi-1 = 0' (2 ::; 
i ::; 2g ). This is the Dehn twist along a simple closed curve Wi on the 
(2g + 2)-pointed sphere pinching P�i-l E X0 (indicated below), and comes 
from w� = Y2Y3 · · · Yi = (a1 · · · ai-di E B2g+1· 

2g+l 

Our two tangential base points band v give different splitting sections Sb, 
Sv of (5.1) respectively. The sb(a) (a E GIQI) transforms each Puiseux power 
series LaEIQI2g-1 a a qa to LaEIQI29_1 a( a a )qa. On the other hand, we can 
perceive the action by Sv (a) to be the coefficientwise Galois action on the 
Puiseux power series after specialized via q: In -t fi ( q) 1 In ( n ;:::: 1): The spe­
cialization process via ( 4.3) becomes 'power-compatible' after setting 111n = 
(n, 211n E IR>o (this corresponds to a choice of 'natural' chemin connecting 
v and b.) Then, for each a = (ai) E ((]29-1, f(qa) = fL fi(q)ai makes 
sense in Q{ {q} }, and sv(a) transforms it into e2rrv'=1(4p2(u) Li : odd a; ) f(qa), 
where P2 : GIQI -t Z(1) is the Kummer 1-cocycle with 211n(u-1) = (�2(u). 
Comparing these two operations on Puiseux series, we obtain: 

2g 
Sb(a) = II w�p2(u)sv(a). 

j=2 even 

Here, it is noteworthy that, although the i-th component of the "tangent 
vector" v vanishes via fi for i even, its non-trivial principal term ('q2', in this 
case) still works well in carrying Galois properties from the tangential base 
point v. The author is indebted to Prof. Deligne for this crucial remark. 
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Then, let us be back to the diagram (2.1), and let s�, s� be the splitting 
homomorphisms of th� surjection 1r1 (1-£9,1) -r GQ coming down from the 
tangential base points b, von A�g+l \ .6.. Considering the above relation in 
1r1 (Mo,2g+2 / S2g+I) and lifting it back to 1r1 (A�g+l \D) (2.1 ), we see 

2g 
s�(a) = II (wj)4P2(u) · w��+I · s�(a) 

j=2 
even 

for some 1-cocycle c : GQ -r Z(1) (a f--7 c.,. ) . Let s�, s� also denote the 
induced sectional homomorphisms GQ -r ni(M9,I) from (2.1) and 1-£9,1 c......t 
Mg,l· Then the conjugate actions by s�(a) (a E GQ) on a1, · · · , a29 are 
described just as direct images of ( 4.1): 

(1 :S i :S 2g). 

On the other hand, the conjugate actions by s� (a) (a E GQ) on d±*' e/s 
are a priori via the cyclotomic character. The reason is that our Y0 /Q lies 
over a representative point of a maximally degenerate locus in the moduli 
stack m19,1 of the 1-pointed stable curves of genus g, whose local neighbor­
hood within M9,1 has the geometric fundamental group Z(1)39-2 with the 
commutative 3g - 2 generators d±*, e* 's. 

We define then the sectional homomorphism s: GQ -r n1(M9,I) of The­
orem A by 

Since w2g+l ( = "hyperelliptic involution" ) commutes with a1, ... , a29, the 
conjugate action by s(a) on the a/s are in the same way as that by s�(a), 
hence in the desired way. As for d±*, e* 's, notice that { w�ven} and { d±*, e*} 

commute elementwise with each other. Then, we see that s( a) operates on 
the d±*' e*

'
s in the same way as s�(a) by conjugation, i.e., via the cyclotomic 

character. Thus, Theorems A and A' are both settled. 

§6. Complementary notes 

This section describes complementary remarks to the results of this note, 
whose details will be included in a forthcoming paper [N3]. Let m'lg,n de­
note the stack;Q of the ordered n-pointed stable curves of genus g, and 
Mg,n C m'lg,n its nonsingular locus (Deligne-Mumford [DM], Knudsen [K]). 
By using Grothendieck-Murre's theory [GM], one can observe behaviors of 
the fundamental group of the tubular neighborhood in Mg,n of the divisor 
of the form m191,n1 X m192,n2 (g = 91 + g2,n  = n1 + nz- 2) inside 1ri(M9,n) 
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( cf. [N2]). Roughly speaking, the "coupling device" considered in [N2] en­
ables one to relate Galois-Teichmiiller modular groups of different genera by 
"sewing up" two topological types of Riemann surfaces along boundaries. 

By looking at the arguments of previous sections along the coupling of 
91tg-1,1 x 9J11 ,2 C 9J19,1, we can see that the indeterminate parameter Cu in 
Sect.5 is negligible. Thus, the GQ-action at the base point b is essentially 
the desired one. Meanwhile, the GQ-action at v differs from it by the factors 
(wj)4P2(u) (j ;:::: 2, even). Since p2(cr) is recovered from the ratio of the upper 
components offu((6i), (__\�)) E SL2(Z) ([N3] §4), we may say that both GQ­
actions on r� can be written in terms of parameters (x(cr), fu) E CT. 

The natural forgetful map M9,n --t M9,0 obtained by forgetting the mark­
ing points induces the exact sequence 

�(n) � �0 1 --t II9,0 --t r; --t r 9 --t 1, 

where r; (resp. ft��d) denotes the profinite completion of the mapping class 
group of an n-pointed genus g surface (resp. of the pure braid group with 
n-strings on a genus g surface). Note that our GQ-actions on f� induce 
those on f� by the above forgetful mapping with n = 1. Matsumoto [M] 
studied the Galois action on the profinite braid group for a fixed affine 
smooth curve, and decomposed it into the Galois actions on Bn and the 
1r1 of the curve. One can also consider his insight in our coupling context 
as follows. Let us introduce Mg,[n] 

:= M9,n/ Sn, the moduli stack over Q 
obtained by letting the marking points unordered. Then the kernel f�n] of 
1r1 (Mg,[n]) --t GQ includes r; as an open subgroup, and is isomorphic to the 
profinite completion of the mapping class group of a closed surface of genus 
g preserving n points Q1, ... , Qn as a set. 

rf@ 
Qn D<2g 

The group f�n] has the following three types of generators: ( 1) a1, ... , a29, 
d (Dehn twists); (2) T1, . .. , T n-1 (braids); (3) XI, . . .  , X2g (peripheral paths 
of Q n around the handles). 
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By modifying the constructions of this note, one can get a tangential 
base point attached to the locus of the maximally degenerate marked stable 
curve whose dual graph (with legs) looks like the following picture, at which 
C5 E GQ acts on f�n] by 

(1) C5(ai) = fu(Yi, a7)-1a;(u)fu(Yi, a7), C5(d) = dX(u) (1 � i � 2g); 
(2) C5(Tj) = fu(7Jj, Tj)-1Tix(u)fu(ru, TJ) (1 � j � n - 1), 

where 7]1 = 1, T/j = Tj-1 · · · T1 · T1 · · · Tj-1 (j ;::: 2); 
(3) C5(xi) (1 � i � 2g) are described explicitly in terms of Gr. 

The third part action is, in effect, the main theme of [N3], where, based on 
[IN], established is a concrete procedure of computing the limit behaviors of 
exterior Galois representations when (marked) algebraic curves maximally 
degenerate to various types of marked stable curves consisting of 3-pointed 
projective lines. This procedure is, as shown in the author's talk at the 
Luminy conference, described in terms of a graph of profinite groups over 
the dual graph of the special fibre whose edge/vertex groups are products 
of free profinite groups of rank 1 or 2 with standard Galois actions. 
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