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Abstract. The Galois action on the pro-` étale fundamental groupoid of the projective line minus three

points with rational base points gives rise to a non-commutative formal power series in two variables with

`-adic coefficients, called the `-adic Galois associator. In the present paper, we focus on how Landen’s
functional equation of trilogarithms and its `-adic Galois analog can be derived algebraically from the

S3-symmetry of the projective line minus three points. Twofold proofs of the functional equation will

be presented, one is based on the chain rule for the associator power series and the other is based on
Zagier’s tensor criterion devised in the framework of graded Lie algebras. In the course of the second

proof, we are led to investigate `-adic Galois multiple polylogarithms appearing as regular coefficients of

the `-adic Galois associator. As an application, we show an `-adic Galois analog of Oi-Ueno’s functional
equation between Li1,...,1,2(1 − z) and Lik(z)’s (k = 1, 2, ...) .
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1. Introduction

The study of polylogarithms, especially their functional equations, originated in the late 18th century
by Euler, Landen, and others. The classical polylogarithm they studied is a complex function defined by
the following power series

Lik(z) :=
z

1k
+
z2

2k
+
z3

3k
+ · · · (|z| < 1).
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For k = 2, it is called the dilogarithm, and for k = 3, it is called the trilogarithm. The multiple
polylogarithm Lik(z) for a multi-index k = (k1 . . . , kd) ∈ Nd generalizes Lik(z), which is defined by the
power series

Lik(z) :=
∑

0<n1<···<nd

znd

nk11 · · ·n
kd
d

(|z| < 1).

Note that Lik(z) = Li(k)(z). The collection {Lik(z)}k satisfies certain recursive differential equations,
from which follows that each Lik(z) has an iterated integral expression that can be analytically continued
to the universal cover of the three punctured Riemann sphere P1(C) − {0, 1,∞} (cf. e.g. [F04, Lemma
1.5]). There are known a number of functional equations between these functions evaluated at points
with suitably chosen tracking paths from the unit segment (0, 1) on P1(C)−{0, 1,∞}. For example, the
following formulas are typical:

Li2(z) + Li2(1− z) = ζ(2)− log(z) log(1− z),(1)

Li2(z) + Li2

(
z

z − 1

)
= −1

2
log2(1− z),(2)

Li3(z) + Li3(1− z) + Li3

(
z

z − 1

)
(3)

= ζ(3) + ζ(2) log(1− z)− 1

2
log(x) log2(1− z) +

1

6
log3(1− z).

The former (1) is due to Leonhard Euler [E1768] and the latter two (2)-(3) are due to John Landen
[L1780]. See Lewin’s book [L81] for many other functional equations for polylogarithms. As for multiple
polylogarithms, in [Oi09]-[OU13], Shu Oi and Kimio Ueno showed the following functional equation:

(4)

k−1∑
j=0

Lik−j(z)
(− log z)j

j!
+ Li1,...,1︸︷︷︸

k−2 times

,2 (1− z) = ζ(k) (k ≥ 2).

Let ` be a fixed prime. The `-adic Galois multiple polylogarithm

Li`k(z)
(

= Li`k(γz :
−→
01 z)

)
: GK → Q`

is a function on the absolute Galois group GK := Gal(K/K) of a subfield K of C defined, for k =

(k1 . . . , kd) ∈ Nd and an `-adic étale path γz from
−→
01 to a K-rational (tangential) point z on P1−{0, 1,∞},

as a certain (signed) coefficient of the non-commutative formal power series

(5) fγzσ (X,Y ) ∈ Q`〈〈X,Y 〉〉 (σ ∈ GK)

called the `-adic Galois associator. The functions Li`k(z) were originally introduced and called the `-adic
iterated integrals in a series of papers by Zdzis law Wojtkowiak (cf. e.g., [W0]-[W3]). In particular,

(6) ζ`k(σ) := Li`k(δ :
−→
01 

−→
10)(σ)

for the standard path δ along the unit interval (0, 1) ⊂ R. For z ∈ K with a path γz :
−→
01 z, we also

write

ρz(= ργz ) : GK → Z`

for the Kummer 1-cocycle of the `-th power roots {z1/`n}n determined by γz.
In [NW12], Wojtkowiak and the first named author of the present paper devised Zagier’s tensor

criterion for functional equations as a means to calculate exact forms of identities with lower degree
terms for both complex and `-adic Galois polylogarithms. Applying the method, we established a few
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examples of functional equations in both polylogarithms. In particular, the above (1) and (2) were shown
to have the following `-adic Galois counterparts:

Li`2(z)(σ) + Li`2(1− z)(σ) = ζ`2(σ)− ρz(σ)ρ1−z(σ),(7)

Li`2(z)(σ) + Li`2

(
z

z − 1

)
(σ) = −ρ1−z(σ)2 + ρ1−z(σ)

2
(8)

for σ ∈ GK (cf. [NW12]. See (30)-(31) and Proposition 4.2 below for adjustments of notations.)
The purpose of this paper is to provide algebraic proofs of (3) and (4) which can be used to obtain

their `-adic Galois analogs reading as follows:

Theorem 1.1 (`-adic Galois analog of the Landen trilogarithm functional equation). There are suitable

paths
−→
01 1−z,−→01 z

z−1 associated to a given path γz :
−→
01 z such that the following functional equation

Li`3(z)(σ) + Li`3(1− z)(σ) + Li`3

(
z

z − 1

)
(σ)

= ζ`3(σ)− ζ`2(σ)ρ1−z(σ) +
1

2
ρz(σ)ρ1−z(σ)

2 − 1

6
ρ1−z(σ)

3

− 1

2
Li`2(z)(σ)− 1

12
ρ1−z(σ)− 1

4
ρ1−z(σ)

2

holds for σ ∈ GK .

Theorem 1.2 (`-adic Galois analog of the Oi-Ueno functional equation).

k−1∑
j=0

Li`k−j(z)(σ)
ρz(σ)j

j!
+ Li`1,...,1︸︷︷︸

k−2 times

,2(1− z)(σ) = ζ`k(σ) (σ ∈ GK).

Remark 1.3. In [S21], the second named author showed that the functional equation (7) has an ap-
plication to a reciprocity law of the triple mod-{2, 3} symbols of rational primes via Ihara-Morishita
theory (cf. [HM19]). Theorem 1.2 was shortly announced in a talk by the first named author at online
Oberwolfach meeting ([N21]). After the present paper was worked out, the second named author ob-
tained a generalization of Theorem 1.2 to higher multi-indices ([S23a]), and showed an `-adic version of
Spence-Kummer’s trilogarithm functional equation from which various formulas including Theorem 1.1
can be derived by specializations (cf. [S23b, Remark 4.3.]).

The contents of this paper will be arranged as follows: After a quick setup in §2 on the notations
of standard paths on P1 − {0, 1,∞}, in §3 we discuss complex and `-adic Galois associators as formal
power series in two non-commuting variables, and define the multiple polylogarithms as their coefficients
of certain monomials. We then review in the complex analytic context that (3) and (4) can be derived
from algebraic relations (chain rules) of associators along simple compositions of paths. With this line
in mind, we prove Theorems 1.1 and 1.2 in the `-adic Galois case by tracing arguments in parallel ways
to the complex case. In §4, after shortly recalling polylogarithmic characters introduced in a series of
collaborations by Wojtkowiak and the first named author, we present Z`-integrality test for `-adic Galois
Landen’s equation obtained in Theorem 1.1. Section 5 turns to an alternative approach to functional
equations of polylogarithms based on a set of tools devised in [NW12] to enhance Zagier’s tensor criterion
for functional equations into a concrete form. Then we give alternative proofs of (3) and Theorem 1.1
with this method. In Appendix A, we exhibit lower degree terms of the complex and `-adic Galois
associators as a convenient reference from the text. Appendix B summarizes a set of computational tools
from [NW12] that converts a tensor criterion of functions into a polylogarithmic identity.

Acknowledgement: The authors would like to thank Hidekazu Furusho for valuable communications on
the subject during the preparation of the present paper. They also thank the anonymous referees for
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many pieces of advice which improved the presentation of this article. This work was supported by JSPS
KAKENHI Grant Numbers JP20H00115, JP20J11018.

2. Set up

Fix a prime number `. Let K be a subfield of the complex number field C, K the algebraic closure
of K in C, and GK := Gal(K/K) the absolute Galois group of K. Let U := P1

K − {0, 1,∞} be

the projective line minus three points over K, UK the base-change of U via the inclusion K ↪→ K, and
Uan = P1(C)−{0, 1,∞} the complex analytic space associated to the base-change of UK via the inclusion

K ↪→ C.
In the following, we shall write

−→
01 for the standard K-rational tangential base point on U . Let z be

a K-rational point of U or a K-rational tangential base point on U . We consider
−→
01, z also as points

on UK or Uan by inclusions K ↪→ K and K ↪→ C. (Note: We admit the particular case K = C where
GK = {1}. It is also possible to start with a specific complex point z ∈ C − {0, 1} so that any field K
with Q(z) ⊂ K ⊂ C fits into our setup.)

Let πtop
1 (Uan;

−→
01, z) be the set of homotopy classes of topological paths on Uan from

−→
01 to z, and let

π`-ét
1 (UK ;

−→
01, z) be the pro-`-finite set of pro-` étale paths on UK from

−→
01 to z. Note that there is a

canonical comparison map

πtop
1 (Uan;

−→
01, z)→ π`-ét

1 (UK ;
−→
01, z)

that allows us to consider topological paths on Uan as pro-` étale paths on UK .

l0
0 δ−→

10

δ−→
0∞

1
l1 l∞• • •

∞

The dashed line represents P1(R)− {0, 1,∞}.
The upper half-plane is above the dashed line.

Let l0, l1, l∞ be the topological paths on Uan with base point
−→
01 circling counterclockwise around

0, 1,∞, respectively. Then, {l0, l1} is a free generating system of the topological fundamental group

πtop
1 (Uan,

−→
01) := πtop

1 (Uan;
−→
01,
−→
01) or the pro-` étale fundamental group π`-ét

1 (UK ,
−→
01) := π`-ét

1 (UK ;
−→
01,
−→
01).

Then, πtop
1 (Xan,

−→
01) is a free group of rank 2 generated by {l0, l1} and π`-ét

1 (UK ,
−→
01) is a free pro-` group

of rank 2 topologically generated by {l0, l1}.
Fix a topological path γz ∈ πtop

1 (Uan;
−→
01, z) on Uan from

−→
01 to z. Moreover, let δ−→

10
∈ πtop

1 (Uan;
−→
01,
−→
10)

be the topological path on Uan from
−→
01 to

−→
10 along the real interval, and let δ−→

0∞ ∈ π
top
1 (Uan;

−→
01,
−→
0∞) be

the topological path on the upper half-plane in Uan from
−→
01 to

−→
0∞.

Let φ, ψ ∈ Aut(Uan) be automorphisms of Uan defined by

(9) φ(t) = 1− t, ψ(t) =
t

t− 1
,
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and introduce specific paths from
−→
01 to 1− z and to z

z−1 by
γ1−z := δ−→

10
· φ(γz) ∈ πtop

1 (Uan;
−→
01, 1− z),

γ z
z−1

:= δ−→
0∞ · ψ(γz) ∈ πtop

1

(
Uan;

−→
01,

z

z − 1

)
.

(10)

Here, paths are composed from left to right.
For any field F , we shall write F 〈〈X,Y 〉〉 for the ring of non-commutative power series in the non-

commuting indeterminates X,Y with coefficients in F . Every element f(X,Y ) ∈ F 〈〈X,Y 〉〉 can be
expanded as a formal sum over the free monoid M generated by X,Y . We call an element w ∈ M a word
in X,Y , and denote by Coeffw(f(X,Y )) ∈ F the coefficient of a word w ∈ M in f(X,Y ) ∈ F 〈〈X,Y 〉〉:

(11) f(X,Y ) =
∑
w∈M

Coeffw(f(X,Y )) · w.

In particular, for the unit element w = 1 of M, Coeff1(f(X,Y )) denotes the constant term of f(X,Y ).

3. Associators and multiple polylogarithms

Recall that the multiple polylogarithms appear as coefficients of the non-commutative formal power
series in two variables, determined as the basic solution of the KZ equation (Knizhnik-Zamolodchikov
equation) on P1(C) − {0, 1,∞} (cf. [Dr90]). More precisely, let G0(X,Y )(z) (= G0(X,Y )(γz)) be the
fundamental solution of the formal KZ equation

d

dz
G(X,Y )(z) =

(
X

z
+

Y

z − 1

)
G(X,Y )(z)

on P1(C)−{0, 1,∞}, which is an analytic function with values in C〈〈X,Y 〉〉 characterized by the asymp-
totic behavior G0(X,Y )(γz) ≈ exp (X log(z)) (z → 0) and analytically continued to the universal cover
of P1(C)− {0, 1,∞}. Here, log(z) :=

∫
δ−1
−→
01
·γz

1
t dt.

One can expand G0(X,Y )(γz) with the notation (11) as:

(12) G0(X,Y )(γz) = 1 +
∑

w∈M\{1}

Coeffw(G0(X,Y )(γz)) · w.

The multiple polylogarithm Lik(z) (= Lik(γz)) associated to a tuple k = (k1 . . . , kd) ∈ Nd and a topo-

logical path γz from
−→
01 to z is equal to the coefficient of G0(X,Y )(γz) at the ‘regular’ word w(k) :=

Xkd−1Y · · ·Xk1−1Y multiplied by (−1)d (where ‘regular’ means that the word ends in the letter Y ). In
summary, writing the length d of the tuple k = (k1 . . . , kd) as dep(k), we have

(13) Lik(γz) = (−1)dep(k) Coeffw(k)(G0(X,Y )(γz)).

To define the `-adic Galois multiple polylogarithms, we make use of the GK-action on the étale paths

instead of the fundamental KZ-solution. Given a pro-` étale path γz ∈ π`-ét
1 (UK ;

−→
01, z), form a pro-`

étale loop fγσ := γ · σ(γ)−1 ∈ π`-ét
1 (UK ,

−→
01), and expand it via the Magnus embedding π`-ét

1 (UK ,
−→
01) ↪→

Q`〈〈X,Y 〉〉 defined by l0 7→ exp(X), l1 7→ exp(Y ).

Notation 3.1. We shall often identify fγzσ ∈ π`-ét
1 (UK ,

−→
01) with the above image in Q`〈〈X,Y 〉〉. Then,

following notation of (11), let us write

(14) fγzσ (X,Y ) = 1 +
∑

w∈M\{1}

Coeffw(fγzσ (X,Y )) · w (σ ∈ GK).

This is what we described in (5). In the parallel way to the above (13), for any tuple k of positive integers,
we define the `-adic Galois multiple polylogarithm Li`k to be the function GK → Q` determined by

(15) Li`k(γz)(σ) = (−1)dep(k)Coeffw(k)(f
γz
σ (X,Y )) (σ ∈ GK).
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The `-adic zeta function ζ`k : GK → Q` is a special case when γz is the unit interval path δ−→
10

from
−→
01 to

−→
10 as mentioned in Introduction (6).

Remark 3.2. It is worth noting that the `-adic Galois associator f
δ−→
10
σ (X,Y ) ∈ Q`〈〈X,Y 〉〉 is the `-adic

Galois analog of the Drinfeld associator

Φ(X,Y ) :=
(
G0(Y,X)(γ1−z)

)−1

·G0(X,Y )(γz) ∈ C〈〈X,Y 〉〉.

See also Appendix A for some basic properties and explicit coefficients of low degree terms of Φ(X,Y )

and f
δ−→
10
σ (X,Y ).

Lemma 3.3 (Key identities). The notations being as above, the following identities hold.

(1) G0(X,Y )(γz) = G0(Y,X)(γ1−z) · Φ(X,Y ).
(2) G0(X,Y )(γ z

z−1
) = G0(X,Z)(γz) · exp(πiX), where Z := −X − Y .

(3) fγzσ (X,Y ) = f
γ1−z
σ (Y,X) · fδ−→10σ (X,Y ).

(4) f
γ z
z−1

σ (X,Y ) = fγzσ (X,Z) · exp( 1−χ(σ)
2 X), where Z := log(exp(−Y )exp(−X)).

Proof. The identity (1) was remarked in [F14, A.24]. We shall prove (1) and (2) as consequences of
the chain rule of iterated integrals along composition of paths: Λ(αβ) = Λ(α)Λ(β) for α : x y and
β : y z, where Λ(γ) = 1 +

∑∞
m=1

∫
γ
ω · · ·ω︸ ︷︷ ︸
m

∈ C〈〈X,Y 〉〉 is Chen’s transport of the formal connection

associated to ω = dt
t X + dt

t−1Y ∈ V1 ⊗ Ω1. (Here Ω1 is the space of meromorphic 1-forms with log-

singularities on (P1, {0, 1,∞}) and V1 is the dual of Ω1. For extension to cases of tangential base
points, see [De89], [W97]). Below, for simplicity, write δ := δ−→

10
, ε := δ−→

0∞. It is easy to see from

(10) and φ(δ) = δ−1 that γz = δ · φ(γ1−z). This identity and another γ z
z−1

= ε · ψ(γz) from (10)

imply Λ(γz) = Λ(δ)Λ(φ(γ1−z)) = Λ(δ)φ−1
∗ (Λ(γ1−z)) and Λ(γ z

1−z
) = Λ(ε)Λ(ψ(γz)) = Λ(ε)ψ−1

∗ (Λ(γz))

respectively (cf. [NW12, (4.5)]). The assertions (1), (2) follow from them together with a normalization

of convention: G0(X,Y )(γz) = Λ(γz)(X,Y ), where f(X,Y ) denotes the non-commutative formal power
series in X,Y obtained from f(X,Y ) by reversing the order of letters in each word (i.e., x1 · · ·xm =
xm · · ·x1 for xi ∈ {X,Y }, i = 1, . . . ,m, m ≥ 1). Note that Λ1Λ2 = Λ2 · Λ1.

(3): From (10) again, we have γz = δ · φ(γ1−z) as above. Noting that the automorphism φ is defined
over K and that δφ(li)δ

−1 = l1−i (i = 0, 1), we compute

fγzσ = γz · σ(γz)
−1 = δ · φ(γ1−z) · σ(φ(γ1−z)

−1) · σ(δ)−1

= δ · φ(fγ1−zσ ) · δ−1 · f
−→
10
σ = fγ1−zσ (Y,X) · f

−→
10
σ (X,Y ).

(4): Recall that l∞ = exp(Z) represents a loop in π`-ét
1 (UK ,

−→
01) such that l0l1l∞ = 1. Noting that ψ

is defined over K and that εψ(l0)ε−1 = l0, εψ(l1)ε−1 = l∞, we compute from γ z
z−1

= ε · ψ(γz) (10):

f
γ z
z−1

σ = ε · ψ(γz) · σ(ε · ψ(γz))
−1 = ε · ψ(fγzσ ) · ε−1 · εσ(ε)−1

= fγzσ (X,Z) · fεσ(X,Y ) = fγzσ (X,Z) · l−
χ(σ)−1

2
0 .

In the last equality, we used a formula σ(ε) = l
χ(σ)−1

2
0 ε (σ ∈ GK). The proof of Lemma is completed. �

We summarize analogy between `-adic Galois and complex associators as Table 1, where the 3rd and
4th rows reflect the key identities of Lemma 3.3.
Algebraic proof of (3)-(4). The following arguments are motivated from an enlightening remark given
in Appendix of Furusho’s lecture note [F14, A.24]. By the explicit formula of Le-Murakami [LM96] type
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Table 1.

`-adic Galois side complex side

fγzσ (X,Y ) ∈ Q`〈〈X,Y 〉〉 G0(X,Y )(γz) ∈ C〈〈X,Y 〉〉

f
δ−→
10
σ (X,Y ) ∈ Q`〈〈X,Y 〉〉 Φ(X,Y ) ∈ C〈〈X,Y 〉〉

fγzσ (X,Y ) = f
γ1−z
σ (Y,X) · fδ−→10σ (X,Y ) G0(X,Y )(γz) = G0(Y,X)(γ1−z) · Φ(X,Y )

f
γ z
z−1

σ (X,Y ) = fγzσ (X,Z) · exp( 1−χ(σ)
2 X) G0(X,Y )(γ z

z−1
) = G0(X,Z)(γz) · exp(πiX),

Z := log(exp(−Y )exp(−X)) Z := −Y −X

Li`k(γz)(σ): `-adic Galois multiple polylog value Lik(γz): multiple polylog value

ζ`k(σ): `-adic Galois multiple zeta value ζ(k): multiple zeta value

due to Furusho [F04, Theorem 3.15], the coefficient of Y Xk−1 in G0(X,Y )(γz) is

CoeffY Xk−1(G0(X,Y )(γz)) = −
∑

s+t=k−1
s,t≥0

(−1)sLif ′(Y ∃ Xs)(z)
logt z

t!

= (−1)k
k−1∑
t=0

(−1)tLik−t(z)
logt z

t!
,

where f ′ indicates the operation annihilating terms ending with the letter X. Applying this to the key
identity G0(Y,X)(γ1−z) = G0(X,Y )(γz) ·Φ(Y,X) from Lemma 3.3 (1) (cf. also [F14, A.24]), we see that

CoeffY Xk−1(G0(Y,X)(γ1−z)) = CoeffXY k−1(G0(X,Y )(γ1−z))

= (−1)k−1Li1,...,1︸︷︷︸
k−2 times

,2 (1− z)

is equal to

CoeffY Xk−1(G0(X,Y )(γz)) + CoeffY Xk−1(Φ(Y,X))

= CoeffY Xk−1(G0(X,Y )(γz)) + CoeffXY k−1(Φ(X,Y ))

= (−1)k
k−1∑
t=0

(−1)tLik−t(z)
logt z

t!
+ (−1)k−1ζ(1, . . . , 1︸ ︷︷ ︸

k−2 times

, 2)

Here we used a tautological identity

Coeffw(X,Y )(Φ(X,Y )) = Coeffw(Y,X)(Φ(Y,X))

and the fact that CoeffXi(Φ(X,Y )) = CoeffY i(Φ(X,Y )) = 0 for all i ≥ 1. This together with the
well–known identity ζ(1, . . . , 1︸ ︷︷ ︸

k−2 times

, 2) = ζ(k) (duality formula) derives the identity (4).

Remark 3.4. The duality formula is known to be a consequence of the 2-cycle relation and the shuffle
product formula. Cf. [F22, Lemma 2.2], [Sou13, p.12 (5)] or Appendix A (45).

Before going to prove (3), we compare the coefficients of Y XY in the same identity G0(X,Y )(γz) =
G0(Y,X)(γ1−z)·Φ(X,Y ) of Lemma 3.3 (1). For simplicity, we shall use the following abbreviated notation:

cw(γz) := Coeffw(G0(X,Y )(γz))
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for any word w ∈ M and a path γz from
−→
01 to a point z. By simple calculation, we then obtain

cY XY (γz) = −ζ(2)cX(γ1−z)− 2ζ(3) + cXYX(γ1−z)(16)

= −ζ(2)cX(γ1−z)− 2ζ(3) +
(
cXY (γ1−z)cX(γ1−z)− 2cX2Y (γ1−z)

)
where, in the former equality are used known identities CoeffXY (Φ(X,Y )) = −ζ(2), CoeffY XY (Φ(X,Y )) =
−2ζ(3) (see Appendix A (43),(47)), and in the last equality is used the shuffle relation according to
XY ∃ X = XYX + 2X2Y (cf. Appendix A (48)). This leads to

(17) Li2,1(z) = −π
2

6
log(1− z)− 2ζ(3)− Li2(1− z) log(1− z) + 2Li3(1− z).

Now let us compare the coefficients of X2Y on both sides of the key identity

G0(X,Y )(γ z
z−1

) = G0(X,Z)(γz) · exp(πiX)

from Lemma 3.3 (2). It follows easily that

(18) cXXY (γ z
z−1

) = cXXY (γz)− cY Y Y (γz) + cXY Y (γz) + cY XY (γz),

or equivalently,

(19) − Li3
(

z

z − 1

)
= Li3(z) + Li1,1,1(z) + Li1,2(z) + Li2,1(z).

We know from the case k = 3 of (4) with interchange z ↔ 1− z that

(20) Li1,2(z) = ζ(3)−
(
Li3(1− z)− Li2(1− z) log(1− z)− 1

2
log z log2(1− z)

)
.

Putting (17) and (20) into the last two terms of (19) with noticing Li1,1,1(z) = − 1
6 log3(1−z) (cf. Appendix

A), we obtain a proof of Landen’s trilogarithm functional equation (3). �

Proof of Theorem 1.2: In the `-adic Galois setting, the argument for the assertion goes in an almost
parallel way to the above proof for (4). In fact, the formula of Le-Murakami and Furusho type is
generalized to any group-like elements of Q`〈〈X,Y 〉〉 in [N23], so that it holds that

(21) CoeffY Xk−1(fγzσ (X,Y )) = (−1)k
k−1∑
t=0

Li`k−t(γz)
ρz(σ)t

t!
.

Comparing the coefficients of Y Xk−1 in the key identity

fγzσ (X,Y ) = fγ1−zσ (Y,X) · fδ−→10σ (X,Y )

of Lemma 3.3 (3), we obtain

(22)

k−1∑
j=0

Li`k−j(γz)(σ)
ρz(σ)j

j!
+ Li`1,...,1︸︷︷︸

k−2 times

,2(γ1−z)(σ) = ζ`1,...,1︸︷︷︸
k−2 times

,2(σ) (σ ∈ GK).

Note here that, in the special case z =
−→
10 with γz = δ−→

10
, we should interpret that Li`1,...,1,2(γ1−z)(σ) = 0

and that ρz(σ)j = 0, 1 according to whether j > 0 or j = 0, from which we obtain the duality formula:

(23) ζ`1,...,1︸︷︷︸
k−2 times

,2(σ) = ζ`k(σ) (σ ∈ GK).

Putting this back to (22) settles the proof of Theorem 1.2. �
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Proof of Theorem 1.1: We only have to examine the `-adic Galois versions of the identities (17), (19)
and (20) with replacing the role of G0(X,Y )(γ∗) by fγ∗σ (X,Y ). It turns out that the two identities (17),
(20) have exactly the parallel counterparts:

Li`2,1(γz)(σ)(24)

= ζ`2(σ)ρ1−z(σ) + ζ`2,1(σ) + Li`2(γ1−z)(σ)ρ1−z(σ) + 2Li`3(γ1−z)(σ),

Li`1,2(γz)(σ)(25)

= ζ`3(σ)−
(
Li`3(γ1−z)(σ) + Li`2(γ1−z)(σ)ρ1−z(σ) +

1

2
ρz(σ)ρ1−z(σ)2

)
with σ ∈ GK . There occurs a small difference for (19) when evaluating the key identity

f
γ z
z−1

σ (X,Y ) = fγzσ (X,Z) · exp

(
1− χ(σ)

2
X

)
from Lemma 3.3 (4) with taking into accounts the Campbell-Hausdorff sum

Z :=log(exp(−Y )exp(−X))(26)

=− Y −X +
1

2
(Y X −XY )− 1

12
XXY + · · ·︸ ︷︷ ︸

(∗)

,

where do exist nontrivial nonlinear terms (∗) in the `-adic Galois case. To simplify our presentation, we
shall use the following abbreviated notation:

c`w(γz)(σ) := Coeffw(fγzσ (X,Y ))

for any word w ∈ M, a path γz from
−→
01 to a point z and σ ∈ GK . Then fγzσ (X,Z) is calculated as follows:

fγzσ (X,Z)(27)

=1 + c`X(γz)(σ)X + c`Y (γz)(σ)Z + c`XY (γz)(σ)XZ + c`Y 2(γz)(σ)Z2 + · · ·

=1 +
(
c`X(γz)(σ)− c`Y (γz)(σ)

)
X

− c`Y (γz)(σ)Y +c`Y (γz)(σ)

(
1

2
Y X − 1

2
XY − 1

12
XXY + · · ·

)
︸ ︷︷ ︸

`-adic extra terms in c`Y (γz)(σ)Z

+
(
c`Y 2(γz)(σ)− c`XY (γz)(σ)

)
XX +c`XY (γz)(σ)

(
1

2
XYX − 1

2
XXY + · · ·

)
︸ ︷︷ ︸

`-adic extra terms in c`XY (γz)(σ)XZ

+
(
c`Y 2(γz)(σ)− c`XY (γz)(σ)

)
XY +c`Y 2(γz)(σ)

(
1

2
XXY − 1

2
Y Y X + · · ·

)
︸ ︷︷ ︸

`-adic extra terms in Coeff`
Y 2 (γz)(σ)Z2

+ c`Y 2(γz)(σ)Y X + c`Y 2(γz)(σ)Y Y + · · · (σ ∈ GK).

Summing up, we find that the `-adic Galois analog to identity (18) turns to get extra additional terms
as:

c`XXY (γ z
z−1

)(σ) = −c`XXY (γz)(σ)− c`Y Y Y (γz)(σ) + c`XY Y (γz)(σ) + c`Y XY (γz)(σ)(28)

−
(

1

2
c`XY (γz)(σ)− 1

2
c`Y Y (γz)(σ) +

1

12
c`Y (γz)(σ)

)
,
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from which follows that

Li`3(γ z
z−1

)(σ) = −Li`3(γz)(σ)− Li`1,1,1(γz)(σ)− Li`1,2(γz)(σ)− Li`2,1(γz)(σ)(29)

−
(

1

2
Li`2(γz)(σ) +

1

4
ρ1−z(σ)2 +

1

12
ρ1−z(σ)

)
for σ ∈ GK . The asserted formula follows from (29) after Li`1,2(γz)(σ), Li`2,1(γz)(σ) in the RHS are
replaced by the equations (25), (24) respectively and from knowledge of the lower degree coefficients of
fγ∗σ (X,Y ) illustrated in (44), (46) and (48) of Appendix A. �

4. Polylogarithmic characters and Z`-integrality test

There is a specific series of functions χ̃zm : GK → Z` (called the polylogarithmic characters) closely

related to the `-adic Galois polylogarithms Li`k(z) : GK → Q`. Let γz be an `-adic étale path from
−→
01 to

a K-rational (tangential) point z on P1 − {0, 1,∞}.

Definition 4.1 ([NW99]: `-adic Galois polylogarithmic character ). For each m ∈ N and σ ∈ GK , we
define χ̃γzm (σ) (often written shortly as χ̃zm(σ)) by the (sequential) Kummer properties

ζ
χ̃zm(σ)
`n = σ

(
`n−1∏
i=0

(1− ζχ(σ)−1i
`n z1/`n)

im−1

`n

)/ `n−1∏
i=0

(1− ζi+ρz(σ)
`n z1/`n)

im−1

`n

over n ∈ N, where the roots z1/n, (1− z)1/n, (1− ζanz1/n)1/m (n,m ∈ N, a ∈ Z) are chosen along the path

γz ∈ πtop
1 (Uan;

−→
01, z), ρz(= ργz ) : GK → Z` is the Kummer 1-cocycle of the `-th power roots {z1/`n}n

along γz, and χ : GK → Z×` is the `-adic cyclotomic character. We call the function

χ̃zm (= χ̃γzm ) : GK → Z`

the (`-adic Galois) polylogarithmic character associated to γz ∈ πtop
1 (Uan;

−→
01, z). When z =

−→
10 and

γz = δ−→
10

, it gives the Soulé character (cf. [NW99, REMARK 2]).

We first begin with summarizing the relations between the polylogarithmic characters and `-adic Galois
polylogarithms:

Proposition 4.2. Let fγzσ (X,Y ) be the Magnus expansion of the `-adic Galois associator fγzσ as in (14).
Then, we have:

CoeffY Xm−1 (fγzσ (X,Y )) = − χ̃zm(σ)

(m− 1)!

(
= (−1)m

m−1∑
k=0

Li`m−k(γz)(σ)
ρz(σ)k

k!

)
,(i)

CoeffXm−1Y (fγzσ (X,Y )) = −Li`m(γz)(σ)

(
= (−1)m

m−1∑
k=0

ρz(σ)k

k!

χ̃zm−k(σ)

(m− 1− k)!

)
(ii)

for σ ∈ GK .

Proof. The first equality of (i) is proved in [NW20, Proposition 8 (ii)], where the symbol Liw in loc.cit.
differs from our Liw by the sign corresponding to the parity of the number of appearances of letter Y in
w. The first equality of (ii) is just due to our definition of Li`k in (15). The equality in the bracket of (i)
is nothing but (21), i.e., is a consequence of a formula of Le-Murakami and Furusho type ([N23]). The

equality in the bracket of (ii) follows from (i) by inductively reversing the sequence {χ̃m}m to {Li`m}m. �

Often we prefer a functional equation of `-adic Galois polylogarithms converted to a form of the
corresponding identity between polylogarithmic characters by Proposition 4.2, because the latter enables
us to check the Z`-integrality of both sides of the equation.
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For example, the functional equations (7), (8) are respectively equivalent to

χ̃z2(σ) + χ̃1−z
2 (σ) + ρz(σ)ρ1−z(σ) =

1

24
(χ(σ)2 − 1),(30)

χ̃z2(σ) + χ̃
z/(1−z)
2 (σ) = −1

2
ρ1−z(σ)(ρ1−z(σ)− χ(σ))(31)

for σ ∈ GK . Noting that χ(σ) ≡ 1 (mod 2) and χ(σ)2 ≡ 1 (mod 24), we easily see that each of the
RHSs have no denominator, i.e., ∈ Z` for every prime `. From this viewpoint, it is worth rewriting
Landen’s trilogarithm functional equation (Theorem 1.1) in terms of polylogarithmic characters. By
simple computation, it results in:

χ̃z3(σ) + χ̃1−z
3 (σ) + χ̃

z/(z−1)
3 (σ)(32)

= χ̃
−→
10
3 (σ) + χ(σ)χ̃z2(σ) + ρz(σ)ρ1−z(σ)2 − ρ1−z(σ)

12
(χ(σ)2 − 1)

− ρ1−z(σ)

6

(
χ(σ)− ρ1−z(σ)

)(
χ(σ)− 2ρ1−z(σ)

)
.

It is not difficult to see that each term of the above right–and side has no denominator in Q`.

5. Tensor criterion for Landen’s equation for Li3

It would be worth giving alternative proofs of complex/`-adic Galois Landen’s trilogarithm functional
equations (3) and Theorem 1.1 with the method of [NW12] not only for checking the validity of proofs
given in §3 but also for providing a typical sample showing the utility of Zagier’s tensor criterion for
functional equations (cf. e.g. [G13]).

Let O := C[t, 1
t ,

1
1−t ] be the coordinate ring of UC = P1

C − {0, 1,∞} with unit group O×, and let

f1, f2, f3 : UC → UC be (auto)morphisms of UC defined by

f1(t) = t, f2(t) = 1− t, f3(t) =
t

t− 1
.

Considering f1, f2, f3 : U → Gm as elements of O×, we specialize Zagier’s tensor criterion for Landen’s
functional equation of Li3’s in the following proposition:

Proposition 5.1 (Tensor criterion for Landen’s functional equation for Li3). Let O× := O×/C× and

denote the image of fi (i = 1, 2, 3) inO× by the same symbol. Then, in the tensor productO×⊗
(
O×∧O×

)
of multiplicative groups (where ⊗ and ∧ are taken over Z), we have

f1 ⊗ (f1 ∧ (f1 − 1)) + f2 ⊗ (f2 ∧ (f2 − 1)) + f3 ⊗ (f3 ∧ (f3 − 1)) ≡ 0.

Proof. Set a := t, b := t− 1 c := −1 and write the multiplication of O× in additive form. Then, we find
f1 = a, f1 − 1 = b, f2 = b+ c, f2 − 1 = a+ c, f3 = a− b, f3 − 1 = −b so that

f1 ⊗ (f1 ∧ (f1 − 1)) + f2 ⊗ (f2 ∧ (f2 − 1)) + f3 ⊗ (f3 ∧ (f3 − 1))

= a⊗ (a ∧ b) + (b+ c)⊗ ((b+ c) ∧ (a+ c)) + (a− b)⊗ ((a− b) ∧ (−b))
= b⊗ (c ∧ a) + b⊗ (b ∧ c) + c⊗ (a ∧ b) + c⊗ (a ∧ c) + c⊗ (b ∧ c).

Obviously, this last side is annihilated in O×⊗
(
O×∧O×

)
, since c ≡ 0 in O×. The assertion of proposition

is proved. �

To compute the functional equations in concrete forms, we shall plug the above Proposition 5.1 into
[NW12, Remark 2.3 and Theorem 5.7: (ii)C → (iii)C and (ii)` → (iii)`]. For a quick review on the

method of [NW12], we also refer the reader to Appendix B. Fix a family of paths {δ1, δ2, δ3} from
−→
01 to

f1(
−→
01) =

−→
01, f2(

−→
01) =

−→
10, f3(

−→
01) =

−→
0∞, with δ1 := 1(= trivial path), δ2 := δ−→

10
, δ3 := δ−→

0∞ respectively.

Suppose we are given a topological path γz :
−→
01 z on P1(C)− {0, 1,∞}. Then, δi (i = 1, 2, 3) provides
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a natural path δi · fi(γz) :
−→
01 fi(z). Below we always consider the three points f1(z) = z, f2(z) = 1− z

and f3(z) = z
z−1 to accompany those natural tracking paths from the base point

−→
01 (i = 1, 2, 3) in this

way.

5.1. Complex case. With the notations being as above, [NW12, Theorem 5.7 (iii)C] asserts the existence
of a functional equation of the form

(33)

3∑
i=1

Lϕ3

C (fi(z), fi(
−→
01); fi(γz)) = 0,

where each term can be calculated by a concrete algorithm [NW12, Proposition 5.11]. Below let us exhibit
the calculation by enhancing [NW12, Examples 6.1-6.2] to their “Li3” version, for which we start with

the graded Lie-versions of complex polylogarithms, written lik(z, γz) for any path
−→
01 z. These can be

converted to usual polylogarithms by [NW12, Proposition 5.2]; in particular, for k = 0, ..., 3 we have:

(34)



li0(z, γz) = − 1

2πi
log(z),

li1(z, γz) = − 1

2πi
log(1− z),

li2(z, γz) =
1

4π2

(
Li2(z) +

1

2
log(z) log(1− z)

)
,

li3(z, γz) =
1

(2πi)3

(
Li3(z)− 1

2
log(z)Li2(z)− 1

12
log2(z) log(1− z)

)
.

Each term of (33) relies only on the chain fi(γz) that does not start from
−→
01 if i 6= 1, in which case we

need to interpret the chain fi(γz) as the difference “δi ·fi(γz) minus δi”. At the level of graded Lie-version
of polylogarithms, the difference can be evaluated by the polylog-BCH formula [NW12, Proposition 5.9]:
In our case, a crucial role is played by the polynomial

(35) P3({aj}3j=0, {bj}3j=0) = a3 + b3 +
1

2
(a0b2 − b0a2) +

1

12
(a2

0b1 − a0a1b0 − a0b0b1 + a1b
2
0)

in 8 variables aj , bj (j = 0, . . . , 3). Using this and applying [NW12, Proposition 5.11 (i)], we have

(36) Lϕ3

C (fi(z), fi(
−→
01); fi(γz)) = P3

(
{lij(fi(z), δi · fi(γz))}3j=0, {−lij(fi(

−→
01), δi)}3j=0

)
for i = 1, 2, 3. Noting then that(

−lij(
−→
01, δ1)

)
0≤j≤3

= (0, 0, 0, 0),(
−lij(

−→
10, δ2)

)
0≤j≤3

=
(

0, 0,−li2(
−→
10),−li3(

−→
10)
)

=

(
0, 0,− 1

4π2
Li2(1),− 1

(2πi)3
Li3(1)

)
,(

−lij(
−→
0∞, δ3)

)
0≤j≤3

=

(
1

2
, 0, 0, 0

)
,
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we compute (36) for i = 1, 2, 3 as:

(37)



Lϕ3

C (z,
−→
01; γz) = li3(z, γz),

Lϕ3

C (1− z,−→10; f2(γz)) = li3(1− z, γ1−z)− li3(
−→
10, δ−→

01
)

+ 1
2 li0(1− z, γ1−z)(−li0(z, γz)),

Lϕ3

C

(
z
z−1 ,
−→
0∞; f3(γz)

)
= li3( z

z−1 , γ z
z−1

) + 1
2

(
− 1

2 li2( z
z−1 , γ z

z−1
)
)

+ 1
12

(
1
4 li1( z

z−1 , γ z
z−1

)− 1
2 li1( z

z−1 , γ z
z−1

)li0( z
z−1 , γ z

z−1
)
)
.

Putting these together into (33) and applying (34), we obtain Landen’s functional equation (3).

5.2. `-adic Galois case. Let us apply [NW12, Theorem 5.7 (iii)`] in the parallel order to our above
discussion in the complex case. The `-adic version of the functional equation (33) in loc.cit. relies on

the choice of our free generator system ~x := (l0, l1) of π`-ét
1 (UK ,

−→
01) which plays an indispensable role to

specify a splitting of the pro-unipotent Lie algebra of π`-ét
1 into the weight gradation over Q` (cf. [NW12,

§4.2]). Then, the functional equation turns out in the form

(38)

3∑
i=1

Lϕ3(fi),~x
nv (fi(z), fi(

−→
01); fi(γz))(σ) = E(σ, γz) (σ ∈ GK)

where E(σ, γz) is called the `-adic error term ([NW12, §4.3]). The graded Lie-version of `-adic Galois poly-
logarithm `ik(z, γz, ~x) (for k ≥ 1) is then defined as the coefficient of ad(X)k−1(Y ) = [X, [X, [· · · [X,Y ]..]
in log(fγzσ (X,Y )−1) as an element of Lie formal series LieQ`〈〈X,Y 〉〉. Recall that the variables X,Y

are determined by ~x := {l0, l1} by the the Magnus embedding π`-ét
1 (UK ,

−→
01) ↪→ Q`〈〈X,Y 〉〉 defined by

l0 7→ exp(X), l1 7→ exp(Y ). For brevity below, let us often omit references to the loop system ~x = (l0, l1)

and/or tracking paths δi · fi(γz) :
−→
01 fi(z) in our notations as long as no confusions occur. The list

corresponding to (34) reads then:

(39)



`i0(z, γz)(σ) = ρz(σ),

`i1(z, γz)(σ) = ρ1−z(σ),

`i2(z, γz)(σ) = −χ̃z2(σ)− 1

2
ρz(σ)ρ1−z(σ),

`i3(z, γz)(σ) =
1

2
χ̃z3(σ) +

1

2
ρz(σ)χ̃z2(σ) +

1

12
ρz(σ)2ρ1−z(σ)

with σ ∈ GK . Each term of the above (38) for i = 1, 2, 3 can be expressed by the graded Lie-version
of polylogarithms `ik (k = 0, . . . , 3) along “δi · fi(γz) minus δi” by the polylog-BCH formula ([NW12,
Proposition 5.11 (ii)]) in the following way:

Lϕ3(fi),~x
nv (fi(z), fi(

−→
01); fi(γz))

= P3

(
{−`ij(fi(

−→
01), δi, ~x)}3j=0, {`ij(fi(z), δi · fi(γz), ~x)}3j=0

)
.

Noting that (
−`ij(

−→
01, δ1)

)
0≤j≤3

= (0, 0, 0, 0),(
−`ij(

−→
10, δ2)

)
0≤j≤3

=
(

0, 0,−`i2(
−→
10),−`i3(

−→
10)
)

=

(
0, 0, χ̃

−→
10
2 (σ),−1

2
χ̃
−→
10
3 (σ)

)
,(

−`ij(
−→
0∞, δ3)

)
0≤j≤3

=

(
1− χ(σ)

2
, 0, 0, 0

)
,
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we obtain for σ ∈ GK :

Lϕ3(f1)
nv (z,

−→
01; γz)(σ) = 1

2 χ̃
z
3(σ) + 1

2ρz(σ)χ̃z2(σ) + 1
12ρz(σ)2ρ1−z(σ),

Lϕ3(f2)
nv (1− z,−→10; f2(γz))(σ)

= 1
2 χ̃

1−z
3 (σ) + 1

2ρ1−z(σ)χ̃1−z
2 (σ) + 1

12ρ1−z(σ)2ρz(σ)

− 1
2 χ̃
−→
10
3 (σ)− 1

2ρ1−z(σ)χ̃
−→
10
2 (σ),

Lϕ3(f3)
nv

(
z
z−1 ,
−→
0∞; f3(γz)

)
(σ)

= 1
2 χ̃

z
z−1

3 (σ) + 1
2ρ z

z−1
(σ)χ̃

z
z−1

2 (σ) + 1
12ρ z

z−1
(σ)2ρ 1

1−z
(σ)

+ 1
2

(
1−χ(σ)

2

)(
−χ̃

z
z−1

2 (σ)− 1

2
ρ z
z−1

(σ)ρ 1
1−z

(σ)

)
+ 1

12

(
1−χ(σ)

2

)2

ρ 1
1−z

(σ)− 1
12

(
1−χ(σ)

2

)
ρ z
z−1

(σ)ρ 1
1−z

(σ).

(40)

Combining the identities in (40) enables us to rewrite the LHS of (38) in terms of `-adic Galois polylog-
arithmic characters. It remains to compute the error term E(σ, γz) in the right–and side of (38).

Lemma 5.2. Notations being as above, we have

E(σ, γz) = − 1

12
ρ1−z(σ) +

1

2
χ̃z2(σ) +

1

4
ρz(σ)ρ1−z(σ).

Proof. We shall apply the formula [NW12, Corollary 5.8] to compute the error term. Let [log(fγzσ )−1]<3

be the part of degree < 3 cut out from the Lie formal series log(fγzσ )−1 ∈ LieQ`〈〈X,Y 〉〉 with respect
obtained by the Magnus embedding l0 → eX , l1 → eY with respect to the fixed free generator system

~x = (l0, l1) of π`-ét
1 (UK ,

−→
01). We also write ϕ3 : LieQ`〈〈X,Y 〉〉 → Q` for the Q`-linear form that picks up

the coefficient of [X, [X,Y ]] (that is uniquely determined) for any Lie series of LieQ`〈〈X,Y 〉〉. Introduce
the variable Z so that eXeY eZ = 1 in Q`〈〈X,Y 〉〉. By the Campbell-Baker-Hausdorff formula, we have

(41) Z = −X − Y − 1

2
[X,Y ]− 1

12
[X, [X,Y ]] + · · · .

According to [NW12, Corollary 5.8], it follows then that

E(σ, γz) =

3∑
i=1

ϕ3

(
δi · fi

(
[log(fγzσ )−1]<3

)
· δi−1

)
=

3∑
i=1

ϕ3

(
δi · fi (ρz(σ)X + ρ1−z(σ)Y + `i2(z, γz)(σ)[X,Y ]) · δi−1

)
= ϕ3

(
ρz(σ)X + ρ1−z(σ)Y + `i2(z, γz)(σ)[X,Y ]

)
+ϕ3

(
ρz(σ)Y + ρ1−z(σ)X + `i2(z, γz)(σ)[Y,X]

)
+ϕ3

(
ρz(σ)X + ρ1−z(σ)Z + `i2(z, γz)(σ)[X,Z]

)
.

Here in the last equality, we applied the following table where δi · fi(#) · δ−1
i for i ∈ {1, 2, 3}, # ∈ {X,Y }

are summarized.
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i 1 2 3

δi · fi(X) · δ−1
i X Y X

δi · fi(Y ) · δ−1
i Y X Z

Since ϕ3 annihilates those terms X,Y, [X,Y ], [Y,X], we continue the above computation after (41) as:

E(σ, γz) = ϕ3

(
− 1

12
ρ1−z(σ)[X, [X,Y ]]− 1

2
`i2(z, γz)(σ)[X, [X,Y ]]

)
= − 1

12
ρ1−z(σ)− 1

2
`i2(z, γz)(σ)

= − 1

12
ρ1−z(σ)− 1

2

(
−χ̃z2(σ)− 1

2
ρz(σ)ρ1−z(σ)

)
= − 1

12
ρ1−z(σ) +

1

2
χ̃z2(σ) +

1

4
ρz(σ)ρ1−z(σ).

This concludes the assertion of the lemma. �

Alternative proof of Theorem 1.1. As discussed in §4, the `-adic Galois Landen’s trilogarithm functional
equation in Theorem 1.1 is equivalent to the identity (32) between polylogarithmic characters. The
latter follows from (38) with replacements of the terms of both sides by (40) and Lemma 5.2 by simple
computations. �

Appendix A: Low degree terms of associators

Presentation of lower degree terms of G0(X,Y )(z) and fγzσ (X,Y ) are often useful as references. The
former one presented below reconfirms Furusho’s preceding computations found in [F04, 3.25]-[F14, A.16]
(where the sign of log(z)Li2(z) had an unfortunate misprint in the coefficient of XYX).

G0(X,Y )(z) = 1 + log(z)X + log(1− z)Y +
log2(z)

2
X2 − Li2(z)XY(42)

+
(
Li2(z) + log(z)log(1− z)

)
Y X +

log2(1− z)
2

Y 2 +
log3(z)

6
X3 − Li3(z)X2Y

+
(

2Li3(z)− log(z)Li2(z)
)
XYX + Li1,2(z)XY 2

−
(
Li3(z)− log(z)Li2(z)− log2(z)log(1− z)

2

)
Y X2 + Li2,1(z)Y XY

−
(
Li1,2(z) + Li2,1(z)− log(z)log2(1− z)

2

)
Y 2X +

log3(1− z)
6

Y 3

+ · · · (higher degree terms).

This is a group-like element of C〈〈X,Y 〉〉 whose coefficients satisfy what are called the shuffle relations
([Ree58]). The regular coefficients (viz. those coefficients of monomials ending with the letter Y ) are
given by iterated integrals of a sequence of dz/z, dz/(1 − z). This immediately shows G0(0, Y )(z) =∑
k=0

logk(1−z)
k! Y k and say, Li1,1,1(z) = − 1

6 log3(1− z). Furusho gave an explicit formula that expresses
arbitrary coefficients of G0(X,Y ) in terms only of the regular coefficients ([F04, Theorem 3.15]). The

specialization z → −→10 with γz = δ−→
10

(cf. [W97] p.239 for a naive account) interprets log z → 0, log(1−z)→
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0 so as to produce the Drinfeld’s associator:

Φ(X,Y )
(

= G0(X,Y )(
−→
10)
)

(43)

= 1− ζ(2)XY + ζ(2)Y X − ζ(3)X2Y + 2ζ(3)XYX

+ ζ(1, 2)XY 2 − ζ(3)Y X2 − 2ζ(1, 2)Y XY + ζ(1, 2)Y 2X

+ · · · (higher degree terms)

which plays a primary role to define the Grothendieck-Teichmüller group ([Dr90], [Ih90]).

The expansion in Q`〈〈X,Y 〉〉 of the `-adic Galois associator fγzσ ∈ π`-ét
1 (UK ,

−→
01) via the Magnus embed-

ding l0 7→ eX , l1 7→ eY over Q` reads as follows:

fγzσ (X,Y ) = 1− ργz (σ)X − ργ1−z (σ)Y +
ργz (σ)

2

2
X2 − Li`2(γz)(σ)XY(44)

+
(
Li`2(γz)(σ) + ργz (σ)ργ1−z (σ)

)
Y X +

ργ1−z (σ)
2

2
Y 2 − ργz (σ)

3

6
X3 − Li`3(γz)(σ)X2Y

+
(
2Li`3(γz)(σ) + ργz (σ)Li

`
2(γz)(σ)

)
XYX + Li`1,2(γz)(σ)XY

2

−

(
Li`3(γz)(σ) + ργz (σ)Li

`
2(γz)(σ) +

ργz (σ)
2ργ1−z (σ)

2

)
Y X2 + Li`2,1(γz)(σ)Y XY

−

(
Li`1,2(γz)(σ) + Li`2,1(γz)(σ) +

ργz (σ)ργ1−z (σ)
2

2

)
Y 2X −

ργ1−z (σ)
3

6
Y 3

+ · · · (higher degree terms) (σ ∈ GK).

The coefficients of X,Y, Y Xk (k = 1, 2, ...) were calculated in terms of polylogarithmic characters ex-
plicitly in [NW99]. A formula of Le-Murakami, Furusho type for arbitrary group-like power series was
shown in [N23]. As illustrated in Proposition 4.2, the family of polylogarithmic characters and that of
`-adic Galois polylogarithms are converted to each other. The terms appearing in the above (44) can be
derived from them.

The `-adic Galois associator f
−→
10
σ (X,Y ) specialized at z =

−→
10 with γz = δ−→

10
plays an important role

to define the pro-` version of the Grothendieck-Teichmüller group similarly to the Drinfeld associator
Φ(X,Y ).

Let f(X,Y ) ∈ F 〈〈X,Y 〉〉 be one of the power series either of Φ(X,Y ) ∈ C〈〈X.Y 〉〉 or f
−→
10
σ (X,Y ) ∈

Q`〈〈X,Y 〉〉 for some σ ∈ GQ with coefficients in F = C,Q` respectively. The following properties are well
known to be held by f(X,Y ):

(i) f(X,Y ) is a group-like element, i.e., the coefficients satisfy the shuffle relations
([Ree58]);

(ii) f(X, 0) = f(0, Y ) = f(X,X) = 1 and f(X,Y ) ≡ 1 mod (X,Y )2;
(iii) f(X,Y )f(Y,X) = 1 (2-cyclic relation).

The condition (iii) combined with (i) is also known to be equivalent to the following

Duality-relation: If a power series f(X,Y ) = 1 +
∑
w∈M

cww ∈ F 〈〈X,Y 〉〉 (cw ∈ F ) satisfies the above

conditions (i) and (iii), then

(45) cw = (−1)|w|cw′ .

Here, for a word w = x1 · · ·xm (xi = X,Y ), we write |w| = m, and designate w′ := x′m · · ·x′1 to mean the
word obtained by applying the substitutions X ′ = Y , Y ′ = X after reversing the order of letters in w.
See, e.g., discussions around [Sou13, p.12 (5)] for an algebraic proof of the duality relation under (i), (iii).
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The duality relation is already useful in degree 3, for example, to obtain

(46) cXXY = −cXY Y , cY XY = −cXYX , cY XX = −cY Y X .

The first equation implies Euler’s celebrated relation

(47) ζ(3) = ζ(1, 2)

when F = C and its `-adic Galois analog ζ`(3)(σ) = ζ`(1, 2)(σ) when F = Q` (recall (6) for the
latter notation). One also observes that the shuffle relations corresponding to XY

∃
Y = Y XY + 2XY Y ,

Y

∃

XX = Y XX +XYX +XXY imply

(48) cY XY + 2cXY Y = 0 = cY XX + cXYX + cXXY .

These equalities in (46), (48) enable us to find the above description of the degree 3 part of (43) and its
obvious `-adic Galois analog.

Appendix B: A quick review of [NW12] with remarks

Let U = P1 − {0, 1,∞} and let π = π1(UC,
−→
01) be the discrete fundamental group. Let m ≥ 2 be an

integer, and suppose we are given a Z-homomorphism ϕ : grm(π)→ Z from the m-th graded quotient of
the lower central series of π. Let H be the abelianization π/[π, π] of π, and define the standard projection

(49) st : H⊗m−2 ⊗ ∧2H � grm(π)

by x1 ⊗ · · · ⊗ xm−2 ⊗ (xm−1 ∧ xm) 7→ [x1, [x2, . . . , [xm−1, xm]..]]. Let O = C[t, 1
t ,

1
t−1 ] be the affine ring

defining UC . In [NW12, Corollary 3.7], it is shown that there is an element

(50) κ̂⊗m(ϕ) ∈ O×⊗n−2 ⊗
(
O× ∧ O×

)
whose multi-Kummer dual κ⊗m(κ̂⊗m(ϕ)) : H⊗m−2 ⊗ ∧2(H) → Z coincides with the composite ϕ ◦ st.
Note here that ∧2H is understood as the quotient wedge tensor (the maximal quotient of H⊗H satisfying
x∧y+y∧x = 0), while O×∧O× is understood as the submodule wedge tensor (the submodule generated
by the elements of the form a⊗ b− b⊗ a in (O×)⊗2) (cf. [NW12, Notation 3.4]).

Now, let X be a normal affine variety defined by a ring OX, and suppose that a collection of morphisms
fi : X→ P1−{0, 1,∞} and ci ∈ Z (i = 1, . . . , n) satisfy a multi-linear relation (called the tensor criterion
for a functional equation)

(51)

n∑
i=1

ci f
∗
i (κ̂⊗m(ϕ)) ≡ 0 in O×X

⊗n−2
⊗
(
O×X ∧ O

×
X

)
,

where f∗i : O → OX is the pull-back of functions on U and O×X := O×X/C×. For each i = 1, . . . , n and a
topological path γ : v ξ on X(C), the image fi(γ) forms a path from fi(v) to fi(ξ) on P1(C)−{0, 1,∞}.
Let Λfi(γ) (or written also Λ(fi(γ))) denote Chen’s transport formal series (discussed in the proof of
Lemma 3.3) whose coefficients are iterated integrals along the path fi(γ). This is known as a group-like
element of C〈〈X,Y 〉〉 so that log(Λ−1

fi(γ)) lies in the space of Lie formal series LieC〈〈X,Y 〉〉 inside C〈〈X,Y 〉〉.
The homogeneous degree m part Liem(C) of LieC〈〈X,Y 〉〉 is naturally isomorphic to grm(π)⊗ C. Define
LϕC(fi(ξ), fi(v); fi(γ)) (called the complex iterated integrals in [NW12, Definition 4.4]) to be the image

of log(Λ−1
fi(γ)) under the composition

(52) LieC〈〈X,Y 〉〉� Liem(C)
∼→ grm(π)⊗ C ϕC−→ C

induced from ϕC := ϕ⊗ C. Then it follows from [NW12, Theorem 4.13] that

(53)

n∑
i=1

ci LϕC(fi(ξ), fi(v); fi(γ)) = 0.
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Next, to exhibit the `-adic Galois version, suppose that X and points v, ξ on it together with fi : X→ U
(i = 1, . . . , n) are defined over a subfield K ⊂ C, and assume that the tensor condition (51) is satisfied

by them. We fix a path system δi :
−→
01 fi(v) (i = 1, . . . , n). For each pro-` path γ : v ξ on XK and

σ ∈ GK , we define Lϕ(fi),~x
nv

(
fi(ξ), fi(v); fi(γ)

)
(σ) (which is called the naive `-adic iterated integral in

[NW12, Definition 4.7]) to be the image of the Lie formal series log
(
(δi · fi(γ) ·σ(fi(γ)−1) · δ−1

i )−1
)

under
the composition

(54) LieQ`〈〈X,Y 〉〉� Liem(Q`)
∼→ grm(π)⊗Q`

ϕQ`−→ Q`

induced from ϕQ` := ϕ ⊗ Q`. (The prefix ~x of Lϕ(fi),~x
nv is to designate dependency on ~x = (l0, l1), the

initially fixed free generator of π; note that X = log(l0), Y = log(l1) in the `-adic Galois case). Then,
[NW12, Theorem 4.14] implies

(55)

n∑
i=1

ci Lϕ(fi),~x
nv

(
fi(ξ), fi(v); fi(γ)

)
(σ) = E(σ, γ) (σ ∈ GK),

where the error term E(σ, γ) is a function of σ ∈ GK and of γ : v ξ satisfying a certain condition on
small variation over (σ, γ) ([NW12, p.276]).

The map ϕ3 employed in (33), (38) corresponds to the trilogaritm, and is the special case m = 3 of
ϕm : grm(π)→ Z defined as the dual element to adm−1

X (Y ) = [X[...[X[X,Y ]]..]] with respect to the Hall
basis (for the order X < Y ) of the free Lie algebra generated by X,Y . To obtain a polylogarithmic
identity in the case ϕ = ϕm, we first translate the “iterated integrals along fi(v) fi(ξ)” appearing in the

left hand sides of (53) and (55) into the terms of those along
−→
01 fi(v) and

−→
01 fi(ξ) under the natural

network of paths composed of {fi(γ)}ni=1 ∪ {δi · fi(γ)}ni=1. This is achieved by what is called a “polylog
BCH formula” elaborated in [NW12, Proposition 5.9]. The second task is to evaluate the error term
E(σ, γ) of the right hand side of (55), which is figured out in [NW12, Corollary 5.8]. We refer the reader
to [NW12, Sect.5] for more details of these procedures when ϕ is of the form ϕm (m ∈ N≥2).

On the other hand, when ϕ is chosen to be a general character looking at non-polylogarithmic (or to
say, multiple polylogarithmic) coefficients, then there occur more complicated computational procedures.
We expect future studies for them.

Finally, we would like to present the following list of typos in the previous papers [NW12], [NW20],
many pieces of which have been found during the course of our present collaboration. Since these papers
are not only crucial but also indispensable to test computations of our above investigation, we hope to
be allowed to append the list here below:

I Misprints in [NW12]:

p.284, line −11: The LHS of the displayed formula should read: 1− 1
2 (e(log z)X−1)+ 1

3 (e(log z)X−1)2−+ · · ·
p.286, line 6: The two Galois groups G∗ should respectively have subscripts ∗ = K(µ`∞ , z

1/`∞) and
∗ = K(µ`∞ , z

1/`∞ , (1− z)1/`∞).
p.287, in (iii)C: fi(x) should read fi(v), and x z should read v z.
p.288, in the last line of (iii)`, p : x z should read p : v z

p.294: In the formula (5.13), the denominator of RHS should read:
∏`n−1
a=0 (1− ζa`n)

a2k−1

`n .
p.300: The last line of calculation of E(σ, γ) (displayed in the middle of page) should read:

= ϕ2,~x

(
−1

2
ρ1−z(σ)[log x, log y])

)
= −1

2
ρ1−z(σ).

(Note: The subsequent displayed formula reflects (6.20) with both sides multiplied by −1 so that the
formula (6.22) is itself correct.)

p.300, line −1: f1(v) =
−→∞1 should read f2(v) =

−→∞1.
p.303, line −7: The latter equality should read δf2(y)δ−1 = y.

p.304, line 2: The RHS of the displayed identity should read = −
(
−χ

e−χt−1

)
−
(

eL0t

e−t−1

)
.
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p.305, line 4: The second identity should read f2(x14) = x13 = (yx)−1.
(Note: The forgetful map f2 : M0,5 → M0,4 = P1 − {0, 1,∞} sends braid-like generators in such a way
that xij (1 ≤ i < j ≤ 5) of π1(M0,5(C),−→v ) is mapped to xkl (1 ≤ k < l ≤ 4) of π1(M0,4(C),−→v ) by
k := i− 1, l := j − 1, except the cases with f2(xij) = 1 (2 ∈ {i, j}) or with f2(x1j) = x1,j−1 (j = 3, 4, 5).
We have x12x13x23 = 1 in π1(M0,4(C),−→v ) freely generated by x := x12 and y := x23.)
p.305, line 9: The first line of the table should read:

] | gr2
Γf5∗(]) − gr2

Γf4∗(]) gr2
Γf3∗(]) − gr2

Γf2∗(]) gr2
Γf1∗(])

I Misprints in [NW20]:

p.603, line −11: “(−1)m−1-multiple” should read “(−1)m-multiple”.
p.603, line −10: The LHS of (∗∗) should read (−1)m`im(z, γ).
p.603, line −8: The equality should read di+1 = χ̃zi+1(σ)/i! (i ≥ 0).
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