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Abstract. The Galois action on the pro-` étale fundamental groupoid of the projective line minus three
points with rational base points gives rise to a non-commutative formal power series in two variables with

`-adic coefficients, called the `-adic Galois associator. In the present paper, we focus on how Landen’s
functional equation of trilogarithms and its `-adic Galois analog can be derived algebraically from the

S3-symmetry of the projective line minus three points. Twofold proofs of the functional equation will

be presented, one is based on Zagier’s tensor criterion devised in the framework of graded Lie algebras
and the other is based on the chain rule for the associator power series. In the course of the second

proof, we are led to investigate `-adic Galois multiple polylogarithms appearing as regular coefficients of

the `-adic Galois associator. As an application, we show an `-adic Galois analog of Oi-Ueno’s functional
equation between Li1,...,1,2(1 − z) and Lik(z)’s (k = 1, 2, ...) .
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1. Introduction

The study of polylogarithms, especially their functional equations, originated in the late 18th century
by Euler, Landen, and others. The classical polylogarithm they studied is a complex function defined by
the following power series

Lik(z) :=
z

1k
+
z2

2k
+
z3

3k
+ · · · (|z| < 1).

For k = 2, it is called the dilogarithm, and for k = 3, it is called the trilogarithm. The multiple
polylogarithm Lik(z) for a multi-index k = (k1 . . . , kd) ∈ Nd generalizes Lik(z), which is defined by the
power series

Lik(z) :=
∑

0<n1<···<nd

znd

nk11 · · ·n
kd
d

(|z| < 1).
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Note that Lik(z) = Li(k)(z). The functions Lik(z) can be analytically continued to a holomorphic

function on the universal covering space of the three punctured Riemann sphere P1(C) − {0, 1,∞}.
There are known a number of functional equations between these functions evaluated at points with
suitably chosen tracking paths from the unit segment (0, 1) on P1(C) − {0, 1,∞}. For example, the
following formulas are typical:

Li2(z) + Li2(1− z) = ζ(2)− log(z) log(1− z),(1.1)

Li2(z) + Li2

(
z

z − 1

)
= −1

2
log2(1− z),(1.2)

Li3(z) + Li3(1− z) + Li3

(
z

z − 1

)
(1.3)

= ζ(3) + ζ(2) log(1− z)− 1

2
log(x) log2(1− z) +

1

6
log3(1− z).

The former (1.1) is due to Leonhard Euler [E1768] and the latter two (1.2)-(1.3) are due to John Landen
[L1780]. See Lewin’s book [L81] for many other functional equations for polylogarithms. As for multiple
polylogarithms, in [Oi09]-[OU13], Shu Oi and Kimio Ueno showed the following functional equation:

(1.4)

k−1∑
j=0

Lik−j(z)
(− log z)j

j!
+ Li1,...,1︸︷︷︸

k−2 times

,2 (1− z) = ζ(k) (k ≥ 2).

Let ` be a fixed prime. The `-adic Galois multiple polylogarithm

Li`k(z)
(

= Li`k(γz :
−→
01 z)

)
: GK → Q`

is a function on the absolute Galois group GK := Gal(K/K) of a subfield K of C defined, for k =

(k1 . . . , kd) ∈ Nd and an `-adic étale path γz from
−→
01 to a K-rational (tangential) point z on P1−{0, 1,∞},

as a certain (signed) coefficient of the non-commutative formal power series

(1.5) fγzσ (X,Y ) ∈ Q`〈〈X,Y 〉〉 (σ ∈ GK)

called the `-adic Galois associator. The functions Li`k(z) were originally introduced and called the `-adic
iterated integrals in a series of papers by Zdzis law Wojtkowiak (cf. e.g., [W0]-[W3]). In particular,

(1.6) ζ`k(σ) := Li`k(δ :
−→
01 

−→
10)(σ)

for the standard path δ along the unit interval (0, 1) ⊂ R. For z ∈ K with a path γz :
−→
01 z, we also

write

ρz(= ργz ) : GK → Z`
for the Kummer 1-cocycle of the `-th power roots {z1/`n}n determined by γz.

In [NW12], Wojtkowiak and the first named author of the present paper devised Zagier’s tensor
criterion for functional equations as a means to calculate exact forms of identities with lower degree
terms for both complex and `-adic Galois polylogarithms. Applying the method, we established a few
examples of functional equations in both polylogarithms. In particular, the above (1.1) and (1.2) were
shown to have the following `-adic Galois counterparts:

Li`2(z)(σ) + Li`2(1− z)(σ) = ζ`2(σ)− ρz(σ)ρ1−z(σ),(1.7)

Li`2(z)(σ) + Li`2

(
z

z − 1

)
(σ) = −ρ1−z(σ)2 + ρ1−z(σ)

2
(1.8)

for σ ∈ GK (cf. [NW12]. See §below for some adjustment of notations.)
The purpose of this paper is to provide algebraic proofs of (1.3) and (1.4) which can be used to obtain

their `-adic Galois analogs reading as follows:
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Theorem 1.1 (`-adic Galois analog of the Landen trilogarithm functional equation). There are suitable

paths
−→
01 1− z,−→01 z

1−z associated to a given path γz :
−→
01 z such that the following functional equation

Li`3(z)(σ) + Li`3(1− z)(σ) + Li`3

(
z

z − 1

)
(σ)

= ζ`3(σ)− ζ`2(σ)ρ1−z(σ) +
1

2
ρz(σ)ρ1−z(σ)

2 − 1

6
ρ1−z(σ)

3 − 1

2
Li`2(z)(σ)− 1

12
ρ1−z(σ)− 1

4
ρz(σ)

2

holds for σ ∈ GK .

Theorem 1.2 (`-adic Galois analog of the Oi-Ueno functional equation).

k−1∑
j=0

Li`k−j(z)(σ)
ρz(σ)j

j!
+ Li`1,...,1︸︷︷︸

k−2 times

,2(1− z)(σ) = ζ`k(σ) (σ ∈ GK).

Remark 1.3. In [S21], the second named author showed that the functional equation (1.7) has an
application to a reciprocity law of the triple mod-{2, 3} symbols of rational primes via Ihara-Morishita
theory (cf. [HM19]). Theorem 1.2 was shortly announced in a talk by the first named author at online
Oberwolfach meeting ([N21]).

The contents of this paper will be arranged as follows: After a quick set up in §2 on the notations
of standard paths on P1 − {0, 1,∞}, in §3 we discuss complex and `-adic Galois associators as formal
power series in two non-commuting variables, and define the multiple polylogarithms as their coefficients
of certain monomials. We then review in the complex analytic context that (1.3) and (1.4) can be derived
from algebraic relations (chain rules) of associators along simple compositions of paths. With this line
in mind, we prove Theorems 1.1 and 1.2 in the `-adic Galois case by tracing arguments in parallel ways
to the complex case. In §4, after shortly recalling polylogarithmic characters introduced in a series of
collaboration by Wojtkowiak and the first named author, we present Z`-integrality test for `-adic Galois
Landen’s equation obtained in Theorem 1.1. Section 5 turns to an alternative approach to functional
equations of polylogarithms based on a set of tools devised in [NW12] to enhance Zagier’s tensor criterion
for functional equations into a concrete form. Then we give alternative proofs of (1.3) and Theorem 1.1
with this method. Appendix will be devoted to exhibiting lower degree terms of the complex and `-adic
Galois associators as a convenient reference from the text.

2. Set up

Fix a prime number `. Let K be a subfield of the complex number field C, K the algebraic closure
of K in C, and GK := Gal(K/K) the absolute Galois group of K. Let U := P1

K − {0, 1,∞} be

the projective line minus three points over K, UK the base-change of U via the inclusion K ↪→ K, and
Uan = P1(C)−{0, 1,∞} the complex analytic space associated to the base-change of UK via the inclusion

K ↪→ C.
In the following, we shall write

−→
01 for the standard K-rational tangential base point on U . Let z be a

K-rational point of U or a K-rational tangential base point on U . We consider
−→
01, z also as points on

UK or Uan by inclusions K ↪→ K and K ↪→ C.

Let πtop
1 (Uan;

−→
01, z) be the set of homotopy classes of topological paths on Uan from

−→
01 to z, and let

π`-ét
1 (UK ;

−→
01, z) be the pro-`-finite set of pro-` étale paths on UK from

−→
01 to z. Note that there is a

canonical comparison map

πtop
1 (Uan;

−→
01, z)→ π`-ét

1 (UK ;
−→
01, z)

that allows us to consider topological paths on Uan as pro-` étale paths on UK .
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l0
0 δ−→

10

δ−→
0∞

1
l1 l∞• • •

∞

The dashed line represents P1(R)− {0, 1,∞}.
The upper half-plane is above the dashed line.

Let l0, l1, l∞ be the topological paths on Uan with base point
−→
01 circling counterclockwise around

0, 1,∞, respectively. Then, {l0, l1} is a free generating system of the topological fundamental group

πtop
1 (Uan,

−→
01) := πtop

1 (Uan;
−→
01,
−→
01) or the pro-` étale fundamental group π`-ét

1 (UK ,
−→
01) := π`-ét

1 (UK ;
−→
01,
−→
01).

Then, πtop
1 (Xan,

−→
01) is a free group of rank 2 generated by {l0, l1} and π`-ét

1 (UK ,
−→
01) is a free pro-` group

of rank 2 topologically generated by {l0, l1}.
Fix a topological path γz ∈ πtop

1 (Uan;
−→
01, z) on Uan from

−→
01 to z. Moreover, let δ−→

10
∈ πtop

1 (Uan;
−→
01,
−→
10)

be the topological path on Uan from
−→
01 to

−→
10 along the real interval, and let δ−→

0∞ ∈ π
top
1 (Uan;

−→
01,
−→
0∞) be

the topological path on the upper half-plane in Uan from
−→
01 to

−→
0∞.

Let φ, ψ ∈ Aut(Uan) be automorphisms of Uan defined by

(2.1) φ(t) = 1− t, ψ(t) =
t

t− 1
,

and introduce specific paths from
−→
01 to 1− z and to z

z−1 by
γ1−z := δ−→

10
· φ(γz) ∈ πtop

1 (Uan;
−→
01, 1− z),

γ z
z−1

:= δ−→
0∞ · ψ(γz) ∈ πtop

1

(
Uan;

−→
01,

z

z − 1

)
.

(2.2)

Here, paths are composed from left to right.

3. Associators and multiple polylogarithms

Recall that the multiple polylogarithms appear as coefficients of the non-commutative formal power
series in two variables with complex coefficients, determined as the basic solution of the KZ equation
(Knizhnik-Zamolodchikov equation) on P1(C)−{0, 1,∞}. More precisely, let G0(X,Y )(z) be the funda-
mental solution of the formal KZ equation

d

dz
G(X,Y )(z) =

(
X

z
+

Y

z − 1

)
G(X,Y )(z)

on P1(C) − {0, 1,∞}, which is an analytic function with values in C〈〈X,Y 〉〉 characterized by the as-
ymptotic behavior G0(X,Y )(z) ≈ zX (z → 0) and analytically continued to the universal cover of
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P1(C) − {0, 1,∞}. Let M be the non-commutative free monoid generated by the non-commuting inde-
terminates X,Y . One can expand G0(X,Y )(z) in the words w ∈ M in the form

(3.1) G0(X,Y )(z) = 1 +
∑

w∈M\{1}

cw(γz) · w.

The multiple polylogarithm Lik(γz) associated to a tuple k = (k1 . . . , kd) ∈ Nd and a topological path γz
from

−→
01 to z is equal to the coefficient of G0(X,Y )(z) at the ‘regular’ word w(k) := Xkd−1Y · · ·Xk1−1Y

multiplied by (−1)d (where ‘regular’ means that the word ends in the letter Y ). In summary, writing the
length d of the tuple k = (k1 . . . , kd) as dep(k), we have

(3.2) Lik(γz) = (−1)dep(k)cw(k)(γz).

To define the `-adic Galois multiple polylogarithms, we make use of the GK-action on the étale paths

instead of the fundamental KZ-solution. Given a pro-` étale path γz ∈ π`-ét
1 (UK ;

−→
01, z), form a pro-`

étale loop fγσ := γ · σ(γ)−1 ∈ π`-ét
1 (UK ,

−→
01), and expand it via the Magnus embedding π`-ét

1 (UK ,
−→
01) ↪→

Q`〈〈X,Y 〉〉 defined by l0 7→ exp(X), l1 7→ exp(Y ).

Notation 3.1. By abuse of notation, we shall write the above image of fγzσ ∈ π`-ét
1 (UK ,

−→
01) in Q`〈〈X,Y 〉〉

as

(3.3) fγzσ (X,Y ) = 1 +
∑

w∈M\{1}

c`w(γz)(σ) · w (σ ∈ GK).

This is what we described in 1.5. In the parallel way to the above (3.2), for any tuple k of positive
integers, we define the `-adic Galois multiple polylogarithm Li`k to be the function GK → Q` determined
by

(3.4) Li`k(γz)(σ) = (−1)dep(k)c`w(k)(γz)(σ)

for σ ∈ GK . The `-adic zeta function ζ`k : GQ → Q` is a special case given with (1.6) in Introduction.

Remark 3.2. It is worth noting that the `-adic Galois associator f
δ−→
10
σ (X,Y ) ∈ Q`〈〈X,Y 〉〉 is the `-adic

Galois analog of the Drinfeld associator

Φ(X,Y ) :=
(
G0(Y,X)(1− z)

)−1

·G0(X,Y )(z) ∈ C〈〈X,Y 〉〉.

We summarize analogy between `-adic Galois and complex associators as Table 1, where the 3rd and 4th
rows reflect the chain rules of associators in regards of the path compositions (2.2).

Table 1

`-adic Galois side complex side

fγzσ (X,Y ) ∈ Q`〈〈X,Y 〉〉 G0(X,Y )(z) ∈ C〈〈X,Y 〉〉

f
δ−→
10
σ (X,Y ) ∈ Q`〈〈X,Y 〉 Φ(X,Y ) ∈ C〈X,Y 〉〉

fγzσ (X,Y ) = f
γ1−z
σ (Y,X) · fδ−→10σ (X,Y ) G0(X,Y )(z) = G0(Y,X)(1− z) · Φ(X,Y )

f
γ z

z−1
σ (X,Y ) = fγzσ (X,Z) · fδ−→0∞σ (X,Y ), G0(X,Y )

(
z

z − 1

)
= G0(X,Z)(z) · exp(πiX),

Z := log(exp(−Y )exp(−X)) Z := −Y −X

Li`k(γz)(σ): `-adic Galois multiple polylog value Lik(z): multiple polylog value

ζ`k(σ): `-adic Galois multiple zeta value ζ(k): multiple zeta value
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Algebraic proof of (1.3)-(1.4). The following arguments are motivated from an enlightening remark
given in Appendix of Furusho’s lecture note [F14, A.24]. By the explicit formula of Le-Murakami [LM96]
type due to Furusho [F04, Theorem 3.15], the coefficient of Y Xk−1 in G0(X,Y )(z) is

CoeffY Xk−1(G0(X,Y )(z)) = −
∑

s+t=k−1
s,t≥0

(−1)sLif ′(B

∃

As)(z)
logt z

t!
= (−1)k

k−1∑
t=0

(−1)tLik−t(z)
logt z

t!
,

where f ′ indicates the operation annihilating terms ending with the letter X. Applying this to the chain
rule G0(Y,X)(1− z) = G0(X,Y )(z) · Φ(Y,X) from Table 1, we see that

CoeffY Xk−1(G0(Y,X)(1− z)) = CoeffXY k−1(G0(X,Y )(1− z)) = (−1)k−1Li1,...,1︸︷︷︸
k−2 times

,2 (1− z)

is equal to

CoeffY Xk−1(G0(X,Y )(z)) + CoeffY Xk−1(Φ(Y,X))

= CoeffY Xk−1(G0(X,Y )(z)) + CoeffXY k−1(Φ(X,Y ))

= (−1)k
k−1∑
t=0

(−1)tLik−t(z)
logt z

t!
+ (−1)k−1ζ(1, . . . , 1︸ ︷︷ ︸

k−2 times

, 2)

Here we used a tautological identity Coeffw(A,B)(f(A,B)) = Coeffw(B,A)(f(B,A)) and the fact that
CoeffXi(Φ(X,Y )) = CoeffY i(Φ(X,Y )) = 0 for all i ≥ 1. This together with the well known identity
ζ(1, . . . , 1︸ ︷︷ ︸
k−2 times

, 2) = ζ(k) (duality formula) derives (1.4).

Before going to prove (1.3), we compare the coefficients of Y XY in the same identity G0(X,Y )(z) =
G0(Y,X)(1− z) · Φ(X,Y ) from Table 1. By simple calculation, we obtain

cY XY (γz) = −ζ(2)cX(γ1−z)− 2ζ(3) + cXYX(γ1−z)(3.5)

= −ζ(2)cX(γ1−z)− 2ζ(3) +
(
cXY (γ1−z)cX(γ1−z)− 2cX2Y (γ1−z)

)
where, in the former equaltiy are used known identities (cf. Appendix) CoeffXY (Φ(X,Y )) = −ζ(2),
CoeffY XY (Φ(X,Y )) = −2ζ(3), and in the last equality is used the shuffle relation according to XY

∃

X =
XYX + 2X2Y . This leads to

(3.6) Li2,1(z) = −π
2

6
log(1− z)− 2ζ(3)− Li2(1− z) log(1− z) + 2Li3(1− z).

Now let us compare the coefficients of X2Y in the both sides of the chain rule

G0(X,Y )

(
z

z − 1

)
= G0(X,Z)(z) · exp(πiX)

from Table 1. It follows easily that

(3.7) cXXY (γ z
z−1

) = −cXXY (γz)− cY Y Y (γz) + cXY Y (γz) + cY XY (γz),

or equivalently,

(3.8) −Li3
(

z

z − 1

)
= Li3(z) + Li1,1,1(z) + Li1,2(z) + Li2,1(z).

We know from the case k = 3 of (1.4) with interchange z ↔ 1− z that

(3.9) Li1,2(z) = ζ(3)−
(
Li3(1− z)− Li2(1− z) log(1− z)− 1

2
log z log2(1− z)

)
.

Putting (3.6) and (3.9) into the last two terms of (3.8) with noticing Li1,1,1(z) = − 1
6 log3(1 − z)

(cf. Appendix), we obtain a proof of Landen’s trilogarithm functional equation (1.3). �
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Proof of Theorem 1.2: In the `-adic Galois setting, the argument for the assertion goes in almost
parallel way to the above proof for (1.4). In fact, the formula of Le-Murakami and Furusho type is
generalized to any group-like elements of Q`〈〈X,Y 〉〉 in [N21b], so that it holds that

(3.10) CoeffY Xk−1(fγzσ (X,Y )) = (−1)k
k−1∑
t=0

(−1)tLi`k−t(γz)
(−ρz(σ))t

t!
.

Comparing the coefficients of Y Xk−1 of the identity

fγzσ (X,Y ) = fγ1−z
σ (Y,X) · fδ−→10σ (X,Y )

in Table 1, we obtain

(3.11)

k−1∑
j=0

Li`k−j(γz)(σ)
ρz(σ)j

j!
+ Li`1,...,1︸︷︷︸

k−2 times

,2(γ1−z)(σ) = ζ`1,...,1︸︷︷︸
k−2 times

,2(σ) (σ ∈ GK).

Note here that, in the special case z =
−→
10 with γz = δ−→

10
, we should interpret that Li`1,...,1,2(γ1−z)(σ) = 0

and that ρz(σ)j = 0, 1 according to whether j > 0 or j = 0, from which we obtain the duality formula:

(3.12) ζ`1,...,1︸︷︷︸
k−2 times

,2(σ) = ζ`k(σ) (σ ∈ GK).

Putting this back to (3.11) settles the proof of Theorem 1.2. �

Proof of Theorem 1.1: We only have to examine the `-adic Galois versions of the identities (3.6), (3.8)
and (3.9) with replacing the role of G0(X,Y )(γ∗) by fγ∗σ (X,Y ). It turns out that the two identities (3.6),
(3.9) have exactly the parallel counterparts:

Li`2,1(γz)(σ) = ζ`2(σ)ρ1−z(σ) + ζ`2,1(σ) + Li`2(γ1−z)(σ)ρ1−z(σ) + 2Li`3(γ1−z)(σ),(3.13)

Li`1,2(γz)(σ) = ζ`3(σ)−
(
Li`3(γ1−z)(σ) + Li`2(γ1−z)(σ)ρ1−z(σ) +

1

2
ρz(σ)ρ1−z(σ)2

)
(3.14)

with σ ∈ GK . There occurs a small difference for (3.8) when evaluating the identity f
γ z

z−1
σ (X,Y ) =

fγzσ (X,Z) · fδ−→0∞σ (X,Y ) with Z := log(exp(−Y )exp(−X)) as the Campbell-Hausdorff sum. At the level of
coefficients of `-adic Galois associators, the complex case (3.7) turns to have extra additional terms as:

c`XXY (γ z
z−1

)(σ) = −c`XXY (γz)(σ)− c`Y Y Y (γz)(σ) + c`XY Y (γz)(σ) + c`Y XY (γz)(σ)(3.15)

−
(

1

2
c`XY (γz)(σ)− 1

2
c`Y Y (γz)(σ) +

1

12
c`Y (γz)(σ)

)
,

from which follows that

Li`3(γ z
z−1

)(σ) = −Li`3(γz)(σ)− Li`1,1,1(γz)(σ)− Li`1,2(γz)(σ)− Li`2,1(γz)(σ)(3.16)

−
(

1

2
Li`2(γz)(σ) +

1

4
ρ1−z(σ)2 +

1

12
ρ1−z(σ)

)
for σ ∈ GK . The asserted formula follows from (3.16) after Li`1,2(γz)(σ), Li`2,1(γz)(σ) in the RHS are
replaced by the equations (3.14), (3.13) respectively and from knowledge of a few coefficients of fγ∗σ (X,Y )
in lower degrees (cf. Appendix). �
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4. Polylogarithmic characters and Z`-integrality test

There is a specific series of functions χ̃zm : GK → Z` (called the polylogarithmic characters) closely
related to the `-adic Galois polylogarithms Li`k(z) : GK → Q`.

Definition 4.1 ([NW99]: `-adic Galois polylogarithmic character ). For each m ∈ N and σ ∈ GK , we
define χ̃γzm (σ) (often written shortly as χ̃zm(σ)) by the (sequential) Kummer properties

ζ
χ̃z
m(σ)

`n = σ

(
`n−1∏
i=0

(1− ζχ(σ)−1i
`n z1/`n)

im−1

`n

)/ `n−1∏
i=0

(1− ζi+ρz(σ)
`n z1/`n)

im−1

`n

over n ∈ N, where the roots z1/n, (1− z)1/n, (1− ζanz1/n)1/m (n,m ∈ N, a ∈ Z) are chosen along the path

γz ∈ πtop
1 (Uan;

−→
01, z), ρz(= ργz ) : GK → Z` is the Kummer 1-cocycle of the `-th power roots {z1/`n}n

along γz, and χ : GK → Z×` is the `-adic cyclotomic character. We call the function

χ̃zm (= χ̃γzm ) : GK → Z`

the (`-adic Galois) polylogarithmic character associated to γz ∈ πtop
1 (Uan;

−→
01, z).

We first begin with summarizing the relations between the polylogarithmic characters and `-adic Galois
polylogarithms:

Proposition 4.2. Let fγzσ (X,Y ) be the Magnus expansion of the `-adic Galois associator fγzσ as in (3.3).
Then, we have:

CoeffY Xm−1 (fγzσ (X,Y )) = − χ̃zm(σ)

(m− 1)!

(
= (−1)m

m−1∑
k=0

Li`m−k(γz)(σ)
ρz(σ)k

k!

)
,(i)

CoeffXm−1Y (fγzσ (X,Y )) = (−1)m
m−1∑
k=0

ρz(σ)k

k!

χ̃zm−k(σ)

(m− 1− k)!

(
= −Li`m(γz)(σ)

)
(ii)

for σ ∈ GK .

Proof. The first equality of (i) is proved in [NW20, Proposition 8 (ii)], where the symbol Liw in loc.cit.
differs from our Liw by the sign corresponding to the parity of the number of appearances of letter Y in
w. (ii) follows from (3.10), i.e., is a consequence of the special case of the formula of Le-Murakami and
Furusho type generalized to group-like elements in [N21b]. Note that the equality in the bracket of (ii) is
just due to our definition of Li`k (3.4). The equality in the bracket of (i) follows from (ii) by inductively

reversing the sequence {Li`m}m to {χ̃m}m. �

Often we prefer a functional equation of `-adic Galois polylogarithms expressed in a form of the
corresponding identity between polylogarithmic characters, because the latter enables us to check the
Z`-integrality of both sides of the equation.

For example, the functional equations (1.7), (1.8) are equivalent to

χ̃z2(σ) + χ̃1−z
2 (σ) + ρz(σ)ρ1−z(σ) =

1

24
(χ(σ)2 − 1),(4.1)

χ̃z2(σ) + χ̃
z/(1−z)
2 (σ) = −1

2
ρ1−z(ρ1−z(σ)− χ(σ))(4.2)

for each σ ∈ GK respectively. Noting that χ(σ) ≡ 1 (mod 2) and χ(σ)2 ≡ 1 (mod 24), we easily see
that each of the RHSs has no denominator, i.e., ∈ Z` for every prime `. From this viewpoint, it is
worth rewriting Landen’s trilogarithm functional equation (Theorem 1.1) in terms of polylogarithmic
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characters. By simple computation, it results in:

χ̃z3(σ) + χ̃1−z
3 (σ) + χ̃

z/(z−1)
3 (σ) = χ̃

−→
10
3 (σ) + χ(σ)χ̃z2(σ) + ρz(σ)ρ1−z(σ)2 − ρ1−z(σ)

12
(χ(σ)2 − 1)(4.3)

− ρ1−z(σ)

6

(
χ(σ)− ρ1−z(σ)

)(
χ(σ)− 2ρ1−z(σ)

)
.

It is not difficult to see that each term of the above right hand side has no denominator in Z`.

5. Tensor criterion for Landen’s equation for Li3

It would be worth giving alternative proofs of complex/`-adic Galois Landen’s trilogarithm functional
equations (1.3) and Theorem 1.1 with the method of [NW12] not only for checking the validity of proofs
given in §3 but also for providing a typical sample showing utility of Zagier’s tensor criterion for functional
equations (cf. e.g. [G13]).

Let O := K[t, 1
t ,

1
1−t ] be the coordinate ring of UK = P1

K
− {0, 1,∞} with unit group O×, and let

f1, f2, f3 : UK → UK be (auto)morphisms of UK defined by

f1(t) = t, f2(t) = 1− t, f3(t) =
t

t− 1
.

Considering f1, f2, f3 : U → Gm as elements of O×, we specialize Zagier’s tensor criterion for Landen’s
functional equation of Li3’s in the following proposition:

Proposition 5.1 (Tensor criterion for Landen’s functional equation for Li3). In the tensor product
O× ⊗ (O× ∧ O×) of abelian groups, we have

f1 ⊗ (f1 ∧ (f1 − 1)) + f2 ⊗ (f2 ∧ (f2 − 1)) + f3 ⊗ (f3 ∧ (f3 − 1)) = 0.

Proof. By simple calculations, we have:

a⊗ (a ∧ b) + (b+ c)⊗ ((b+ c) ∧ (a+ c)) + (a− b)⊗ ((a− b) ∧ (−b))
= b⊗ (c ∧ a) + b⊗ (b ∧ c) + c⊗ (a ∧ b) + c⊗ (a ∧ c) + c⊗ (b ∧ c) = 0

in O× ⊗ (O× ∧ O×). The assertion is a consequence of the special case a := t, b := t− 1 c := −1. �

To compute the functional equations in concrete forms, we shall plug the above Proposition 5.1 into

[NW12, Theorem 5.7] (ii)C → (iii)C and (ii)` → (iii)`. Fix a family of paths {δ1, δ2, δ3} from
−→
01 to

f1(
−→
01) =

−→
01, f2(

−→
01) =

−→
10, f3(

−→
01) =

−→
0∞, with δ1 := 1(= trivial path), δ2 := δ−→

10
, δ3 := δ−→

0∞ respectively.

Suppose we are given a topological path γz :
−→
01 z on P1(C)− {0, 1,∞}. Then, δi (i = 1, 2, 3) provides

a natural path δi · fi(γz) :
−→
01 fi(z). Below we always consider the three points f1(z) = z, f2(z) = 1− z

and f3(z) = z
z−1 to accompany those natural tracking paths from the base point

−→
01 (i = 1, 2, 3) in this

way.

5.1. Complex case. With the notations being as above, [NW12, Theorem 5.7 (iii)C] asserts the existence
of a functional equation of the form

(5.1)

3∑
i=1

Lϕ3

C (fi(z), fi(
−→
01); fi(γz)) = 0,

where each term can be calculated by a concrete algorithm [NW12, Proposition 5.11]. Below let us exhibit
the calculation by enhancing [NW12, Examples 6.1-6.2] to their “Li3” version, for which we start with

the graded Lie-versions of complex polylogarithms, written lik(z, γz) for any path
−→
01 z. These can be
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converted to usual polylogarithms by [NW12, Proposition 5.2]; in particular, for k = 0, ..., 3 we have:

(5.2)



li0(z) = − 1

2πi
log(z),

li1(z) = − 1

2πi
log(1− z),

li2(z) =
1

4π2

(
Li2(z) +

1

2
log(z) log(1− z)

)
,

li3(z) =
1

(2πi)3

(
Li3(z)− 1

2
log(z)Li2(z)− 1

12
log2(z) log(1− z)

)
.

Each term of (5.1) relies only on the chain fi(γz) that does not start from
−→
01 if i 6= 1, in which case we

need to interpret the chain fi(γz) as the difference “δi ·fi(γz) minus δi”. At the level of graded Lie-version
of polylogarithms, the difference can be evaluated by the polylog-BCH formula [NW12, Proposition 5.9]:
In our case, a crucial role is played by the polynomial

(5.3) P3({aj}3j=0, {bj}3j=0) = a3 + b3 +
1

2
(a0b2 − b0a2) +

1

12
(a2

0b1 − a0a1b0 − a0b0b1 + a1b
2
0)

in 8 variables aj , bj (j = 0, . . . , 3). Using this and applying [NW12, Proposition 5.11 (i)], we have

(5.4) Lϕ3

C (fi(z), fi(
−→
01); fi(γz)) = P3

(
{lij(fi(z), δi · fi(γz))}3j=0, {−lij(fi(

−→
01), δi)}3j=0

)
for i = 1, 2, 3. Noting then that(

−lij(
−→
01, δ1)

)
0≤j≤3

= (0, 0, 0, 0),(
−lij(

−→
10, δ2)

)
0≤j≤3

=
(

0, 0,−li2(
−→
10),−li3(

−→
10)
)

=

(
0, 0,− 1

4π2
Li2(1),− 1

(2πi)3
Li3(1)

)
,(

−lij(
−→
0∞, δ3)

)
0≤j≤3

=

(
1

2
, 0, 0, 0

)
,

we compute (5.4) for i = 1, 2, 3 as:

(5.5)


Lϕ3

C (z,
−→
01; γz) = li3(z),

Lϕ3

C (1− z,−→10; f2(γz)) = li3(1− z)− li3(
−→
10) + 1

2 li0(1− z)(−li0(z)),

Lϕ3)
C

(
z
z−1 ,
−→
0∞; f3(γz)

)
= li3( z

z−1 ) + 1
2

(
− 1

2 li2( z
z−1 )

)
+ 1

12

(
1
4 li1( z

z−1 )− 1
2 li1( z

z−1 )li0( z
z−1 )

)
.

Putting these together into (5.1) and applying (5.2), we obtain Landen’s functional equation (1.3).

5.2. `-adic Galois case. Let us apply [NW12, Theorem 5.7 (iii)`] in the parallel order to our above
discussion in the complex case. The `-adic version of the functional equation (5.1) in loc.cit. relies on

the choice of our free generator system ~x := (l0, l1) of π`-ét
1 (UK ,

−→
01) which plays an indispensable role to

specify a splitting of the pro-unipotent Lie algebra of π`-ét
1 into the weight gradation over Q` (cf. [NW12,

§4.2]). Then, the functional equation turns out in the form

(5.6)

3∑
i=1

Lϕ3(fi),~x
nv (fi(z), fi(

−→
01); fi(γz))(σ) = E(σ, γz) (σ ∈ GK)

where E(σ, γz) is called the `-adic error term ([NW12, §4.3]). The graded Lie-version of `-adic Galois poly-
logarithm `ik(z, γz, ~x) (for k ≥ 1) is then defined as the coefficient of ad(X)k−1(Y ) = [X, [X, [· · · [X,Y ]..]
in log(fγzσ (X,Y )−1) as an element of Lie formal series LieQ`

〈〈X,Y 〉〉. Recall that the variables X,Y

are determined by ~x := {l0, l1} by the the Magnus embedding π`-ét
1 (UK ,

−→
01) ↪→ Q`〈〈X,Y 〉〉 defined by

l0 7→ exp(X), l1 7→ exp(Y ). For brevity below, let us often omit references to the loop system ~x = (l0, l1)
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and/or tracking paths δi · fi(γz) :
−→
01 fi(z) in our notations as long as no confusions occur. The list

corresponding to (5.2) reads then:

(5.7)



`i0(z)(σ) = ρz(σ),

`i1(z)(σ) = ρ1−z(σ),

`i2(z)(σ) = −χ̃z2(σ)− 1

2
ρz(σ)ρ1−z(σ),

`i3(z)(σ) =
1

2
χ̃z3(σ) +

1

2
ρz(σ)χ̃z2(σ) +

1

12
ρz(σ)2ρ1−z(σ)

with σ ∈ GK . Each term of the above (5.6) for i = 1, 2, 3 can be expressed by the graded Lie-version
of polylogarithms `ik (k = 0, . . . , 3) along “δi · fi(γz) minus δi” by the polylog-BCH formula ([NW12,
Proposition 5.11 (ii)]) in the following way:

Lϕ3(fi),~x
nv (fi(z), fi(

−→
01); fi(γz)) = P3

(
{−`ij(fi(

−→
01), δi, ~x)}3j=0, {`ij(fi(z), δi · fi(γz), ~x)}3j=0

)
.

Noting that (
−`ij(

−→
01, δ1)

)
0≤j≤3

= (0, 0, 0, 0),(
−`ij(

−→
10, δ2)

)
0≤j≤3

=
(

0, 0,−`i2(
−→
10),−`i3(

−→
10)
)

=

(
0, 0, χ̃

−→
10
2 (σ),−1

2
χ̃
−→
10
3 (σ)

)
,(

−`ij(
−→
0∞, δ3)

)
0≤j≤3

=

(
1− χ(σ)

2
, 0, 0, 0

)
,

we obtain for σ ∈ GK :

Lϕ3(f1)
nv (z,

−→
01; γz)(σ) = 1

2 χ̃
z
3(σ) + 1

2ρz(σ)χ̃z2(σ) + 1
12ρz(σ)2ρ1−z(σ),

Lϕ3(f2)
nv (1− z,−→10; f2(γz))(σ) = 1

2 χ̃
1−z
3 (σ) + 1

2ρ1−z(σ)χ̃1−z
2 (σ) + 1

12ρ1−z(σ)2ρz(σ)

− 1
2 χ̃
−→
10
3 (σ)− 1

2ρ1−z(σ)χ̃
−→
10
2 (σ),

Lϕ3(f3)
nv

(
z
z−1 ,
−→
0∞; f3(γz)

)
(σ) = 1

2 χ̃
z

z−1

3 (σ) + 1
2ρ z

z−1
(σ)χ̃

z
z−1

2 (σ) + 1
12ρ z

z−1
(σ)2ρ 1

1−z
(σ)

+ 1
2

(
1−χ(σ)

2

)(
−χ̃

z
z−1

2 (σ)− 1

2
ρ z

z−1
(σ)ρ 1

1−z
(σ)

)
+ 1

12

(
1−χ(σ)

2

)2

ρ 1
1−z

(σ)− 1
12

(
1−χ(σ)

2

)
ρ z

z−1
(σ)ρ 1

1−z
(σ).

(5.8)

Combining the identities in (5.8) enables us to rewrite the LHS of (5.6) in terms of `-adic Galois poly-
logarithmic characters. It remains to compute the error term E(σ, γz) in the right hand side of (5.6).

Lemma 5.2. Notations begin as above, we have

E(σ, γz) = − 1

12
ρ1−z(σ) +

1

2
χ̃z2(σ) +

1

4
ρz(σ)ρ1−z(σ).

Proof. We shall apply the formula [NW12, Corollary 5.8] to compute the error term. Let [log(fγzσ )−1]<3

be the part of degree < 3 cut out from the Lie formal series log(fγzσ )−1 ∈ LieQ`
〈〈X,Y 〉〉 with respect

obtained by the Magnus embedding l0 → eX , l1 → eY with respect to the fixed free generator system

~x = (l0, l1) of π`-ét
1 (UK ,

−→
01). We also write ϕ3 : LieQ`

〈〈X,Y 〉〉 → Q` for the Q`-linear form that picks up
the coefficient of [X, [X,Y ]] (that is uniquely determined) for any Lie series of LieQ`

〈〈X,Y 〉〉. Introduce
the variable Z so that eXeY eZ = 1 in Q`〈〈X,Y 〉〉. By the Campbell-Baker-Hausdorff formula, we have

(5.9) Z = −X − Y − 1

2
[X,Y ]− 1

12
[X, [X,Y ]] + · · · .
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According to [NW12, Corollary 5.8], it follows then that

E(σ, γz) =

3∑
i=1

ϕ3

(
δi · fi

(
[log(fγzσ )−1]<3

)
· δi−1

)
=

3∑
i=1

ϕ3

(
δi · fi (ρz(σ)X + ρ1−z(σ)Y + `i2(z, γz)(σ)[X,Y ]) · δi−1

)
= ϕ3

(
ρz(σ)X + ρ1−z(σ)Y + `i2(z, γz)(σ)[X,Y ]

)
+ϕ3

(
ρz(σ)Y + ρ1−z(σ)X + `i2(z, γz)(σ)[Y,X]

)
+ϕ3

(
ρz(σ)X + ρ1−z(σ)Z + `i2(z, γz)(σ)[X,Z]

)
.

Since ϕ3 annihilates those terms X,Y, [X,Y ], [Y,X], we continue the above computation after (5.9) as:

E(σ, γz) = ϕ3

(
− 1

12
ρ1−z(σ)[X, [X,Y ]]− 1

2
`i2(z, γz)(σ)[X, [X,Y ]]

)
= − 1

12
ρ1−z(σ)− 1

2
`i2(z, γz)(σ)

= − 1

12
ρ1−z(σ)− 1

2

(
−χ̃z2(σ)− 1

2
ρz(σ)ρ1−z(σ)

)
= − 1

12
ρ1−z(σ) +

1

2
χ̃z2(σ) +

1

4
ρz(σ)ρ1−z(σ).

This concludes the assertion of the lemma. �

Alternative proof of Theorem 1.1. As discussed in §4, the `-adic Galois Landen’s trilogarithm functional
equation in Theorem 1.1 is equivalent to the identity (4.3) between polylogarithmic characters. The
latter follows from (5.6) with replacements of the terms of both sides by (5.8) and Lemma (5.2) by simple
computations. �

Appendix A. Low degree terms of associators

Presentation of lower degree terms of G0(X,Y )(z) and fγzσ (X,Y ) are often useful as references. The
former one presented below reconfirms Furusho’s preceding computations found in [F04, 3.25]-[F14, A.16]
(where the sign of log(z)Li2(z) had an unfortunate misprint in the coefficient of XYX).

G0(X,Y )(z) = 1 + log(z)X + log(1− z)Y +
log2(z)

2
X2 − Li2(z)XY(A.1)

+
(
Li2(z) + log(z)log(1− z)

)
Y X +

log2(1− z)
2

Y 2 +
log3(z)

6
X3 − Li3(z)X2Y

+
(

2Li3(z)− log(z)Li2(z)
)
XYX + Li1,2(z)XY 2

−
(
Li3(z)− log(z)Li2(z)− log2(z)log(1− z)

2

)
Y X2 + Li2,1(z)Y XY

−
(
Li1,2(z) + Li2,1(z)− log(z)log2(1− z)

2

)
Y 2X +

log3(1− z)
6

Y 3

+ · · · (higher degree terms).

This is a group-like element of C〈〈X,Y 〉〉 whose coefficients satisfy what are called the shuffle relations
([Ree58]). The regular coefficients (viz. those coefficients of monomials ending with letter Y ) are



Landen’s trilogarithm functional equation 13

given by iterated integrals of a sequence of dz/z, dz/(1 − z). This immediately shows G0(0, Y )(z) =∑
k=0

logk(1−z)
k! Y k and say, Li1,1,1(z) = − 1

6 log3(1− z). Furusho gave an explicit formula that expresses
arbitrary coefficients of G0(X,Y ) in terms only of the regular coefficients ([F04, Theorem 3.15]). The

specialization z → −→10 (cf. [W97] p.239 for a naive account) interprets log z → 0, log(1− z) → 0 so as to
produce the Drinfeld’s associator:

Φ(X,Y )
(

= G0(X,Y )(
−→
10)
)

(A.2)

= 1− ζ(2)XY + ζ(2)Y X − ζ(3)X2Y + 2ζ(3)XYX

+ ζ(1, 2)XY 2 − ζ(3)Y X2 − 2ζ(1, 2)Y XY + ζ(1, 2)Y 2X

+ · · · (higher degree terms)

which forms the primary component of the Grothendieck-Teichmüller group ([D90], [Ih90]). Among other

symmetric relations of Φ, the 2-cyclic relation Φ(X,Y ) · Φ(Y,X) = 1 (which may be derived at z =
−→
10

in the chain rule G0(Y,X)(1 − z) = G0(X,Y )(z) · Φ(Y,X) from Table 1) implies Euler’s celebrated
relation ζ(3) = ζ(1, 2) (due to CoeffX2Y + CoeffY 2X = 0). One also observes that the shuffle relation
corresponding to XY

∃

Y = Y XY + 2XY Y implies CoeffY XY = −2ζ(1, 2).

The expansion in Q`〈〈X,Y 〉〉 of the `-adic Galois associator fγzσ ∈ π`-ét
1 (UK ,

−→
01) via the Magnus embed-

ding l0 7→ eX , l1 7→ eY over Q` reads as follows:

fγzσ (X,Y ) = 1− ργz (σ)X − ργ1−z
(σ)Y +

ργz (σ)
2

2
X2 − Li`2(γz)(σ)XY(A.3)

+
(
Li`2(γz)(σ) + ργz (σ)ργ1−z (σ)

)
Y X +

ργ1−z
(σ)

2

2
Y 2 − ργz (σ)

3

6
X3 − Li`3(γz)(σ)X2Y

+
(

2Li`3(γz)(σ) + ργz (σ)Li`2(γz)(σ)
)
XYX + Li`1,2(γz)(σ)XY 2

−

(
Li`3(γz)(σ) + ργz (σ)Li`2(γz)(σ) +

ργz (σ)
2
ργ1−z

(σ)

2

)
Y X2 + Li`2,1(γz)(σ)Y XY

−

(
Li`1,2(γz)(σ) + Li`2,1(γz)(σ) +

ργz (σ)ργ1−z
(σ)

2

2

)
Y 2X −

ργ1−z
(σ)

3

6
Y 3

+ · · · (higher degree terms) (σ ∈ GK).

The coefficients of X,Y, Y Xk (k = 1, 2, ...) were calculated in terms of polylogarithmic characters ex-
plicitly in [NW99]. A formula of Le-Murakami, Furusho type for arbitrary group-like power series was
shown in [N21b]. As illustrated in Proposition 4.2, the family of polylogarithmic characters and that of
`-adic Galois polylogarithms are converted to each other. The terms appearing in the above (A.3) can
be derived from them.
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