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Abstract In §1, we introduce the classical Dedekind sum and the Rademacher
function. Then, in §2, certain generalized Rademacher functions are
introduced as the Eichler-Shimura type period integrals of Eisenstein
series. In §3, we present a version of continued fraction algorithm
which computes efficiently the generalized Rademacher functions. In
84 we show a congruence formula connecting values of the generalized
Rademacher functions of weight 2 and weight k& > 2. This formula will
be applied in a forthcoming paper [N4].

1. The classical Dedekind sums

The classical Dedekind eta function
w .
nir)=¢/*[[-¢") (¢g=€"", T€9) (1.1)
n=1

on the upper half plane ) is one of the most beautiful objects in num-
ber theory. Since A(T) = (2mi)'2n?*(7) is a cusp form of weight 12

for SLy(Z), it is clear that, for any A = (‘ZZ) € SLy(Z), the ra-

tio n(A7)/1/<E4n(r) is a 24-th root of unity. The behavior of this

3

little ratio with respect to A € SLo(Z) looks delicate and mysteri-
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ous. R. Dedekind, in his note [D] included in Gesammelte Mathe-
matische Werke of B. Riemann, studied the behavior with Riemann’s
method. Outstanding is that he found an explicit integer valued func-
tion ¢ : SLo(Z) — Z controlling this ratio in the form

¢ 31 P(A4) T), c=0);
n(Ar) = { n(7) (c=0) (1.2)

27

PN, [fertdy () (e > 0),

Dedekind’s formula for the function ¢ (which, by definition, factors
through PSLy(Z) — Z) reads as follows:

p(4) = {%’ (c=0), (1.3)

d
otd _12s(a,c), (c>0).

Here s(a, c), called now the Dedekind sum, is defined by
() = S AP
i—0 C C
with P (x) the “sawtooth” function:

_ )0 (z € Z);
Pi(@) = {w —-% (z¢2).

([x]: the greatest integer not exceeding z € R.)
In [R], H. Rademacher intensively studied algebraic properties of the
function ¢. He derived, for example, the composition formula

©(AB) = ¢(A) + ¢(B) — 3sgn(cacpean) (A,B € SLy(Z)), (1.4)

where, for any matrix S € SLy(Z), cs denotes the lower left entry of S.
Following [KM], we shall call ¢ the Rademacher (¢-)function.

One of the key ingredients that enabled Dedekind to find the above
result was to consider the modular transformation of not only 7(7) but
also of logn(7). In fact, Dedekind’s key formula (for the case ¢ > 0)
reads:

1 i , d
logn(At) —logn(r) = ~3 log p—— + i T s(a,c)).  (1.5)

This left hand side may also be written in the form:

AT
logn(ATt) —logn(r) = —mi Es(2)dz, (1.6)

T
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where

1 ! 1
By(r) = (270)2 2 (m7 +n)?

m,n

is the Eisenstein series of weight 2 (with specified conditional conver-
gence). In other words, the Rademacher function ¢ can be viewed almost
as the periods of the Eisenstein series. Unfortunately, F5(7) is only a
quasi-modular form and not a usual modular form. This causes the need

of the adjustment term %log ora of (1.5) which connects ¢(A4) and the
period. To gain a more satisfactory viewpoint, we would need a more
subtle treatment by using a non-holomorphic modification of Fo. How-
ever, we do not enter this subtlety any more here, because this sort of
adjustment is rather exceptional phenomenon occurring in this original

case among generalizations of Fy discussed in the next section.

2. Generalized Rademacher functions

We wish to consider a generalization of the Rademacher function ¢ in-
troduced in §1 by considering ¢ as the case of weight 2 and level 1. With
regard to the appearance of Fs in (1.6), we shall begin by introducing
the generalized Eisenstein series E,(fl’m)’s (k > 2, (z1,12) € (£Z/Z)?)
given by

E]S;EI 7502) (7_)

!

o (k‘ - 1)' 27mi(z102—2201) 1
T 2m)F 2 e 2 (ma7 +ma)®

ac(Z/NZ)? m=a(N)
Py(21) o0 00
_ _1TE\L1 k—1_2mil(zo+sT) k—1 _2mil(—z2+sT)
= . + E E s e > + E E s e 2T
SEXT1+7Z 1=1 sE—x1+7 1=1
s>0 >0
(2.1)

where Py(z) : R — R is the k-th periodic Bernoulli function (whose
definition will be recalled in (3.4)). Tt is well known that B is a holo-
morphic modular form of level N and weight k, except for the original
case Fy = Eéo) (cf. [St)]).

Let T'(N) C SL2(Z) be the principal congruence subgroup of level
N > 1. For any pair of k¥ > 2 and x = (z1,22) € (§Z/Z)* with
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(k,x) # (2,0), we then consider the Eichler integral of £,":

3 Py(zy) 7+ 1
k. (k-1

(2.2)

This (indefinite) integral satisfies (%)k_lF ISX) = E’,(CX). Writing
J(A, 1) == (et +d) for A = (23) € I'(N), we then see that the dif-
ference

(A7) = (A1) P (Ar) = FO(r) (2.3
is a polynomial in 7 of degree k—2. What we wish to look closely at here
is its “real part” Reqﬁ,(cx)(A)(T) which is, by definition, the polynomial in
the “complex variable” 7 whose coefficients consist of the real parts of the

corresponding coefficients of qS,(Cx) (A)(7). It is known that Reqﬁgx) (A)(7)
has only rational coefficients.

The assignment A +— Re¢§€x) (A)(7) enjoys the 1-cocycle property of
the form:

Re¢™ (AB)(r) = j(B,7)* >Re¢\™ (A)(Br) + Reg¢\® (B)(r)  (2.4)

on A,B € T'(N).

To switch Reqﬁ,(cx) (A)(7) into the form of 1-cocycle for a left module,
let us introduce the space Sym*~2(Q?) = Q[X, Y'ldgeg=k—2 of the homo-
geneous polynomials in X, Y of degree k — 2 on which SLy(Z) acts on
the left (written p) by

p (Z Z) . $(X,Y) = ¢p(aX + cY,bX + dY).

Definition (2.5). Let (k,x) € Z>2 x (£Z/Z)? with (k,x) # (2,0).
We define the generalized Rademacher function

o : T(N) — Sym* (@) = QIX, Y Jaeg—r—2
k—2

b Lk—1-7) k—2—
A= (“ ) — > AR (AXTY T)
( ¢ d r=0

by

3 (4) 1= (~)F Lk = 2)1X* 2. Reg{ (A1) <_§) _
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As expected from the above definition, (2.4) can be converted into the

following 1-cocycle property of @gck):

o) (AB) = o (4) + p(4).2¢ (B) (2.6)

on A, B € T'(N). But one can get a nicer result. In fact, G. Stevens [St]
showed how to interpret @ﬁf) as the periods of a certain real differential
form extended to the Borel-Serre compactification $ of the upper half
plane $. With his method, we can extend @&k) canonically to a function
from SLy(Z) (or even from GLy(Q)*) to Sym*~2(Q?). Moreover the case
of (k,x) = (2,0) may naturally be included in this unified construction
of P with regarding @82) = —p(A)/12. Then, the above properties
(1.4) and (2.6) can be generalized to

1 e
) (AB) = 8 (A) + p(A). 8 (B) + 705 "sgn(cacsean).  (2.7)

Here, sgn(*) € {£1,0} denotes the signature of %, and the Kronecker
symbol 65=2 is defined by §5=2 = 1 when (k,x) = (2,0) and §5=2 = 0
otherwise.

It will also be nice to have generalizations of the beautiful formula
(1.3) to the cases of our generalized Rademacher functions ¥, AL
though the author could not find a literature describing the expl(i(;it

k

form, by careful calculations one obtains the following formula of ®x " :
PSLy(Z) — Sym*%(Q?) = Q[X, Y Jaeg—k—2;

(k) a b)) _
o (¢ 0)) =

(_ Pule1) a k-2

~Bulon) fa x4yt (c = 0);
_@ i (X + Y)k—2at

—Pulamitem) (9, (4(aX + cY) + bX + dY)F2dt

A\

k—2
|+ X (=17 (5,2 X7(0X + V)2 s W a,0), (o> 0).
r=

(2.8)

where the last factor (called the generalized Dedekind sum) is defined
by

_1 ) .
(kflfr,r+1)( C) _ X Pk—l—r(wlT_H) P’r—|—1(-’ﬂ2 + G/le_H) (2 9)
(z1,22) ’ —~ k-1-r r+1 ) )
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The following distribution relation is an important property which con-
nects values of ®%) (A) of different x’s:

o) =23 o) (n2>1). (2.10)

1
ye X

3. Continued fraction algorithm for &
The calculation of @,((k)((g 3)) by means of (2.8) involve those of gen-

eralized Dedekind sums s& = ") (a, c) of (2.9) which need lots of times

when c is big. Variants of continued fraction algorithms have been known
to improve this sort of inefficiency on computers. We shall exploit a
version of it well suited to calculations of our generalized Rademacher
functions. The implementation and various numerical tests have been
given by Y. Morimoto [Mo] by using PARI-GP and Maple softwares.

Given a matrix A = (g 3) € SLg(Z), choose an expression of a/c by
a continued fraction of the form:

a 1 1 1
b
k1— ko— —ky,
K 1
= ko —
by — 1 (3.1)
k 1
? 1
kn—l - %
with an integer sequence (ko,k1,...,kn). This expression may be ob-

tained by first putting ro = a, r1 = ¢ > 0 and then defining integers
{k;}; with the Euclidean method:

(’I‘() = k()?“l -T2, |’I"1| > ‘7“2‘ > O,
r1 = kira — 73, |r2| > |rs| >0,
<. . (3.2)
Tn—1 = kn_1Tn — Tn+1, |7'n| > |7'n+1| =1,
Ul knrns1 — 0, |Ppt1] =1, Tpye =0,
where each k; (i = 0,...,n) is chosen to be either [r;/r;+1] (the greatest

integer not exceeding 7;/r;11) or [r;/ri+1] (the least integer greater than
or equal to r;/r;11). Let us write ¢ = r, 1 € {£1}.
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Define also a sequence of matrices {4;}; in SLs(Z) by

10 ke —1 ko —1\ (k1 -1
Al:(o 1)"40:(10 0)’A1:(10 0)(11 0)’

and put

Then,
Lemma (3.3). Notations being as above, we have
(i) a = —epn, c= —egp;

(ii) 0 := (d — eqn—1)/c € Z;

i (¢ a)==(v 3) (¢ )6 1)

Proof. The Euclidean sequence (3.2) may be rephrased as

a\ k'() -1 k‘l -1 kln —1 Tn+1

¢/ \1 0 1 0/)7°\1 o0 0 )
The claim (i) follows immediately from this. Both A and €A, are in
SLy(Z) and have the same left column. Therefore, there exists § € Z

with A = eAn((l) ‘15), ie.,

(0= )6 )
c d —4n Q4n-—1 0 1)

The claims (ii) and (iii) follow from this simultaneously. O

Definition (3.4). The Bernoulli polynomials Bg(X) (k = 0,1,2,...)
are defined by the generating function

tetX e tk

and the Bernoulli number By is by definition Bg(1). We define the
periodic Bernoulli function Py : R — R by Px(z) = Bi(z — [z]) except



382 H. NAKAMURA

for the case k = 1 and z € Z where we set P;(n) = 0 (n € Z). For
x = (71,72) € Q? and (a,b) € ZQZO, define

_ PBy(z) Py(z2)
.Ba,b(x) = max{al,l} - masi{bfl}.

Proposition (3.5) (Continued fraction algorithm). Notations
being as above, put k.1 := 8. Then, for x = (z1,22) € Q® and

A= (‘c‘ Z) € SLy(Z), we have

n k—2
TS 9) D NTECY] Ly

i=0 j=0
X (pic1 X + giaY) (piX + qY)F 277
n+1

— > Bro(xAi1)

i=0
ki
X / ((—=pi—1t + pi—2) X + (—gi—1t + gi—2)Y)
0

ot=2

k—th

_l’_

(sgn(g-19o0) + sgn(qoq1) + - -+ + sgn(gn—14n))-

Proof. Applying (2.7) iteratedly to (3.3)(iii), we obtain

= ki —1
a®) :Zp(Ai_l).(I)g?li_l(<1 0 ))
=0
18\, , k2
+p(An).<b§(’2n(<O 1))+ D sen(ai14)-
=0

Then, the formula (2.8) gives

01
o ki
‘szi_l((ﬁl 01)) = —ﬂk,o(XAil)/O (tX +Y)F2at
k—2 k9
+ > (—1) )
("))

X X7 (kX + V) 27050 T2t g 1y,

xAi—1

Kni1
@iﬁin((l ‘5)) ——Broxdn) [ X+ V)
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Writing here (y;, %) := xA4;-1 (1 =0,...,n) so that

ki —1 .
o) (7)) = Gsnzen) 0 i <),

we see that

s(k—l—j,j+1)(k_. 1) = P—1-j(Yi) Piv1(2i + kiyi)
xA;—1 I3 - k—l—j ]+1

= (_l)k_l_jﬂj+1,lc—1—j(XA'L')'
Therefore,

n+1 ki
O == 5" p(Ain1) Byo(xAis) / (tX +Y)*%dt
i=0 0

+ (~1)F! 2": kz_:Qﬂ(Ai—l)- (k R 2)

i=0 j=0 J
X Xj(kiX + Y)k_Q_j/gj-i-l,k—l—j(XAi)
k=2 n
+ "T z; sgn(gi—19i)-
1=

Noticing that p(A4; 1) maps

X — —piaX —¢q1Y,
Y +— pioX +¢_2Y,
EX4+Y — —p;X — g,

we conclude the proof of Proposition (3.5). O

4. Some congruence properties

In this section, we shall present a congruence formula (4.3) which

connects N2 values of @ (A) (x € (Z/Z)? and the coefficients of

@gc) (A). The congruence formula will be applied to the study of a certain

measure function on the congruence kernel of SLy which governs the
meta-abelian monodromy representation in the fundamental group of
the universal elliptic curve minus the origin section ([N1-4]). We refer
to the forthcoming paper [N4] as a main reference for details of such an
application.

Let Z'y C Q denote the ring of fractional numbers with denominators
prime to N. For n > 1, write B}(X) := Bp(X) — B,(0), and define
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dy,, (resp. d}) to be the least common multiple of the denominators of
coefficients of the polynomial < B, (X) (resp. 2B;(X)). In the proof of
Proposition (4.3) below, we shall frequently make use of the following
well known properties:

Zx n—+1 B!, 1(N) =0 (mod df\;z') (4.1)
n 1 T T T T
Nn (Pl +w) = Pa() = 2" (Pl +w) — Pi(5)
(mod %Z’N) (4.2)

forz € Z, N €N, u € Z.

Proof. The formula (4.1) is quite popular, and its proof may be left to
readers. To prove (4.2), let {t} := ¢t — [t] denote the fractional part of
t € R, and put v := {§ +u} — {§} so that {u} = {v}. Then, v € Z/;
and we compute

N (P u)— Pu(2))

=N B 5 +) Bl
[(({_} +o)" - _({1} -I-’U)"_l) — ({ﬁ}n _ g{%}n—l)]
— [} o+ Paca({ D) + 5 Qua ()] -

Here, the congruence is taken modulo I Z'N, and P,_o, Qn_2 are poly-

N"_

an

nomials of degree n — 2 with coefficients in Z. Since %Bn(X ) is a poly-
nomial of the form & Sz — %x"il + ..., it follows that d,, is a multiple of
LCM{2,n}. Therefore the second and third terms of the above last side
vanish modulo 2£Z/,. Moreover the integer 2’ := {#/N}N is congruent
to z (mod N). Thus the above last side contlnues to

=) "o =2y =2"! (Pl(ﬁ +u) — Pﬂ%)) .
U

Proposition (4.3). Let N, r, k be integers satisfying N > 1, k > 2
and 0 <r < k—2, and, for s =1,...,k — 2, let e; be the denominator of
k(ffs). Define Dy, to be the least common multiple of the set

{ djt1dp—1-j (r <j<k—2), e1,...,ex2 }
di+1d27ra dr+2dk 1—7r? dr—l—ldk r+1° di+2dsz d:+3dzflf'r
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Then, for A € T'(N), we have the following congruence:

N—-1N-1

D) M (i R EIE

z=0 y=0

(4)

=N
2l

)

)

7).

_ 12¢)g+1,k—1—r)(A) (mod (k - 2) GCD{6,N}N

T Dk,r
This congruence formula was first proved by the author in the special
case of r = 0. The general case of the formula was then conjectured by
Y. Morimoto after numerical computations and evidences [Mo].

(4.4) Proof of Proposition 4.3. Let A = (23) € T'(N). Since

3 3 3\ .. . .
(é 9{\7 ) (g g) — (a+i9N b+ggN ), it is sufficient to prove the formula

when a > ¢ > 0. In what follows, we shall assume this. Applying (2.7)
to the equation ((i _01) (fa ilb> = (g Z), we find

(k) _ Pylm) [T k—2
By o(A) = == /0 (Y — X)F2d¢
P, 0
_M/ (@@X + Y)E+OX + Y )

k—2
o (k=2 Py 1 (71) Pry1(20)
X'I‘yk 2—r 1) T
+ ;) ( r >( ) k—1—-r r+1

- ki(ax +cY)ryk—2-r (k R 2)

T
r=0

a—1 Pk—l—r(ml +cw2+i) Pr+1(x2+i)

_1yr a o) (44.
X )g k—1_r r+1 (44.0)

Let us first evaluate the left hand side of the congruence formula (4.3).
When k£ = 2, r = 0, the above (4.4.0) gives

b
(I>£(2) (A) = ip2($2) — %Pg(axl + 0562)

a—1 . .
+ {P1(£E1)P1(£E2) - ZP1($1 + cx2: Z)Pl(@;_ z)} .
=0




386 H. NAKAMURA

Since @ = 1, b = ¢ = 0 (mod N), for any integers z,y, Po(25F%) =
PQ(%) Thus,

N—-1
122 (2.1
=0

;%& ﬂk2q)¢® (A)

:@_ﬂpwmﬁ&+&LMAD

r

where
N—-1N-1 c y b z
Sy = 12 k—Z—TT_P___P_
=123 3L (PG~ g, )
N-1N-1
Sp:=123 > Y P () Pi(+),
z=0 y=0
~1N-la-1 y
_ +1 ~ 11
Sy 1= —122 Z Zxk =Ty P, (N—i—c )Pi( )
z=0 y=0 =0

Recalling the notation B} (X) := Bs(X) — B,(0), by (4.1), we immedi-
ately see

Sy — Gch r—1(V) B 3(N) B:+2( Br (N
T 4 k—r—1 \N%2(r+3) N(r+2 r—i—l
b ( Bia(N)  BiL,(N) | Bi,(N)\ Bl (V)
a \N?(k—r+1) Nk-r) 6(k—r—1) r+1
= 0 (mod WZIN)

Dk,r

(Note also here that b=c =0 (mod N).) Let us rewrite Sy. According

Ly
to the decomposition of Py (X~ ) as %o + (— — 1), we may write

Sy =S+ S, (4.4.2)
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where
N—1N-1la—1 .
o T y+Ni , vy
Sh=—12 k=2 "y"Pi(—=+c (=)
720 =0 i=0 N aN ~“aN
il ar+cy., vy
=-12) > 2T R ()
z=0 y=0
N-1N-1 oy
=-12 Z gk E Ty (N)(—N)a
z=0 y=0
N—1N-1la—1 .
_o_ T y+ N, 1
Sy =—12 AT =) (e Ey (= —
=0 y=0 =0 N aN a

Noticing that % — 1 € 17/ and that c% € Zy as a

0 (mod N), we may apply (4.2) to the part “zF=2"P(£ + ¢

of SY to get the congruence

12N

S'=7+T, (mod ——/———
2 ! 2 ( 2dg_r—1

Zy)

where

N | —

387

aN
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Combining the above Sy, S, Th, we obtain

S1+ 85+ Ty
1
k—2—r 7'+1
E Py ( 2: _
v 4 N
a—lBr+2(N) BZ_T(N) B;’;_T_l(N) 6N .,

=12 mod

N rr2 Nk—r) 2k r—1) 0 wmed 5.

Meanwhile, since

N-1la—1

1 y+ Nt 1
—12 Z Z mPk,l,T(c a )"JT(_§)

6 Py—1-r(0) Bfi (V)
ak T k—1—-r r+1

and

—~ Pp_1-(0) i 1 Pe_1-r(0) B 1 (N)
—12) ) - G e Ty i T
it follows that

N—-1la—-1

y—I—Nz ) 6N
T =—12 Py_1-, — (mod
};;k_l_ ey (mod 57

Summing up the above discussions with (4.4.2-3), we may rewrite (4.4.1)
as

N—-1N-1 )
12y 3 (M) el
z=0 y=0
N—1la—1 . .
_ k-2 , 1 y+Ni, i
:1% r>“”§:Zﬁ_T3&1T“ — )y’ (444)

modulo (k . 2) 7GCDD{§ jV}N Z'y.

side of the statement formula. Reading the coefficients of X"Y*~2-" of
(4.4.0) for (z1,z2) = (0,0), we get

Next, we shall consider the right hand

12@87"1‘1,]6—1—7‘) (A) — U]_ + U2 + Ug’
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where
U, :_12(k—2> P,(0)
T k
—c/a 0
X / (—1)Ttk”dt+/ (at + ) (ct + d)F 2 7"dt 3,
0 —b/a
12(52)(=1)"
by 1202

k—1-r)(r+1)

) 1
X {Pk_l_T(O »+1(0) —a ZPk 1-r(c=) Pria(= )}7

k—2 . . .
rg—r I3\ (F—2 j P—l—j(cz/a)])j (i/a)
h=-12 3, o (7")( j )H)jg k(k—l_j)(j++11) '

j=r+l1

12(* )N
LCM{ey,....e5— Q}ZN)

Moreover, taking the equality ( )(k 2) = (k;Q) (ka T) into accounts, we

12(* )N

Asb=c=0 (mod N), it is easy to see U; = 0 (mod

easily see that U; vanishes modulo ;=77 TP P g oy 2} 'y (again
as ¢ =0 (mod N)). Now, comparing the distribution relations
( : N-1N-1 (
(br—f-l,k—l—r Nk 2 'I‘+1k 1-7)
o > Y el ),
z=0 y=0
N 1N-1 N—1N-1 a:v+cy
(i) = N2 30 3 Bl
=0 y=0 z=0 y=0
we obtain
Uy = P
S RPIPILBRTALMIGS

z=0 y=0
N—1N-1la-1

Ly
=22 ) a P +ac_]g<[+ )Pr+1(z—;N)}

z=0 y=0 2=0

i L R

4.4.5
k—1-r r+1 ( )

N-1a-1 iN i+
-3 S P B
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We shall decompose the second term of the above last side according to

(aN)" Yy i (aN)" Y )
P, 4+ )= P, - r—
r+1 H_l(aN a) r+1 H_l(aN)—Fy a (mod d

N
Zy),
r+1

which follows from (4.2) and 0 < % + £ < 1. We compute:

~1N-1 ;
“2: P/c—l_r(@c) (aN)" P (%)
=0 1=0 k—1-r r+1
N-1
— a_(k—Q—T) Pk_l—T (O) ((J, )'r Pr+1 (aLN)
= k—1-—r7r r+1
N-1
— —(k—2—r) Py 1 7' Z yr + T + 1yr)
N (k—1—r)(r -I— 1) = aN
N
mod YA
( dry1dgr1 )

Noticing that the coefficient of X in B,;2(X) is (—=1)"**(r+2)B,11 and
that P.41(0) =0 if r + 1 is odd, the above last side continues to

—(k 2— T')Pk 1— T(O)( B:—I—Z(N) B:—I—I(N))
k—1—r ‘aN(r+1)(r+2) 2(r+1)
_1\r+1
Eik_llr_(?(rljl Pri1(0) (mod 224

_ Pe1-+(0) B34 (0)
k—1—7r r+1°

Here we also used a = 1 (mod N). Therefore, we conclude

_ ) K- (YFN 6(,2N_,
Up=—— 1 §§P1r )ya(mOdﬁZN)a

which coincides with (4.4.4). This completes the proof of Proposi-
tion (4.3). O

Corollary (4.5). Let k > 2. Then, there exists an integer D(k) (de-
pending only on k) such that for every N > 1,

N—-1N-1
123" 3" (@Y - yX)F200) , (4) = 1208 (A4) (mod

(% %)
z=0 y=0

N !
WZN)-
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Proof. This is an immediate consequence of Proposition (4.2). We may
take D(k) so that

N _g k —2\ GCD{6,N}N
D(k) N T Dy

’

Z'y C Q.
r=0

O

Example (4.6). Take a matrix A = (;g; :ﬁ%ﬁ) € I'(112), and let us
examine our congruence formula (4.5) for £k = 6, N = 11. In this case,
for any 0 < r < 4, (f) %6?:}112'11 = 11Z,, hence %(G)Z'H may be
taken as 11Z/; Computation on RHS shows

6
o) (4)(X,Y)
_6157810527168637 4 1172()’0782677249595YX3

315 + 504
37381997569467617 _ 5 o  5190578682530622937 _ 4
36 Y X"+ 2520 X
1930511018334372017 _ ,
1260 ’

while that on LHS shows
10

> @y —yx)'el , (4)

11°11

[

z,y=0

157339
= — X4+ Y X3 — 10215772 X?

23014 172
~ 303 6Y3X+77605

In both sides, each coefficient except for that of X2Y?2 is prime to 11.
Now, their difference may be computed as:

557102
3

Y4,

10

6 2
o) (A)(X,Y) = Y (@Y —yX)'a , ()
z,y=0
_ 12315621037816679 x4 4 117260782583656459 v x3
630 504
+ 37381997573145269 v2x? 4 5190578682723945577 v3x
36 2520
1930511018183758967 _ 4
+ Y
1260
=0 (mod 11Z%,).
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Example (4.7). This example was suggested by Y. Morimoto. Let

A= (?ggg ‘;’ggig) € I'(81), and consider the case of weight 10. Then, for
0<r<s8 (%) %‘1’51}812% = 3Z4. The coefficient @85’5) (A) of X4Y*

T
in <I)(()10) (A) is computed as

1160735419039913093577749564892899519
8

o (4) =

which is prime to 3, while

8

4 181

put

80
> (8)x4(—y)4¢)§2@) 1(A) = —8836456074579123550
z,y=0

which is also prime to 3. Now the difference of these two values is

8
2§V - 3 (3) s -u'el @)

T,y
~ 1160735419039913022886100968259911119

8
which is divisible by 3 (but not divisible by 9).

Example (4.8). Let us consider the case of weight 4 for A =

(150’?24 6135;;651963) € I'(128). Then, (3) GCD1{2%162,TS}1_2BZ'2 is 47 for r = 0,2,

and 8ZY, for r = 1. The computation shows

12 4022 1732 229732849464
@84)(14) _ 363940 X2 4 3370699173 XY + 973284946 YZ,
45 15 5
and
127
2
3 @Y —yX)2PL , ((A)
l‘,y:() 1287128

_ 808534186 X2 _ 108038380 Xy 801635720 V2.

Both of them do not belong to 4Z45[X, Y] (because of the coefficients of
X?). Now the difference of these two polynomials is computed as

127
o§)(4) = Y @Y —yx)’e) , (4)
z,y=0

23581232 1 2 2
_ 3535 3 X2 4 3376 1053363 XY + 68959??5)7699 v?
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which belongs to 4Z4[X, Y] (actually to 16Z5[X,Y]).

At the time of writing this paper, the author does not have an exam-
ple assuring whether our estimate of the modulus is best possible with
respect to 2-powers.
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