
Tangential base points and Eisenstein power series∗

Hiroaki Nakamura

In this note, we discuss a Galois theoretic topic where the two subjects of
the title intersect. Three co-related sections will be arranged as follows. In
Part I, we review basic notion of tangential base points for etale fundamental
groups of schemes of characteristic zero. Then, in Part II, we introduce
‘Eisenstein power series’ as a main factor of the Galois representation “of
Gassner-Magnus type” arising from an affine elliptic curve with ‘Weierstrass
tangential base point’. Part III is devoted to examining the Eisenstein power
series in the case of the Tate elliptic curve over the formal power series ring
Q[[q]] (introduced in Roquette [R], Deligne-Rapoport [DR]). We deduce then
a certain explicit relation (Th.3.5) between such Eisenstein power series and
Ihara’s Jacobi-sum power series [I1].

I

In [GR], A.Grothendieck invented Galois theory for general connected
schemes. It is based on axiomatic characterization of a “Galois category”
which models on the category Rev(X) of all finite etale covers of a scheme
X. In this theory, the role of a base point of π1 is played by a certain
“Galois functor” Rev(X) → {finite sets} which axiomatizes the functor of
taking fibre sets over a “base point” for all covers in Rev(X). Then, a chain
between two “base points” is by definition an invertible natural transfor-
mation between such Galois functors. In particular, the fundamental group
based at a Galois functor Φ is the functorial automorphism group Aut(Φ),
or equivalently, the automorphism group of the coherent sequence of finite
sets {Φ(Y )}Y ∈Rev(X) (with maps induced from those in Rev(X)) topologized
naturally as a profinite group.

Recently, the notion of “base point at infinity” seems to be calling certain
attentions of Galois-theorists, according as fascinating problems of Grothen-
dieck [G] are known (cf. V.G.Drinfeld [Dr], L.Schneps&P.Lochak [SL].) This
notion was founded rigorously by P.Deligne [De] as “tangential base point” for
more general π1-theory of motives (including Betti, de Rham, etale realiza-
tions etc.) Still in the original Galois context, G.Anderson and Y.Ihara [AI]
initiated effective use of Puiseux power series to represent such a base point,
which has led to a number of practical applications in Galois-Teichmüller
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theory ([IM], [IN], [Ma], [N2,3],...) Inspired from these works, in this paper,
we shall employ the following simple definition of a tangential base point.

(1.1) Definition. Let X be a connected scheme, and k((t)) be the field of
Laurent power series in t over a field k of characteristic zero. A k-rational
tangential base point on X is, by definition, a morphism ~v : Spec k((t))→ X.
This amounts to giving a scheme-theoretic point x of X together with an
embedding of the residue field of x into the field k((t)). (The point x may or
maynot be a k-rational point of X; see examples below.)

A basic motivation to introduce the above definition is that it has been
often the case that a certain role of a “base point at infinity” can be played by
a generic point of a 1-dimensional subscheme with specified 1-parameter “t”.
Let us explain how such a tangential base point ~v could work in the study
of Galois representations in fundamental groups. Following Anderson-Ihara
[AI], we fix an algebraically closed overfield Ω = k̄{{t}}, the field of Puiseux
power series in the symbols “t1/n” with (t1/mn)m = t1/n (m,n ∈ N), which
is the union of the Laurent power series fields k̄((t1/n)) for n ∈ N. Given
such a ~v (and Ω~v), for each cover Y ∈ Rev(X), we may associate the set of
its Ω~v-valued points Y (Ω~v). This is a finite set as the fibre of the finite etale
morphism Y → X over the geometric point ~v on X. Noticing also that every
morphism Y ′ → Y in Rev(X) induces a natural map Y ′(Ω~v) → Y (Ω~v),
we get a coherent sequence of finite sets {Y (Ω~v)} indexed by the objects
Y ∈ Rev(X), or equivalently, a fibre functor Φ~v : Rev(X) → {finite sets}
(Y 7→ Φ~v(Y ) = Y (Ω~v)).

Now, the absolute Galois group Gk = Gal(k̄/k) acts on Ω~v by the co-
efficientwise transformation of power series

∑

α∈Q aαtα 7→
∑

α∈Q σ(aα)tα,

hence induces an automorphism of the sequence {Y (Ω~v)}Y ∈Rev(X) coher-
ently. Thus, we obtain a natural homomorphism

s~v : Gk → π1(X,~v) := Aut(Φ~v).

When X is defined to be geometrically connected over k, then s~v gives a
splitting of the canonical exact sequence

(1.2) 1 −−−−→ π1(Xk̄, ~v) −−−−→ π1(X,~v)
pX/k
−−−−→ Gk −−−−→ 1.

By conjugation, s~v defines a Galois representation

ϕ~v : Gk → Aut(π1(Xk̄, ~v))

which lifts the exterior Galois representation

ϕ : Gk → Out(π1(Xk̄, ~v))

induced from the exact sequence (1.2). Generally speaking, the group-
theoretic character of ϕ is independent of the choice of base points, while
that of ϕ~v is dependent on ~v.
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Example 0. Any k-rational point x ∈ X(k) gives automatically a k-rational
tangential base point via k →֒ k((t)).

Example 1. Let X = P1
Q − {0, 1,∞} be the projective t-line over Q minus

the three points t = 0, 1,∞. Then, the residue field of the generic point x
of X can be identified with the rational function field Q(t). The obvious
embedding Q(t) →֒ Q((t)) determines a morphism

SpecQ((t))→ X = P1
t − {0, 1,∞},

whose target lies on the generic point x of X. We call the tangential base
point given by this morphism the standard tangential base point on X, and

denote it by
−→
01. Note that the notion of

−→
01 depends on the choice of the

normalized coordinate t of P1 setting the 3 punctures to be t = 0, 1,∞.
Now, we have a natural compactification P1 of X, with respect to which

the above
−→
01 can be extended to the morphism SpecQ[[t]] → P1

t . This

means that the “point” determined by
−→
01 is not only the generic point x of

X but also a uniformizer of the (completed) local ring at t = 0 on P1
t , i.e.,

a 1-dimensional tangent vector (consisting of ‘direction’ + ‘speed’) starting
from t = 0. (If we change normalization (e.g., scale) of t ∈ Q((t)) relative
to the standard coordinate t of P1, the represented vector will differ from
−→
01. In a few contexts where X is regarded as the elliptic modular curve of

level 2, another tangential base point “ 1
16

−→
01” plays a crucial role, as pointed

out in [N2-3].) According to this realization, we usually picture
−→
01 as a

unit tangent vector rooted at 0 towards 1. Fix an embedding Q →֒ C so

that the geometric fundamental group π1(XQ,
−→
01) may be identified with the

profinite completion of its natural Betti correspondent. Then, π1(XQ,
−→
01) is

a free profinite group F̂2 freely generated by the standard loops x, y running
around the punctures 0,1 respectively.

0x y101

It is known that the Galois representation ϕ−→
01

embeds GQ into AutF̂2 in
such a way that

(1.3) σ(x) = xχ(σ), σ(y) = fσ(x, y)−1yχ(σ)fσ(x, y) (σ ∈ GQ)

with fσ(x, y) ∈ [F̂2, F̂2] (G.V.Belyi), where χ : GQ → Ẑ× denotes the cy-
clotomic character. The pro-word fσ is uniquely determined by the above
formula, and plays a central role in the Grothendieck-Teichmüller theory.

Example 3. (Ihara-Matsumoto [IM]) Let Xn be the affine n-space An
Q minus

the discriminant locus Dn whose geometric fundamental group is isomorphic
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to the profinite Artin braid group B̂n generated by τ1, . . . , τn−1 with relations
τiτj = τjτi (|i− j| > 1), τiτi+1τi = τi+1τiτi+1 (1 ≤ i < n− 1). The covering

space Yn corresponding to the pure braid group P̂n ⊂ B̂n can be naturally
regarded as {(t1, . . . , tn) ∈ An

Q | ti 6= tj (i 6= j)}. Define a tangential base

point ~v′ : SpecQ((t))→ Yn via t 7→ (t, t2, . . . , tn), and let ~v be the projection

image of ~v′ on Xn. Then, it turns out that ϕ~v : GQ → AutB̂n provides the
Galois representation of the form:

(1.4)

{

σ(τ1) = τ
χ(σ)
1 ,

σ(τi) = fσ(yi, τ
2
i )−1τ

χ(σ)
i fσ(yi, τ

2
i ) (1 ≤ i ≤ n− 1).

where yi = τi−1 · · · τ1 · τ1 · · · τi−1. This Galois action is compatible with
Drinfeld’s formula discovered in the context of quasi-triangular, quasi-Hopf
algebras ([Dr]).

Example 4. If a space X is given as a modular variety parametrizing certain
types of objects, then to construct a tangential base point ~v : Spec Q((t))→
X is equivalent to constructing such an object defined over Q((t)). To do
this, sometimes, formal patching method turns out to be useful in smoothing
a specially degenerate object Y0/Q over Q[[t]] whose generic fibre Yη/Q((t))
defines ~v with desired properties. We refer to [IN], [N2-3] for some of such
examples of tangential base points constructed in the moduli spaces Mg,n

of the marked smooth curves. The method will also produce a “coalescing
tangential base point” ~v(g) on the Hurwitz moduli space H(G;C1, . . . , Cr)
associated to a Nielsen class g ∈ Ni(G,C). Indeed, for any given transitive
permutation group G ⊂ Sn and for any generator system g = (g1, . . . , gr)
with g1 · · · gr = 1 (gi lying in a conjugacy class Ci ⊂ G), define r − 2
triples {(xi, yi, zi) | i = 1, . . . , r − 2} by setting xi = g1 · · · gi, yi = gi+1,
zi = gi+2 · · · gr. Then, since xiyizi = 1, each (xi, yi, zi) (regarded as a
branch cycle datum) defines a (not necessarily connected) branched cover
Yi → P1 ramified only over {0, 1,∞}. One obtains then an admissible cover
Ys = ∪iYi/ ∼ over a linear chain P of P1

01∞ such that ∼ identifies the
branch points on Yi and Yi+1 according as the cycle orbits by 〈zi = x−1

i+1〉
in {1, . . . , n}. One expects that suitable techniques for smoothing Y → P
(cf. [HS], [W]) should yield a good ~v(g) on the Hurwitz moduli space, gen-
eralizing a prototype example given in [N2]. We hope to investigate some
aspects of this construction in a circle of ideas of inverse Galois problems
([Fr]).

II

In [I1], Y.Ihara discovered deep aspects of arithmetic fundamental groups
by interpolating complex multiplications of Fermat jacobians encoded in
π1(P

1 − {0, 1,∞}). Among other things, he introduced new l-adic power
series Fσ ∈ Zl[[T1, T2]] (σ ∈ GQ) whose special values at roots of unity re-
cover Jacobi sum grössencharacters. He also conjectured the explicit forms
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of Galois characters appearing in the coefficients of Fσ in terms of Soule’s
l-adic cyclotomic elements, which was settled by Anderson [A], Coleman [C],
Ihara-Kaneko-Yukinari [IKY] (see 3.6 below). Ihara [I2] also developed an
l-adic theory of Fox’s free differential calculus to control this power series Fσ

in the framework of combinatorial group theory. This enables one to relate
Fσ and fσ of the previous section in a very simple way. We shall employ this
treatment also here in a slightly more general setting applicable to higher
genus curves.

Let X be a smooth projective curve of genus g over a field k of charac-
teristic 0, S a non-empty closed subset of X with geometric cardinality n,
and let C = X − S be the affine complement curve. Practically, we shall be
concerned with the “pure affine hyperbolic cases” of (g, n) = (g, 1) or (0, n)
(g ≥ 1, n ≥ 3), where the geometric fundamental group is a nonabelian free
profinite group with its 1-st homology group being pure of weight −1 or −2
respectively.

Fix a rational prime p, and pick a k-rational tangential base point ~v on
C. The Galois group Gk acts on π1(Ck̄, ~v) and hence on its maximal pro-p

quotient π. We shall write this action as ϕ
(p)
~v : Gk → Aut(π). Note that

π is a free pro-p group of rank r := 2g + n − 1 and that its abelianization
H is canonically identified with the p-adic etale homology group H1(Ck̄, Zp)
which is a free Zp-module of rank r. Our interest will be concentrated on
the kernel part of the composition map:

(2.1) ρ(p) : Gk

ϕ
(p)
~v−−−−→ Aut(π) −−−−→ GL(H).

The fixed field of the kernel of ρ(p) (resp. the kernel subgroup ker(Aut(π)→
GL(H)) of Aut(π)) will be denoted by k(1) (resp. Aut1π).

In order to analyze the restriction ϕ
(p)
~v |Gk(1)

closely, we construct a certain

combinatorial (anti-)representation

(2.2) Ā : Aut1π → GLr(Zp[[H]])

in analogy with the Gassner-Magnus representation in combinatorial group
theory (cf. Ihara [I2], see also [Bi], [Mo] for topological aspects). Here, Zp[[H]]
is the abelianization of the complete group algebra Zp[[π]] which is by defini-
tion the projective limit of the finite group rings (Z/pnZ)[π/N ] over the open
normal subgroups N ⊂ π and n ∈ N. The Gassner-Magnus representation is
a basic device to look at operations on the maximal meta-abelian quotient of
π (cf. 2.7 below). To give its precise definition, we shall first introduce some
terminology of free differential calculus.

If {x1, . . . , xr} is a free generator system of π, then, as shown by Lazard
[La], Zp[[π]] can be regarded as the ring of formal power series in non-
commutative variables ti := xi − 1 (i = 1, . . . , r) over Zp. Each element



NAKAMURA: Tangential base points and Eisenstein power series 207

λ ∈ Zp[[π]] is then written in the form

λ =
∑

w

aw · w (aw ∈ Zp),

where w runs over all finite words in {t1, . . . , tr} with non-negative exponents
including the unity 1. We call a1 the constant term of λ and denote it by
ε(λ). Classifying the other terms aw · w (w 6= 1) of λ according to the right
most letters, we may write uniquely λ = ε(λ) +

∑r
i=1 λiti (λi ∈ Zp[[π]]).

This λi is by definition the i-th free differential of λ, and will be denoted by
∂λ/∂xi:

(2.3) λ = ε(λ) +
r
∑

i=1

∂λ

∂xi
(xi − 1).

In the following, we use capital letters Xi, Ti to designate the images of
xi, ti ∈ Zp[[π]] in the abelianization Zp[[H]] (i = 1, 2). Obviously, it follows
that

Zp[[H]] = Zp[[T1, . . . , Tr]] (Ti = Xi − 1).

For a general element λ ∈ Zp[[π]], we write λab for its image in Zp[[H]].

(2.4) Definition. For α ∈ Aut1π, define its Gassner-Magnus matrix by

Āα :=

(

(
∂α(xi)

∂xj
)ab

)

1≤i,j≤r

.

(2.5) Proposition. The mapping Ā : Aut1π → GLr(Zp[[H]]) (α 7→ Āα) is
an anti-representation, i.e., Āαα′ = Āα′Āα (α,α′ ∈ Aut1π).

Proof. From direct computation, we have

αα′(xi) = 1 +
∑

k

α

(

∂α′(xi)

∂xk

)





∑

j

∂α(xk)

∂xj
(xj − 1)



 .

The result follows at once from the fact that α acts trivially on Zp[[H]]. �

(2.6) We note that the above construction of Ā depends on the choice of
the free basis (x1, . . . , xr) of π. In order to see its dependency on the choice,
it would be convenient to introduce, more primitively, the Magnus matrices
Aα for α ∈ Aut(π) by

Aα :=

(

(
∂α(xi)

∂xj
)

)

1≤i,j≤r
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with entries in the non-commutative algebra Zp[[π]] satisfying the anti-1-
cocycle property: Aαβ = α(Aβ) · Aα (α, β ∈ Aut(π)). Then, one can show
that if the free basis (x1, . . . , xr) is replaced by another basis (x′

1, . . . , x
′
r),

then the respective Magnus matrices Aα, A′
α are related by “Jacobian ma-

trices” as follows:

Aα ·
∂(x1, . . . , xr)

∂(x′
1, . . . , x

′
r)

= α

(

∂(x1, . . . , xr)

∂(x′
1, . . . , x

′
r)

)

· A′
α (α ∈ Aut(π)).

Since α ∈ Aut1π acts trivially on Zp[[H]], the above implies that the Gassner-
Magnus matrix Ā

′
α w.r.t. (x′

1, . . . , x
′
r) is just the conjugation of Āα by the

Jacobian matrix (
∂(x′

1,...,x′

r)
∂(x1,...,xr) )

ab

The usefulness of the anti-1-cocycle representation of Aut(π) through
Magnus matrices was shown by Anderson-Ihara [AI] Part 2 in their close
study of Galois representations in π1(P

1 − {n points}) (where a more ‘geo-
metric’ variant was employed). Independently, Morita [Mo] presented effec-
tive applications of Magnus matrices in his theory of “traces” of topological
surface mapping classes.

(2.7) We shall now briefly explain how the Gassner-Magnus representation
looks at the meta-abelian quotient of π. Let π′′ be the double commutator
subgroup of π, i.e., π′′ = [π′, π′] where π′ = [π, π]. Then, the pro-p version of
Blanchfield-Lyndon theorem (cf. Brumer [Br] (5.2.2), Ihara [I2] Th.2.2) tells
us an exact sequence of Zp[[H]]-modules:

(BLp) 0→ π′/π′′ ∂
→ Zp[[H]]⊗Zp[[π]] I(π)

δ
→ I(H)→ 0,

where I(∗) denotes the augmentation ideal of Zp[[∗]], and the maps ∂, δ are
defined by ∂(a mod π′′) = 1⊗ (a− 1), δ(b⊗ c) = b · cab. Since I(π) is known
to be the free Zp[[π]]-module of rank r with basis xi − 1 (i = 1, . . . , r), one
can identify the middle module with

⊕r
i=1 Zp[[H]]⊗ (xi − 1) ∼= Zp[[H]]⊕r so

that

∂(a) =

(

(
∂a

∂x1
)ab, . . . , (

∂a

∂xr
)ab

)

∈ Zp[[H]]⊕r.

Each automorphism α ∈ Aut(π) acts on the modules of (BLp) compatibly,
especially on the middle one by α(b ⊗ c) = α(b) ⊗ α(c). In particular, α ∈
Aut1(π) acts on it Zp[[H]]-linearly with matrix representation given by the
(transpose of) Gassner-Magnus matrix Āα. Noticing that π′/π′′ is embedded
there by ∂, one sees at least that the representation of Aut1(π) in π′/π′′

should be analyzed well by the Gassner-Magnus matrices.

Returning to the situation of Galois representation ϕ
(p)
~v : Gk → Aut(π),

our main concern thus turns to look at the composition with the Gassner-
Magnus representation:

Ā~v = Ā ◦ ϕ
(p)
~v |Gk(1)

: Gk(1) → GLr(Zp[[H]]).
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In the remainder of this section, we review known results on the most basic
two cases of (g, n) = (0, 3), (1, 1). The former is Ihara’s original case C =
P1−{0, 1,∞} ([I1,I2]), and the latter case is for C = an elliptic curve minus
one point, which was introduced/studied by Bloch [Bl], Tsunogai [T] and the
author [N1].

Case 1: C = P1 − {0, 1,∞}, ~v =
−→
01, x1 = x, x2 = y.

In this case, it follows from computations that

Ā−→
01

(σ) =

(

1 0
(

∂fσ

∂x1
(x2 − 1)

)ab (

1 + ∂fσ

∂x2
(x2 − 1)

)ab

)

for σ ∈ GQ(µp∞ ). (Note that Q(1) = Q(µp∞) now). The power series

Fσ(T1, T2) := det Ā−→
01

(σ) =

(

1 +
∂fσ

∂x2
(x2 − 1)

)ab

is called the universal power series for Jacobi sums, or Ihara’s power series
([I1,2], [Ic], [Mi]). In fact, Ihara showed that the mappings σ 7→ Fσ(ζa

pn −

1, ζb
pn − 1) (1 ≤ a, b < pn) represent Jacobi sum grössencharacters over

Q(µpn), and also investigated the p-adic local behaviors of the coefficient
characters. As in [I1], Fσ can be defined for all σ ∈ GQ, but in the present
paper, we content ourselves with treating it only over Q(µp∞). By the above
definition and (2.6), we see that Fσ in this range is determined only by the
abelianization of the free basis (x1, x2) of π. In view of the above (BL)p spe-
cialized to this case, the module π′/π′′ turns out to be a free Zp[[H]]-module

of rank 1 generated by the class of [x1, x2] = x1x2x
−1
1 x−1

2 mod π′′. The im-
age of ∂ is generated by ∂([x1, x2]) = (−T2, T1) ∈ Zp[[H]]⊕2, and from this
follows that Ā−→

01
(σ) (hence ϕ−→

01
(σ)) acts on Im(∂) ∼= π′/π′′ by multiplication

by Fσ(T1, T2). This was in fact Ihara’s original definition of Fσ in [I1].

Case 2: C : y2 = 4x3 − g2x− g3 (g2, g3 ∈ k), ∆ = g3
2 − 27g2

3 6= 0.
In this case, we will take suitable generators x1, x2, z of π with [x1, x2]z = 1

so that z generates an inertia subgroup over the missed infinity point O ∈
X. For a tangential base point, we take ~w : Spec k((t)) → C defined by
t := −2x/y and call it the Weierstrass base point. The fixed field k(1) of the
kernel of Gk-action on H = π/[π, π] is the field generated by all coordinates
of the p-power division points of E over k. As shown in [N1] §6, there exists
a unique power series Eσ(T1, T2) ∈ Zp[[T1, T2]] such that

Ā~w(σ) = 12 + Eσ ·

(

T1T2 −T 2
1

T 2
2 −T1T2

)

for all σ ∈ Gk(1). It is easy to see that Eσ depends only on the abelianization
image (x̄1, x̄2) of the free basis (x1, x2) of π. We shall call Eσ the Eisenstein
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power series associated to the Weierstrass equation y2 = 4x3 − g2x − g3

and the basis (x̄1, x̄2) of H. As in Case 1, again, the image of π′/π′′ in
Zp[[H]]⊕2 via ∂ of (BLp) is the free Zp[[H]]-module of rank 1 generated by
∂(z) = (T2,−T1), but this time the action of Āα (α ∈ Aut1π) on this image is
trivial. This means that Eσ (σ ∈ Gk(1)) should be understood as an invariant
of the ‘unipotent’ action of ϕ~w(σ) on the extension of (BLp). In fact, using
Bloch’s construction described in [T],[N1], one can show more explicitly that

ϕ~w(σ)(1⊗ (xi − 1)) = 1⊗ (xi − 1) + Eσ(T1, T2)Ti · ∂(z) (i = 1, 2)

holds for σ ∈ Gk(1) in Zp[[H]]⊗Zp[[π]] I(π).

(2.8) Remark. In [N1], we employed a special section s : Gk(1) → π1(C)
characterized by a certain group theoretical property instead of that induced
from the above ~w. The power series ασ given in loc.cit. is the same as Eσ
except that it misses constant term. If p ≥ 5, the constant term of Eσ is
1
12ρ∆(σ) where ρ∆ : Gk(1) → Zp is the Kummer character defined by the
p-power roots of ∆.

In the next part III, we will show that Eσ for the Tate elliptic curve over
Q((q)) degenerates to a “logarithmic partial derivative” of Ihara’s power
series Fσ.

III

In this section, we shall examine the Eisenstein power series arising from
the Tate curve T =“Gm/qZ” over the rational power series ring Q[[q]] in one
variable q. The affine equation defining T (minus the origin O) is

(3.1) y2 + xy = x3 + a4(q)x + a6(q),

where a4(q), a6(q) ∈ Q[[q]] are given by

a4(q) = −5s3(q), a6(q) = −
1

12
(5s3(q) + 7s5(q)),

sk(q) :=
∑

n≥1

σk(n)qn =
∑

n≥1

nkqn

1− qn
(k ≥ 1).

The equation modulo q is y2 + xy = x3, hence T has a split multiplicative
reduction. Indeed, the Q((q))-rational points of T −{O} are uniformized by

u ∈ Q((q))
×
\ qZ through the formulae:

x(u, q) =
∑

n∈Z

qnu

(1− qnu)2
− 2s1(q), y(u, q) =

∑

n∈Z

(qnu)2

(1− qnu)3
+ s1(q),
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and the special fibre Ts at q = 0 may be regarded as the nodal projective
u-line with two points u = 0,∞ identified (cf. [Si] V §3.) The completed local
neighborhood at u = 1 in T can be identified as Spec Q[[q, u − 1]] whose
generic fibre is the spectrum of Q[[q, u− 1]]⊗Q[[q]] Q((q)), the ring of formal
power series in u−1 with bounded coefficients from Q((q)). In the latter ring,
we may arrange the mapping q 7→ t′, u − 1 7→ t′ to define a tangential base
point valued in Q((t′)) on the generic fibre Tη/Q((q)) of T minus the origin

Oη. We write this tangential base point as ~t : SpecQ((t′)) → Tη − {Oη}
and call it the Tate base point. In the following, we shall look at the Galois
representation ϕ~t : GQ → Aut π1(Tη̄ \ O), where Tη̄ \ O denotes the generic
geometric fibre of T − {O}.

First, let us connect the above Q-rational base point ~t with the Q((q))-
rational Weiserstrass base point ~w on the generic elliptic curve Tη (introduced
in the previous section). Indeed, we see that these two base points give
essentially the same Galois action on π1(Tη̄ \ O) as follows. First, let us
apply the change of variables “X = x + 1

12 , Y = x + 2y” to (3.1) to get the
equation of Weierstrass form

(3.2) Y 2 = 4X3 − g2(q)X − g3(q),

where

g2(q) = 20(−
B4

8
+
∑

n≥1

σ3(n)qn),

g3(q) =
7

3
(−

B6

12
+
∑

n≥1

σ5(n)qn).

(B4 = −1/30, B6 = 1/42 are the Bernoulli numbers.) Then, as explained
in the previous section, the Weierstrass base point ~w on Tη − Oη is defined
as a tangential basepoint valued in Q((q))((t)) by putting t = −2X/Y . Our
claim here is that the Galois representation ϕ~t : GQ → Aut π1(Tη̄ \ O) is
essentially the same as the composite of ϕ~w : GQ((q)) → Aut π1(Tη̄ \O) with
the map GQ → GQ((q)), where the last map is the one obtained from the

coefficientwise GQ-action on the Puiseux power series in Q((q)) →֒ Q{{q}}.
Indeed, since x and y can be written respectively in the forms (u− 1)−2(1 +
∑

m αm(u − 1)m), −(u − 1)−3(1 +
∑

m βm(u − 1)m) with αm, βm ∈ Q[[q]]

(cf. [Si] V §4), the coefficientwise GQ-actions on the two rings Q[[q1/N , t1/N ]],

Q[[q1/N , (u− 1)1/N ]] are compatible with their natural identification via t =
−2X/Y ≡ u−1 mod× (1+(u−1)Q[[q, u−1]]). From this, the above relation
of ϕ~w with ϕ~t follows.

Now, fix a rational prime p, and consider the p-adic Tate module H =
lim←−m Tη̄[pm]. As is well-known, in the Tate curve case, H is an extension of
Zp by Zp(1). But in our case, we may split the extension in a natural way as
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follows. In fact, by the Tate uniformization by “Gm” of Tη̄, the pm-division

points Tη̄[pm] may be identified with the subset {ζa
pmqb/pm

| 0 ≤ a, b < pm}

of Q{{q}}× with natural GQ((q))-action. (Here ζpm is a primitive pm-th roots

of unity; we select those so that ζpm

pn = ζpn−m (0 < m < n) once and for all.)

Thus, we can take generators x̄1, x̄2 of H as projective sequences {q1/pn

},
{ζpm} respectively to obtain a splitting H = Zpx̄1 ⊕ Zp(1)x̄2.

Let us then consider the maximal pro-p quotient π of π1(Tη̄ \O,~t) and the

associated Galois representation ϕ
(p)
~t

: GQ → Aut(π). Then, with respect to

the above basis (x̄1, x̄2) of H, we have the Gassner-Magnus representation
Ā~t : GQ → GL2(Zp[[H]]), which yields the (Tate-)Eisenstein power series

E
~t
σ(T1, T2) ∈ Zp[[H]] (σ ∈ GQ(µp∞ )) defined by

Ā~t(σ) = 12 + E
~t
σ ·
(

T1T2

T 2
2

−T 2
1

−T1T2

)

.

(3.3) Theorem. Let Ui = log(1 + Ti) (i = 1, 2). Then, in Qp[[U1, U2]], we
have

E
~t
σ(T1, T2) =

∑

m≥2
even

χm+1(σ)

1− pm

Um
2

m!
(σ ∈ GQ(µp∞ )).

Here χm : GQ(µp∞ ) → Zp(m) is the m-th Soule character defined by the
properties:









∏

1≤a<pn

p∤a

(1− ζa
pn)am−1









1
pn (σ−1)

= ζ
χm(σ)
pn (∀n ≥ 1).

Proof. The statement follows from a more general formula given in [N1] which

states that the coefficient κij(σ) of U i
1U

j
2/(1 − li+j)i!j! ((i, j) 6= (0, 0)) is

determined by the following Kummer properties:









∏

0≤a,b<pn

p∤(a,b)

(θ
(pn)
ab )aibj









1
pn (σ−1)

= ζ
12κij(σ)
pn (∀n ≥ 1),

where, for 0 ≤ a, b < N = pn,

θ
(N)
ab = q6B2( a

N )ζ
6b( a

N −1)

N



(1− q
a
N ζb

N )
∏

n≥1

(1− qn+ a
N ζb

N )(1− qn− a
N ζ−b

N )





12

.
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Here B2(T ) = T 2−T + 1
6 is the second Bernoulli polynomial. Observing that

the coefficientwise GQ(µp∞ )-action on the p-power roots of θ
(pn)
ab is nontrivial

only when a = 0, and noticing that 0i = 1 only when i = 0, we see that
κij occurs nontrivially only when i = 0, in which case it is equal to χj+1.
The constant term turns out to vanish according to Remark(2.8) applied to
∆(q) = q

∏

n≥1(1− qn)24. �

The above result (3.3) may also be deduced by an alternative method

relating E
~t
σ explicitly with Ihara’s power series Fσ. We begin with

(3.4) Theorem. One can take suitable generators x1, x2, z of π1(Tη̄ \O,~t)
with [x1, x2]z = 1 such that (x1, x2) lifts (x̄1, x̄2) above and that the Galois

representation ϕ~t : GQ → Aut π1(Tη̄ \ O,~t) is expressed by the following
formulae in terms of (χ(σ), fσ) of §1 Example 1:











x1 7→ z
1−χ(σ)

2 fσ(x1x2x
−1
1 , z)x1fσ(x−1

2 , z)−1,

x2 7→ fσ(x−1
2 , z)x

χ(σ)
2 fσ(x−1

2 , z)−1

z 7→ zχ(σ)

Proof. This assertion is essentially [N3] Cor.(4.5), except that the choice
of generators differs from loc.cit. We first consider ‘Gm/qnZ’ (n ≥ 2) over
Q[[q]] and realize the fundamental group of generic geometric fibre minus sec-
tions (one for each component) as a Van-Kampen composite of copies π(i)
(i ∈ Z/nZ) of π1(P

1−{0, 1,∞}). Identifying π(i) = 〈0i, 1i,∞i | 0i1i∞i = 1〉,
we compute the composite as the amalgamated product of the π(i)’s and 〈e〉
over the relations∞−1

i = 0i+1 (0 ≤ i < n−1),∞−1
n−1 = e00e

−1. Setting then

standard generators x1 = e, x2 = 0−1
0 , zi = 1i−1 (1 ≤ i ≤ n), we get the

relation [x1, x2]z1 · · · zn = 1. Then, [N3] Th.(3.15) computes the limit Galois
representation ϕ~t on these generators in terms of the parameters χ(σ), fσ.
The desired Galois representation follows from this computation after reduc-
ing z1 = z, z2 = · · · = zn = 1 (and checking its subtle independence of
n). �

point
base

z x

2

1

x

Using the above, we shall compute E
~t
σ directly from the definition. Note

that it suffices to look at
∂ϕ

(p)

~t
(σ)(x2)

∂x2
− 1 divided by −T1T2 for σ ∈ GQ(µp∞ ).
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First, we compute

∂ϕ
(p)
~t

(σ)(x2)

∂x2
− 1 =

∂fσx2f
−1
σ

∂x2
− 1 = (1− fσx2f

−1
σ )

∂fσ

∂x2
+ fσ − 1,

for σ ∈ GQ(µp∞ ), which maps to −T2(
∂fσ

∂x2
)ab + 0 in Zp[[H]]. But recalling

fσ = fσ(x−1
2 , z) here, we have

∂fσ

∂x2
=

∂fσ(x−1
2 , z)

∂x−1
2

∂x−1
2

∂x2
+

∂fσ(x−1
2 , z)

∂z

∂z

∂x2
,

where its first term must vanish in Zp[[H]] because
∂fσ(x−1

2 ,z)

∂x−1
2

(x−1
2 − 1) is

equal to fσ − 1 −
∂fσ(x−1

2 ,z)
∂z (z − 1) which vanishes in Zp[[H]]. Then since

( ∂z
∂x2

)ab = −T1, it follows that

E
~t
σ(T1, T2) = −( lim

w1→x−1
2

w2→z

∂fσ(w1, w2)

∂w2
)ab = − lim

W1→X−1
2

W2→1

Fσ(W1 − 1,W2 − 1)− 1

W2 − 1
.

In terms of the variables Ui = log Xi (i = 1, 2), we conclude (after de
l’Hospital’s limit rule) the following relation between the Tate-Eisenstein
power series and Jacobi sum power series.

(3.5) Theorem.

E
~t
σ(T1, T2) = −

∂

∂T
logFσ(S, T )

∣

∣

∣

∣
S=exp(−U2)−1,
T=0

for σ ∈ GQ(µp∞ ). �

This sort of relation between genus 1 and 0 was first expected by Takayuki
Oda in his comments on a seminar talk by the author at RIMS, Kyoto Univer-
sity in 1993. The above formula was then obtained in the course of studies
along [IN, N3] with Y.Ihara. Theorem (3.3) can then be deduced also by
combining Theorem (3.5) with the following formula:

(3.6) Theorem. (Anderson [A], Coleman [C], Ihara-Kaneko-Yukinari [IKY])

Fσ(T1, T2) = exp









∑

m≥3
odd

χm(σ)

lm−1 − 1

∑

i+j=m
i,j≥1

U i
1U

j
2

i!j!









(σ ∈ GQ(µp∞ )). �

The explicit formula (3.6) was proved by Anderson [A], Coleman [C] and
Ihara-Kaneko-Yukinari [IKY] independently around 1985. Later Ichimura
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[Ic], Miki [Mi] gave simplifications of the proof. All these proofs so far de-
pended on the interpolation properties of the values Fσ(ζa

pn − 1, ζb
pn − 1) by

Jacobi sums.

∗ ∗ ∗

Recently, (in a more general profinite context) Ihara [I3], using the 5-cyclic
relation of the Grothendieck-Teichmüller group, gave a purely algebraic proof
of the factorization

Fσ(T1, T2) = Γσ(T1)Γσ(T2)/Γσ((1 + T1)(1 + T2)− 1),

where Γσ(T ) ∈ Wp[[T ]] is Anderson’s Gamma series [A] (Wp: the ring of
Witt vectors of F̄p). In particular, Fσ has to be of the form

Fσ = exp(
∑

m≥3
odd

cm

∑

i+j=m

U i
1U

j
2

i!j!
)

with some constants cm. Then, he derived cm = χm(σ)/(lm−1 − 1) by a
direct method observing meta-cyclic covers of P1 − {0, 1,∞} (cf. also [De]
§16 for the last technique). Thus, we now have a purely geometric proof of
Theorem (3.6) without use of Jacobi sums.

Returning to our elliptic context, we see that combination of Theorems
(3.3), (3.5) may also reconfirm the same values of cm’s independently, leading
us to an elliptic interpretation of the logarithmic derivative of Anderson’s
Gamma series (with constant term dropped):

D log Γσ(T2)−D log Γσ(0) = E
~t
σ(T1, T2).

If p-adic Tate curves “Q×
p /qpnZ” (n ∈ N) are employed instead of a single

Tate curve over Q[[q]], then it can be shown that those Eisenstein power

series {E
(pn)
σ (0, T2)}n∈N produce a Qp-valued distribution whose ‘asymptotic

expansion’ gives a power series

2
∑

m≥2
even

E
(p)
−m(q)ϕm+1(σ)

Um
2

m!

for σ in the ramification subgroup R of GQp(µp∞ ), where ϕm : R→ Zp repre-

sents the m-th Coates-Wiles homomorphism, and E
(p)
s (q) is the p-adic Eisen-

stein series 1
2ζp(1 − s) +

∑

n σ
(p)
s−1(n)qn of weight s introduced by J.P.Serre

[Se]. For this and other arithmetic aspects, we will have more discussions in
subsequent works.
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[revisions after printed:]

Figures on p.204, p.213 inserted

p.211: sign of g3(q)
p.212, line 15, 1− lm should read 1− pm (displayed formula)

p.213, line 6, (1− qn)24; line 22, ∞−1
n−1
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