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By virtue of Belyi’s result [Be], there is a standard way that the elements of
the absolute Galois group Gal(Q/Q) = Gg are faithfully parametrized by a set of
pairs (x,f) € Z x Fj in the product of the free profinite groups of rank 1 and 2 (cf.
[Ih1,2], [Sc]). This paper continues our previous work [N99] of the same title (which
will be referred to as Part I below), where we investigated local behaviors of Galois
representations in the fundamental groups of marked curves in terms of (x,f). In
fact, we showed an explicit method for calculating the elementwise action of Gg on
certain standard generator systems of the fundamental groups of smooth marked
curves which are infinitesimally tangent to maximally degenerate stable marked
curves. Since the parameter (x,f) is defined by using the fundamental group of
P! —{0,1, 0}, our main task was to combine copies of m; (P! — {0, 1, 00}) suitably
together into the issued fundamental groups with the van Kampen method.

The purpose of this paper is to push forward this program to the Galois actions
on the fundamental groups of moduli spaces of curves. We call these fundamen-
tal groups the profinite Teichmiiller modular groups. In fact, already in previous
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works [IM], [Ma], [N97], this program was studied in special cases. To establish
a firm understanding of the general case, in [LNS]-[NS], the following strategy
was employed: First, we invented a group I' (as a subgroup of what is called the
Grothendieck-Teichmiiller group GAT) consisting of pairs (x,§) € Z x F, with a cer-
tain finite number of axioms satisfied by the image of Gp. Then, we defined actions
of (x,f) € I" on all the Dehn twist elements in the profinite completion of the sur-
face mapping class group which is isomorphic to the profinite Teichmiiller modular
group of the corresponding type. We showed that our axioms of I" “resolve” the
relations among the Dehn twists to insure the well definedness of our I'-action. As
a consequence of our construction, the I'-actions turned out to be compatible with
the cutting and pasting alterations of the underlying surfaces, and established was
an algorithm for computing how each element of I'(D Gg) acts on the Dehn twists
in terms of pairs (x, f).

In the last part of [NS], we also presented an explicit formula which describes a
standard I'-action on a certain finite number of Dehn twist generators of any type
of mapping class group. The main purpose of the present paper is to show that
this formula is indeed properly compatible with the Galois representation arising
in the profinite Teichmiiller modular group of the corresponding type in algebraic
geometry:

THEOREM 5.8 (ABRIDGED FORM). There is a tangential base point @ on the
moduli space of curves My, at which the induced Galois actions on the Dehn twist
generators of (Mg, ® Q,d) coincide with the restriction to Gg of the standard
IC-actions on them computed topologically in [NS] §11.

We will basically use the notation system used in Part I. We write M, , (resp.
M,,,) for the moduli stack over Q of the proper smooth (resp. stable) curves of
genus g with (ordered) r marked points. For a circle ¢ on a (marked) topological
surface 3, D, denotes the left Dehn twist element along ¢ in the mapping class
group I'(%).

The content of each section of the present Part II is summarized as follows.
In §5, we start by constructing a complex analytic model corresponding to the
deformation curve associated with the P, -diagram of [IN]. This allows us to talk
about “Dehn twists in 1 (M, ,)” by the natural comparison isomorphism N(E) =
m1(M,, x Q). Then, we present our main theorem (Theorem 5.8) stating that
the Galois representation arising from a certain tangential base point is given by
the same explicit formulae of the actions on the Dehn twist generators as those
calculated in [NS] §11. In §6, we present the formula of I1,§3 on the limit Galois
action in the general case of genus g and r marked points. In §7, partially reviewing
the result of [N97], we show Theorem 5.8 in the special cases of M,; and M.
Here, the new deformation technique of Harbater-Stevenson [HS] enables us to
examine a certain subtle factor arising in comparing Galois representations. In
§8, we utilize the coupling technique used in [N96] to combine Galois actions on
71 (Myg,1) and w1 (Mo,r+1) inside 7y (M,,,). This together with the limit Galois
information of §6 on the kernel part of the forgetful homomorphism 7y (M) —
m1 (Mg r—1) covers the total of w1 (M, ). In §9, we conclude the proof of Theorem
5.8 with reviewing necessary part of the algorithm established in [NS]. In §10, we
discuss a generalization of our construction of a tangential base point to the case
of Hurwitz moduli spaces. Finally in Appendix we supply a concise proof of the
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(classical) fact that the finite set of Dehn twists considered in Theorem 5.8 give a
generator system of the mapping class group of type (g,7).

Before closing Introduction, we will mention briefly some related works which
motivated our present paper but will not be mentioned in the text below. The
problem of describing the Galois representations in 71 (M, ,) by combining those in
low levels was initially posed by A.Grothendieck [G] in his philosophy “Lego game
of Galois-Teichmiiller”. (A rigorous definition of m1(My,,) through resolution of
the moduli stack by simplicial schemes is given in T.Oda [Od].) The use of graph
of groups in the study of the universal monodromy representation of m1 (M, ,) was
initiated in the paper by Asada-Matsumoto-Oda [AMO]. As mentioned in Intro-
duction of Part I, one can think of our present work as standing at a crossroad of
these two research streams. Recently, T.Ichikawa [Ic] brought into the field another
interesting viewpoint of Mumford’s uniformization of curves, which supports our
topological ‘A-move’ algorithm of [NS] in his algebro-geometric context. We would
like to expect future work illustrating another ‘S-move’ algorithm in the context of
algebraic geometry.

§5. Complex analytic model: prelude to Part II.

5.1. Suppose we are given a maximally degenerate marked stable curve (viz.
P}, ..-diagram) over Q by the collection of data:

(XO = U ng{P;?}ueMa{Qg}ueN)a
AEA

where X consists of the rational irreducible components X3(= Pg) (A € A) con-
nected by the ordinary double Q-points {PS}”E M in such a way that each compo-
nent X3 has exactly three distinguished (Q-)points, i.e., from {P0}, e U{Q}ven
(cf. 1,§3). For simplicity, we often write X° to designate all the above data. We
call {Q%}, the set of marked points on X°, and write u/\ (resp. v/)\) when the
point P) (resp. @7) lies on the component X3. With the above collection of data,
naturally associated is the dual graph A® having the vertex set A, the edge set
M and the leg (= half edge) set N so that each vertex has valency 3 (counting
adjacent edges and legs together). The rank g of the 1-st homology of A° is by
definition the genus of X°. We call X° a P}, -diagram of type (g, |N|). Assume
2 — 29— |N| < 0 and (g, |N]) # (0,3).

A tangential structure 7 on X° means a collection {t,/,} of coordinates ¢,
of X9 (A € A) which are chosen for all incidence pairs y/\ under the rule that ¢,/
should have value 0 (resp. 1 or oo) at the point PS (resp. at any distinguished
point on X3 other than P?).

Let ¢ be a formal variable. In [IN, Th.l'], applying the Grothendieck for-
mal patching method with the equations t,/xt,/x = ¢ (u/A, X, X # X'), we con-
structed a deformation scheme X/Qg] of X°/Q equipped with marked sections
{Q.: SpecQ[g] — X},en extending the set {Q%},en. We call X/Q[q] the stan-
dard deformation of (X°,T). In this section, we shall consider the complex analytic
correspondent to the deformation space X.

5.2. We once and for all fix an embedding Q —+ C. Let us construct an analytic
stable family {X9,{Q%},} of marked Riemann surfaces over the disk U = {q €
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G;lg| < %} so that it extends the degenerate fibre X° = X°(C). For ¢ € U\ {0},
let us construct the smooth Riemann surface X7 as follows. First define, for each
A € A, the local piece X] to be the (marked) bounded domain of X%(C) = P*(C)
complementary to the open disks {[t, /x| < V/]al} for all u/X (u € M) with leaving
marked points Q2 for all v/X (v € N) as Q4. Since |g| < min{%z,(‘/gz’ly}, one
finds easily that each of these X} is a Riemann sphere either with three holes, with
two holes and one marked point, or with one hole and two marked points as in
Figure 5.1. (In [IN] Remark 2.3.11, & should have read %). We shall call this type
of bounded Riemann sphere (with marked points) a pair of pants.

POO

FIGURE 5.1

Next, we shall analytically connect Xy’s (A € A) together as follows. Whenever
given incidence relations u/A, X', A # X (A, X € A, p € M), identify XY (resp. &Y))
with a piece of the affine line L = {(¢,¢') € C? | tt' = ¢} by t,/x = t (resp. by
tu/n > t'). Then, it is easy to see that Xy and X], are fit in each other along one
of their boundaries in the line L.

FIGURE 5.2

Continuing this process entirely, we finally obtain a closed Riemann surface X'?
of genus g with |N|-marked points {Q%},cn. It is also obvious that the above

construction varies analytically with respect to ¢ € U so that liII(lJX 7 = X% hence
q—

gives our desired family {X?,{Q%},en }qcu-

5.3. In the above construction, each X? has a pants decomposition X? =
U, &y. Now, suppose moreover that g is taken to be a positive real ¢ € U, i.e.,
0<e< %. In this case, the real loci of each X5 are continued to those of adjacent
X5, across their boundary. (See Figure 5.3 for the typical situation.)

FIGURE 5.3
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On X¢, let us draw the boundaries of X5’s by normal lines (call them the circles
of the pants decomposition), and the collection of the real loci by dotted lines.
Then, by the above remark, the marked Riemann surface X° acquires, in addition
to the pants decomposition structure UxXY, a quilt decomposition structure (over
the pants decomposition) which is, by definition, a way of decomposing each pair
of pants into two “hexagonal rags” so that “seams” (illustrated by dotted lines)
meet each other among themselves at exactly two points on each circle of the pants
decomposition. (See [NS] for the more elaborated description concerning definitions
of quilt, seam etc.) When we make ¢ approach 0, the X° is to be fastened at each
boundary circle of the pants decomposition, but the combinatorial structure of the
quilt/pants decomposition is invariant. In this way, given any P}, -diagram with
a tangential structure, we say that there is a standard quilt decomposition on the
marked Riemann surface X° of type (g, |N|).

5.4. In the above construction, we could have used independent variables g,
for respective edges u € M to produce an analytic family X*"® over the polydisc
UM = {(qu)pem;lau] < %} The cardinality of M is exactly 3g — 3 + |[N|, and
the above family gives a local neighborhood of X° in the universal family of sta-
ble marked curves over the moduli space. The diagonal 1-parameter family over
{(g,---,q) € UM;|q| < 1} is nothing but X? of §5.2-3. Letting ¢ > 0 approach 0,
we may regard the locus (g,...,&) of X° as defining a tangential base point b on
the moduli stack My |n|(C). The resulting (orbifold) fundamental group is in the
well known manner identified with I'(X?; {Q%},en), the mapping class group of the
marked Riemann surface (X*;{Q%},) which is by definition the connected compo-
nent group of the orientation preserving diffeomorphisms of the marked Riemann
surface (X¢,{Q°}) (marks are pointwise preserved):

-,

" (M, n)(C), ) = T(X%5{Q} }ven)-

For example, regard the loop based at b with the locus of (qu(t))p (0<t<1) by

27t

(/-l‘ = IJ‘O),
€ (1 # po)

ge

0. = {

as an element of my (M N/, b). Then, the corresponding element in the mapping
class group I'(X%; {Q%},cn) is the left Dehn twist along the circle of the pants
decomposition appearing around the edge ppo. Since the quilt structure introduced
in §5.3 gives a cell decomposition of the marked surface X, one can detect any

=

other Dehn twists of 71 (M, |, b) also through circles drawn with the quilt on X°.

5.5. Now, let g, € N be positive integers with 2 — 2g — r < 0, and consider
the Pg,; . -diagram Y° =Y?,_,, of type (g,r + 1) whose dual graph has

vertex set A = {A1,..., Aag,€1,...,6 1},
edge set M = {K‘:I:(ijl)aﬁzja/"/i | 1<i<r—-21<35< g}a
leg set N = {ko,v1,...,¥r},

connected as in Figure 5.4.
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Kog-1 K1

M Ko

K (2g-1) 1

FIGURE 5.4

We introduce a collection of distinguished coordinates {t.,»} for all incidence pairs
*/A (x € MUN, X\ € A). The choice has ¢,/ a coordinate of Yy} = Pb valued in
{0,1, 00} at its three distinguished points so that ¢,/ (P]) = 0 (resp. t./x(Q2) = 0)
for * € M (resp. * € N) (cf. §5.1). Further:
(5.5.1)

tan'/Azj (PS_@]-_I)) = th2j—2/>\2j—1(Pi8_(2]'_1)) =1, (1 <j< g)1
(5.5.2)

t"i(2j—1)/’\21‘ (Pf?zj) = tﬂi(zj—l)/>xz;’—1(P£2j_2) =1, (1 <j< g),

(5.5.3)

trsgser Q) = 1,
(5.5.4)

tu.-/ei(Qg,-+1) = tui/e.'.;.l( ‘0’i+2) =1, (1 <ilr-— 2))
(5.5.5)

tlll/el (Q32) = tu,/e,_l(szg) = tl/,'+1/6,' (PS,) = 1’ (1 S Z S r— 2)
Define the tangential structure 74,11 on Y, ,; to be the subset
{tux L u/Xsp € M, X € A}

The generic fibre of the standard deformation Y, »1/Q[q] of (Y, 1, 75,r+1) then
defines a tangential base point @ on M, 1. Our principal object in the present
part IT of this paper is the image @ of @’ by the morphism M, .1 — M, , obtained
by forgetting the marked point ),,. At the tangential base point @, we have a
canonical splitting of the exact sequence

Sg
1— 71'1(Mg,7a ®@,(_j) — wl(Mg,r,d’) s GQ — 1,

and the conjugate Gg-action through the section sz on 7 (M, . ® Q,d). If we con-
sider the complex analytic model ) for @ with marked points Q¢ _,...,Q; (forget-
ting Q% ), the geometric fundamental group can be identified with s; {Q. }i-1);
the profinite completion of the mapping class group of the marked Riemann sur-
face (¥5;Q5,,...,@Q;, ). As explained in §5.4, we can detect Dehn twist elements of
the latter mapping class group by drawing circles on the complex model. We will
examine explicitly the Galois action in terms of certain Dehn twist generators and

the parameters in the Grothendieck-Teichmiiller group GT.

5.6. As presented in §5.3, there is associated the pants (and quilt) decom-
position on Y¢, which we shall illustrate as in the following Figure 5.5. Here, we
understand that the seams for the quilt are given as the “ridges” of the figure
dividing each pair of pants into front and back hexagons.
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FIGURE 5.5

It is well known that the mapping class group is generated by a finite number of
Dehn twists, shown by M.Dehn, W.B.R.Lickorish (cf. also Humphries [H], Mumford
[M]). For example, as shown in Appendix, we can take as a generator system the set
of Dehn twists along the circles a1, ..., a2, di2,...,d4q, €1,...,€9, k2,...,kr_1,
hi,...,hy and u;; (1 <@ < j <r) illustrated in Figure 5.5-6.

FIGURE 5.6

To describe the Gg-action on these generators, we need to introduce several other
notations of circles lying in the left half part of Figure 5.5-6. Let us cut off the part
by the circles d, and d_,, and develop it by regarding d_, as a frame so that the
issued part looks as in Figure 5.7. We would like to introduce other types of circles
bst, kst (1 < s,t <r;s < t) as illustrated in the figure.

Vo= dg |ve= dg

FIGURE 5.7

Note that ki,s = ks, ks,s+1 = Us,s+1, K2,s = b1,s, k1,r = €4. Sometimes it is also
convenient to regard ks =‘bsy1,541", dg ='Qu,’, d—g =‘Q... , and set hy = ug,; =
bs,00; h1 = ko1. One can write the Dehn twists along these new circles by the above
generator system as follows.
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LEMMA 5.7. The following relations hold for 1 <i < j <r.

= (Dui,i+1)(Dui,i+2Dui+1,i+2) U (Duij U Duj—l,j)’
Dkl,kaiijij = Dkl,i—le Dkl,j'

(5.7.1) Dy,

ij
i+1,5

Proor. (5.7.1) is proved in [NS] Lemma 11.1. (5.7.2) is so called the lantern
relation among the Dehn twists along the circles drawn in Figure 5.8. |

FIGURE 5.8

REMARK. We save notations here by denoting v;; of [NS] by k;;. It is also noted
that in the statement of Lemma 11.1 [NS], the definitions of €y and €, should have
been reversely typeset.

In [NS], we constructed a subgroup II" of GT containing G, and defined actions
of II" on all types of the surface mapping class groups in a certain consistent topo-
logical way. The purpose of this paper is to show the following Theorem 5.8 stating
that the Gg-action at the tangential base point @ introduced in §5.5 coincides with
that which is obtained from the I'-action of [NS] §11 by restriction to Gg. Let

x : Gg = Z* be the cyclotomic character, and put p_;(c) = % (o0 € Gg).
Let ps : Go — Z be the Kummer 1-cocycle defined by o(¥/2) = 208 (n>1,
/2> 0).
THEOREM 5.8. Notations being as above, the action of ¢ € Gy on the Dehn
twist generators of m (Mg, ® Q,a) can be written explicitly as follows:
(1) Dy, = DX, Dy_, = DX, D, = DX, (1<i<g),
Dy, —» DY, (2<j<r-1)
(2) Da2i—1 = wgfil (thlz,'_l’wz'i—l)ch,zt'_l f(’LU2i_1, Diz;_l)w;iﬁpf7
Doy, = w3, f(D},,,w2i) DX, f (wai, D, Jwil?. (1< <g)
(3) Dn, = F. DX F;' (1 <s<r), where F, is given by
Fs = f(DkO,r—l’Dkl,r) T f(DkO,s’Dkl,s+l) - DZI_’if(Dhs7Dkl,s)'

(4) Dy,, = FuDX , Fi' (1 <s<t<r), where Fy is given by

t—s—2
Fot = ( H f(Dki—Z—i,t—l’Dkl,t—z—i)) f(Dks¢’Dkl,t—l)Dl;’:__llf(DusuDks,t—l)'

=0

Here, x = x(0), p-1 = p-1(9), p2 = p2(0), d+1 = a1, and in the case t = s + 1,
the product in i of (4) is understood to be trivial.
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5.9. Before closing this section, we introduce a notion of equivalence relation
between tangential base points. Let X be a normal algebraic variety, k& a field of
characteristic zero, and suppose that we are given two k-rational tangential base
points ¥; : Speck((t)) — X (i = 1,2). (See [N98] for an elementary exposition on
the notion of tangential base points.) We shall say that ¥ and @2 share a common
support of equivalence, if there exist

1. amorphism f : (U; =)Speck[ts, ..., ta][#,. .., ] = X,

2. two k-morphisms g; : Spec k((t)) = U; (¢ = 1,2) with ¥; = fo g,
such that both g; and g2 are defined by power series in ¢ with principal coeflicients
1, in other words, g}(t;) (i = 1,2; j = 1,...,n) are of the form t*i(1 + O(t))
(ks; > 0). The usefulness of this property is in the fact that when this is the case,

there is a matural isomorphism 7 (U, v1) =2 w1 (U, 02) preserving
their Galois sections sz, : Gy, — m (U, 7;) (1 =1,2).

Indeed, let Rev(X) be the Galois category of etale covers of X. By Abhyankar’s
lemma [GR, XIII], the components of the pullbacks of objects in Rev(X) over U
are dominated by the spectrum of Q :=|J,, k[e", ... ,t}/n]][%, .-+, &-]; hence one
can define a base point functor Rev(X) — Sets to be that which takes the set of
-valued points for each cover. This functor is naturally equivalent with that which
takes the set of |J,, k((t'/™))-valued points of each cover via #; (i = 1,2) respectively.
By virtue of the condition of the unit principal coefficients, two coefficientwise G-
actions on those sets via 0, U2 are originated from the common Gj-action on the
coeflicients of power series in the ring 2, hence it turns out that the Galois sections
83 (1 =1,2) should coincide with each other. This proves the above assertion.

We will call two tangential base points ¥ and " (Galois) equivalent (and write
¥ = 7'), if they are connected by a finite sequence v = o, ¥1,...,0, = ¢’ such
that ¥;_1 and ¥; share a common support of equivalence for + = 1,...,n. By
repeating the above process consecutively, we may identify the Galois functors on
Rev(X) (and the Galois sections Gy, — 71 (X, *)) induced from equivalent tangential
base points. This naive formulation of equivalence, after the idea of “toroidal
transformations of tangential base points” due to P.Deligne (cf. [De] §15), will be
used essentially in several contexts of our work (including Part I as well as [N97]).
To illustrate a typical example, suppose we are given a Pg, . -diagram X° = J, X)
of type (g,r) together with a tangential structure 7 = {t,/»} on it. Pick adjacent
pairs u/A, X' (A # X') and consider another tangential structure 7' which differs

tax taw

T Ty
argument to [N97] Lemma (4.3), one can show that the standard deformations of
(X% 7) and of (X°,7") determine mutually equivalent tangential base points on
M, .. This justifies how one can associate an equivalence class of tangential base
points with a topological quilt structure on a marked surface.

from 7 only in employing instead of t,, /5, t,,/x-. Then, by the similar

§6. Limit Galois representation in genus g case.

6.1. Following the general procedure of Part I §3, we shall calculate the limit
Galois representation arising in deformation of a 2-point marked stable curve of
genus g. Consider a standard P}, -diagram of genus g — a chain of 2-point
marked Tate elliptic curves — consisting of the data:

29
0 _ 0 0 0 0 0
(Y B Uizl Y’\i ’ {PK':E(%‘—I) ’ Pnzj‘}g;gg ’ {Qnoﬂ Kag })
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where each Y denotes a copy of P{, with three distinguished Q-rational points

lying in the set of double points {P? (i1 P,Szj}z-,j or in the set of marked points
{Q%,, gzg} of YO. The incidence relations appear on the following data: The

dual graph A on the vertex set A = {)\; | i = 1,...,2g}; the edge set M =
{K+@i-1), k25 |1 <1< 9,1 <5 < g}; and the leg (= half edge) set N = {ko, k2g}
connected as in Figure 6.1.

FIGURE 6.1

The above Y° (written Ygo’2 occasionally later) is a maximally degenerate marked
stable curve of genus g with two marked points over Q. We wish to deform it
into a curve over the power series ring Qg].- In order to do it according to the
procedure of I§3, let us introduce a tangential structure 7 which is a collection of
distinguished coordinates for all incidence pairs k. /Ay

T = {tﬂzj/z\zj’ bhoj_2/Aaj—1> bhaajmay/Aejr hagajmay/Azjca | J=1... ’9}
whose members are determined by the following conditions we impose on them:

{ thaj/ A2 (PS—(zj—l)) = thaj_a/Aejoa (P'?—(Zj—l)) =1,
tni(g]-_l)//\zj (szj) = tl‘ii(zj_l)/AZj—l (P}?zj_g) = 1 (J = 1’ . 7g)'

0 _ o 0 _ o
Here we also understand ng =Q\,, and Pm, =Q5,

Let Y/Q[q] be the standard deformation (§5.1) of Y°/Q from the above data
(Y, T) together with sections Q,, Qx,, : SpecQg] — Y extending the marked
points Q% , @), respectively.

6.2. Now, let D C Y be the normal crossing divisor formed by the singu-
lar fibre Y° and the images of marking sections Q,, Qx,,- Our first task is to
compute 77 (Y, K34), the fundamental group of Y admitting (tame) ramifications
along D with the (standard) tangential base point K3, at ngg determined by the
ié:/AZq
a rooted maximal tree (T, eq) of A®: we set T to be the tree formed by the edges
{K_(2i—1),k2; | 1 <1< g,1<j < g}, and set eg = e,,,/x,, (see Figure 6.2).

Puiseux ring Q[q'/", ¢ ln>1. According to the procedure in I§3, we shall fix

FIGURE 6.2

By Theorem 3.11, 7 (Y, k2,) is isomorphic to m; (II/ A%, T'), the fundamental group
of a graph of profinite groups II/A® w.r.t. T. Let us now recall the construction
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of II/A%: Tt is a collection of the vertex groups II (A € A), the edge groups II,
(n € M) and the connecting homomorphisms j,/ : I, — II for all incidence pairs
/. The local component groups are of the following forms:

II) = ix(Gg) % ({Ox, 15,005 | 0xlr00x = 1) @ (T2)),

Iy = 1u(Gq) X ({Tu/a) ® (Tu/x)),
where 0y, 1), 00, Ta, Tu/x and 7,/ denote free symbols corresponding to certain
generators of local fundamental groups. The isomorphic images of i) (Gg), i,(Gq)
of the Galois group Gg are here acting on 7.’s by the cyclotomic character x :
G — Z*. We also understand that i5(Gg) is acting on 0,, 1, coy exactly as in
m (P! — {0, 1,00},07), ie.,

Ox = 0¥ 15 5 £, (0, 1) 1155, (04, 1),

where f,(X,Y) € [ﬁb, 13’2] is the principal parameter of the image of Ggp — GT. In
I§2, we introduced auxiliary parameters f2° € B, for any pairs a,b € {0,1,00} (a #

b) so that fz(? =1, f? = §, (0 € Gg). Using these, the connecting homomorphism
Ju/x can be described as

iw(@) =B i) (0 €Go),
Ju/x Tu/x P Tx,

Tu/x = Ta -Gy,
where a, b are respectively the ,/5-coordinates of the points ¢,,, = 0,1 for the
unique y'/ lying on the reduced path between e and A in 7. We denote this 3
by #(p/A).

6.3. Let (2 denote the algebraic closure of the local field Q((g)) which is iden-

tified with Q{{q}}, the field of “Puiseux power series with bounded coefficients”.

Writing Yg for the generic geometric fiber of Y — Spec Q[g], we have a canonical
exact sequence

1 — m1(Ya N A{Qxo» @z, 1, f2g) — 71 (¥, zg) — Gal(2/Q(() — 1

together with a canonical splitting caused by the tangential base point k3,4. Since
Gal(©2/Q((¢))) has also a canonical splitting Gg x Z through the action of Gg on
the coeflicients of each Puiseux series in 2, the conjugate action

GQ — Aut (771 (YQ N {QKmewg}’%))

arises. This is the limit Galois representation we are seeking now.

6.4. We shall standardize a generator system of the kernel part

Hg,2 =T (YQ N {Qnoa ang}a ’:‘-'-5;])

by using symbols of §6.2. Let us consider first the situation near the points P? @i
(1<j<g), P’  (2<j<g) fora fixed j. First, check that

K2j—2

3

B(k2j—1/Aaj) = 000, ¥(kaj-1/A2j-1) = ool,
T(k_(2j—1)/A2j) = ﬁ, (k—(2j—1)/A2j-1) = 07,
T(kaj—2/A2j—1) = ﬁ, T(kaj—2/A2j—2) = of.

<y
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Then, we trace the connecting homomorphisms:

J . { Traj—1/Az; 7 Thajo
K2j—1/A2j * Toas_1/Aaj_1 F Tha; s
j . { Thaj—1/A2; 7 TA2j—1 OAzj_15
Ka2j—1/A2j—1 * Taaso/Anson = Thagor-

Upon gluing ITy,; and IIy,;_, alongIl,;_,, we have to introduce a new edge symbol
€raj_1/A2jr (= e;zlj_l /)\2j) to amalgamate them by the relation

. . ~1
JK/2J'_1/>\2]' (g) = en2j—1/>\2j—1 J'€2j—1/>\2j—1 (g) enzj_l/A2j_1 (g € H'Wj—l)'
In particular, we obtain
-1 _ -1
(6.4.1) OOxg; = Crzjm1/r2j—1 PONzjm1 €y /g5 1"

Processing similar computation on the adjacent pairs “k_(3;_1)/A2j, A2; 1" and
also on “52]',2//\2]',1, )\2]',2” yields

_1 _1 .

(642) 1A2j = eli_(zj_l)/)\gj_l 0)\23‘—1 en_(2j_1)/)\2]-_1 (1 S J S g),
-1 _ —1 .

(643) ]‘Azj_l = Chaj_2/A2j—1 Okzj—z eh‘/zj_z/}\zj—l (2 SJ< g)

But since the edges K_(2j—1), K2j—2 are included in the maximal tree T, the symbols
e.’s in (6.4.2-3) are killed in 71 (II/A°,T'). Thus, combining (6.4.1-3) together with
0x1y00x =1 (A € A), we obtain

-1 -1 41 .
wAZJ'—leKIZj—l/AZj—lOokgj_lenzj_l/,\zj_l())\zj = 1)\2j_1 (1=1)
(=0x,_, whenj>2).

Coming to this stage, one can then compose the above relations for j = 1,...,g.
Then, after new notations z; := 00x,;_; Y5 = €xy;_1/2g;_1 (1 <5< 9), 21 = Oy,
zo = 1y, are introduced, the resulting relation becomes

(644) [fvl, yl] s [:Eg, yg]zlzo = 1a

where [£,7] = ¢n€&1n~!. Thus, we have managed to identify a standard genera-
tor system of the profinite surface group IIy» = 71 (Yo \ {Qx,, Qx,, }, k2g) in the
language of the graph of groups ITI/A°. (See also Figure 6.3 for a topological illus-
tration of the relationships between the issued loops after the van Kampen gluing
of our local fundamental groups.)

FIGURE 6.3
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Moreover, this generator system may be used to express 0,,, 1), as follows:

(6.4.5)
0A1 = $;1Z(;1a

Ox,; = [yj,xj]---[yl,xl]zgl, (1<j<g),

Oxajir = T Y5, 23]+ [y, 21)2p (1< j<g—1);
(6.4.6)

1y, = 20, 1y, = 2071,

1>\2j+1 :Zo[xl,yl]"'[xj’yj]’ (1 <J Sg_l)a
Iy, = 20[z1,91] - [2j-1,y5-1]z;, (2<j<g).
THEOREM 6.5. Under the above presentation of
Hg,2 = 7r1(YQ N {Qﬂoa in2g}1 ’%;])

via the generator system {1,y1...,%q,Yq, 20,21}, the limit Galois representation
of §6.3 can be described by the following formula (o € Gg):

)
(1) = F2i41(@) "0 Ongir Tans) ™ 1 - 2L Ongi s> Tngs2)2i(0) (G =1,...,9),
)
)

o(z1 =zf(a),
o(20) = F1(0) 12X 11 (0).

Here, fi(o) = Hiii fo(0x,,1x,) (=1 if i > 2g). We also recall that

x(@ 1-x(o) 1-x(o)

120 @,9) = 1o (4, 2y T o (2,9) (= 23 o (2, 2)2 57
and f?(%y) = fu(ﬁU,Z)wl_+(a) for x, y, z with zyz = 1.

PRrRoOOF. Thisis just a direct application of the formula given in Part I, Theorem
3.15 to our present setting of §§6.1-6.4. The last reminder is from I, Prop.2.11. O

6.6. Now, let us graft the standard tree of I, Example (3.18) to the above
Y? by identifying v, with k3,. We shall denote by Y., the composed Pg, -
diagram whose dual graph is illustrated in Figure 5.4. Here, note that we set
r =n — 1(> 2), and change notations of indices for components from A; of I,(3.18)
to €;. The tangential structure 7,1 we put on Y, ., is, as the union of those
introduced in §6.1 and I,(3.18), consisting of members of T together with the other
set of the coordinates involved in the tree part: t,, /¢, ty; /e,y (0= 1,...,7 = 2),
troy /22, aDd txy /e, The latter coordinates are chosen to take the value 1 at
the involving distinguished marked points of Q% (i =2,...,r) as in §5.5. We then
deform Y, ., /Qto Y, ,11/Q[g] according to 7,,,11 in the standard way (§5.1), and
equip it with the canonical sections Q,, (resp. Q,) extending Q% (1 =1,...,r)
(resp. QY,). Let t,, /., be the coordinate of Y taking 0,1,00 at Q7 , QJ,, P2,
respectively (5.5.5), and let 7; be the tangential base point on Y, ,y; defined by
1/n tl/n

the Puiseux ring Q[¢*/™, v JerIn>1-

6.7. Computation of the limit Galois action on the fundamental group

1—Ig,r+1 =T (Y;],T+1 ® Q \ {QVU RN QuraQno}a ’71)



56 HIROAKI NAKAMURA

is not a tedious task in this stage. Taking 1 as the initial segment eg; together with
the obvious maximal tree T extending that in §6.2, it is now an almost automatic
combination of our computations so far. In fact, the presentation of Il ., is given

by the amalgamation of I, » of §6.4 and the additional generatorsa,, (i = 1,...,7—
1, a=0,1,00) with the relations O, 1¢;00¢, = 1, 0oc; = 0.}, (6 =1,...,7 — 1) and
00, , = 2z; ' (€ y2). So if we (re)set z1 := Oy, 29 := 1oy,--+, 2, := 1.,_,, then

we obtain a standard presentation:

_ Tis Yi> 25 =
1-Ig,r-i-l - <1 S i S g,O S J S r [xlayl] [mgayg]zl Zrio = 1>

on which G acts through the tangential base point ;. We conclude this section by
describing the limit Galois representation in this standard Il ,11. In the following
formulae, note also that O, = z1---2;, le; = zj41 (=1,...,7r —1).

THEOREM 6.8. Under the above presentation of
Mgr1 = m1(Yg,ri1 ® N {Qko, Qui tizy, V1)

via the generator system {x1,y1 ..., %g,Yg, 20,21, - - -, Zr}, the limit Galois represen-
tation can be described by the following formula (o € Gg):

0(2:) = F26(0) 2 Oras_s Dnaecs) "X (Onai s Lrasy )i (o),

(i) = Fair1(0) 20 Orr Lnas) - Ui - T Orarss rar_)Fei(0)s (6= 1,1, 9);
o(z1) = 21,

0(2) =17 1(0) o 0,1y Le; 1) 22 0 (0, 4y Ly )T 1 (0), (5=2,...,7);
o(20) = F1(0) " 2y Fu (o).

Here, we define 7 (0) = [)21 1210, 1e,_.) and fi(0) := 1i(0)f¥ (o) with J:(0)
being as in Theorem 6.5.

PRrROOF. The formulae are obtained only by combining those in Example 3.18
and Theorem 6.5. Or it follows from a direct application of Theorem 3.15. Here we
just remind readers that o(p;/€;) = F(Kkag/€r—1) = 001, U(1i/€it1) = UV(Kk2g/A2g) =
0t fori = 1,...7 — 2. (In Part I, p.341, line 1, we should have typeset 01 and oo
reversely.) O

§7. Galois representations in m (My,1), m1(M,,2).

7.1. Let M, > be the moduli stack over Q of the smooth projective curves of
genus g with 2 marked points (@, Q'). The generic fibre of the curve (Y;Qx,, Qx.,)
constructed in §5 gives a Q((g))-rational point @’ of My > with Q = Qx,, Q' = Qr,,-
Considering the natural forgetful morphism p : My 2 — M, 1 with respect to the
second marked point @', we obtain a tangential base point @ = p(@’) on My .

On the other hand, in [N97], we introduced two other tangential base points
b and 7 on M, 1, and determined how the induced Galois representations act on
certain Dehn twist generators of f‘;. In this section, we compare @ with these 5, v
and examine the corresponding Galois representation.
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7.2. We first recall the construction of # in [N97], which comes from deforma-
tion of a certain hyperelliptic stable curve starting from a “PJ_ . -diagram” with
tangential structure. The skeleton diagram is, in fact, the same as Y° considered
in §6.1 except that each marked component Y)?', has an extra marked point to be
isomorphic to (P!;0,+1,00). We shall use the same notations as §6.1 to designate
the components and double points of Y°, and shall not prepare new notations for
the added marked points as they play only superfluous roles below. We cover Y°
by the new collection of coordinates:

S:= {sﬁzj//\zy” Skajoz/A2j-11 Ski(aj1)/Ner Sha2jm1)/A2i-1 | J=1... ’9} ;

where each s,/ is a coordinate of Y which takes values {0,+1,00} at the dis-
tinguished points in such a way that s,,5(P?) = 0. More precisely, we give it
by:

— Prai/ae Co:ioi
(721) { Srai/ A = trgj/2e—2 (* = 25,25 1)a
Sniimn/Ae T brsaion /A (* =25,2j — 1),

for j = 1,...,9. Then, the pair (Y°,8) acquires the hyperelliptic involution i
interchanging su,; > —Sky;, Sky;_1 € Sk_(s;_yy- Lhe quotient by i becomes then
naturally a P}, -diagram — a linear chain of P1’s (cf. [N97] §3).

Prepare variables g, corresponding to the edges

keM={k i—1), K24 1<i<g .
{ +(2i—1)> 2]}131_‘5531

As shown in [IN], one can patch formal schemes of the form

1
Spf Q[t., ﬁ] [gx]xem

along the diagram Y by the relations t,/\t./x = g (k € M;6/XX;X # X) to
obtain the universal deformation Y“"* of Y° over the power series ring Q[q, Jxcas-
On the other hand, in [N97], using the modified tangential structure S, we patch
formal schemes of the form

1
Spf Qfs, m] [a]

along Y° with the equations Sk/aSk/x = q (K € M5/AN50 # X') to get a
deformation scheme Y; over Q[g] (written just “Y™ in loc.cit.) By the universality
of Y™  there is induced a morphism Spec Q[qg] — Spec Q[gx]xcrs- We then
observe Taylor expansions of RHS of (7.2.1) to see that this morphism is given by

{ Gko; '—)4Q(1+0(Q)), (Z: 1a'--ag_1)a
Qi y(ai—1y T q(]- + O(q))a (.7 =1,... ag)a

where 1 + O(g) means a power series in Qg] with constant term 1.

(7.2.2)

7.3. Now, the profinite Teichmiiller modular group f‘; = m(M,: ® Q,a)
has a standard generator system of the Dehn twists D, for circles ¢ = a;,€;,d+p,
1<i<29,1<j<g—-1,1<k <g)on the corresponding analytic model (see
§5) indicated in Figure 7.1, where we understand dy =d_; = a;.
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FIGURE 7.1

Let D be the divisor of Spec Q[gx]xear defined by [],.c5 &« = 0. Then the local
fundamental group 72 (Spec Q[gx]xenr, @) = %391 is naturally mapped into 2 so
that the image of each generator D, (k € M) (characterized by the transformations
/" e g™, qi,/ " qi/ " (k' # k) in Q[gs ") via the forgetful homomor-
phism 1"2 — 1"1 is Dgy;, De; according as K = k4 (2;_1), k2, respectively. Under this
correspondence (together w1th the real standard chain connecting @ and 7), we see
in view of (7.2.2) that the difference of two Galois sections sz, s7 : Gg — m1(Mj,1,a)
(=2 m1(M,,1,7)) is given by

131 salo) = ([[ D2)ss0) = ([[ti)scle) (o € Go)

Here, in the latter expression, we used the notations w; = (Dg, - -+ D,,_,)* (i > 2),
for which the relations war = Da, Da_,, w3, = ex (k = 1,2,...) are known to
hold.

7.4. In [N97], we considered a P}, -tree X° consisting of 29 components
X3, = Pg with 2g — 1 double points PP, (i = 1,...,29 — 1) and 2g + 2 marked
points Q% (i =1,...,2g + 2) attached as in Figure 7.2.

Vogir Vog Ve Va Vs V2
A2g )\29“1. )\5 l)\4 l)\a l)\z <)\ L
} Hzg_l H, Mg \
VZg+2 1
FIGURE 7.2

We then associated with it a tangential structure R = {r,/»},/» satisfying the
condition r,,, /x,,,(@7,,,) = 1, 7/ (@2,,,) =1 (1 =1,...,29—1) and deformed it
over Qfq1, .. .,q24 1] by the equations r,,, /x, ., 74, /x, = @ The resulting tangential
base point on Mg 2412 we denote by b'. Let ¢ : Mo,2g+2 — Myg,1 be the morphism
obtained by associating to (P1;0,ax1,...,a2,_1,1,00) the hyperelliptic curve “Y?2 =
X(X — 1)[1%;"(X — a;)” with the distinguished marked point co. Then, it is
shown in [N97] that the image b = (b") gives a tangential base point on My,
whose associated Galois section s; : Gg — m1(M,,1) acts on the Dehn twists Dy,

(t=1,...,29) by:

(7.4.1) 83(0) D, s3(0) = fo(DZ,,w;) DX f,(w;, D2) (o € Gg).
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On the other hand, by construction,

$5(0)Da,,s5(0) "t = DX 1<i<yg),
(7.4.2) { (Dasioolo) == Dot (1=i=9)
53(0)De;83(0) 1 = DE7) (1<j<g-1),

and the difference between sz and s; was estimated in loc.cit. as

(7.4.3) sp(0) = wag 44 H w4p2(a) (o0 € Go)

where some ambiguous parameter ¢, was involved (cf. loc.cit. p.169).

7.5. By applying the new tool of Harbater-Stevenson [HS] of formal patching
(cf. also Wewers [W]), one can show ¢, = 0 in (7.4.3), which together with (7.3.1)
completes the comparison of three tangential base points @, 7, b on Myg,1. First of
all, recall that we introduced in [N97] §3 another tangential structure {t,,x},/x on
X° such that

’ru.'/ka (1’ = Odda A= >‘i+1)a
Hi/A Dl (i = odd, A= \ij § = even, A = Xi, Aiya),

for 1 < i < 29— 1. It is easy to see that if X° is deformed by this tangential
structure with equations t,, /5, ..t /», = @, ¢* according as i = odd, even over
Q[gq], then the resulting tangential base point b* is equivalent to &' in the sense of
§5.9. In particular, the Galois section s;, : Gg — m1(Mo,24+2) is the same as s;,.
We write X*/Q[q] for the deformation of X°/Q in this way.

Consider now the skeleton double cover Y° — X© which appeared in §7.2, where
each Y/\Oi is a double cover of th, (: =1,...,29). Let us cover those irreducible
components of Y? and X° by the coordinates in the tangential structures S and
the above {t,/5},/x respectively (cf. §7.2, 7.4). The morphism Y° — X? is given
by t,/x = si//\ for p = p2j, K = Ka; (j = 0,...,9), where we understand po =
V1, 29 = Vogy2 and that t,,/x,, t,,,/x,, are distinguished coordinates such that
tuo/an (@D;) = 00, tuy, /0y, (@7, ,,) = 00. Easy calculations show that for p = pa; 1,
K = Ki2j-1) (3 = 1,...,9), ty/» should correspond to f(s,./x), where f(T) =
4T (14 T)~2. Now, for each kK € M, we prepare a complete ring R, by

R — { s, s, ql/(f(s)f (') — @), (K= Kr(2j-1));
T L Qs s al/ (58"~ a), (k = K25),

where s = s,/5, 8’ = s./x (A # X') from §. Moreover, for each P} € Y° mapped
to P) € Y°, we fix an algebra injection 4 : Ox-, po = Ry as follows. First let
t =ty t' =tyn (A # XN); if & = Kki(25-1), then ¢, is just Qt,t',q]/(tt' —
9) = Qfs, ', a)/(f(s)f(s') — q) with ¢ > f(s), t' > f(s'); if & = ko, then 1,
is Q[t, t',q]/(tt' — ¢*) — Q[s, s',q]/(ss' — g) with t — s2, t' — (s')%. Then, the
collection of data {¥° — X° C X* {1, : Ox-, po = Ry }neM} forms a “Z/27-
Galois relative thickening problem” for (Y©, {PO}N) relative to Y? — X% and j :
X% < X* in the sense of [HS], and according to [HS] Theorem 2, this problem has
a solution Y*/Q[q].



60 HIROAKI NAKAMURA

By virtue of the existence of Y*, we see that the tangential base point bon Mg,
is centered at the same cusp as ¥. In fact, the argument goes in the commutative
diagram of [N97](2.1) (cf. also §7.8 below):

AT\ A —— Mog+2 Mo,29+2

(7.5.1) l wl l

APPI\ND —— H,1 —— Moagia/S2g41,

where newly inserted is the morphism ¢ defined in §7.4. In loc.cit., the tangential
base point b was defined originally on the affine space (minus the weak diagonals)
A29t1\ A so that its image in the hyperelliptic locus H,,1 C M, coincides with
our b = ¢(b') ~ ¢(b*). But it was not obvious from that construction whether this
image lies in the local neighborhood of a maximally degenerate stable hyperelliptic
curve. The above existence of Y* as a double cover of the deformed chain of P!’s
guarantees that b lies in the local neighborhood of the locus of Y*.

Especially the difference between the two sections sz, 55 : Go — m1(M,,1) is
lying in the abelian group generated by Dy, ;,D.; (1<i<g,1<j<g—1). But
since the conjugation by ws,41 interchanges, say, Dg, and Dg4_,, it follows that
wag+1 does not lie in this abelian group. This concludes that ¢, must vanish in the
expression (7.4.3). (Recall also w3, ,; =1in f‘;)

THEOREM 7.6. Let sz : Gg — w1 (My1,d) be the Galois section at the tan-
gential base point @ (§7.1). Then, for each o € Gg, the conjugate action by sz(o)
(x > sz(0) * s3(0)™t) on the Dehn twist generators D,,, Da,,, De, (cf. §7.3) of
f‘; =m (M, ® Q,a) are given by

4p2 2 x(o) 2 —4p2
Dazi—l = Wy U(Da2,-_1 ’ wzi—l)DaZi—lfU (w2i—17 Dag,;_l)w2i—]_ )

—4 4
Dazi = Wy, p2f0'(D§,2,-aw2i)D¢>1(2(f-)f0'(w2i7Dgz,-)wzfza

D4~ DX, Dy, = DX, D, ~ DX,

J

where 1<1<g9,1<j53<g-1.

PRrROOF. These formulae follow immediately from combination of the Galois
actions (7.4.1) and (7.4.2) restated in terms of sz(o) via (7.3.1), (7.4.3) (where
¢; =0 by §7.5). O

7.7. By a two point marked hyperelliptic curve, we mean a tuple (Y1, Q1, @2)
where Y is a hyperelliptic curve with the hyperelliptic involution 7 interchanging two
rational marked points @)1, @2 on it. Let # 2 be the moduli stack over Q classifying
those two point marked hyperelliptic curves. We call the canonical image of H, »
in My the hyperelliptic locus in Mg 5. In the remaining part of this section, we
shall construct a tangential base point on #H,> and examine the induced Galois
action on the Dehn twists in 71 (M, 2) along the circles indicated in the following
Figure 7.3. Later in Appendix, we will give a proof that these Dehn twists generate
Fg = 7T1(Mg,2 ® Q)
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FIGURE 7.3

7.8. In starting our strategy, we first introduce the affine v-space A29+2 minus
the weak diagonals A and the affine u-space A29%2 minus the discriminant locus D.
Here A = Ui;éj Aij with Ai]‘ = {’U = (’Ul, .. .,Uzg+2) S A12)9+2 | V; = ’Uj}, and D is
the locus of the points u = (uy, ..., uzg+2) € A2972 such that the equation f,(z) =
22972 4 4329t ... + us.i o has duplicate roots. There is a natural etale map
A29t2\ A — A29%2\ D by the correspondence v — fy,(z) = (z—v1) - - (T —vag42)-

Let u = (u1,...,u2942) € A2972\ D, and consider the hyperelliptic curve Y,,
birationally defined by the equation y? = f,(z). It is naturally a double cover over
the z-line branched at the 2g + 2 zeros of f,(z). We look at the fibre of the point
z = oo. The projective model z29y? = z29+2 + 4 z29F 2 4 -+ 4 uyy 222972 s
singular at (z : y : 2) = (0: 1: 0), so we cannot use it directly to detect the fibre
in the smooth model Y,,. To desingularize it, we turn back to the original equation
y? = fu(z), and make birational variable substitutions n = yz 971, £ =z~ 1 to get

N =1+ w€+ -+ upg2£29H2.

Then, we may identify the affine neighborhood of Y,, near the fibre over £ = oo
with the above affine curve in (£, n)-plane. Consequently, we detect the two rational
points @1, @2 of Y, lying over z = oo whose (&,n)-coordinates are (0,1), (0,—1)
respectively. Obviously the hyperelliptic involution ¢ of Y,, interchanges ¢); and Q2,
so the above procedure produces the point (Yy,, @1, @2) of Hg 2. Thus, we have a
natural morphism A2972\ D — H, ,.

Meanwhile, given a point (Y,4,Q1,Q2) of H,y 2, we may realize Y as a double
cover of P! so that the branch locus forms a degree 2g + 2 effective divisor on
P! disjoint from the distinguished rational point over which lie the marked points
Q1,Q2. This determines a point of My 2443/S2¢+2. Summarizing our arguments so
far, we obtain a commutative diagram similar to (7.5.1):

2 2
AZPNA ——— My —— Mo, 29+3

(7.8.1) l wl l

APP\D —— Hyp — Mopgss/Saga-
7.9. Now, let us construct a tangential base point on My, with deformation

method. This time, we consider the P}, . -diagram

2g+1
0 _ 0 £pO 0 , 0 o
(V°= U LEVER £ TREPY =0 A (@, Ki(29+1)})
i=1 ==
whose dual graph consists of the vertex set A = {); | 1 <7 < 2g + 1}, the edge set
M = {Ki(2i—1),k2; | 1 <1< g,1 < j < g} and the half edge set N = {ko, £4(29+1)}
connected as in Figure 7.4.
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K 2gr)

FIGURE 7.4

We associate with it the tangential structure 7' = {t,/\ | /A, p € M, X € A}
extending 7 of §6.1 with additional members ¢, /x,,; trs, /22,4, Such that

0 _ 0 —
thag/Aag (PH_(zg_l)) = lrag/A2g41 (Pn_(zg+1)) =1

As usual, we deform Y°/Q over Q[g] according to the equations ¢,/xt,/» = g for
all adjacent pairs /A, N (A # X'). Let Y/Q[q] be the resulting scheme and Q,,
Q1 (254+1) D€ the accompanying sections extending the marked points Q° o) 0 L @et1)

respectively. We define the tangential base point @> on M, > to be that which is
defined by the (generic) fibre of (Y;Qxyyy15 Qr_(5,41y) OVer Q((g). Then,

THEOREM 7.10. Let sz, : Go — m1(My2,d2) be the Galois section at the
tangential base point @s. Then, for each o € Gg, the conjugate action by sz, (o)
(x = 5a,(0) * 53 (0)7") on the Dehn twists Dg,, Day,, De, (cf. §7.7) of T2 =
T (Mg2 ® Q,d2) are given by

4p2 2 x(o) 2 —4p2
Da2i—1 = Wy~ J(Daz,-_la w2i—1)Da2£—1fa (w2i—1a Daz,-_l)wzifl

—4 2 x(o 2 4
Da,; — wy; psz(Dazjaw%)Dasz )fa(w2j’Da2,-)w252

Dy, = DX, Dy_, = DY), D, ~ DX,
where 1 <i<g+1,1<j<g, andwy = (Dg,---Dg,_,)* (2 <k <2g).

7.11. Illustrations on the proof of Theorem 7.10. The proof of Theorem 7.10
goes in an exactly similar way to that of Theorem 7.6. In fact, it is only a “g%—
version” of the latter proof, and to fill the full details will be left to the readers.
However, since the materials needed for the proof of Theorem 7.6 were scattered
among [IN], [N97] and §6, let us illustrate how we may combine necessary items to
complete the proof of Theorem 7.10.

We first prepare the universal deformation Y% of Y° over Qg ]xem with
regard to 7', i.e., by the equations t,/xt./» = g« (k € M; K/, X', A # X'), which
provides a local coordinate system of the formal neighborhood of the locus of Y in
Mg 3. This also determines the tangential base point @, on M, > (after taking the
generic fibre and projecting it by the forgetful morphism My 3 — M, > with regard
to Qno )

Meanwhile, we cover Y° by another tangential structure 8" = {s,,/ | p/A, p €
M, X € A} of P}, ..-type given by the similar formulae to (7.2.1). Then, (Y°,S’)
has a natural involution 7 which makes it a degree 2 Galois cover of the tangen-
tial structured Pg,; o-tree (X, {t,, /x;,tu; /x4 }i) having one more component than
what appeared in §7.5. Deforming (Y°,8') and (X°,{t,,/x;,tu;/xni4. }i) together
over Q[¢], and taking their generic fibres over Q(g)), we obtain a hyperelliptic
cover Yz, — Pb« ) with three distinguished points Q. ,,,,), @y, and then a

tangential base point > on M, (dropping the last marked point Q).
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In the formal level, one can compare deformation data between (Y°,7') and
(Y°,8') to see exact difference of two Galois sections arising from @, and 7, (as in
(7.3.1); cf. also [N97] Lemma 4.3). In these tangential base points, the Galois group
Gq acts on the Dehn twists along d.;, e; by the cyclotomic character. On the other
hand, consideration in the diagram (7.8.1) enables one to measure the difference
between ¥5 and the standard tangential base point 52 of Af,9+2 \ A detected by
Drinfeld [Dr], Thara-Matsumoto [Th-Ma] (cf.(7.4.3); since wag12 = 1 in f‘g, we may
skip the process corresponding to §7.5). We know that at the latter tangential
base point, Gg acts on the Dehn twists along a;’s by the standard formulae well
known now in the braid group. Combining these two types of information on Galois
actions, we conclude Theorem 7.10.

§8. Coupling Galois representations in my (M, ).

8.1. Let M, , (resp. M,,) denote the moduli stack over Q of the proper
smooth (resp. stable) marked curves of genus g with r-marked points. In §6.6, we
introduced a P, -diagram Y, and deformed it into the stable marked curve
Y, r+1 over the ring Q[q] with respect to a certain tangential structure 7,,41. This
defines a morphism Spec Qg] — M, r+1 and its restriction to the generic fibre
gives a tangential base point @' on M, ,11. Note here that the (r + 1) distinguished
points on the curves parametrized by the points of M, ., are now marked by the
indices ko, v1,- .., V. Our principal subject here is to observe the image @ of @' by
the forgetful morphism M, .1 — M, , obtained by forgetting the marked point
Qx,- Especially, we investigate the behavior of @ and the associated Galois action
va : Gg = Aut(m (M,,» ® Q)) under various moduli theoretical manipulations.

In [Kn], F.Knudsen considered the morphism M, .41 — M, , obtained by
forgetting one marked point with contracting possibly appearing unstable rational
component, and showed that M, ., forms a universal family of marked stable
curves over the moduli stack M, .. We call this morphism the forgetful morphism
with respect to a prescribed marked point. Note that one has r 4+ 1 choices of the
marked points to be forgotten, so that the way of regarding M, . as the universal
family over M, , is not unique. This simple fact, actually, causes unexpected
varieties of the theory of the Galois-Teichmiiller tower as indicated in our previous
works [N94,96,...]. Unlike our previous papers, in this paper we do not renumber the
remaining marks after forgetting a marked point; hence the target moduli spaces
may parameterize differently labeled marked curves according to the choice of the
forgotten marked point.

8.2. Assume r > 3, and fix a decomposition r = s+ s’ (s,s' > 0). Consider the
tangential structured Py, -diagram (Y2, T;) = (Y, 7,,,) which is obtained from
(Y2, 11, Tg,r41) by contracting the component carrying the marked point Q9 . In
the contraction process, there arises a new edge (or a leg if s = 1,2) in the dual
graph of Y? which we simply write u. (See Figure 8.1). Deforming (Y?,7;) into

the r pointed stable curve Y;/Q[q], we naturally obtain a commutative diagram

Y, ® Qlg) —— Ys — Mgt

(8.2.1) | | |+

SpecQ(g) —— SpecQg] —— M,
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where f; : Mg 41 = Mg, is the forgetful morphism with respect to v,;. In this
situation, we have two remarkable tangential base points. One is that on M, ,
defined by the lower horizontal arrow of (8.2.1). We shall denote it by d@s;. On
the other hand, on Y;, we have a standard tangential base point f, which was
introduced in [IN] in the case when u. is an edge. When pu. is a leg (adjacent to
€2), i.e., s = 1,2, we define fi. as follows. Choose the distinguished coordinate t,,, ,.,
so that t,_/.,(Q%,) = 00,1 according as s = 1,2 respectively. Then, we define j.

to be the tangential base point determined by the Puiseux ring Q[¢/™, t;{ 762]]"21
near the point Qg*. For any s =1,...,r, we thus obtain the image of fi, in M 41

induced by the upper horizontal arrow of (8.2.1) which will be denoted also by fi..

There arises a problem to compare the two tangential base points fi. and @' on
Mg -1 which are concentrated on the same cusp (= maximally degenerate locus)
of My r+1. Nevertheless, before going to the problem, we should like to examine
the relation between @' and @, first, as noticing that the image of fi. (resp. @') by
the forgetful morphism f; is (resp. is not) apriori d;.

8.3. The strategy we take here to compare @ and @, is to construct explicitly
a contraction morphism from Y; .41 to a deformation of Y? over Q[g]. Suppose
first that s > 3 so that the dual graphs of the contraction morphism Y, ,, — Y2
looks as in Figure 8.1:

K2g-1
0 €52 €51 &
Yorii —Om—O—O7+—O—0O0—0 O—C0 O—-—---
9 “s 2 Hs-l “s Ms+1
Vs-1 Vs Vs+1 K-(29 1)

FIGURE 8.1

The schemes Yy, ,;, Y are covered by the affine open sets U2, U?, where p (resp.
v) runs over the indices of edges (resp. legs) of their dual graphs, which can be
described explicitly by using distinguished coordinates (cf. §5.5) in such a way that

US = SpecQft,t', %t’ 1—1t']/(tt’)’
U = SpecQltu/x, 1= ;]

A

(8.3.1)

with ¢ = t,/5, t' = t,/x (u/AN; X # XN') lying in the tangential structures given
onY?, ., Y. These affine schemes are patched along the smaller affine pieces

1 1
(8.3.2) UY = SpecQt, 7 ﬁ] (X : vertices),
where t = t,/5 (u : any adjacent edge of A). Using this system of Zariski coverings,
we can detect the contraction morphism ¢ : Y, ; — Y? as a compatible collection

of ring homomorphisms which are identity except on Uy | and U], on which they
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are given by

UO — Ugs N (tﬂ*/fs—2 = tl—‘s—l/fs—Z’ t;u/es = 0),
(8'3'3) L US* - USS (tlh/és—z ~ 0, tpn,/es = tug/eg)a
Ug* A U‘(’)s (tﬂ*/fs—2 — 0, tp.‘/es = 0)'

We shall fatten the contraction morphism ¢® : Y, ; — ¥? to the N-th stage
deformation ¢V : VY., — Y}V over Qlg]/(¢"), where  indicates that the scheme
YV differs from YSN used to produce the standard deformation Y;/Q[g]. We first
introduce the N-th stage deformation of the affine schemes U2, U2, U of (8.3.1-2)

as follows:

'UN { Spec@[t tl t’l t,,q]/(ttl—q q ) (/J‘:/'l‘*)a
g Spec @[t tl 11—t 1— t' ’ q]/(ttl -9 ) (/1/ 7é /L*),
(834) U:fv = Spec @[tu/)\a + ]/(qN)a
v/A
| U = Spect, 7, 7/ (a"):

As explained in [IN], these are patched together on the underlying spaces Yg 1>
Y? to form well defined schemes YN, ,, Y over Qq]/(¢"). Let us define
NYNL - YN by a compatible collection of homomorphisms between those
correspondmg pairs of rings of (8.3.4). Again, on almost corresponding parts be-
tween Y 71 and YV the rings are identical, and we set identity maps on those
parts. The only part we need to care about is that which is involved with Ug_l,
UY, where we define

(8.3.5)

UN « U[ﬁ 1 (tu*/es_z = tllfs—l/es—2’ tu*/es = qtllzs—l/fs—l)’

N U;JX « U;ﬁ (tu*/es_z Pty feo 1 tusje, tus/es)a
U;IZ « UIZ (tﬂ*/fs—Z = q(l - tVs/es—l)’ Cpufes q(1— tvs/es—1)_1)-

To check the compatibility of these maps amounts to seeing the commutativity of
the following diagram (8.3.6). We write AQ[ for the defining ring of the affine set

Uy, and write ~=7 to designate the ring localization by adding t—1

-1 -1

t t
Bx/es_2 x/€
AN o mlter N AN o AN Dl YN

€s—2

(8.3.6) idl l(s.z.s) (8'3'5)l lid

AN (—AN — AN AN s AN,

€s—2 Ms—1 €s—1 s €s
-1 -1 -1
I‘s 1/€s—2 Ps—1/€s—1 ps/es—1 ps/es

The left and right commutativities of (8.3.6) are almost automatic, while the middle
commutativity can be checked easily after recalling the relation ¢, /., _,t
1 from our choice of the tangential structure 7, L

Thus, we have constructed morphisms cN YN,y —» Y for N > 0. Since
these are compatible with respect to N, taking the projective limit we obtain a
morphism of formal schemes Y, ,+1 — V¥ (with marked sections), and its alge-
braization ¢! : Y, .1 — Y} over Q[g]. When s = 1,2, no particular elaborations

MBs—1/€s—1
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are needed to construct the fattened contraction ¢ : Y, 11 — Y}. In fact, in these
cases, we may take Y; as Ysﬂ, and for rings and homomorphisms needed for defining
¢, it is enough to adopt rather obvious ones. So we omit the details of these cases.

8.4. The stable curve Y; (resp. Y}) determines a morphism Spec Q[g] — M,,,
denoted by @ (resp. @%). Both @ and @ are concentrated at the same cusp in
M, .. Let M, be the edge set of the dual graph of Y and let Y*** /Q[q, ] enm, be
the universal deformation constructed with the equations ¢,/xt,/x = g, (14 € Ms;
1/A, A, A # X). By comparing the local deformation data, we see that @, is given
by the diagonal specialization g, — g, while a! corresponds to the specialization
gy — g (B # pe), @u. — ¢°. In each of these specializations, principal coefficients
of variable transformations are 1, hence G actions on the Puiseux power series
commute with those specializations. Thus, @, and @ give “equivalent” tangential
base points on My, in the sense of §5.9.

On the other hand, by our construction of the contraction morphism ct :
Y, r+1 — Y}, it follows that the forgetful morphism f; : M, .41 — M, , maps
@ to a. Thus, as tangential base points, we conclude

(8.4.1) fs(@) = ‘_ig ~ s = fs(fis)-

8.5. In the following, we need to enter into more global considerations in the
moduli spaces of curves, i.e., we look closely at the fundamental groups of the tubu-
lar neighborhoods of certain divisors at infinity on the moduli spaces. We mainly
use the theory of Grothendieck-Murre [GM] which relates them to the fundamental
groups of those divisors minus deeper stratification. One crucial ingredient adopted
in [N96] is to use the theory not only on a single moduli space but also on a pair
of moduli spaces connected by a forgetful morphism. Let D (resp. D) be the sum
of divisors at infinity of My .11 (resp. M, ), and define for s > 3 the irreducible

components DP , Dgs) C D and D) C D to be the closures of loci of stable curves
whose degeneration type are Figure 8.2a, 8.2b, 8.2c respectively.

VooV, v VooV v
genus 0 1 2 st Vg genus 0 1 2 St
genus g :>< genus g ::>Vs<
%o Vet Ve FiG. 8.2a o Vet Ve Fi1G. 8.2b
\Y Vo i \Y
genus 0 1 2 st
genus g :><
%o Vet Ve Fi1G. 8.2¢

For these data, we consider the fundamental groups 77 ((Mj,r11/ Dgs))/\) (1=1,2),
7P ((M,,-/ D))" well defined, say, in the following sense (cf. also [N96] §3). Let
H, be the Hilbert moduli scheme over Q of the tri-canonically embedded stable
curves of genus g introduced in Deligne-Mumford [DM], and let H, ,, — Mg, be
the pullback of the natural forgetful morphisms #, - M, and M, , = M,. De-
note by H, , the complement of all divisors at infinity in H, ,. We use the same
notations for the pullbacked divisors at infinity on Hg 41, Hg,r as those on M, .41,
Mg, Then, D DI ¢ H, .11, D C H,,, are smooth irreducible divisors ([Kn]
Cor.3.9). After the Grothendieck-Murre theory [GM], one can think of the funda-

mental groups of formal schemes 72 ((Hg r41/D)") (i = 1,2), 72 ((Hg,r /D))
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admitting tame ramifications along the (intersections with) divisors indicated in the
shoulders of ;. We understand 72 (M, ,41/D{¥)) (i = 1,2), 7P (M, /DENN)
as the natural images of the above corresponding ones by the canonical homomor-
phisms 71 (Hy,.) = m1(M,y,.). In what follows, we sometimes employ arguments
where as if we were treating M, . as smooth schemes. This is just for simplifying
our presentations and for stressing essential ideas rather than being involved with
technical formalities; the readers will find easily that we keep more strict arguments
in the background, say, using rigidification via Hilbert schemes as above.
As a quick application of the above formulation, we obtain the following.

THEOREM 8.6. Apply the forgetful morphism fo : Mg 41 — M, with respect
to ko to @'. Call its image @. Let sz : Gg — m (M,,,,d) be the Galois section at
the tangential base point @. Then, for each o € Gg, the conjugate action by sz(o)
(* = s5(0) * sz(0) 1) on the Dehn twist generators D,,, Dg,., D, (cf. §5) of
f‘; = m (M, ® Q,a) are given by

4p2 2 x(o) 2 —4p2
Da2.’—1 = Wy~ O'(Daz,-_lv w2i—1)Da2i—1f0' (w2i—11 Da,z,v_l)wzi—l

—4 4
Da2i = Way; P2 fa' (Dgz,- ) wZi)Dt)lcz’(?) fa' (w2i7 Dgg,- )w2f2

Dy, + DX, D, , = DX, D, ~ DX,
where1<i<g9,1<j<g-1.

PROOF. Letting D", D™ be the irreducible divisors at infinity defined as

the images of D{"), D{"~"

Mo x Morp1 = DY) CMgri1D 'Dgril) = Mysx Mo,
+ 4 + { +
Mgvl X MO,T+1 = D(()T) C Mgﬂ‘ ) D(()T_l) = Mg’Z X MOvT'

via fo respectively, consider the diagram

The natural images of @ in the first components of D[(,r), ’D(()T_l) are the tangential
base points d@, @ considered in §7.1, §7.9. Below, we consider all fundamental
groups as based at the images of @’. Let ¢ be any one of the circles issued in the
statement of the theorem. In the two Grothendieck-Murre exact sequences

15 (De,) = 7P (M, /D)) = (M1 X Mo,rs1) = 1,
15 (D, ) = 77 (Mg /DS D)) = m(My 2 x Moy,) — 1,

the Gg-action on the images of D, in the right most groups are described by the
same formula as in the theorem, as shown by Theorem 7.6 and Theorem 7.10
respectively. Still in the middle groups (which have natural maps to w1 (Mj,,)), the
Gg-actions may differ from the requested form but only by a factor lying in the
intersection of two procyclic subgroups (De,) N (D, _,). Since we know that this
intersection is trivial, we conclude there occur no differences in the above liftings.C]

8.7. Let us now discuss the problem raised in §8.2, i.e., about comparing
two tangential base points @' and fi. on My 1. In this paragraph, we take the
natural images of @' as base points of fundamental groups. By virtue of (8.4.1), the
images of Ggq in m1 (Mg ,41) via @ and fi, differ from each other by some power of
Dy, D! . Let c, € Z be its power for o € Gg.
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Notations being as in §8.1-3, assume s > 3, and make Y, — Q[q] fit into
My 41 — My, . Then, the pullback of D in Y; is the sum of Y and the marked
sections Q, (v € {v1,...,Vr,ko}\ {Vs}) which we simply denote by Y + Q. More-
over, we may regard the singular fibre Y? as a sum of the two divisors:

Y; =Y£ +---+Y£_2,

o=Y2+--+Y2

€r—1

+Y, + o+ Y,

with each the pullback of D{”), D) in Y0 respectively. Apply the Grothendieck-
Murre theory to obtain the commutative diagram of fundamental groups:

0
(/)Y = mP (M /DN = i (Mossr X My g41)
(8.7.1) ! ! !
Go(q) = wP (Mg, /DENN) o i (Mys x My gy1).

The kernels of the three vertical arrows are canonically isomorphic to ﬂo,s, the
profinite fundamental group of an s point punctured Riemann sphere. We may re-
gard the tangential base point fi. as coming from the corresponding one in (Y;/Y7)"
which is isomorphic to the deformation of the tangential structured P}, . -tree con-
sidered in I, Example (3.18). Meanwhile, the universal expression of the tangen-
tial base point @’ : Spec Qgx]cem — Mg,ry1 is, as the completion of My 11
at the issued cusp, naturally lying in (Mg 41 /DP)A. Projecting these two tan-
gential base points to the right most part of (8.7.1), we see that the difference
(DksDk_sl_l)C" can be evaluated faithfully in genus 0 setting, namely in the fi-
bre of m1 (Mo s+1) = m1(Mo,s)- But this case was already discussed in I,§3.19,
where we showed the coincidence of sections sz (Gg) = sy, (Gg) under the situa-
tion @' = En+1, p« = v1. From this follows that ¢, = 0. (In loc.cit., we should
have written explicitly that the tangential base point #; is defined by the Puiseux
ring @[[tlll{ 7/\1,q1/ "n>1 with ¢, /5, satisfying ¢,,/,(Q%,) = 1. Actually, v; should
here be understood as a new leg “v,” adjacent to A\s. Note however that, in loc.cit.
we rearranged all indices after forgetting ng.) When s = 1,2, we consider the
diagram (8.7.1) of the case s = r and apply the same argument of 1,§3.19 in the
“inverse way” to the above, i.e, view v, of loc.cit. as Ky, here. When s = 2, the
application is direct, and it follows immediately that ¢, = 0. When s = 1, we have
to modify the argument, as, in loc.cit., we did not consider the forgetful morphism
with respect to ;. In this case, the first two main generators for the limit Galois
representation become z;2 = 02 and 713 = o] 10%01. Since the Gg-action at @’
on them is given in the form z15 — X5, 213 = o7 Xf(0%,03) L02Xf(0?,03)0Y, this
forces the base point “#7,” to turn around the issued cusp until reaching @' by an
angle corresponding to the factor (o?) $, i.e., a positive half rotation. (The fact
that the two issued base points lie over the same “l_;n” is settled in our previous
discussion in §8.3.) Actually, we made the definition of fi. in §8.2 to reflect exactly
this factor in the case s = 1; hence again ¢, = 0. Thus, we conclude ¢, = 0 in all
cases. Consequently, as tangential base points, it follows that

(8.7.2) a@ =~ fix on My, 1.

By virtue of this fact, whenever we embed II, , onto ker(mi(fs)) C m (Mg r41,8')
by regarding @,, (s =1,...,7) as a moving base point, we can interpret the limit
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Gg-action (calculated for s = 1 in Theorem 6.8) as the restriction of the Galois
representation in 71 (M, ,41,a’) to the kernel of 1 (f5).

THEOREM 8.8. Apply the forgetful morphism fo : Mg 11 — Mg, with respect
to ko to @'. Call its image @. Let sz : Gg — m (My,r,d) be the Galois section at
the tangential base point @. For o € G, let p_1 = @, f = fo- Then, the
conjugate action by sz(o) on the Dehn twists D,,,,, Dy, (1 <s(<t) <r) of f‘; =
71 (Mg, ® Q,a@) are given in the form Dy, &stEJ)&gl, D,,, — &stDﬁs(f)&;tl,
where

§(Dkags Di12)F(Dkaas Dirg) -+ §(Dkaps Dy w1 )§(Dhyy De, ), (8 = 1);
Ss = Dz:lf(Dba,wu Dks)f(Dba,s+2’ Dka+1) T f(Dbs,r7 Dkr—l)f(Dhs y Deg)v
(s >1);
f(Dkas> Disa ) F(Dhags Diag) - H(Dkaers Dhaema) Dy $(Duires Dy 1),
(s =1);

st = _
ot Dﬁs 1f(Dbs,s+1’ Dks)f(Dbs,s-m! Dks+1) toe T(Dbs,t—l’Dkt—Z)'

'Dl;l:lf(Dus“Dkt_l), (s >1).

Here, if a sequence part “ .- ” does not make sense, the portion should be understood
to be 1.

Proor. Fix 1 < s < r. Notice that DhsD;g1 and D, are contained in the
kernel of the forgetful homomorphism 71 (fs) : w1 (M) — m1(My,r—1). Taking
this and (8.7.2) into account, we shall fit in the situation of §8.2 and evaluate the
Gg-action on (the natural lifts in 7y (Mg r41) of) DhsD;g1 and D,,, in the limit
Galois representation in I, , at the base point fi,. Suppose first that s > 1. In this
case, the Galois action is described in Theorem 6.8. Since s < ¢, we need only loops
streaming towards kg, i.e.,we may regard pu. as if it be 14 of §6.7. Then, DhsD;gl,

D,,, correspond to y,z,'y,", 1c,_, respectively. It follows from Theorem 6.8 and
the formula from I, Prop.2.11:

iPl@,9) 7 =50 @,y) 2 =20 (z,0)20 (ayz = 1),
that the action of ¢ € Gg on yg:cg_lyg_ 1 is given by its x-power conjugated by

§o = 12000, 10) 0 121 (00, 1s Ter 1) 0 (0ng, 0 Tnay) L

o

One can interpret loops appearing here as
{ 0, = ijDb_:j, le,; =Du, .y, ©c; =Ds, ;.. Dy, (i=s5,...,7—1),

ks,j+1’
Oxy, = Deng‘:r, 00x,, = Dhst—gl.
Putting them into the above and rewriting ff?{, fj?é in terms of f,, we obtain the
desired formula (Note that Dy, ,, D;gl commute with the other involved elements.)
The case of ug follows similarly from the formula for 2;_s11 = 1,_, of Theorem
6.8. Next we assume s = 1. This case also follows in the same way as the case s > 1,
except that we have to take into consideration the modified definition of . (§8.2)
and its canonical turn to the base point “7,” (§8.7). This reflects to the necessity of
putting the left multiplication by D,;’; ~* to the formulae of the limit Galois actions
on yyz, 'y, !, 1,,_,. We leave the readers to fill details of calculations. O
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§9. Moves and associated pro-words.

9.1. In this section, we shall settle the proof of Theorem 5.8. The formulae
in (1) follow from our construction of @, and those in (2) are already shown in
Theorem 8.6. To verify (3) and (4), we have to compare F;, Fs; of Theorem 5.8
with §; and Js; of Theorem 8.8. More precisely, we should prove

(9.1.1) FsDp,F;' = FsDn, 871, (1<s<r),
(9-1.2) FstDupFot = FstDuaiBty (1<s <t <)

Our strategy to prove them here is indirect. We utilize the framework of [NS], where
we showed how one can compute the action of ' on any Dehn twist explicitly by
moving along a sequence of pants decompositions to catch the issued circle. The
obtained formula may take different forms according to the choice of the sequence
of pants decompositions, but Proposition 8.1 of [NS] insures that the expressed
element in the profinite Teichmiiller modular group is independent of the choices.
Therefore, it suffices to show that §s, §s+ can be obtained by the algorithm of [NS]
from particular sequences of pants decompositions (which would differ from those
sequences used to get F, Fg in [NS] §11).

9.2. For convenience of readers, we review briefly the algorithm of [NS] of
producing formulas of the I'-action on any Dehn twist. Given a quilt decomposition
Q/P on a marked Riemann surface X, we introduced in loc.cit. a well defined
representation pg/p : ' — Aut(['(Z)) in the profinite completion of the (pure)
mapping class group of . Let ¢ be any (homotopy class of a) circle on ¥, and
let vy: P =Py — P, — --- = P, be any sequence of pants decompositions with
P,, containing the circle ¢ such that each P; — P;; is an “A-move” or “S-move”.
In this section we need only A-moves, so we shall assume that - is a sequence
of A-moves. This means that each step P; — P;;; replaces a circle ¢; of P; by
a new circle ¢ of Piy1 (¢ = 0,...,n — 1) in such a way that: (a) the geometric
(minimum) intersection number of ¢; and ¢ is two; (b) the algebraic (homological)
intersection number of ¢; and ¢} is zero. Moving along this sequence until getting
¢l,_1 = ¢, one can define sequences of quilts Q;/P; (i = 0,...,N) and of integers
N; (i=0,...,n — 1) characterized by the following conditions:

(9.2.1) Qo =Q;
(9.2.2) DN:/2(Q;) is adjusted to c}.

The latter condition means that, after V;-times applying the half-twist along ¢; to
the seams of );, we may reduce the geometric intersection number of those seams
with ¢} (i =0,...,n — 1) to the minimum (= 2). Let (x,f) be any element of I
defined by the parameter of the Grothendieck-Teichmiiller group in 7% x ﬁ’z, and
let p_; = X1, Then, as shown in [NS] Proposition 8.1, we can tell the action of

2
(x,f) € T on the Dehn twist D, = D, _ in the form D, — FDXF !, where

n—1

(9.2.3) = Di‘g"’—lf(ch,Dco) . ..DN.,_lp_1]c(Dc.

Cn—1 n—17

DCn—l)'

When some of the P; — P;;, is an S-move, which by definition replaces ¢; by ¢}
with geometric intersection number 1, one needs more elaborate descriptions to
define Q;, N; and the corresponding factor of §. See [NS] §7.
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9.3. Now, for each of §, s, we shall give a sequence of pants decompositions
which gives it as the element § described in the procedure of §9.2. We start from
the standard quilt decomposition Qo/ Py given in §5.6. We leave the right half part
of Figure 5.5 invariant, and move only circles in the left “tail” part. So we have only
to consider the genus 0 subsurface obtained by cutting Figure 5.5 at d_, =: Q. ,
dy =: Qu,. The resulting surface is illustrated in Figure 5.7. We shall start from
the quilt Qo/ Py of Figure 9.1, where seams are drawn by dotted lines.

FIGURE 9.1

In the following we use the notation C(P) to designate the set of circles of the pants
decomposition P.

Case 1: §1. We define P; to be the pants decomposition obtained by replacing
k12 € C(Py) by ko3, and inductively introduce P; by replacing kq ;41 € C(Pj_1) by
k2 jt2 ( =2,...,7—2). Then, finally, define P,_; by replacing k; , = e, € C(P,_2)
by hi. In this process of moves Q/Py — --- — P._1, the quilts Q; are always
adjusted to their next pants decompositions P;;;. Hence, we need not apply half-
twists on seams of the quilts. Thus we conclude

§=3s= f(Dk237Dk12)f(Dk247Dk13) v f(Dk2,r’Dk1,r—l)f(Dhl7Deg)'

-

Qr3/R.3
Qr2/R2

J

Ve (Vi1 oo v V1 Vg |
[.[..]][o o | QilRa

FIGURE 9.2

Case 2: §s (2 < s <r). In this case, we first define P; by replacing ks € C(Po)
by bss+1. Then, in order to get Q1/P:, we have to apply the half-twist along k;
to the seams as in Figure 9.3. Then, we define P» by replacing ks11 € C(P1) by
bs s+2,---, define P._; by replacing kr._1 € C(P,_s_1) by bs,, and finally define
P,_;41 by replacing k, = e, € C(P,—;) by hs. In the latter process of moves
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Q1/Py — -+ = P._,11, the quilts are adjusted to their next pants decompositions,
hence we need not apply half-twists on the seams. Thus, we see that

& = &s = Dzzlf(Dbs,s+17 Dks)f(Dbs,s+27 Dk5+1) e f(Dbs,v" Dkr—l)f(Dhs7D59)'

FIGURE 9.3

Case 3: §1: (2 <t < 7). We use the same P; as Case 1 until s = ¢ — 3. Then we
define P; 5 by replacing k;_; € C(P;_3) by u1¢. In the last step, we need to apply
the reverse half-twist along k; ; to the seams so that they are to be adjusted to

uyt. See Figure 9.4, where we understand Q}_; = Dk_i];/lz(Qt_;;). Thus,

§ =31 = f(Dkzsv Dklz)f(Dkuv Dkls) T f(DkZ,t—l’Dk1,1—2)D_p_l f(Duu ) Dkl,t—l)'

k1¢-1

Q-2 /R-2

FIGURE 9.4

Case 4: Fs; (2 < s <t <r). In this case, we use the same P; as Case 2 until
i =t — s — 1. Then, define P, ; by replacing k;_; € C(P;_s_1) by us. In the last
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step, we need to apply the reverse half twist along k; ; so that the seams are to be
adjusted to ug as in Figure 9.5. This process produces
8’ = 3st

= Di:lf(Dbs,erl, Dks)f(DbS,H_z, Dks+1) e f(Db.s,t—l ) Dkt—2)Dk_tli_11f(Dust ) ‘Dkt—l )

Qts1 Rs1

J

Qts /Ps

FIGURE 9.5

Thus the proof of Theorem 5.8 is completed.

§10. Coalescing tangential base points.

10.1. In this section, we discuss a generalization of our construction of the
tangential base point ¥ given in [N97] (see §7) in the context of Hurwitz moduli
spaces. Let G be a finite group and 7' : G — S, be a faithful transitive permu-
tation representation. For each sequence C = (C4,...,C,) of conjugacy classes
of G, the strict Nielsen set SNi(G,C) is defined to be the collection of r-tuples
g = (9i) € Cy X --- x Cp such that g;---¢g, = 1 and {g1,...,9-) = G. Pick
g € SNi(G,C) and let sO(g) be the orbit of g under the natural action by the
pure Hurwitz braid group with r strings. M.Fried [F] introduced a strict Hurwitz
modular variety H(sO(g)) as a finite cover over (P!)” — A corresponding to this
transitive permutation representation. This is a moduli space parameterizing covers
of P! with branch cycle data in sO(g).

The aim of this section is to present a way of constructing a tangential base
point 7(g) on H(sO(g)) which would be called the coalescing tangential base point
associated to g € SNi(G,C).

10.2. We first define (r — 2) triples (z;,y:,2:;) (i=1,...,7 —2) by

Ti =91 Gi
yi = gi—‘,—la
% =9Git2°Gr-

Then, z;y;2z; = 1, z; = :v;rll hold. Each triple defines via T a not necessarily

connected cover Y? — P! branched only over {0,1, cc}. Take a number filed K/Q
such that

1. each connected component of Y2 (Vi) is defined over K;

2. each branch point on Y (Vi) over 0, 1, 0o is defined over K.



74 HIROAKI NAKAMURA

The above (r — 2) triples produce an admissible cover f : Y — X° over K in the
sense of Harris-Mumford [HM] in such a way that

XO = U:=_12P(1Jloo/ ~

Y0 = U::_12Yzo/ ~
where ~ indicate identifications of pairs of points as nodes in the following manners.
On Y9, for each i, the branch point on Y;? corresponding to a (z;)-orbit is identified
with the branch point on Y%, corresponding to the same (z;11 = z; 1-orbit. To

be compatible with such Y°, the X is to be the obvious chain of P'’s which looks
as in Figure 10.1.

pPL PLPLPl pL  pL Pl pL

FiGcure 10.1

For a prototype example, suppose the case where G = Z /2Z and g = (—1,...,-1).
Then, the admissible cover Y° — X© associated to this g is nothing but the degen-
erate hyperelliptic cover considered in [N97]. We would like to give the definition
of ¥(g) so that it gives in this special case the “hyperelliptic tangential base point”
¥ on the moduli space of M, discussed there.

10.3. Example (Harbater-Mumford type). Another key example defined over
Q is given in the paper [F] by M.Fried. Let

Dsz{(g ‘;) |e =1, an/5Z}

be the fifth dihedral group acting on Z /5Z by z — ez + a (z € Z /57Z) and consider
SNi(Ds; Cyq,Cs,C3,C4) which contains the tuple

g=01 (oM )

Then the resulting admissible cover Y° — X° may be illustrated as in Figure 10.2.

FIGURE 10.2
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10.4. We shall construct a tangential base point ¥(g) by making use of the
formal patching technique arranged by Harbater-Stevenson [HS]. Regard X7 as the
projective line PL. with the standard coordinate ¢; (1 < ¢ < r — 2) illustrated in
Figure 10.3, and set t; = t; *.

FiGure 10.3

Let P; (i=1,...,7 — 3) be double points with t; = oo (i.e., t; = 0 or equivalently
tiv1 =0), and wrlte the fiber set f'(P;) as {P; 1, ..., P;m, } which bijectively cor-
responds to the set of (z;)-orbits in {1,...,n}. Lettmg e;; denote the ramification
index at Pj; (which is the same as the length of the corresponding (z;)-orbit), we
define
e;'=lem{eqn,...,eim,}

Then, as in [IN], one can make the deformation space X*/K[q] of X°/K by the
equations tit;11 — ¢* (1 < i < r —3). Next, choose uniformizing parameters s;;
of OAY’.O,p,.J. and s;41,; of OA}/‘(!Fl’Pij such that (s};)® = t}, (8i41,j)*7 = tiy1, and
introduce the local rings

Rij := K[sij, 8i11,4,al/ (8558011, — /%) (1<i<r—3,1<j<my)

over K [q] which are equipped with natural homomorphisms 0 x+,p0 < Rij. Then,
the collection of data {Y° — X% ¢ X* {Ox. ,po > Rij}i;} forms a relative thicken-
ing problem for (Y°, { P;;}) relative to Y° — X0 in the sense of Harbater-Stevenson
[HS]. Thus, it follows from Theorem 2 of [HS] that there arises an admissible cover
Y* — X* over K[g] whose generic fibre is a smooth connected cover over P}{((q))
with branch cycle data g € SNi(G,C). We define the K-rational tangential base
point ¥(g) on H(sO(g)) to be that which is induced from Y* ® K((q)) — P}{«q».

Appendix.

In this appendix, we prove that the Dehn twists along the circles indicated
in Figure 5.6 generate the mapping class group of the marked surface. The cor-
responding result should be essentially known, for example, in [M], [Bil], but it
would be convenient to present a concise proof here using only a simple technique
utilized effectively by Humphries [H].

We write X, . for the surface of genus g with r marked points Q1,...,Q,, and
denote the mapping class group by I'(Z, ). There is an exact sequence

1 — ) — T(8,,r) — T(Zg0) — 1

obtained by forgetting all marked points. Here, the kernel H( (), can be identified
with the pure braid group on the closed surface X, with r strmgs It is known
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by M.Dehn, W.B.R.Lickorish that I'(X, o) is generated by the images of a1, ..., az,

anddy; (i =1,...,9). Soit suffices to consider the kernel. This is generated by the
loops regarded as those :v(s) ..,a:és),ygs), ,ygs),z£s), 29 (28 = 1) starting

from @, and running in the surface ¥ —{Q; | 1 < s <, t # s} as in Figure Al.

FIGURE Al

To represent each of these loops by Dehn twists, we employ usual technique that
the loop can be interpreted as a quotient of two Dehn twists along circles lying
along the loop “inside and outside”. Figure A2 shows the typical situation where
we should have £ = DaD;I:

FIGURE A2

It is obvious, as the inside circle becomes trivial, that one can write zgs) as u;s. To

produce :c,(c ), y,(cs) (1 <k < g), we introduce the sequence n_ff’, ;S), .. ,n£s),§§s) by

(s) = (y £S))—1, 555) _y(S)( ())—1( (S))—l
(s). Wi, €7 =) ) ), 1<k<g-).

-1 syl ()1
E(S)—y (). y(S) (kS) y(ks) ygs)

1 (sl
o r](:): yf)_.y g(S)

FIGURE A3
First, it follows from the above remark that §§S) = hs. We then apply the general
formula D,D,D;' = Dp, () repeatedly as in Figure A4. It is then clear that all

§k , nk , hence all :v(s), y,(cs) (1 < k < g) can be produced by the Dehn twists along
the circles indicated in Figure 5.6.
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FIGURE A4
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