On Hecke modules generated by eta-quotients of weight one

Takeshi Ogasawara

Oyama National College of Technology

December 22. 2013

Contents

Contents

- Review of weight one modular forms and our motivation,
- 2 Main results
 - (i) Theorem 1
 - (ii) Theorem 2
- OM modular forms
- Outline of the proof of Theorem 1
- Proof of Theorem 2

2 / 28

Modular forms of weight one and Galois representations

elliptic and cuspidal Hecke eigenforms of weight one ∫

$$\begin{array}{l} \longleftrightarrow \\ 1 \text{ to } 1 \end{array} \left\{ \begin{array}{c} \rho : \mathcal{G}_{\mathbb{Q}} \to \operatorname{GL}_2(\mathbb{C}) \\ : \text{ odd, conti., irred.} \end{array} \right\} / \sim \end{array}$$

via the coincidence of *L*-functions. (Hecke, Weil, Deligne, Serre, Langlands, Tunnell, Khare, Wintenberger,....)

 \longrightarrow A weight one modular form has an information of certain Galois extension over $\mathbb{Q}.$

Modular forms of weight one

If $\rho: G_{\mathbb{Q}} \to GL_2(\mathbb{C})$ is continuous and irreducible, then the image of ρ in $PGL_2(\mathbb{C})$ is isomorphic to one of

- D_n: dihedral group of order 2n (dihedral type),
- A4 (tetrahedral type),
- S₄ (octahedral type),
- A₅ (icosahedral type).

Property of dihedral representations

If $\rho: G_{\mathbb{Q}} \to \operatorname{GL}_2(\mathbb{C})$ is of dihedral type, then $\rho \cong \operatorname{Ind}_{G_F}^{G_{\mathbb{Q}}} \xi$ for some quadratic field F and ray class character ξ of F. Therefore, if f is a Hecke eigenform of weight one and the Galois representation ρ_f associated to f is of dihedral type, then there exist a quadratic field F and a ray class character ξ of F such that

$$f(\tau) = \Theta_{\xi}(\tau) = \sum_{\mathfrak{a}} \xi(\mathfrak{a}) q^{N(\mathfrak{a})}.$$

Motivation

 \longrightarrow A dihedral type modular form has an information of certain abelian extention of quadratic field.

Motivation

Given an eta-quotient f of weight one, which is not necessary Hecke eigenform, we want to know an information on the number field associated to f.

 \longrightarrow It is natural to study the Hecke module generated by an eta-quotient.

5 / 28

Notation

For a finite group G,

G^{*} := Hom(G, ℂ),

• $\widetilde{G^*} := G^* / \sim$, where for $\chi_1, \chi_2 \in G^*$, $\chi_1 \sim \chi_2$ means that $\overline{\chi_2} = \chi_1$. For a quadratic field K,

- CI_K : the ideal class group of K,
- h(K): the class number of K,
- \mathcal{O}_K : the ring of integers of K.

•
$$\eta(au)=q^{rac{1}{24}}\prod_{n=1}^{\infty}(1-q^n)$$
 : Dedekind eta function $(q=e^{2\pi i au},\ au\in\mathbb{H}),$

- *M_k*(*N*, χ) : the space of weight *k* holomorphic modular forms of level *N* and character χ,
- $S_k(N,\chi) \subset M_k(N,\chi)$: the space of cusp forms.

Main Theorem (1)

Let λ be a square-free positive integer such that $\lambda \equiv 15 \pmod{24}$, and set

$$arphi_\lambda(au) \coloneqq rac{\eta(3 au)\eta(12 au)\eta(2\lambda au)^3}{\eta(6 au)\eta(\lambda au)\eta(4\lambda au)} \in \mathcal{S}_1(12\lambda,ig(rac{-12\lambda}{2}ig)).$$

Let

$$V_{\lambda} := \langle \varphi_{\lambda} | T_n ; n \geq 1 \rangle_{\mathbb{C}}.$$

Theorem 1

With the above notation, we have

$$\dim_{\mathbb{C}}V_{\lambda}=h(\mathbb{Q}(\sqrt{-\lambda})).$$

7 / 28

Main Theorem (2)

Let *N* be a square-free positive interger s.t. $N \equiv 23 \pmod{24}$, $K := \mathbb{Q}(\sqrt{-N})$ and $h_N := h(K)$. Let $g_N := \sharp(\operatorname{Cl}_K/\operatorname{Cl}_K^2)$: the number of quadratic character of Cl_K , $d_N := (h_N - g_N)/2$, $\psi_N(\tau) := \eta(\tau)\eta(N\tau)$, $V_N := \langle \psi_N | T_n ; n \ge 1 \rangle_{\mathbb{C}}$.

Theorem 2

We have

$$\dim_{\mathbb{C}} V_N = d_N - \sharp \left\{ \chi \in \widetilde{\mathsf{Cl}_K^*} \ ; \ \chi^2 \neq 1, \chi([\mathfrak{p}_2]) = \pm 1 \text{ or } \chi([\mathfrak{p}_3]) = \pm 1 \right\},$$

where \mathfrak{p}_2 (resp. \mathfrak{p}_3) is a prime ideal of $\mathbb{Q}(\sqrt{-N})$ lying above 2 (resp. 3).

Main Theorem (2)

Corollary 3

Let p be a prime number s.t. $p \equiv 23 \pmod{24}$ and $K := \mathbb{Q}(\sqrt{-p})$. Then the following assertions are equivalent;

(a) dim_C $V_{\rho} = d_{\rho}$, (b) $Cl_{\mathcal{K}} = \langle [\mathfrak{p}_2] \rangle = \langle [\mathfrak{p}_3] \rangle$.

(Proof of Cor.) If N = p in Theorem 2, then h_p is odd, thus

$$\dim_{\mathbb{C}} V_{p} = d_{p} - \sharp \left\{ \chi \in \widetilde{\mathsf{Cl}_{K}^{*}} ; \ \chi \neq 1, \chi([\mathfrak{p}_{2}]) = 1 \text{ or } \chi([\mathfrak{p}_{3}]) = 1 \right\}.$$

This shows that $\dim_{\mathbb{C}} V_p = d_p$ is equivalent to that

$$``\chi([\mathfrak{p}_2]) = 1 \Rightarrow \chi = 1" \text{ and } ``\chi([\mathfrak{p}_3]) = 1 \Rightarrow \chi = 1."$$

CM modular forms

Definition

Let

 $f \in M_k(N, \chi)$: a Hecke eigenform, $m \in \mathbb{Z}_{>0}$, θ : a non-trivial quadratic character modulo m. We say "f has CM by θ " if

$$\theta(p)a_p(f)=a_p(f)$$

(i.e., $f | T_p = 0$) for all $p \nmid Nm$.

•
$$M_k^{CM}(N, \chi; \theta)$$
 : the space of CM forms by θ ,
• $S_k^{CM}(N, \chi; \theta) := M_k^{CM}(N, \chi; \theta) \cap S_k(N, \chi)$.

CM modular forms

Theorem (Kani)

Let $F := \overline{\mathbb{Q}}^{\operatorname{Ker}(\theta)}$, f a Hecke eigenform and ρ_f the Galois representation associated to f. Then, the following assertions are equivalent: (a) f has CM by θ , (b) $\exists \xi \in \operatorname{Hom}(G_F, \mathbb{C}^*)$ s.t. $\rho_f \cong \operatorname{Ind}_{G_F}^{G_{\mathbb{Q}}} \xi$.

The assertion (b) in Theorem 3 is equivalent to

(c)
$$\exists \xi$$
 : a ray class character of F s.t. $f(\tau) = \sum_{\mathfrak{a}} \xi(\mathfrak{a}) q^{N(\mathfrak{a})}$.

Theorem (Kani)

Let N be a positive number such that -N is a fundamental discriminant. Then

$$\dim_{\mathbb{C}} S_1^{CM}(N, \left(\frac{-N}{\cdot}\right); \left(\frac{-N}{\cdot}\right)) = d_N.$$

We fix the following notation:

• $\lambda \equiv 15 \pmod{24}$: square-free,

•
$$K := \mathbb{Q}(\sqrt{-\lambda}),$$

• $\mathfrak{p}_2 := 2\mathbb{Z} + \frac{1+\sqrt{-\lambda}}{2}\mathbb{Z} = \left\{\frac{x+y\sqrt{-\lambda}}{2} ; x \equiv y \pmod{4}\right\},$
• $\mathfrak{p}_3 := 3\mathbb{Z} + \frac{1+\sqrt{-\lambda}}{2}\mathbb{Z} = \left\{\frac{3x+y\sqrt{-\lambda}}{2} ; x \equiv y \pmod{2}\right\},$
• $\overline{\mathfrak{p}_2}\mathfrak{p}_3 = \left\{\frac{3x+y\sqrt{-\lambda}}{2} ; x \equiv y \pmod{4}\right\}.$

Recall

$$arphi_\lambda(au) \coloneqq rac{\eta(3 au)\eta(12 au)\eta(2\lambda au)^3}{\eta(6 au)\eta(\lambda au)\eta(4\lambda au)}.$$

$$\vartheta_1(\tau) := \frac{\eta(\tau)\eta(4\tau)}{\eta(2\tau)} = \sum_{n=1}^{\infty} \left(\frac{8}{n}\right) q^{\frac{n^2}{8}},$$
$$\vartheta_2(\tau) := \frac{\eta(2\tau)^3}{\eta(\tau)\eta(4\tau)} = \sum_{n=1}^{\infty} \left(\frac{24}{n}\right) q^{\frac{n^2}{24}}.$$

Then,

$$\varphi_{\lambda}(\tau) = \vartheta_{1}(3\tau)\vartheta_{2}(\lambda\tau) = \sum_{m,n=1}^{\infty} \left(\frac{8}{m}\right) \left(\frac{24}{n}\right) q^{\frac{3m^{2}+dn^{2}}{8}},$$

where $d = \lambda/3$.

Proposition

We have

$$\varphi_{\lambda}(\tau) = \sum_{\substack{\mathfrak{a} \in [\overline{\mathfrak{p}}_{2}\mathfrak{p}_{3}] : \text{ integral} \\ (\mathfrak{a}, \overline{\mathfrak{p}}_{2}\mathfrak{p}_{3}) = 1}} \left(\frac{8}{m_{\mathfrak{a}}n_{\mathfrak{a}}}\right) \left(\frac{3}{n_{\mathfrak{a}}}\right) q^{\mathcal{N}(\mathfrak{a})},$$

where m_a and n_a is the rational integers such that

$$\mathfrak{a} = \left(\frac{3m_{\mathfrak{a}} + n_{\mathfrak{a}}\sqrt{-\lambda}}{2}\right)(\mathfrak{p}_{2}\mathfrak{p}_{3})^{-1}.$$

Proposition

If p is a prime such that
$$\left(\frac{-\lambda}{p}\right) = -1$$
, then $\varphi_{\lambda}|T_p = 0$.

$$\longrightarrow V_{\lambda} \subset S_1^{CM}(12\lambda, \left(rac{-12\lambda}{\cdot}
ight); \left(rac{-\lambda}{\cdot}
ight)).$$

For every Hecke eigenform $g \in V_\lambda$,

 $\exists \xi$: ray class character with some conductor f s.t.

$$g(au) = \Theta_{\xi}(au) = \sum_{\mathfrak{a} \subset \mathcal{O}_{K}} \xi(\mathfrak{a}) q^{\mathcal{N}(\mathfrak{a})}.$$

Considering the level and character of V_{λ} , we have

Proposition

$$\mathfrak{f} = \overline{\mathfrak{p}_2}^2 \mathfrak{p}_3.$$

• $Cl_{\mathcal{K}}(\mathfrak{f})$: ray class group with modulus $\mathfrak{f} = \overline{\mathfrak{p}_2}^2 \mathfrak{p}_3$,

•
$$H_{\mathcal{K}}(\mathfrak{f}) := \operatorname{Ker}(\operatorname{Cl}_{\mathcal{K}}(\mathfrak{f}) \to \operatorname{Cl}_{\mathcal{K}}).$$

Consider the exact sequence

$$1 \longrightarrow \mathsf{Cl}_{\mathcal{K}}^* \xrightarrow{\pi} \mathsf{Cl}_{\mathcal{K}}(\mathfrak{f})^* \longrightarrow H_{\mathcal{K}}(\mathfrak{f})^* \longrightarrow 1.$$

Since $(\mathcal{O}_K/\mathfrak{f})^{\times}/\{\pm 1\} \cong (\mathbb{Z}/12\mathbb{Z})^{\times}/\{\pm 1\} = \{1,5\}$, we have

$$\sharp H_{\mathcal{K}}(\mathfrak{f}) = 2$$
, thus $\sharp \operatorname{Cl}_{\mathcal{K}}(\mathfrak{f})^* = 2h(-\lambda)$

Let $T := \operatorname{Cl}^*_{\mathcal{K}} \setminus \operatorname{Im}(\pi) = \{ \xi \in \operatorname{Cl}_{\mathcal{K}}(\mathfrak{f})^* ; \xi(\mathcal{H}_{\mathcal{K}}(\mathfrak{f})) = \{ \pm 1 \} \}$ and $W_{\lambda} := \langle \Theta_{\xi}(\tau) ; \xi \in T \rangle_{\mathbb{C}}.$

Lemma

$$\Theta_{\xi} \in \begin{cases} S_1(12\lambda, \left(\frac{-\lambda}{\cdot}\right)) & \text{if } \xi \in \mathsf{Im}(\pi), \\ S_1(12\lambda, \left(\frac{-12\lambda}{\cdot}\right)) & \text{otherwise, i.e., } \xi \in \mathcal{T}. \end{cases}$$

Thus $V_{\lambda} \subset W_{\lambda}$.

Proposition

The set $\{\Theta_{\xi}(\tau) ; \xi \in T\}$ is a basis of W_{λ} . Thus,

 $\dim_{\mathbb{C}} W_{\lambda} = h(-\lambda).$

For the proof of this proposition, note that for $\xi_1, \xi_2 \in T$ we have

$$\Theta_{\xi_1} = \Theta_{\xi_2} \iff \mathsf{Ind}_{G_K}^{G_\mathbb{Q}} \xi_1 \cong \mathsf{Ind}_{G_K}^{G_\mathbb{Q}} \xi_2.$$

Therefore, it is enough to show

$$\mathsf{Ind}_{G_{\mathcal{K}}}^{G_{\mathbb{Q}}}\xi_{1}\cong\mathsf{Ind}_{G_{\mathcal{K}}}^{G_{\mathbb{Q}}}\xi_{2}\implies\xi_{1}=\xi_{2}$$

for $\xi_1, \xi_2 \in T$.

Let
$$h := h(-\lambda)$$
 and
 $T = \{\xi_i ; i = 1, \dots, h\},$
 $Cl_K = \{C^{(j)} ; j = 1, \dots, h\}.$
For $C^{(j)} \in Cl_K$, let
 $C_1^{(j)}, C_2^{(j)} \in Cl_K(\mathfrak{f})$

be the lifts of $\mathcal{C}^{(j)}$ to $\mathsf{Cl}_{\mathcal{K}}(\mathfrak{f})$, and

$$\Theta_{\mathcal{C}^{(j)}}(\tau) := \sum_{\mathfrak{a} \in \mathcal{C}_1^{(j)}} q^{\mathcal{N}(\mathfrak{a})} - \sum_{\mathfrak{a} \in \mathcal{C}_2^{(j)}} q^{\mathcal{N}(\mathfrak{a})}.$$

Note that

$$\xi(\mathcal{C}_1^{(j)}) = -\xi(\mathcal{C}_2^{(j)}) \quad ext{for } \xi \in \mathcal{T},$$

because ξ is non-trivial on $H_{\mathcal{K}}(\mathfrak{f})$.

Then, for $\xi \in T$,

$$\begin{split} \Theta_{\xi}(\tau) &= \sum_{j=1}^{h} \left\{ \xi(\mathcal{C}_{1}^{(j)}) \sum_{\mathfrak{a} \in \mathcal{C}_{1}^{(j)}} q^{N(\mathfrak{a})} + \xi(\mathcal{C}_{2}^{(j)}) \sum_{\mathfrak{a} \in \mathcal{C}_{2}^{(j)}} q^{N(\mathfrak{a})} \right\} \\ &= \sum_{j=1}^{h} \xi(\mathcal{C}_{1}^{(j)}) \left(\sum_{\mathfrak{a} \in \mathcal{C}_{1}^{(j)}} q^{N(\mathfrak{a})} - \sum_{\mathfrak{a} \in \mathcal{C}_{2}^{(j)}} q^{N(\mathfrak{a})} \right) \\ &= \sum_{j=1}^{h} \xi(\mathcal{C}_{1}^{(j)}) \Theta_{\mathcal{C}^{(j)}}(\tau). \end{split}$$

Fix $\xi \in T$. For each $\xi_i \in T$,

$$\exists \psi_i \in \mathsf{Im}(\pi) \text{ s.t. } \xi_i = \xi \psi_i$$

(recall $\pi : \operatorname{Cl}^*_{\mathcal{K}} \to \operatorname{Cl}_{\mathcal{K}}(\mathfrak{f})^*$).

For $\ell \in \{1, \ldots, h\}$, set

$$c_i^{(\ell)} := \overline{\psi_i(\mathcal{C}^{(\ell)})}.$$

Then, by the orthogonality relation for characters, we have

$$\sum_{i=1}^{h} c_i^{(\ell)} \Theta_{\xi_i}(\tau) = h\xi(\mathcal{C}_1^{(\ell)}) \Theta_{\mathcal{C}^{(\ell)}}(\tau).$$

Proposition

The forms $\Theta_{\mathcal{C}^{(1)}}, \ldots, \Theta_{\mathcal{C}^{(h)}}$ form a basis of W_{λ} .

Set

$$\begin{aligned} \mathcal{A} &:= [\overline{\mathfrak{p}_2}\mathfrak{p}_3] \in \mathsf{Cl}_{\mathcal{K}}, \\ \mathcal{B} &:= [\mathfrak{p}_2\mathfrak{p}_3] \in \mathsf{Cl}_{\mathcal{K}}. \end{aligned}$$

Theorem

We have
$$\varphi_{\lambda} = \pm \Theta_{\mathcal{A}}$$
 or $\varphi_{\lambda} = \pm \Theta_{\mathcal{B}}$

Corollary

There exist
$$c_1,\ldots,c_h\in\mathbb{C}^ imes$$
 s.t. $arphi_\lambda=\sum_{i=1}^hc_i\Theta_{\xi_i}.$

Corollary

We have $V_{\lambda} = W_{\lambda}$.

Let

• N: a square-free positive integer s.t. $N \equiv 23 \pmod{24}$,

•
$$K := \mathbb{Q}(\sqrt{-N}),$$

• $\psi_N(\tau) := \eta(\tau)\eta(N\tau) \in S_1^{CM}(N, \left(\frac{-N}{\cdot}\right); \left(\frac{-N}{\cdot}\right)),$
• $V_N := \langle \psi_N | T_n; n \ge 1 \rangle_{\mathbb{C}} \subset S_1^{CM}(N, \left(\frac{-N}{\cdot}\right); \left(\frac{-N}{\cdot}\right)),$

It is known that

$$\psi_{N}(\tau) = \frac{1}{2} \left(\sum_{x,y \in \mathbb{Z}} q^{6x^{2} + xy + \frac{N+1}{24}y^{2}} - \sum_{x,y \in \mathbb{Z}} q^{6x^{2} - 5xy + \frac{N+25}{24}y^{2}} \right)$$

٠

22 / 28

Let

•
$$\mathfrak{p}_2 := 2\mathbb{Z} + \frac{1 + \sqrt{-N}}{2}\mathbb{Z}$$
: a prime in K lying above 2,
• $\mathfrak{p}_3 := 3\mathbb{Z} + \frac{1 + \sqrt{-N}}{2}\mathbb{Z}$: a prime in K lying above 3.

Then,

•
$$\mathfrak{p}_2\mathfrak{p}_3 = \left\{\frac{12x+y+y\sqrt{-N}}{2} ; x, y \in \mathbb{Z}\right\},$$

• $\overline{\mathfrak{p}_2}\mathfrak{p}_3 = \left\{\frac{12x-5y+y\sqrt{-N}}{2} ; x, y \in \mathbb{Z}\right\}.$

Noting that

$$\frac{N((12x+y+y\sqrt{-N})/2)}{N(\mathfrak{p}_2\mathfrak{p}_3)} = 6x^2 + xy + \frac{N+1}{24}y^2,$$
$$\frac{N((12x-5y+y\sqrt{-N})/2)}{N(\overline{\mathfrak{p}_2}\mathfrak{p}_3)} = 6x^2 - 5xy + \frac{N+25}{24}y^2,$$

we have

Proposition

$$\psi_{\mathsf{N}}(\tau) = \sum_{\mathfrak{a} \in [\mathfrak{p}_2\mathfrak{p}_3]} q^{\mathsf{N}(\mathfrak{a})} - \sum_{\mathfrak{a} \in [\overline{\mathfrak{p}_2}\mathfrak{p}_3]} q^{\mathsf{N}(\mathfrak{a})}.$$

Let

•
$$h := \sharp Cl_K$$
,

•
$$\mathsf{Cl}^*_K := \{\chi_1, \dots, \chi_h\}.$$

By the orthogonality relation of characters,

Proposition

For every $\mathcal{C} \in Cl_{\mathcal{K}}$, we have

$$\frac{1}{h}\sum_{i=1}^{h}\overline{\chi_{i}(\mathcal{C})}\Theta_{\chi_{i}}(\tau)=\sum_{\mathfrak{a}\in\mathcal{C}}q^{\mathcal{N}(\mathfrak{a})}.$$

Takeshi Ogasawara (ONCT)

On Hecke modules generated by eta-quotients

Set

$$\mathcal{C}_1 := [\mathfrak{p}_2\mathfrak{p}_3], \ \mathcal{C}_2 := [\overline{\mathfrak{p}_2}\mathfrak{p}_3] \in \mathsf{Cl}_{\mathcal{K}}.$$

Then,

$$\begin{split} h\psi_{N}(\tau) &= \sum_{i=1}^{h} \left(\overline{\chi_{i}(\mathcal{C}_{1})} - \overline{\chi_{i}(\mathcal{C}_{2})} \right) \Theta_{\chi_{i}}(\tau) \\ &= \sum_{\substack{\chi \in \widehat{\mathrm{Cl}}_{K}^{*} \\ \chi^{2} \neq 1}} \left(\overline{\chi(\mathcal{C}_{1})} - \overline{\chi(\mathcal{C}_{2})} + \chi(\mathcal{C}_{1}) - \chi(\mathcal{C}_{2}) \right) \Theta_{\chi}(\tau) \\ &= \sum_{\substack{\chi \in \widehat{\mathrm{Cl}}_{K}^{*} \\ \chi^{2} \neq 1}} \left(\chi([\mathfrak{p}_{2}]) - \overline{\chi([\mathfrak{p}_{2}])} \right) \left(\chi([\mathfrak{p}_{3}]) - \overline{\chi([\mathfrak{p}_{3}])} \right) \Theta_{\chi}(\tau). \end{split}$$

Recalling that $d_N = (h - g_N)/2 = \sharp \left\{ \chi \in \widetilde{\mathsf{Cl}_K^*} \ ; \ \chi^2 \neq 1 \right\}$,

we have

$$\dim_{\mathbb{C}} V_{N} = d_{N} - \sharp \left\{ \chi \in \widetilde{\mathsf{Cl}_{K}^{*}} ; \ \chi^{2} \neq 1, \ \chi([\mathfrak{p}_{2}]) = \pm 1 \text{ or } \chi([\mathfrak{p}_{3}]) = \pm 1 \right\},$$

as desired.

Further problems

- Describe the CM property and the connection to the ideal class group for various eta-quotients of weight one.
 - \rightarrow There is a recent result by Berkovich and Patane on the expressions of some eta-quotients of weight one by theta series of positive definite binary quadratic forms.
- Can we study the Hecke action on $\eta(\tau)\eta(N\tau)$ without using the expression by binary quadratic forms?
 - \longrightarrow A study of the structure of ideal class groups of imaginary quadratic fields in terms of the Hecke action on modular forms.

Thank you very much for your attention.