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Introduction

“Death bed letter”

Dear Hardy,

“I am extremely sorry for not writing you a single letter up to now.
I discovered very interesting functions recently which I call “Mock”
ϑ-functions. Unlike the “False” ϑ-functions (partially studied by
Rogers), they enter into mathematics as beautifully as the ordinary
theta functions. I am sending you with this letter some examples.”

Ramanujan, January 12, 1920.
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Introduction

What are mock theta functions?

In his Ph.D. thesis under Zagier (’02), Zwegers investigated:

“Lerch-type” series and Mordell integrals.

Resembling q-series of Andrews and Watson on mock thetas.

Stitched them together give non-holomorphic Jacobi forms.

“Theorem” (Zwegers, 2002)

Ramanujan’s mock theta functions are holomorphic parts of weight
1/2 harmonic Maass forms.
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Introduction

Maass forms

Defining Maass forms

Notation. Throughout, let z = x + iy ∈ H with x , y ∈ R.

Hyperbolic Laplacian.

∆k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
.
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Introduction

Maass forms

Harmonic Maass forms

“Definition”

A harmonic Maass form is any smooth function f on H satisfying:

1 For all A =
(
a b
c d

)
∈ Γ ⊂ SL2(Z) we have

f

(
az + b

cz + d

)
= (cz + d)k f (z).

2 We have that ∆k f = 0.

Remark

Modular forms are holomorphic functions which satisfy (1).
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Introduction

Maass forms

HMFs have two parts (q := e2πiz)

Fundamental Lemma

If f ∈ H2−k and Γ(a, x) is the incomplete Γ-function, then

f (z) =
∑

n�−∞
c+
f (n)qn +

∑
n<0

c−f (n)Γ(k − 1, 4π|n|y)qn.

l l
Holomorphic part f + Nonholomorphic part f −

Remark

The mock theta functions are examples of f +.
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Introduction

Maass forms

So many recent applications

q-series and partitions

Modular L-functions (e.g. BSD numbers)

Eichler-Shimura Theory

Probability models

Generalized Borcherds Products

Moonshine for affine Lie superalgebras and M24

Donaldson invariants

Black holes

. . .
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Maass forms

What did Ramanujan have in mind?

Question (Ramanujan)

Must Eulerian series with “similar asymptotics” be the sum of a
modular form and a function which is O(1) at all roots of unity?
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Maass forms

Ramanujan’s Speculation



Ramanujan’s last prophecy:quantum modular forms

Introduction

Maass forms

Ramanujan’s “Example”
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Maass forms

Strange Conjecture

Conjecture (Ramanujan)

Consider the mock theta f (q) and the modular form b(q):

f (q) := 1 +
∞∑
n=1

qn2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
,

b(q) := (1− q)(1− q3)(1− q5) · · · ×
(
1− 2q + 2q4 − 2q9 + · · ·

)
.

If q approaches an even order 2k root of unity, then

f (q)− (−1)kb(q) = O(1).
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Maass forms

Numerics

As q → −1, we have

f (−0.994) ∼ −1·1031, f (−0.996) ∼ −1·1046, f (−0.998) ∼ −6·1090,
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Maass forms

Numerics continued...

Amazingly, Ramanujan’s guess gives:

q −0.990 −0.992 −0.994 −0.996 −0.998

f (q) + b(q) 3.961 . . . 3.969 . . . 3.976 . . . 3.984 . . . 3.992 . . .
.

This suggests that

lim
q→−1

(f (q) + b(q)) = 4.
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Maass forms

As q → i

q 0.992i 0.994i 0.996i
f (q) 2 · 106 − 4.6 · 106i 2 · 108 − 4 · 108i 1.0 · 1012 − 2 · 1012i

f (q)− b(q) ∼ 0.05 + 3.85i ∼ 0.04 + 3.89i ∼ 0.03 + 3.92i

This suggests that

lim
q→i

(f (q)− b(q)) = 4i .
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Maass forms

This talk is about two topics

I. Ramanujan’s Speculation (with M. Griffin and L. Rolen).

II. O(1) numbers and Quantum Modular Forms
(with A. Folsom and R. Rhoades)
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Ramanujan’s Speculation

Ramanujan’s last words

“it is inconceivable to construct a ϑ-function to cut out the
singularities of a mock theta function...”

Srinivasa Ramanujan

“...it has not been proved that any of Ramanujan’s mock theta
functions really are mock theta functions according to his
definition.” Bruce Berndt (2012)
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Resolution

Theorem (Griffin-O-Rolen (2012))

Ramanujan’s examples satisfy his own definition. More precisely, a
mock theta function and a modular form never cut out exactly the
same singularities.
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Ramanujan’s Speculation

Sketch of the Proof

• A harmonic Maass form satisfies F (z) = F−(z) + F+(z).

• The function F+(z) is the holomorphic part.

• Ramanujan’s alleged mock thetas are examples of F+(z).

• ...and F−(z) is a period integral of a unary theta function.
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Ramanujan’s Speculation

Big Fact

Remark

Bruinier and Funke extended Petersson’s scalar product to
{•, •} : Mk × H2−k → C by

{g ,F}k := (g , ξ(F ))k .

Here ξ : H2−k → Sk .

Fundamental Fact

If F (z) = F−(z) + F+(z) ∈ H2−k with F−(z) 6≡ 0, then F+(z)
has infinitely many exponential singularities at roots of unity.
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Ramanujan’s Speculation

Proof of the Fundamental Fact

Proof.

• We can prove that

{ξ(F ),F} = (ξ(F ), ξ(F )) 6= 0 ⇐⇒ F−(z) 6= 0.

• Bruinier and Funke prove a combinatorial formula for this
pairing in terms of principal parts at cusps.

• The nonvanishing above and this combinatorial formula implies
that F+(z) has some poles at some cusp.

• Exponential decay of F−(z) at cusps and modularity applied to
F (z) gives infinitely many exponential singularities for F+(z).
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Ramanujan’s Speculation

Application to Ramanujan’s examples

• Suppose that M(z) =: F+(z) is one of Ramanujan’s examples.

• Suppose that g(z) is a weight k modular form which cuts out
the singularities of F+(z).

• Since F−(z) arises from a theta function, we can use quadratic
and trivial twists to KILL F−(z).

• We can then obtain nonzero modular forms F̂ (z) and ĝ(z)
which cut out the same singularities.

•∗ Using Kloostermania, we find that a positive proportion of
the coefficients of M(z) and F̂ (z) agree and are nonzero, and so
F̂ (z) has singularities.
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which cut out the same singularities.

•∗ Using Kloostermania, we find that a positive proportion of
the coefficients of M(z) and F̂ (z) agree and are nonzero, and so
F̂ (z) has singularities.



Ramanujan’s last prophecy:quantum modular forms

Ramanujan’s Speculation

Application to Ramanujan’s examples

• Suppose that M(z) =: F+(z) is one of Ramanujan’s examples.

• Suppose that g(z) is a weight k modular form which cuts out
the singularities of F+(z).

• Since F−(z) arises from a theta function, we can use quadratic
and trivial twists to KILL F−(z).

• We can then obtain nonzero modular forms F̂ (z) and ĝ(z)
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Ramanujan’s Speculation

Application to Ramanujan’s examples cont.

• The new modular form F̂ (z)− ĝ(z) is O(1) at all roots of unity.

• By modularity, this forces g(z) to also have weight 1/2.

• Consider the wgt 1/2 harm. Maass form h(z) := F (z)− g(z).

• By hypothesis, F+(z)− g(z) is O(1) at all roots of unity.

• The nonholomorphic part of h(z) is F−(z) 6≡ 0.

• Fundamental Fact implies that F+(z)− g(z) has infinitely
many exponential singularities at roots of unity.

• Contradiction!
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• Fundamental Fact implies that F+(z)− g(z) has infinitely
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• The new modular form F̂ (z)− ĝ(z) is O(1) at all roots of unity.

• By modularity, this forces g(z) to also have weight 1/2.

• Consider the wgt 1/2 harm. Maass form h(z) := F (z)− g(z).

• By hypothesis, F+(z)− g(z) is O(1) at all roots of unity.

• The nonholomorphic part of h(z) is F−(z) 6≡ 0.

• Fundamental Fact implies that F+(z)− g(z) has infinitely
many exponential singularities at roots of unity.

• Contradiction!



Ramanujan’s last prophecy:quantum modular forms

Ramanujan’s Speculation

Application to Ramanujan’s examples cont.
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Ramanujan’s “Strange Conjecture”

R(w ; q) :=
∞∑
n=0

qn2

(wq; q)n(w−1q; q)n
(Dyson’s Mock ϑ-function)

C (w ; q) :=
(q; q)∞

(wq; q)∞(w−1q; q)∞
(Weierstrass MF)

U(w ; q) :=
∞∑
n=0

(wq; q)n(w−1q; q)nqn+1 (Unimodal Gen. Function)

Here we use that

(a; q)n := (1− a)(1− aq)(1− aq2) · · · (1− aqn−1).
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General “Near Misses”

Theorem (F-O-R)

If ζb = e
2πi
b and 1 ≤ a < b, then for every suitable root of unity ζ

there is an explicit integer c for which

lim
q→ζ

(
R(ζab ; q)− ζcb2C (ζab ; q)

)
= −(1− ζab)(1− ζ−ab )U(ζab ; ζ).

Remark

Ramanujan’s “Strange Conjecture” is when a = 1 and b = 2.



Ramanujan’s last prophecy:quantum modular forms

Quantum Modular Forms

General “Near Misses”

Theorem (F-O-R)

If ζb = e
2πi
b and 1 ≤ a < b, then for every suitable root of unity ζ

there is an explicit integer c for which

lim
q→ζ

(
R(ζab ; q)− ζcb2C (ζab ; q)

)
= −(1− ζab)(1− ζ−ab )U(ζab ; ζ).

Remark

Ramanujan’s “Strange Conjecture” is when a = 1 and b = 2.



Ramanujan’s last prophecy:quantum modular forms

Quantum Modular Forms

General “Near Misses”

Theorem (F-O-R)

If ζb = e
2πi
b and 1 ≤ a < b, then for every suitable root of unity ζ

there is an explicit integer c for which

lim
q→ζ

(
R(ζab ; q)− ζcb2C (ζab ; q)

)
= −(1− ζab)(1− ζ−ab )U(ζab ; ζ).

Remark

Ramanujan’s “Strange Conjecture” is when a = 1 and b = 2.



Ramanujan’s last prophecy:quantum modular forms

Quantum Modular Forms

What is going on?

Loosely speaking, these theorems say that
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(Mock ϑ− εζMF) = Quantum MF.

Two questions

1 What special properties do these mock ϑs enjoy?

2 What is a quantum modular form?
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Upper and lower half-planes

Example

For Ramanujan’s f (q), amazingly we have

f (q−1) =
∞∑
n=0

q−n
2

(1 + q−1)2(1 + q−2)2 · · · (1 + q−n)2

=
∞∑
n=0

qn

(−q; q)2n
= 1 + q − q2 + 2q3 − 4q4 + . . .

Remark

Under z ↔ q = e2πiz , this means that f (q) is defined on both H±.
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We have the following....

Remark

At rationals z = h/2k these “meet” thanks to U(−1; q).
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Quantum modular forms

Definition (Zagier)

A weight k quantum modular form is a complex-valued function
f on Q \ S for some set S , such that for all γ =

(
a b
c d

)
∈ SL2(Z)

the function

hγ(x) := f (x)− ε(γ)(cx + d)−k f

(
ax + b

cx + d

)
satisfies a “suitable” property of continuity or analyticity.
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History of quantum modular forms

Remark

Zagier defined them in his 2010 Clay Prize lecture at Harvard.

Zagier offered a few examples related to:

Dedekind sums.

q-series defined by Andrews, Dyson, and Hickerson.

Quadratic polynomials of fixed discriminant.

Jones polynomials in knot theory.

Kontsevich’s strange function F (q).
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A new quantum modular form

“Theorem” (2012, Bryson-O-Pitman-R)

The function
φ(x) := e−

πix
12 · U(1; e2πix)

is a weight 3/2 quantum modular form, which is defined on H ∪R.

Question

We have observed the phenomenon

lim
q→ζ

(Mock ϑ-function− εζMF) = QMF.

How do QMFs arise naturally from mock ϑ-functions?
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Rogers-Fine q-hypergeometric function

Definition (Rogers-Fine q-hypergeometric function)

F (α, β, t; q) :=
∞∑
n=0

(αq; q)ntn

(βq; q)n
.

Lemma (EZ)

We have the “half” theta functions:

1

1 + w
· F (wq−1,−w ,w ; q) :=

1

1 + w
·
∞∑
n=0

(w ; q)nwn

(−wq; q)n

=
∞∑
n=0

(−1)nw2nqn2 .
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Two families of specializations

Definition

We define G (a, b; z) and H(a, b; z) by

G (a, b; z) :=
q

a2

b2

1− q
a
b

· F
(
−q

a
b
−1, q

a
b ,−q

a
b ; q
)
,

H(a, b; z) := q
1
8 · F

(
ζ−ab q−1, ζ−ab , ζ−ab q; q2

)
.
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q-identities

Lemma

We have the following non-modular q-identities:

G (a, b; z) =
∞∑
n=0

(−1)nq(n+ a
b
)2 ,

H(a, b; z) =
∞∑
n=0

ζ−anb q
1
2(n+ 1

2)
2

.
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QMFs arising from Rogers-Fine

Theorem (F-O-R)

For a, b ∈ Z+ with b even, we define a set of rationals Qa,b.

The following are true:

1 The functions G (a, b; z) and H(a, b; z) converge for
z ∈ H+ ∪H−.

2 For x ∈ Qa,b ∪H+, we have that

G (a, b;−x) +
e−

πia
b

√
2ix
· H
(

a, b;
1

2x

)
= “integral of a theta function”.
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In particular....

Corollary (F-O-R)

Assuming the notation above, G (a, b; x) and H(a, b; x) are weight
1/2 quantum modular forms on Qa,b ∪H+.
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L-function corollaries

Corollary (F-O-R)

Assuming the notation above, there are L-functions for which

G

(
a, b;

−h

k
+

it

2π

)
∼
∞∑
r=0

L(−2r , cG ) · (−t)r

r ! · b2r
,

H

(
a, b;

k

2h
+

it

2π

)
∼
∞∑
r=0

L(−2r , cH) · (−t)r

r ! · 8r
,

Remark

The L-functions L(s, cG ) and L(s, cH) are explicit linear
combinations of Hurwitz zeta-functions.
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Ramanujan’s deathbed letter revisited...

“I discovered... “Mock” ϑ-functions.

Unlike the “False” ϑ-functions (studied... by Rogers) they enter
into mathematics as beautifully as ordinary theta functions...”

Remarks

1 We prove that the RF false ϑ-functions specialize to QMFs.

2 These QMFs arise from mock ϑ-functions.

3 Therefore, the “False” ϑ-functions do enter into
mathematics as beautifully.

4 ...and Ramanujan’s own mock ϑs make it happen :-) !
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3 q-manipulations to relate these to G (a, b; z) and H(a, b; z).

4 Quantum modularity follows by lengthy direct calculations...
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L-values

Corollary (F-O-R)

Assuming the notation above, there are L-functions for which

G

(
a, b;

−h

k
+

it

2π

)
∼
∞∑
r=0

L(−2r , cG ) · (−t)r

r ! · b2r
,

H

(
a, b;

k

2h
+

it

2π

)
∼
∞∑
r=0

L(−2r , cH) · (−t)r

r ! · 8r
,

Proof.

1 The RF gives “asymptotic” expansions at roots of unity.

2 Lemma of Lawrence and Zagier also gives asymptotics.
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Ramanujan Hit Parade
(Andrews, Berndt: Notices AMS, 2008)

1 Dyson’s Ranks.

2 Mock ϑ-functions.

3 Andrews-Garvan Crank.

4 Continued fraction with three limit points.

5 Early QMFs: “Sums of Tails” of Euler’s Products.

Amusing Remarks

1 Four of the top 5 involve ranks, cranks, mock ϑs, and QMFs.

2 The importance of each instrument was found independently.

3 We show they form a harmonious quantum orchestra.
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