Special functions and numbers related to mock modular forms

Ken Ono (Emory University)

"Ramanujan's Death bed letter"

Dear Hardy,

"I am extremely sorry for not writing you a single letter up to now. I discovered very interesting functions recently which I call "Mock" ϑ -functions. Unlike the "False" ϑ -functions (partially studied by Rogers), they enter into mathematics as beautifully as the ordinary theta functions. I am sending you with this letter some examples."

January 12, 1920.

The first example

$$f(q) = 1 + rac{q}{(1+q)^2} + rac{q^4}{(1+q)^2(1+q^2)^2} + \dots$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Strange Conjecture

Conjecture (Ramanujan)

Consider the mock theta f(q) and the modular form b(q):

$$f(q) := 1 + \sum_{n=1}^{\infty} \frac{q^{n^2}}{(1+q)^2(1+q^2)^2\cdots(1+q^n)^2},$$

 $b(q):=(1-q)(1-q^3)(1-q^5)\cdots imes \left(1-2q+2q^4-2q^9+\cdots
ight).$

うせん 御を (曲を) (目を)

Strange Conjecture

Conjecture (Ramanujan)

Consider the mock theta f(q) and the modular form b(q):

$$f(q) := 1 + \sum_{n=1}^{\infty} rac{q^{n^2}}{(1+q)^2(1+q^2)^2\cdots(1+q^n)^2},$$

$$b(q):=(1-q)(1-q^3)(1-q^5)\cdots imes \left(1-2q+2q^4-2q^9+\cdots
ight).$$

If q approaches an even order 2k root of unity, then

$$f(q) - (-1)^k b(q) = O(1).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Numerics

Numerics

As q
ightarrow -1, we have

$$f(-0.994) \sim -1.10^{31}, \ f(-0.996) \sim -1.10^{46}, \ f(-0.998) \sim -6.10^{90},$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Numerics

As $q \rightarrow -1$, we have

$$f(-0.994) \sim -1.10^{31}, \ f(-0.996) \sim -1.10^{46}, \ f(-0.998) \sim -6.10^{90},$$

$$f(-0.998185) \sim -Googol$$

Numerics continued...

Numerics continued...

Amazingly, Ramanujan's guess gives:

q	-0.990	-0.992	-0.994	-0.996	-0.998
f(q) + b(q)	3.961	3.969	3.976	3.984	3.992

Numerics continued...

Amazingly, Ramanujan's guess gives:

q	-0.990	-0.992	-0.994	-0.996	-0.998
f(q) + b(q)	3.961	3.969	3.976	3.984	3.992

This suggests that

$$\lim_{q\to -1}(f(q)+b(q))=4.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

As $q \rightarrow i$

As $q \rightarrow i$

q	0.992 <i>i</i>	0.994 <i>i</i>	0.996 <i>i</i>
f(q)	$2 \cdot 10^6 - 4.6 \cdot 10^6 i$	$2 \cdot 10^8 - 4 \cdot 10^8 i$	$1.0 \cdot 10^{12} - 2 \cdot 10^{12}i$
f(q) - b(q)	$\sim 0.05 + 3.85i$	\sim 0.04 + 3.89 <i>i</i>	$\sim 0.03 + 3.92i$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

As
$$q \rightarrow i$$

q	0.992 <i>i</i>	0.994 <i>i</i>	0.996 <i>i</i>
f(q)	$2 \cdot 10^6 - 4.6 \cdot 10^6 i$	$2 \cdot 10^8 - 4 \cdot 10^8 i$	$1.0 \cdot 10^{12} - 2 \cdot 10^{12}i$
f(q) - b(q)	$\sim 0.05 + 3.85i$	\sim 0.04 + 3.89 <i>i</i>	$\sim 0.03 + 3.92i$

This suggests that

$$\lim_{q\to i}(f(q)-b(q))=4i.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Is Ramanujan's correct?

Is Ramanujan's correct?

Questions

What are the numbers such as 4 and 4i in general?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Is Ramanujan's correct?

Questions

What are the numbers such as 4 and 4i in general? What is going on?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

A new era

What are Ramanujan's mock thetas?

A new era

What are Ramanujan's mock thetas?

"Theorem" (Zwegers, 2002)

Ramanujan's mock theta functions are holomorphic parts of weight 1/2 harmonic Maass forms.

A new era

What are Ramanujan's mock thetas?

"Theorem" (Zwegers, 2002)

Ramanujan's mock theta functions are holomorphic parts of weight 1/2 harmonic Maass forms.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Remark

More on this shortly ...

A new era

Lots of recent applications...

- q-series and partitions
- Modular L-functions (e.g. BSD numbers)
- Eichler-Shimura Theory
- Probability models
- Generalized Borcherds Products
- Moonshine for affine Lie superalgebras and M₂₄

- Donaldson invariants
- Black holes

A new era

Two topics this lecture....

A new era

Two topics this lecture....

I. The Strange Conjecture (with A. Folsom and R. Rhoades).

A new era

Two topics this lecture....

I. The Strange Conjecture (with A. Folsom and R. Rhoades).

II. Elliptic curves E/\mathbb{Q} (with C. Alfes, M. Griffin, and L. Rolen).

(日) (日) (日) (日) (日) (日) (日) (日)

I. Ramanujan's letter

The last letter

• Asymptotics, near roots of unity, of "Eulerian" modular forms.

I. Ramanujan's letter

• Asymptotics, near roots of unity, of "Eulerian" modular forms.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• Raises **one** question and conjectures the answer.

I. Ramanujan's letter

• Asymptotics, near roots of unity, of "Eulerian" modular forms.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Raises one question and conjectures the answer.
- "Strange Conjecture".

I. Ramanujan's letter

• Asymptotics, near roots of unity, of "Eulerian" modular forms.

- Raises one question and conjectures the answer.
- "Strange Conjecture".
- Concludes with a list of his mock theta functions.

I. Ramanujan's letter

Ramanujan's question

Question (Ramanujan)

Must power series with "modular-like" asymptotics be the sum of a modular form and a function which is O(1) at all roots of unity?

I. Ramanujan's letter

Ramanujan's Answer

The answer is it is not necessarily so When it is not so I call the function Mock D-function. I have not proved rigorously that it is not necessarily so. But I have constructed a number of examples in which it is not in - conceivable to construct a I fine - tion to cut out the singularitoes

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨ - の々で

I. Ramanujan's letter

Ramanujan's last words

"it is inconceivable to construct a ϑ -function to cut out the singularities of a mock theta function..."

Srinivasa Ramanujan

I. Ramanujan's letter

Ramanujan's last words

"it is inconceivable to construct a ϑ -function to cut out the singularities of a mock theta function..."

Srinivasa Ramanujan

Theorem (Griffin-O-Rolen (2012))

A mock theta function and a modular form **never** cut out exactly the same singularities.

I. Ramanujan's letter

Strange Conjecture is a "Near Miss"

Define the mock theta f(q) and the modular form b(q) by

$$f(q) := 1 + \sum_{n=1}^{\infty} rac{q^{n^2}}{(1+q)^2(1+q^2)^2\cdots(1+q^n)^2},$$

$$b(q) := (1-q)(1-q^3)(1-q^5)\cdots imes \left(1-2q+2q^4-2q^9+\cdots
ight).$$

I. Ramanujan's letter

Strange Conjecture is a "Near Miss"

Define the mock theta f(q) and the modular form b(q) by

$$f(q) := 1 + \sum_{n=1}^{\infty} rac{q^{n^2}}{(1+q)^2(1+q^2)^2\cdots(1+q^n)^2},$$

$$b(q) := (1-q)(1-q^3)(1-q^5)\cdots imes \left(1-2q+2q^4-2q^9+\cdots
ight).$$

Conjecture (Ramanujan)

If q approaches an even order 2k root of unity, then

$$f(q) - (-1)^k b(q) = O(1).$$

I. Ramanujan's letter

Special values of special functions.

I. Ramanujan's letter

Special values of special functions.

Theorem (Folsom-O-Rhoades)

If ζ is an even 2k order root of unity, then

$$\lim_{q \to \zeta} (f(q) - (-1)^k b(q)) = -4 \sum_{n=0}^{k-1} (1+\zeta)^2 (1+\zeta^2)^2 \cdots (1+\zeta^n)^2 \zeta^{n+1}.$$
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

I. Ramanujan's letter

Special Functions

I. Ramanujan's letter

Special Functions

$$R(w;q) := \sum_{n=0}^{\infty} \frac{q^{n^2}}{(wq;q)_n (w^{-1}q;q)_n} \quad (\text{Dyson's Mock } \vartheta\text{-function})$$

$$C(w;q) := \frac{(q;q)_{\infty}}{(wq;q)_{\infty}(w^{-1}q;q)_{\infty}} \quad (\text{Weierstrass MF})$$

$$U(w;q) := \sum_{n=0}^{\infty} (wq;q)_n (w^{-1}q;q)_n q^{n+1} \quad (\text{Quantum mod. form})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

I. Ramanujan's letter

Special Functions

$$R(w;q) := \sum_{n=0}^{\infty} \frac{q^{n^2}}{(wq;q)_n (w^{-1}q;q)_n} \quad (\text{Dyson's Mock } \vartheta\text{-function})$$

$$C(w;q) := \frac{(q;q)_{\infty}}{(wq;q)_{\infty}(w^{-1}q;q)_{\infty}} \quad (\text{Weierstrass MF})$$

$$U(w;q) := \sum_{n=0}^{\infty} (wq;q)_n (w^{-1}q;q)_n q^{n+1} \quad (\text{Quantum mod. form})$$

Here we use that

$$(a;q)_n := (1-a)(1-aq)(1-aq^2)\cdots(1-aq^{n-1}).$$

I. Ramanujan's letter

General Theorem

Theorem (F-O-R)

If $\zeta_b = e^{\frac{2\pi i}{b}}$ and $1 \le a < b$, then for every suitable root of unity ζ there is an explicit integer c for which

$$\lim_{q\to \zeta} \left(R(\zeta_b^a;q) - \zeta_{b^2}^c C(\zeta_b^a;q) \right) = -(1-\zeta_b^a)(1-\zeta_b^{-a})U(\zeta_b^a;\zeta).$$

I. Ramanujan's letter

General Theorem

Theorem (F-O-R)

If $\zeta_b = e^{\frac{2\pi i}{b}}$ and $1 \le a < b$, then for every suitable root of unity ζ there is an explicit integer c for which

$$\lim_{q\to\zeta} \left(R(\zeta_b^a;q) - \zeta_{b^2}^c C(\zeta_b^a;q) \right) = -(1-\zeta_b^a)(1-\zeta_b^{-a})U(\zeta_b^a;\zeta).$$

Remark

The first theorem is when a = 1 and b = 2 using the identities

$$R(-1; q) = f(q)$$
 and $C(-1; q) = b(q)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

I. Ramanujan's letter

What's going on?

I. Ramanujan's letter

What's going on?

Loosely speaking, these theorems say that

$$\lim_{q \to \zeta} (\text{Mock } \vartheta - \epsilon_{\zeta} \text{MF}) = \text{Quantum MF}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

I. Ramanujan's letter

What's going on?

Loosely speaking, these theorems say that

$$\lim_{q \to \zeta} (\text{Mock } \vartheta - \epsilon_{\zeta} \text{MF}) = \text{Quantum MF}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question

What is a quantum modular form?

I. Ramanujan's letter

Upper and lower half-planes

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

I. Ramanujan's letter

Upper and lower half-planes

Example

For Ramanujan's f(q), amazingly we have

$$f(q^{-1}) = \sum_{n=0}^{\infty} \frac{q^{-n^2}}{(1+q^{-1})^2(1+q^{-2})^2\cdots(1+q^{-n})^2}$$
$$= \sum_{n=0}^{\infty} \frac{q^n}{(-q;q)_n^2} = 1 + q - q^2 + 2q^3 - 4q^4 + \dots$$

I. Ramanujan's letter

Upper and lower half-planes

Example

For Ramanujan's f(q), amazingly we have

$$f(q^{-1}) = \sum_{n=0}^{\infty} \frac{q^{-n^2}}{(1+q^{-1})^2(1+q^{-2})^2\cdots(1+q^{-n})^2}$$
$$= \sum_{n=0}^{\infty} \frac{q^n}{(-q;q)_n^2} = 1 + q - q^2 + 2q^3 - 4q^4 + \dots$$

Remark

Under $z \leftrightarrow q = e^{2\pi i z}$, this means that f(q) is defined on both \mathbb{H}^{\pm} .

I. Ramanujan's letter

We have the following....

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

I. Ramanujan's letter

We have the following....

Remark

At rationals z = h/2k these "meet" thanks to U(-1; q).

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

Quantum modular forms

Quantum modular forms

Definition (Zagier)

A weight k quantum modular form is a complex-valued function f on $\mathbb{Q} \setminus S$ for some set S, such that

Quantum modular forms

Definition (Zagier)

A weight k quantum modular form is a complex-valued function f on $\mathbb{Q} \setminus S$ for some set S, such that for all $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$ the function

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Quantum modular forms

Definition (Zagier)

A weight k quantum modular form is a complex-valued function f on $\mathbb{Q} \setminus S$ for some set S, such that for all $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$ the function

$$h_{\gamma}(x) := f(x) - \epsilon(\gamma)(cx+d)^{-k}f\left(rac{ax+b}{cx+d}
ight)$$

satisfies a "suitable" property of continuity or analyticity.

History of quantum modular forms

History of quantum modular forms

Remark

Zagier defined them at the 2010 Clay Conference at Harvard.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

History of quantum modular forms

Remark

Zagier defined them at the 2010 Clay Conference at Harvard.

Zagier offered a few examples related to:

- Dedekind sums.
- q-series defined by Andrews, Dyson, and Hickerson.

- Quadratic polynomials of fixed discriminant.
- Jones polynomials in knot theory.
- Kontsevich's strange function F(q).

A new quantum modular form

"Theorem" (2012, Bryson-O-Pitman-R)

The function

$$\phi(x) := e^{-\frac{\pi i x}{12}} \cdot U(1; e^{2\pi i x})$$

is a weight 3/2 quantum modular form, which is defined on $\mathbb{H} \cup \mathbb{R}$.

A new quantum modular form

"Theorem" (2012, Bryson-O-Pitman-R)

The function

$$\phi(x) := e^{-\frac{\pi i x}{12}} \cdot U(1; e^{2\pi i x})$$

is a weight 3/2 quantum modular form, which is defined on $\mathbb{H} \cup \mathbb{R}$.

Remark

We have observed the phenomenon

$$\lim_{q \to \zeta} (\text{Mock } \vartheta \text{-function} - \epsilon_{\zeta} \text{MF}) = \text{QMF}.$$

A new quantum modular form

"Theorem" (2012, Bryson-O-Pitman-R)

The function

$$\phi(x) := e^{-\frac{\pi i x}{12}} \cdot U(1; e^{2\pi i x})$$

is a weight 3/2 quantum modular form, which is defined on $\mathbb{H} \cup \mathbb{R}$.

Remark

We have observed the phenomenon

$$\lim_{q \to \zeta} (\text{Mock } \vartheta \text{-function} - \epsilon_{\zeta} \text{MF}) = \text{QMF}.$$

The obstruction to modularity for QMFs are "period integrals" of modular forms.

Mock thetas are harmonic Maass forms

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Mock thetas are harmonic Maass forms

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Notation. Throughout, let

•
$$\tau = x + iy \in \mathbb{H}$$
 with $x, y \in \mathbb{R}$.

Mock thetas are harmonic Maass forms

Notation. Throughout, let

• $\tau = x + iy \in \mathbb{H}$ with $x, y \in \mathbb{R}$.

Hyperbolic Laplacian.

$$\Delta_k := -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + iky \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right).$$

Weak Maass forms

"Definition"

A harmonic Maass form is any smooth function f on $\mathbb H$ satisfying:

Weak Maass forms

"Definition"

A harmonic Maass form is any smooth function f on \mathbb{H} satisfying: • For all $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \subset SL_2(\mathbb{Z})$, we have

$$f\left(rac{a au+b}{c au+d}
ight)=(c au+d)^k f(au).$$

Weak Maass forms

"Definition"

A harmonic Maass form is any smooth function f on \mathbb{H} satisfying: • For all $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \subset SL_2(\mathbb{Z})$, we have

$$f\left(rac{a au+b}{c au+d}
ight)=(c au+d)^k f(au).$$

2 We have that $\Delta_k f = 0$.

Harmonic Maass forms have two parts $(q := e^{2\pi i \tau})$

Fundamental Lemma

If $f \in H_{2-k}$ and $\Gamma(a, x)$ is the incomplete Γ -function, then

$$f(\tau) = \sum_{n \gg -\infty} c_f^+(n)q^n + \sum_{n < 0} c_f^-(n)\Gamma(k-1, 4\pi |n|y)q^n.$$

$$\uparrow \qquad \qquad \uparrow$$
Holomorphic part f^+ Nonholomorphic part f^-

Harmonic Maass forms have two parts $(q := e^{2\pi i \tau})$

Fundamental Lemma

If $f \in H_{2-k}$ and $\Gamma(a, x)$ is the incomplete Γ -function, then

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Remark

Ramanujan's mock theta functions are examples of f^+ .

Fundamental Lemma

If $\xi_w := 2iy^w \overline{\frac{\partial}{\partial \overline{\tau}}}$, then we have a surjective map

$$\xi_{2-k}: H_{2-k} \longrightarrow S_k,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fundamental Lemma

If $\xi_w := 2iy^w \overline{\frac{\partial}{\partial \overline{\tau}}}$, then we have a surjective map

 $\xi_{2-k}: H_{2-k} \longrightarrow S_k,$

Moreover, it has infinite kernel and satisfies

$$\xi_{2-k}(f) = \xi_{2-k}(f^-).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Fundamental Lemma

If $\xi_w := 2iy^w \overline{\frac{\partial}{\partial \tau}}$, then we have a surjective map

 $\xi_{2-k}: H_{2-k} \longrightarrow S_k,$

Moreover, it has infinite kernel and satisfies

$$\xi_{2-k}(f) = \xi_{2-k}(f^-).$$

Question

Are there canonical preimages for cusp forms of elliptic curves?

Fundamental Lemma

If $\xi_w := 2iy^w \overline{\frac{\partial}{\partial \overline{\tau}}}$, then we have a surjective map

 $\xi_{2-k}: H_{2-k} \longrightarrow S_k,$

Moreover, it has infinite kernel and satisfies

$$\xi_{2-k}(f) = \xi_{2-k}(f^-).$$

Question

Are there **canonical** preimages for cusp forms of elliptic curves? If so, what do the f^+ tell us?

(ロ)、(型)、(E)、(E)、 E) の(の)

II. Mock modular forms and elliptic curves

Weierstrass

Notation. Let *E* be an elliptic curve.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• $E \cong \mathbb{C}/\Lambda_E$

Notation. Let *E* be an elliptic curve.

•
$$E \cong \mathbb{C}/\Lambda_E$$

•
$$E$$
 : $y^2 = 4x^3 - 60G_4(\Lambda_E)x - 140G_6(\Lambda_E)$.

Notation. Let *E* be an elliptic curve.

•
$$E \cong \mathbb{C}/\Lambda_E$$

•
$$E$$
 : $y^2 = 4x^3 - 60G_4(\Lambda_E)x - 140G_6(\Lambda_E)$.

• In terms of the Weierstrass \wp -function, we have

$$z \to P_z = (\wp(\Lambda_E; z), \wp'(\Lambda_E; z)).$$

II. Mock modular forms and elliptic curves

Weierstrass zeta-function

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Weierstrass zeta-function

Definition

The **Weierstrass zeta-function** for *E* is

$$\zeta(\Lambda_E;z) := rac{1}{z} + \sum_{w \in \Lambda_E \setminus \{0\}} \left(rac{1}{z-w} + rac{1}{w} + rac{z}{w^2}
ight).$$

Weierstrass zeta-function

Definition

The **Weierstrass zeta-function** for *E* is

$$\zeta(\Lambda_E;z) := \frac{1}{z} + \sum_{w \in \Lambda_E \setminus \{0\}} \left(\frac{1}{z-w} + \frac{1}{w} + \frac{z}{w^2} \right).$$

Remark

It is easy to compute because

$$\zeta(\Lambda_E;z) = \frac{1}{z} - \sum_{k=1}^{\infty} G_{2k+2}(\Lambda_E) z^{2k+1}.$$

II. Mock modular forms and elliptic curves

Elliptic curves and $\zeta(\Lambda_E; z)$

II. Mock modular forms and elliptic curves

Elliptic curves and $\zeta(\Lambda_E; z)$

Remarks

• We have the well-known "addition law"

$$\zeta(\Lambda_E; z_1 + z_2) = \zeta(\Lambda_E; z_1) + \zeta(\Lambda_E; z_2) + \frac{1}{2} \frac{\wp'(\Lambda_E; z_1) - \wp'(\Lambda_E; z_2)}{\wp(\Lambda_E; z_1) - \wp(\Lambda_E; z_2)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

II. Mock modular forms and elliptic curves

Elliptic curves and $\zeta(\Lambda_E; z)$

Remarks

• We have the well-known "addition law"

$$\zeta(\Lambda_E; z_1 + z_2) = \zeta(\Lambda_E; z_1) + \zeta(\Lambda_E; z_2) + \frac{1}{2} \frac{\wp'(\Lambda_E; z_1) - \wp'(\Lambda_E; z_2)}{\wp(\Lambda_E; z_1) - \wp(\Lambda_E; z_2)}$$

• For E with CM, Birch and Swinnerton-Dyer famously proved

L(E, 1) = "finite sum of special values of $\zeta(\Lambda_E, s)$ ".

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

II. Mock modular forms and elliptic curves

Elliptic curves and $\zeta(\Lambda_E; z)$

Remarks

• We have the well-known "addition law"

$$\zeta(\Lambda_E; z_1 + z_2) = \zeta(\Lambda_E; z_1) + \zeta(\Lambda_E; z_2) + \frac{1}{2} \frac{\wp'(\Lambda_E; z_1) - \wp'(\Lambda_E; z_2)}{\wp(\Lambda_E; z_1) - \wp(\Lambda_E; z_2)}$$

• For E with CM, Birch and Swinnerton-Dyer famously proved

L(E, 1) = "finite sum of special values of $\zeta(\Lambda_E, s)$ ".

Question

Does $\zeta(\Lambda_E; z)$ reveal arithmetic information for all E/\mathbb{Q} ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

II. Mock modular forms and elliptic curves

Elliptic curves E/\mathbb{Q}

• There is a $F_E(\tau) = \sum a_E(n)q^n \in S_2(N_E)$ with $L(F_E, s) = L(E, s).$

• There is a
$$F_E(\tau) = \sum a_E(n)q^n \in S_2(N_E)$$
 with
 $L(F_E, s) = L(E, s).$

• We have the modular parameterization

$$\phi_E: X_0(N_E) \to \mathbb{C}/\Lambda_E \cong E.$$

• There is a
$$F_E(\tau) = \sum a_E(n)q^n \in S_2(N_E)$$
 with
 $L(F_E, s) = L(E, s).$

• We have the modular parameterization

$$\phi_E: X_0(N_E) \to \mathbb{C}/\Lambda_E \cong E.$$

• This theory makes use of the **Eichler integral** of F_E is

$$\mathcal{E}_E(\tau) = -2\pi i \int_{\tau}^{i\infty} F_E(z) dz = \sum_{n=1}^{\infty} \frac{a_E(n)}{n} \cdot q^n$$

II. Mock modular forms and elliptic curves

Inspired by a recent paper of Guerzhoy...

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 ∽ ⊙ < ⊙

II. Mock modular forms and elliptic curves

Inspired by a recent paper of Guerzhoy...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Alfes, Griffin, O, Rolen)

We define

II. Mock modular forms and elliptic curves

Inspired by a recent paper of Guerzhoy...

Theorem (Alfes, Griffin, O, Rolen) We define

$$\mathfrak{Z}_{E}(z) := \zeta(\Lambda_{E}; z) - S(\Lambda_{E})z - \frac{\deg(\phi_{E})}{4\pi ||F_{E}||^{2}} \cdot \overline{z},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

II. Mock modular forms and elliptic curves

Inspired by a recent paper of Guerzhoy...

Theorem (Alfes, Griffin, O, Rolen) We define

$$\mathfrak{Z}_{E}(z) := \zeta(\Lambda_{E}; z) - S(\Lambda_{E})z - \frac{\deg(\phi_{E})}{4\pi ||F_{E}||^{2}} \cdot \overline{z},$$

where

$$\mathcal{S}(\Lambda_E) := \lim_{s o 0} \sum_{w \in \Lambda_E \setminus \{0\}} rac{1}{w^2 |w|^{2s}}.$$

II. Mock modular forms and elliptic curves

Inspired by a recent paper of Guerzhoy...

Theorem (Alfes, Griffin, O, Rolen) We define

$$\mathfrak{Z}_{E}(z) := \zeta(\Lambda_{E}; z) - S(\Lambda_{E})z - \frac{\deg(\phi_{E})}{4\pi ||F_{E}||^{2}} \cdot \overline{z},$$

where

$$\mathcal{S}(\Lambda_E) := \lim_{s o 0} \sum_{w \in \Lambda_E \setminus \{0\}} rac{1}{w^2 |w|^{2s}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Then $\widehat{\mathfrak{Z}}_{E}(\tau) := \mathfrak{Z}_{E}(\mathcal{E}_{E}(\tau))$ is a harmonic Maass function.

II. Mock modular forms and elliptic curves

Inspired by a recent paper of Guerzhoy...

Theorem (Alfes, Griffin, O, Rolen) *We define*

$$\mathfrak{Z}_{E}(z) := \zeta(\Lambda_{E}; z) - S(\Lambda_{E})z - \frac{\deg(\phi_{E})}{4\pi ||F_{E}||^{2}} \cdot \overline{z},$$

where

$$\mathcal{S}(\Lambda_E) := \lim_{s o 0} \sum_{w \in \Lambda_E \setminus \{0\}} rac{1}{w^2 |w|^{2s}}.$$

Then $\widehat{\mathfrak{Z}}_{E}(\tau) := \mathfrak{Z}_{E}(\mathcal{E}_{E}(\tau))$ is a harmonic Maass function.

Remark

There is a canonical modular function $M_E(\tau)$ for which $\hat{\mathfrak{Z}}^+_E(\tau) - M_E(\tau)$ is holomorphic on \mathbb{H} .

Remarks

• We refer to $\hat{\mathfrak{Z}}_{F}^{+}(\tau)$ as the Weierstrass mock modular form.

Remarks

() We refer to $\hat{\mathfrak{Z}}^+_E(\tau)$ as the Weierstrass mock modular form.

2 The coefficients of $\widehat{\mathfrak{Z}}^+_E(\tau)$ are \mathbb{Q} -rational if E has CM,

Remarks

• We refer to $\hat{\mathfrak{Z}}_{E}^{+}(\tau)$ as the Weierstrass mock modular form.

Solution The coefficients of $\widehat{\mathfrak{Z}}^+_E(\tau)$ are \mathbb{Q} -rational if E has CM, and are presumably transcendental otherwise.

Remarks

• We refer to $\hat{\mathfrak{Z}}_{E}^{+}(\tau)$ as the Weierstrass mock modular form.

- Solution The coefficients of $\widehat{\mathfrak{Z}}^+_E(\tau)$ are \mathbb{Q} -rational if E has CM, and are presumably transcendental otherwise.
- Solution Divisors of deg(ϕ_E) are congruence primes for $F_E(\tau)$.

Remarks

- We refer to $\hat{\mathfrak{Z}}_{E}^{+}(\tau)$ as the Weierstrass mock modular form.
- Solution The coefficients of $\widehat{\mathfrak{Z}}^+_E(\tau)$ are \mathbb{Q} -rational if E has CM, and are presumably transcendental otherwise.
- Solution Divisors of deg(ϕ_E) are congruence primes for $F_E(\tau)$.
- The expansion at the cusp 0 encodes $L(F_E, 1)$, and gives information about \mathbb{Q} -rational torsion.

II. Mock modular forms and elliptic curves

The Congruent Number Problem (CNP)

Problem (Open)

Determine the integers which are areas of rational right triangles.

II. Mock modular forms and elliptic curves

The Congruent Number Problem (CNP)

Problem (Open)

Determine the integers which are areas of rational right triangles.

Example

• The number 6 is congruent since it is the area of (3, 4, 5).

II. Mock modular forms and elliptic curves

The Congruent Number Problem (CNP)

Problem (Open)

Determine the integers which are areas of rational right triangles.

Example

- The number 6 is congruent since it is the area of (3, 4, 5).
- **2** The number 3 is not congruent. **Prove it.**

II. Mock modular forms and elliptic curves

The Congruent Number Problem (CNP)

Problem (Open)

Determine the integers which are areas of rational right triangles.

Example

- The number 6 is congruent since it is the area of (3, 4, 5).
- **2** The number 3 is not congruent. **Prove it.**
- The number 157 is congruent, since it is the area of

 $\left(\frac{411340519227716149383203}{21666555693714761309610},\frac{680\cdots 540}{411\cdots 203},\frac{224\cdots 041}{891\cdots 830}\right).$

II. Mock modular forms and elliptic curves

A Classical Diophantine Criterion

Theorem (Easy)

An integer D is congruent if and only if the elliptic curve

$$E_D: \quad Dy^2 = x^3 - x$$

has positive rank.

II. Mock modular forms and elliptic curves

A Classical Diophantine Criterion

Theorem (Easy)

An integer D is congruent if and only if the elliptic curve

$$E_D: \quad Dy^2 = x^3 - x$$

has positive rank.

Remark

Tunnell (1983) gave a conditional solution to the CNP using work of Coates and Wiles on BSD for CM elliptic curves.

Ranks of quadratic twists

Definition

Let E/\mathbb{Q} be the elliptic curve

$$E: y^2 = x^3 + Ax + B.$$

Ranks of quadratic twists

Definition

Let E/\mathbb{Q} be the elliptic curve

$$E: y^2 = x^3 + Ax + B.$$

If Δ is a fund. disc., then the Δ -quadratic twist of E is

$$E(\Delta): \Delta y^2 = x^3 + Ax + B.$$

II. Mock modular forms and elliptic curves

Birch and Swinnerton-Dyer Conjecture

Conjecture

If E/\mathbb{Q} is an elliptic curve and L(E,s) is its L-function, then

$$\operatorname{ord}_{s=1}(L(E,s)) = \operatorname{rank} \operatorname{of} E(\mathbb{Q}).$$

II. Mock modular forms and elliptic curves

Birch and Swinnerton-Dyer Conjecture

Conjecture If E/\mathbb{Q} is an elliptic curve and L(E, s) is its L-function, then $\operatorname{ord}_{s=1}(L(E, s)) = \operatorname{rank} \operatorname{of} E(\mathbb{Q}).$

A good question. How does one compute $\operatorname{ord}_{s=1}(L(E, s))$?

II. Mock modular forms and elliptic curves

Kolyvagin's Theorem

Theorem (Kolyvagin) If $\operatorname{ord}_{s=1}(L(E, s)) \leq 1$, then

$$\operatorname{ord}_{s=1}(L(E,s)) = \operatorname{rank} \operatorname{of} E.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●
II. Mock modular forms and elliptic curves

Kolyvagin's Theorem

Theorem (Kolyvagin) If $\operatorname{ord}_{s=1}(L(E, s)) \leq 1$, then

$$\operatorname{ord}_{s=1}(L(E,s)) = \operatorname{rank} \operatorname{of} E.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question

How does one compute L(E, 1) and L'(E, 1)?

II. Mock modular forms and elliptic curves Formulas for *L*-values and derivatives

Formulas for $L(E(\Delta), 1)$

Theorem (Shimura-Kohnen/Zagier-Waldspurger) There is a weight 3/2 modular form

$$g(z) = \sum_{n=1}^{\infty} b_E(n) q^n$$

such that if $\epsilon(E_D) = 1$, then

 $L(E(\Delta),1) = \alpha_E(\Delta) \cdot \frac{b_E(|\Delta|)^2}{2}.$

II. Mock modular forms and elliptic curves

Formulas for L-values and derivatives

The Gross-Zagier Theorem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question

What about derivatives?

II. Mock modular forms and elliptic curves

Formulas for L-values and derivatives

The Gross-Zagier Theorem

Question What about derivatives?

Theorem (Gross and Zagier)

Under suitable conditions, $L'(E(\Delta), 1)$ is given in terms of heights of Heegner points.

II. Mock modular forms and elliptic curves Formulas for *L*-values and derivatives

Natural Question

Question

Find an extension of the Kohnen-Waldspurger theorem giving both

 $L(E(\Delta), 1)$ and $L'(E(\Delta), 1)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

II. Mock modular forms and elliptic curves

Results on L-values and derivatives

A new theta lift

Special functions and numbers related to mock modular forms II. Mock modular forms and elliptic curves Results on L-values and derivatives

A new theta lift

Using recent work of Hövel, we define a "theta lift"

$$\mathcal{I}: H_0 \longrightarrow H_{\frac{1}{2}}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Special functions and numbers related to mock modular forms II. Mock modular forms and elliptic curves Results on L-values and derivatives

A new theta lift

Using recent work of Hövel, we define a "theta lift"

$$\mathcal{I}: H_0 \longrightarrow H_{\frac{1}{2}}.$$

"Theorem" (Alfes, Griffin, O, Rolen) We have the Hecke equivariant commutative diagram: $\begin{array}{ccc} H_0(N_E) & \longrightarrow_{\xi_0} & S_2(N_E) \\ & \downarrow_{\mathcal{I}} & & \downarrow_{Shintani} \\ & H_{\frac{1}{2}}(4N_E) & \longrightarrow_{\xi_{\frac{1}{2}}} & S_{\frac{3}{2}}(4N_E). \end{array}$

II. Mock modular forms and elliptic curves

Results on L-values and derivatives

L-values and derivatives

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

II. Mock modular forms and elliptic curves Results on *L*-values and derivatives

L-values and derivatives

Theorem (Alfes, Griffin, O, Rolen)

Define let $f_E(\tau) := \mathcal{I}(\widehat{\mathfrak{Z}}_E(\tau))$, and let

$$f_E(\tau) = \sum_{n \gg -\infty} c_E^+(n) q^n + \sum_{n < 0} c_E^-(n) \Gamma(1/2, 4\pi |n|y) q^{-n}.$$

If E/\mathbb{Q} has prime conductor p and $\epsilon(E) = -1$, then we have:

II. Mock modular forms and elliptic curves Results on L-values and derivatives

L-values and derivatives

Theorem (Alfes, Griffin, O, Rolen) Define let $f_E(\tau) := \mathcal{I}(\mathfrak{J}_E(\tau))$, and let $f_E(\tau) = \sum_{n \gg -\infty} c_E^+(n)q^n + \sum_{n < 0} c_E^-(n)\Gamma(1/2, 4\pi |n|y)q^{-n}$. If E/\mathbb{Q} has prime conductor p and $\epsilon(E) = -1$, then we have: If $\Delta < 0$ and $(\frac{\Delta}{p}) = 1$, then

$$L(E(\Delta),1) = \alpha_{E}(\Delta) \cdot c_{E}^{-}(\Delta)^{2}.$$

II. Mock modular forms and elliptic curves Results on L-values and derivatives

L-values and derivatives

Theorem (Alfes, Griffin, O, Rolen) Define let $f_E(\tau) := \mathcal{I}(\widehat{\mathfrak{Z}}_E(\tau))$, and let $f_E(\tau) = \sum_{n \gg -\infty} c_E^+(n)q^n + \sum_{n < 0} c_E^-(n)\Gamma(1/2, 4\pi |n|y)q^{-n}$. If E/\mathbb{Q} has prime conductor p and $\epsilon(E) = -1$, then we have: If $\Delta < 0$ and $(\frac{\Delta}{p}) = 1$, then

$$L(E(\Delta), 1) = \alpha_E(\Delta) \cdot c_E^{-}(\Delta)^2.$$

• If
$$\Delta > 0$$
 and $\left(\frac{\Delta}{p}\right) = 1$, then
 $L'(E(\Delta), 1) = 0 \iff c_F^+(\Delta)$ is algebraic.

II. Mock modular forms and elliptic curves

Results on L-values and derivatives

Example for E: $y^2 = x^3 + 10x^2 - 20x + 8$.

Δ	$c^+(-\Delta)$	$L'(E_{\Delta},1)$	$\operatorname{rk}(E_{\Delta}(\mathbb{Q}))$
1	-2.817617849	0.30599977	1
12	-4.88527238	4.2986147986	1
21	-1.727392572	9.002386800	1
28	6.781939953 · · ·	4.327260249	1
33	5.663023201	3.6219567911	1
:		:	÷
1489	9	0	3
:	÷	:	:
4393	<u>33</u> 5	0	3

・ロト・日本・日本・日本・日本・今日や

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

II. Mock modular forms and elliptic curves

Results on L-values and derivatives

Remarks

Special functions and numbers related to mock modular forms II. Mock modular forms and elliptic curves

Results on L-values and derivatives

Remarks

• Have a general thm for all *E* (in terms of vector-valued forms).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Special functions and numbers related to mock modular forms II. Mock modular forms and elliptic curves Results on L-values and derivatives

Remarks

• Have a general thm for all *E* (in terms of vector-valued forms).

2 Explicit formulas for $c_E^+(\Delta)$ as CM traces of $\hat{\mathfrak{Z}}_E(\tau)$.

Special functions and numbers related to mock modular forms II. Mock modular forms and elliptic curves Results on L-values and derivatives

Remarks

- Have a general thm for all *E* (in terms of vector-valued forms).
- **2** Explicit formulas for $c_E^+(\Delta)$ as CM traces of $\hat{\mathfrak{Z}}_E(\tau)$.
- Solution By Bruinier the $c_E^+(\Delta)$ are "periods of diff's of the 3rd kind".

Special functions and numbers related to mock modular forms II. Mock modular forms and elliptic curves

Results on L-values and derivatives

Remarks

- Have a general thm for all E (in terms of vector-valued forms).
- **2** Explicit formulas for $c_E^+(\Delta)$ as CM traces of $\hat{\mathfrak{Z}}_E(\tau)$.
- Solution By Bruinier the $c_E^+(\Delta)$ are "periods of diff's of the 3rd kind".

• The commutative diagram requires careful normalizations.

Special functions and numbers related to mock modular forms II. Mock modular forms and elliptic curves

Results on L-values and derivatives

Remarks

- Have a general thm for all E (in terms of vector-valued forms).
- **2** Explicit formulas for $c_E^+(\Delta)$ as CM traces of $\hat{\mathfrak{Z}}_E(\tau)$.
- Solution By Bruinier the $c_E^+(\Delta)$ are "periods of diff's of the 3rd kind".
- The commutative diagram requires careful normalizations.
- Proof of the last theorem is a "canonical choice" of a weight 1/2 harmonic Maass form in previous work of Bruinier and O.

Summary

I. Ramanujan's Strange Conjecture...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Summary

I. Ramanujan's Strange Conjecture...

Theorem (Folsom-O-Rhoades)

If ζ is an even 2k order root of unity, then

$$\lim_{q \to \zeta} (f(q) - (-1)^k b(q)) = -4 \sum_{n=0}^{k-1} (1+\zeta)^2 (1+\zeta^2)^2 \cdots (1+\zeta^n)^2 \zeta^{n+1}.$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Summary

I. Ramanujan's Strange Conjecture...

Theorem (Folsom-O-Rhoades)

If ζ is an even 2k order root of unity, then

$$\lim_{q \to \zeta} (f(q) - (-1)^k b(q)) = -4 \sum_{n=0}^{k-1} (1+\zeta)^2 (1+\zeta^2)^2 \cdots (1+\zeta^n)^2 \zeta^{n+1}.$$

Remark

A special case of a thm on Dyson's mock theta, Weierstrass' σ -function, and quantum mod forms.

Summary

II. Weierstrass mock modular form

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

II. Weierstrass mock modular form

Armed with $F_E(\tau)$ and $\zeta(\Lambda_E; z)$, we directly obtain:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

II. Weierstrass mock modular form

Armed with $F_E(\tau)$ and $\zeta(\Lambda_E; z)$, we directly obtain:

• Canonical weight 0 harmonic Maass form $\hat{\mathfrak{Z}}_{E}(\tau)$.

II. Weierstrass mock modular form

Armed with $F_E(\tau)$ and $\zeta(\Lambda_E; z)$, we directly obtain:

- Canonical weight 0 harmonic Maass form $\widehat{\mathfrak{Z}}_{E}(\tau)$.
- **2** Canonical weight 1/2 harmonic Maass form $f_E := \mathcal{I}(\hat{\mathfrak{Z}}_E; \tau)$.

Special BSD numbers...

Theorem (Alfes, Griffin, O, Rolen) If E/\mathbb{Q} has prime conductor p and sfe -1, then we have: If $\Delta < 0$ and $\left(\frac{\Delta}{p}\right) = 1$, then

$$L(E(\Delta),1) = \alpha_E(\Delta) \cdot c_E^{-}(\Delta)^2.$$

3 If
$$\Delta > 0$$
 and $\left(\frac{\Delta}{p}\right) = 1$, then
 $L'(E(\Delta), 1) = 0 \iff c_E^+(\Delta)$ is algebraic.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで