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“Ramanujan’s Death bed letter”

Dear Hardy,

“I am extremely sorry for not writing you a single letter up to now.
I discovered very interesting functions recently which I call “Mock”
ϑ-functions. Unlike the “False” ϑ-functions (partially studied by
Rogers), they enter into mathematics as beautifully as the ordinary
theta functions. I am sending you with this letter some examples.”

January 12, 1920.
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The first example

f (q) = 1 +
q

(1 + q)2
+

q4

(1 + q)2(1 + q2)2
+ . . .
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Strange Conjecture

Conjecture (Ramanujan)

Consider the mock theta f (q) and the modular form b(q):

f (q) := 1 +
∞∑
n=1

qn2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
,

b(q) := (1− q)(1− q3)(1− q5) · · · ×
(
1− 2q + 2q4 − 2q9 + · · ·

)
.

If q approaches an even order 2k root of unity, then

f (q)− (−1)kb(q) = O(1).
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Numerics

As q → −1, we have

f (−0.994) ∼ −1·1031, f (−0.996) ∼ −1·1046, f (−0.998) ∼ −6·1090,
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Numerics continued...

Amazingly, Ramanujan’s guess gives:

q −0.990 −0.992 −0.994 −0.996 −0.998

f (q) + b(q) 3.961 . . . 3.969 . . . 3.976 . . . 3.984 . . . 3.992 . . .
.

This suggests that

lim
q→−1

(f (q) + b(q)) = 4.
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As q → i

q 0.992i 0.994i 0.996i
f (q) 2 · 106 − 4.6 · 106i 2 · 108 − 4 · 108i 1.0 · 1012 − 2 · 1012i

f (q)− b(q) ∼ 0.05 + 3.85i ∼ 0.04 + 3.89i ∼ 0.03 + 3.92i

This suggests that

lim
q→i

(f (q)− b(q)) = 4i .
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Questions

What are the numbers such as 4 and 4i in general?
What is going on?
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A new era

What are Ramanujan’s mock thetas?

“Theorem” (Zwegers, 2002)

Ramanujan’s mock theta functions are holomorphic parts of weight
1/2 harmonic Maass forms.

Remark

More on this shortly...
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A new era

Lots of recent applications...

q-series and partitions

Modular L-functions (e.g. BSD numbers)

Eichler-Shimura Theory

Probability models

Generalized Borcherds Products

Moonshine for affine Lie superalgebras and M24

Donaldson invariants

Black holes
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A new era

Two topics this lecture....

I. The Strange Conjecture (with A. Folsom and R. Rhoades).

II. Elliptic curves E/Q (with C. Alfes, M. Griffin, and L. Rolen).
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I. Ramanujan’s letter

The last letter

Asymptotics, near roots of unity, of “Eulerian” modular forms.

Raises one question and conjectures the answer.

“Strange Conjecture”.

Concludes with a list of his mock theta functions.



Special functions and numbers related to mock modular forms

I. Ramanujan’s letter

The last letter

Asymptotics, near roots of unity, of “Eulerian” modular forms.

Raises one question and conjectures the answer.

“Strange Conjecture”.

Concludes with a list of his mock theta functions.



Special functions and numbers related to mock modular forms

I. Ramanujan’s letter

The last letter

Asymptotics, near roots of unity, of “Eulerian” modular forms.

Raises one question and conjectures the answer.

“Strange Conjecture”.

Concludes with a list of his mock theta functions.



Special functions and numbers related to mock modular forms

I. Ramanujan’s letter

The last letter

Asymptotics, near roots of unity, of “Eulerian” modular forms.

Raises one question and conjectures the answer.

“Strange Conjecture”.

Concludes with a list of his mock theta functions.



Special functions and numbers related to mock modular forms

I. Ramanujan’s letter

Ramanujan’s question

Question (Ramanujan)

Must power series with “modular-like” asymptotics be the sum of
a modular form and a function which is O(1) at all roots of unity?
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I. Ramanujan’s letter

Ramanujan’s Answer
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I. Ramanujan’s letter

Ramanujan’s last words

“it is inconceivable to construct a ϑ-function to cut out the
singularities of a mock theta function...”

Srinivasa Ramanujan

Theorem (Griffin-O-Rolen (2012))

A mock theta function and a modular form never cut out exactly
the same singularities.
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I. Ramanujan’s letter

Special values of special functions.

Theorem (Folsom-O-Rhoades)

If ζ is an even 2k order root of unity, then

lim
q→ζ

(f (q)−(−1)kb(q)) = −4
k−1∑
n=0

(1+ζ)2(1+ζ2)2 · · · (1+ζn)2ζn+1.
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I. Ramanujan’s letter

Special Functions

R(w ; q) :=
∞∑
n=0

qn2

(wq; q)n(w−1q; q)n
(Dyson’s Mock ϑ-function)

C (w ; q) :=
(q; q)∞

(wq; q)∞(w−1q; q)∞
(Weierstrass MF)

U(w ; q) :=
∞∑
n=0

(wq; q)n(w−1q; q)nqn+1 (Quantum mod. form)

Here we use that

(a; q)n := (1− a)(1− aq)(1− aq2) · · · (1− aqn−1).
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I. Ramanujan’s letter

General Theorem

Theorem (F-O-R)

If ζb = e
2πi
b and 1 ≤ a < b, then for every suitable root of unity ζ

there is an explicit integer c for which

lim
q→ζ

(
R(ζab ; q)− ζcb2C (ζab ; q)

)
= −(1− ζab)(1− ζ−ab )U(ζab ; ζ).

Remark

The first theorem is when a = 1 and b = 2 using the identities

R(−1; q) = f (q) and C (−1; q) = b(q).
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I. Ramanujan’s letter

What’s going on?

Loosely speaking, these theorems say that

lim
q→ζ

(Mock ϑ− εζMF) = Quantum MF.

Question

What is a quantum modular form?
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I. Ramanujan’s letter

Upper and lower half-planes

Example

For Ramanujan’s f (q), amazingly we have

f (q−1) =
∞∑
n=0

q−n
2

(1 + q−1)2(1 + q−2)2 · · · (1 + q−n)2

=
∞∑
n=0

qn

(−q; q)2
n

= 1 + q − q2 + 2q3 − 4q4 + . . .

Remark

Under z ↔ q = e2πiz , this means that f (q) is defined on both H±.
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I. Ramanujan’s letter

We have the following....

Remark

At rationals z = h/2k these “meet” thanks to U(−1; q).
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Quantum Modular forms

Quantum modular forms

Definition (Zagier)

A weight k quantum modular form is a complex-valued function
f on Q \ S for some set S , such that for all γ =

(
a b
c d

)
∈ SL2(Z)

the function

hγ(x) := f (x)− ε(γ)(cx + d)−k f

(
ax + b

cx + d

)
satisfies a “suitable” property of continuity or analyticity.
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Quantum Modular forms

History of quantum modular forms

Remark

Zagier defined them at the 2010 Clay Conference at Harvard.

Zagier offered a few examples related to:

Dedekind sums.

q-series defined by Andrews, Dyson, and Hickerson.

Quadratic polynomials of fixed discriminant.

Jones polynomials in knot theory.

Kontsevich’s strange function F (q).



Special functions and numbers related to mock modular forms

Quantum Modular forms

History of quantum modular forms

Remark

Zagier defined them at the 2010 Clay Conference at Harvard.

Zagier offered a few examples related to:

Dedekind sums.

q-series defined by Andrews, Dyson, and Hickerson.

Quadratic polynomials of fixed discriminant.

Jones polynomials in knot theory.

Kontsevich’s strange function F (q).



Special functions and numbers related to mock modular forms

Quantum Modular forms

History of quantum modular forms

Remark

Zagier defined them at the 2010 Clay Conference at Harvard.

Zagier offered a few examples related to:

Dedekind sums.

q-series defined by Andrews, Dyson, and Hickerson.

Quadratic polynomials of fixed discriminant.

Jones polynomials in knot theory.

Kontsevich’s strange function F (q).



Special functions and numbers related to mock modular forms

Quantum Modular forms

A new quantum modular form

“Theorem” (2012, Bryson-O-Pitman-R)

The function
φ(x) := e−

πix
12 · U(1; e2πix)

is a weight 3/2 quantum modular form, which is defined on H ∪R.

Remark

We have observed the phenomenon

lim
q→ζ

(Mock ϑ-function− εζMF) = QMF.

The obstruction to modularity for QMFs are “period integrals” of
modular forms.



Special functions and numbers related to mock modular forms

Quantum Modular forms

A new quantum modular form

“Theorem” (2012, Bryson-O-Pitman-R)

The function
φ(x) := e−

πix
12 · U(1; e2πix)

is a weight 3/2 quantum modular form, which is defined on H ∪R.

Remark

We have observed the phenomenon

lim
q→ζ

(Mock ϑ-function− εζMF) = QMF.

The obstruction to modularity for QMFs are “period integrals” of
modular forms.



Special functions and numbers related to mock modular forms

Quantum Modular forms

A new quantum modular form

“Theorem” (2012, Bryson-O-Pitman-R)

The function
φ(x) := e−

πix
12 · U(1; e2πix)

is a weight 3/2 quantum modular form, which is defined on H ∪R.

Remark

We have observed the phenomenon

lim
q→ζ

(Mock ϑ-function− εζMF) = QMF.

The obstruction to modularity for QMFs are “period integrals” of
modular forms.



Special functions and numbers related to mock modular forms

Harmonic Maass forms

Mock thetas are harmonic Maass forms

Notation. Throughout, let

τ = x + iy ∈ H with x , y ∈ R.

Hyperbolic Laplacian.

∆k := −y 2

(
∂2

∂x2
+

∂2

∂y 2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
.
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Harmonic Maass forms

Weak Maass forms

“Definition”

A harmonic Maass form is any smooth function f on H satisfying:

1 For all A =
(
a b
c d

)
∈ Γ ⊂ SL2(Z), we have

f

(
aτ + b

cτ + d

)
= (cτ + d)k f (τ).

2 We have that ∆k f = 0.
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Fourier expansions

Harmonic Maass forms have two parts (q := e2πiτ)

Fundamental Lemma

If f ∈ H2−k and Γ(a, x) is the incomplete Γ-function, then

f (τ) =
∑

n�−∞
c+
f (n)qn +

∑
n<0

c−f (n)Γ(k − 1, 4π|n|y)qn.

l l
Holomorphic part f + Nonholomorphic part f −

Remark

Ramanujan’s mock theta functions are examples of f +.
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Fourier expansions

Relation with classical modular forms

Fundamental Lemma

If ξw := 2iyw ∂
∂τ , then we have a surjective map

ξ2−k : H2−k −→ Sk ,

Moreover, it has infinite kernel and satisfies

ξ2−k(f ) = ξ2−k(f −).

Question

Are there canonical preimages for cusp forms of elliptic curves?
If so, what do the f + tell us?
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If so, what do the f + tell us?
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Weierstrass

Notation. Let E be an elliptic curve.

E ∼= C/ΛE

E : y 2 = 4x3 − 60G4(ΛE )x − 140G6(ΛE ).

In terms of the Weierstrass ℘-function, we have

z → Pz = (℘(ΛE ; z), ℘′(ΛE ; z)).
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Weierstrass zeta-function

Definition

The Weierstrass zeta-function for E is

ζ(ΛE ; z) :=
1

z
+

∑
w∈ΛE\{0}

(
1

z − w
+

1

w
+

z

w 2

)
.

Remark

It is easy to compute because

ζ(ΛE ; z) =
1

z
−
∞∑
k=1

G2k+2(ΛE )z2k+1.
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II. Mock modular forms and elliptic curves

Elliptic curves and ζ(ΛE ; z)

Remarks

We have the well-known “addition law”

ζ(ΛE ; z1+z2) = ζ(ΛE ; z1)+ζ(ΛE ; z2)+
1

2

℘′(ΛE ; z1)− ℘′(ΛE ; z2)

℘(ΛE ; z1)− ℘(ΛE ; z2)
.

For E with CM, Birch and Swinnerton-Dyer famously proved

L(E , 1) = “finite sum of special values of ζ(ΛE , s)”.

Question

Does ζ(ΛE ; z) reveal arithmetic information for all E/Q?
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II. Mock modular forms and elliptic curves

Elliptic curves E/Q

There is a FE (τ) =
∑

aE (n)qn ∈ S2(NE ) with

L(FE , s) = L(E , s).

We have the modular parameterization

φE : X0(NE )→ C/ΛE
∼= E .

This theory makes use of the Eichler integral of FE is

EE (τ) = −2πi

∫ i∞

τ
FE (z)dz =

∞∑
n=1

aE (n)

n
· qn.
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II. Mock modular forms and elliptic curves

Inspired by a recent paper of Guerzhoy...

Theorem (Alfes, Griffin, O, Rolen)

We define

ZE (z) := ζ(ΛE ; z)− S(ΛE )z − deg(φE )

4π||FE ||2
· z ,

where

S(ΛE ) := lim
s→0

∑
w∈ΛE\{0}

1

w 2|w |2s
.

Then ẐE (τ) := ZE (EE (τ)) is a harmonic Maass function.

Remark

There is a canonical modular function ME (τ) for which
Ẑ+
E (τ)−ME (τ) is holomorphic on H.
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Then ẐE (τ) := ZE (EE (τ)) is a harmonic Maass function.

Remark

There is a canonical modular function ME (τ) for which
Ẑ+
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II. Mock modular forms and elliptic curves

Remarks

1 We refer to Ẑ+
E (τ) as the Weierstrass mock modular form.

2 The coefficients of Ẑ+
E (τ) are Q-rational if E has CM,

and are presumably transcendental otherwise.

3 Divisors of deg(φE ) are congruence primes for FE (τ).

4 The expansion at the cusp 0 encodes L(FE , 1), and gives
information about Q-rational torsion.
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II. Mock modular forms and elliptic curves

The Congruent Number Problem (CNP)

Problem (Open)

Determine the integers which are areas of rational right triangles.

Example

1 The number 6 is congruent since it is the area of (3, 4, 5).

2 The number 3 is not congruent. Prove it.

3 The number 157 is congruent, since it is the area of(
411340519227716149383203

21666555693714761309610
,

680 · · · 540

411 · · · 203
,

224 · · · 041

891 · · · 830

)
.
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II. Mock modular forms and elliptic curves

A Classical Diophantine Criterion

Theorem (Easy)

An integer D is congruent if and only if the elliptic curve

ED : Dy 2 = x3 − x

has positive rank.

Remark

Tunnell (1983) gave a conditional solution to the CNP using work
of Coates and Wiles on BSD for CM elliptic curves.
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Ranks of quadratic twists

Definition

Let E/Q be the elliptic curve

E : y 2 = x3 + Ax + B.

If ∆ is a fund. disc., then the ∆-quadratic twist of E is

E (∆) : ∆y 2 = x3 + Ax + B.
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Birch and Swinnerton-Dyer Conjecture

Conjecture

If E/Q is an elliptic curve and L(E , s) is its L-function, then

ords=1(L(E , s)) = rank of E (Q).

A good question. How does one compute ords=1(L(E , s))?
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Kolyvagin’s Theorem

Theorem (Kolyvagin)

If ords=1(L(E , s)) ≤ 1, then

ords=1(L(E , s)) = rank of E .

Question

How does one compute L(E , 1) and L′(E , 1)?
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Formulas for L-values and derivatives

Formulas for L(E (∆), 1)

Theorem (Shimura-Kohnen/Zagier-Waldspurger)

There is a weight 3/2 modular form

g(z) =
∞∑
n=1

bE (n)qn

such that if ε(ED) = 1, then

L(E (∆), 1) = αE (∆) · bE (|∆|)2.
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Formulas for L-values and derivatives

The Gross-Zagier Theorem

Question

What about derivatives?

Theorem (Gross and Zagier)

Under suitable conditions, L′(E (∆), 1) is given in terms of heights
of Heegner points.
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Formulas for L-values and derivatives

Natural Question

Question

Find an extension of the Kohnen-Waldspurger theorem giving both

L(E (∆), 1) and L′(E (∆), 1).
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Results on L-values and derivatives

A new theta lift

Using recent work of Hövel, we define a “theta lift”

I : H0 −→ H 1
2
.

“Theorem” (Alfes, Griffin, O, Rolen)

We have the Hecke equivariant commutative diagram:

H0(NE ) −→ξ0 S2(NE )

↓I ↓Shintani

H 1
2
(4NE ) −→ξ 1

2

S 3
2
(4NE ).
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Results on L-values and derivatives

L-values and derivatives

Theorem (Alfes, Griffin, O, Rolen)

Define let fE (τ) := I(ẐE (τ)), and let

fE (τ) =
∑

n�−∞
c+
E (n)qn +

∑
n<0

c−E (n)Γ(1/2, 4π|n|y)q−n.

If E/Q has prime conductor p and ε(E ) = −1, then we have:

1 If ∆ < 0 and
(

∆
p

)
= 1, then

L(E (∆), 1) = α̃E (∆) · c−E (∆)2.

2 If ∆ > 0 and
(

∆
p

)
= 1, then

L′(E (∆), 1) = 0 ⇐⇒ c+
E (∆) is algebraic.



Special functions and numbers related to mock modular forms

II. Mock modular forms and elliptic curves

Results on L-values and derivatives

L-values and derivatives

Theorem (Alfes, Griffin, O, Rolen)

Define let fE (τ) := I(ẐE (τ)), and let
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∑
n<0

c−E (n)Γ(1/2, 4π|n|y)q−n.

If E/Q has prime conductor p and ε(E ) = −1, then we have:

1 If ∆ < 0 and
(

∆
p

)
= 1, then

L(E (∆), 1) = α̃E (∆) · c−E (∆)2.

2 If ∆ > 0 and
(

∆
p

)
= 1, then

L′(E (∆), 1) = 0 ⇐⇒ c+
E (∆) is algebraic.
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II. Mock modular forms and elliptic curves

Results on L-values and derivatives

Example for E : y 2 = x3 + 10x2 − 20x + 8.

∆ c+(−∆) L′(E∆, 1) rk(E∆(Q))

1 −2.817617849 . . . 0.30599977 . . . 1
12 −4.88527238 . . . 4.2986147986 . . . 1
21 −1.727392572 . . . 9.002386800 . . . 1
28 6.781939953 · · · 4.327260249 . . . 1
33 5.663023201 . . . 3.6219567911 . . . 1

...
...

...
...

1489 9 0 3
...

...
...

...
4393 33

5 0 3
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II. Mock modular forms and elliptic curves

Results on L-values and derivatives

Remarks

1 Have a general thm for all E (in terms of vector-valued forms).

2 Explicit formulas for c+
E (∆) as CM traces of ẐE (τ).

3 By Bruinier the c+
E (∆) are “periods of diff’s of the 3rd kind”.

4 The commutative diagram requires careful normalizations.

5 Proof of the last theorem is a “canonical choice” of a weight
1/2 harmonic Maass form in previous work of Bruinier and O.
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Special functions and numbers related to mock modular forms

Summary

I. Ramanujan’s Strange Conjecture...

Theorem (Folsom-O-Rhoades)

If ζ is an even 2k order root of unity, then

lim
q→ζ

(f (q)−(−1)kb(q)) = −4
k−1∑
n=0

(1+ζ)2(1+ζ2)2 · · · (1+ζn)2ζn+1.

Remark

A special case of a thm on Dyson’s mock theta, Weierstrass’
σ-function, and quantum mod forms.
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Summary

II. Weierstrass mock modular form

Armed with FE (τ) and ζ(ΛE ; z), we directly obtain:

1 Canonical weight 0 harmonic Maass form ẐE (τ).

2 Canonical weight 1/2 harmonic Maass form fE := I(ẐE ; τ).
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Summary

Special BSD numbers...

Theorem (Alfes, Griffin, O, Rolen)

If E/Q has prime conductor p and sfe −1, then we have:

1 If ∆ < 0 and
(

∆
p

)
= 1, then

L(E (∆), 1) = α̃E (∆) · c−E (∆)2.

2 If ∆ > 0 and
(

∆
p

)
= 1, then

L′(E (∆), 1) = 0 ⇐⇒ c+
E (∆) is algebraic.
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