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1. Moduli spaces M 4, My 5, My 1, M1 9
Let Mg, denote the moduli space (stack
defined over QQ) of the smooth proper curves
of genus g with n marked points (2 —2¢g —
n < 0).

In this talk, we will mainly be concerned
with the following four types of moduli
spaces.

My 4 =Pt —{0,1,00}

Mys = P2 — {complete quadrangle}

M 1 = the fine version of “j-line”

My 9 = the universal family of affine ellip-

tic curves



The etale fundamental group m1(Mgn/q@)
1s called the Galois-Teichmuller modular
group of type (g,n): There is a group ex-

tension

where,

Go = Gal(Q/Q),
T (Mg.n/ @) is naturally identified with the

profinite completion of the corresponding

mapping class group.



2. Gg < GT (Belyi, Drinfeld, Thara)
We fix an embedding Q — C.
The standard (tangential) base point 01 is

by definition the generic geometric point
01 : Spec@{{t}} — P} — {0,1, 00},

where ¢ is the fixed coordinate of P!, and
0
Q{fr}} = J Q™)
n=1

is the Puiseux power series field (known as
algebraically closed).
The G acts on the coefficients of each el-

ements of Q{{t}}, which induces the Ggr
action on 71 (P} — {0, 1,00}, ()7)



In general, given (tangential) base points

on an algebraic variety V' over Q:

there arises a natural Gg-action on the set
of paths m1(V, 7, 7).

This notion can be rigorously defined by
Grothendieck interpretation of a “path”
v : ¥ — ¥ as a natural equivalence of
set-valued functors ®z< @z on the Ga-
lois category Et(V): For o € G, o(7) is

the compatible collection of isomorphisms
~1

{@(Y)ﬁ@g(y)&q)ﬂ()/)?— O (Y)

() (%

}YeEﬂVf



Let x, y denote the standard loops running
around the punctures ¢t = 0,1 so that z =
(zy) ™! runs around ¢t = oo.

The geometric fundamental group
m1(PL — {0,1, 00} 01)

1s a free profinite group generated by the

T, Y.




The GQ—action can be described in the fol-

lowing form:

Here 0 € G, A = A(0) € 7* is the cyclo-

tomic character, and f(X,Y) = fo(X,Y)

denotes an element (of the commutator sub-
group) of the free profinite group generated

by the symbols X, Y.

By freeness, f(A, B) makes sense when-

ever substituting for (X,Y') any pair of el-

ements (A, B) of any profinite group.
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It is known by Drinfeld, Thara that the
pairs (Ag, fo(X,Y)) satisfies the following

three equations :

(1)

X, Y)Y, X)=1,
(IT) f(X,Y

X7 f(Z,X)Z° 7

)\ 1

f
f
(Y, 2)Y 7 =1,
(
(

~~

(1) f(z12, w93) f (234, T45) f (251, T12)

f(xag, x34) f (x5, x51) = 1

The last equation (III) holds in 71 (M 5/ @)

for certain standard braid generators Tij

(1 < 1,7 < 5) of 7T1(M075/@). These
equations reflect symmetry of the moduli

spaces My 4 = P! —{0,1, 00} and My 5.
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The Grothendieck-Teichmilller group GT
is the group formed by those pairs (A, f(X,Y))
satisfying (I),(II),(I11) and inducing auto-
morphisms of the free profinite group ]3’2
by X — XY — f(X, Y)Y f(X,Y).
(Multiplication in GT is the composition
as automorphisms of F5.)

Theorem

(Thara, Lochak-Schneps, Harbater-Schneps)
GT is the automorphism group (D Gg)
of a certain tower of braid groups or Te-

ichmiiller modular groups w1 (Mg ,,/ @).



A new version of the Grothendieck-Techimiiller
group II' is introduced to be the group of
the invertible pairs (A, f) satisfying (I),(I1),(I1T)

and

(111') f(a1as3, z23)
= (245, x51) f (212, 223) f (234, 45),

g 4 _
(IV) f(ay,a3) = ay?f(a3, a3)a;*(a1ag) ~0P2.

Based on the fundamental topological work
of Hatcher-Lochak-Schneps, we obtain:
Theorem(N. -Schneps):

" (O Gg) acts on a tower of all types of
Teichmiiller modular groups 71 (Mg x /@)

extending the natural Gg-action on them.

10



- Observation

(111') f(ajas3, z93)
= g(z45, x51) f (212, x23) f (234, T45),

g 4 _
(IV) f(ay,a3) = ay?f(a3, a3)a;”(a1ag) ~0°2.

(I1I") is an equation in 1 (Mg 5/ @) (which
implies (11I)).

(IV) is an equation in the profinite braid
sroup Bs.

ai, a9, as, ... denote (images of) the stan-
dard generators of braid groups (a;a; =
ajaiif[i—j| > 2; aja;110; = aj110;a541.)

e What are g(X,Y), po”
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3. Auxiliary parameters g, po
The main parameter fy(z,y) for o € Gg
has interpretation in m1(PL — {0, 1, 00})

Q
as follows. Let 07, ﬁ be tangential base

points defined by Q{{t}}, Q{{1—t}}, and
let v be the shortest path from 01 to ﬁ

along the real line. The Galois group Gg
acts on the paths Wl(OT, ﬁ) and the com-
position y-o(y) ™! gives a loop € m(P%@—
{0,1, 00}, 07) We have then:

v-0(y)"' = folz,y) (0 € G).
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Now we divide the path = into the halfs:

y=6-0(5)"",
0 1£ % 1
@ - )
5 6(3)

where ¢ is the path from 0_1> to % and
0 € Aut(Pl): 0(t) =1 —t.

Lochak-Schneps introduced g4(X,Y) by

6-0(8) " = gol.y) (0 € Gy).
The parameter ¢ = ¢, 1s characterized
uniquely by the property

g(Y, X)"lg(X,Y) = F(X,Y).

This characterization can be used to ex-

tend the parameter g from G to GT.
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Lochak-Schneps also introduced another use-

ful 1-cocycle: i.e., instead of t = %, one can

consider t = £ exp(27i/6) for additional
base points, which are fixed points of the

automorphism

1

Then, there arises another parameter h(X,Y)
on GT characterized by

—\
FX,Y) =y T h(Y. Z)" (X, Y),
if A=1 mod 6,

y 7 h(Y, Z2) "y (X, Y),

if A= —1 mod 6.
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The “profinite-word” ¢g(X,Y) is in general
not lying in the commutator subgroup of
the free profinite group of generators X, Y.

The abelianization is of the form
g(X,Y) = (XY)P? mod commutators

for some scalar py € A
It is known that po extends the Kummer

1-cocycle for the roots of 2 on G, namely,

o(V/2)
2

-9 (s eGy).
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More systematic method to define Kum-
mer 1-cocycles p, (a € N) and their gener-
alizations for GT were developed recently
by Ihara.

Using G.Anderson’s hyperadelic Gamma
tunctions and other arithemetic tools, Thara
introduces between G and GT more in-
termediate subgroups @, GTK etc.
Yet, nobody knows whether there are pos-

sible equalities among the inclusions:
Gg C {I',GTA,GTK} C GT.
Recent inclination is to suspect at least

Gg # GT.
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4. More geometry of My 4 = Pl —
{0,1, 00}

The quotient line of P% modulo the S3-
symmetry is essentially the j-line of the
elliptic modulus. We denote this line by

P! coordinatized by
27 At —1)?
A2 —t+ 1)

The cover ¢ : P% — PL is ramified over

s = ¢(t)

s = 0, 1, oo, ramification indices over s =

1, s = oo must divide 2,3 respectively.
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Write xs, ys, 25 for the standard loops run-
ning around s = 0, 1, oo, then one gets an

open lmmersion:
ﬂ-l(PI:f[ T {07 17 OO})
1 2
— m(Py — {0,1,00})/((y%, 2°))
Recall we had a path ¢ from 07 to % on P%.
On the other hand, we have 4 from 07 to

ﬁ for the s-coordinate on PL. Calculating

how ¢ maps tangential base points, we get:

o 5 % over /P}

ol e

4 !
WO “_”/ 12B over /P<]é
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Since the G-actions on 0, 4 produce the
profinite words g5(,y), fo(Zs,ys), we get

arelation in 71(PL1—{0,1,00})/{{y*, 2%)),
roughly in the following form:

9o(x,y) = folzs,ys) (0 € Gg).
Similar considerations on the intermediate
covers and a certain lifting through the sur-
jection

Bs — m(Ps — {0, 1,00} ;5)/{(v*, %))
yields equations representing g,, hgs di-

rectly by fqs :
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Theorem (N. -Tsunogai)
For o € G, we have the following equa-

tions in B3 = (a1as | ajaga; = asajas):
_ —2p9+3
go(af, a3) = n*P2 P8 fy(a1,n)a; P2,
4

Here, n designates ajasaq.

We also have similar equations for hy:

Theorem (N. -Tsunogai)

:F—p3

o 3p3—2pp— 25

ha(ai CL;) (€i>p2+ fa<a17 fi
/\$1 AF1-6p3 AFL

= ()T f (a2 )0 T

Y

Here, &4, £ denote aja9, agsa; respec-
tively, and the sign F is taken according

as A = £1 mod 6 respectively.
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Equating RHSs of the above formulae, we

obtain equations involving only f4:

_ 2
(IV") f(a1,a1a9) = (a1as) P2 f (a3, ajas)a;™,

_ 609—3
(V) flay,n) = 0P~ P2f (a7, n)a,;”? P,

Theorem (N. -Schneps)

(1V') fa(a1, a3) =

4,02 24 2p2(0 )< 2>—2p2(0),

fa(ala ag)a ai1dg

Historically, (IV) was found from My 5 =
Mj 9, and then a stronger (IV') was ob-
tained. Finally, (IV') was rephrased as
(IV") fitting into the framework of the Ss-
cover of j-line: (IV) < (IV') & (1IV").
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5. Family of elliptic curves

The moduli stack M7 9 parametrizes (E, O, Q),
the elliptic curves with one distiguished
point other than the origin.

The geometric fundamental group

My 2 = m(Mi2/g)

is the profinite completion of the mapping
class group of torus with two marked points,

generated by certain Dehn twists ay, a9, as.
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These Dehn twist generators satisty the

braid relations:

ajag = agatg,

;0410 = a; 100,41 (1 =1,2).

In fact, it is known that 91; o = le", where

B} means the braid group modulo center.
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The natural forgetful morphism Mj 9 —
My 1 gives the universal family of elliptic
curves over the “fine j-line” Mjp 1. The
geometric fundamental group My 1 of the
latter stack is isormophic to the profinite
completion of Sli9(Z) which is isomorphic
to By = Bs/(n").

The above forgetful morphism induces a

surjection

A //\ A

My 9 = Bf — SLo(Z) = B}

24



The kernel Ker(B} — B3) is the free profi-
nite group generated by

T = al_lagagag_lala;l, T9 = ala?)_l.

1 — (x1,29) — By — B3 — 1

If we put z = (ajas)® in BZ, then it holds
that 5131562:6‘1_1:62_12 = 1; giving the rela-
tion for the fundamental group of elliptic

curve minus origin, where z gives mon-

odromy around the origin.
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Given an elliptic curve (F, O) over Q, we
have a representing homomorphism Gg —
m1(Mi,1) such that the pull back of the im-
age in (M 9) is isomorphic to w1 (£ \
{oy).

In this way, 71 (M 2) encodes all informa-
tion of the punctured elliptic curves.
According to Grothendieck’s anabelian con-
jecture (settled by Tamagawa, Mochizuki),
the isomorphism classes of hyperbolic curves
over number fields are determined by the

arithmetic fundamental groups.
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We want to know various aspects of
I — My 9 — 7T1(M172) — GQ — 1.

Note that the middle group may also be
divided as

1 — (@1, 29) = m(My2) = m (M) = 1

/\

with 7T1(M1,1) = GQ X Slig(Z).
In other words, we want to know how three

profinite groups

//\

GQ, SL2<Z) and FQ

are interacting together in 71 (M7 2/q)-
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6. Tate elliptic curve
Let g be a variable.
The Tate elliptic curve over the field Q((q))

in Weierstrass form is defiend by :

Y2 =4X3 — go(q) X — g3(q),

where
By
g2(q) = 20(——+ > o3(n)dh),
n>1
(6) = 53 ~ L os(ole”)

(B4 = —1/30, Bg = 1/42 are the Bernoulli
numbers and o(n) is the sum of the k-th

powers of the divisors of n.)
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Using the Q-Puiseux power series 1n ql/ N

and /N (t = —2X/Y, N > 1), one
can define a standard tangential base point
near the origin (= infinity point). The
picture of the affine Tate elliptic curve is
tagent to the degenerate fibre of My 9 —
Mj 1 over the point j = oo, and so is

the fundamental groups. The above tan-

gential base point gives a section G —

m1(M7,2).
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Theorem. The Galois action on z1 =

ay 1a3a2a3 1a1a2_1 and x9 = a1a3—1 Is given

by the formula:

1-A
X1+ 2 2 f(Z'lQZ'QCIZ‘l ; )xlf(xQ ; ) 1

'CCQ'_)f(:EQ 3 )5132f(£l72 ) ) :

ZI—>Z)\

where (X, f) € GT is the corresponding

pair to o € Gg.

The above “limit G-action”on x1, z9, 2
can be generalized to arbitrary type of max-

imal degeneration of marked algebraic curves

(N., Amer. J. Math. 1999).
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This is a description of vertical tube (near
the degenerate curve) in the moduli space
Mj 9. For the horizontal tube (near the
origins locus), it is useful to lift things to
level 2 elliptic curves, as the level 2 modu-
lar curve 2 P! — {0,1, 00} | This lies in
M 5|2] tangent to the origins locus.

Combining these vertical and horizontal

description, we get a G-action on the

whole 21 o as follows:

(n = ajasay)
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Here, the tangential base point difters from
the above one by the factor (a?)*2 accord-
ing to the fact that the principal coefficient
of the level 2 modular function A(q) is 16.
The original guess of the equation (IV)
was obtained by (carefully) comparing the

above action with the standard G@ action

on B4:
o(ay) = a3,
olag) = f
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Remark (N. -Schneps) The above Gg-
action on the standard Dehn twist genera-
tors a1, as, ag can also be “systematically”
generalized to the II'-action on the general

mapping class groups Mg 5.
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The story of Galois-Teichmuller modular
eroups of small type also should continue
more, as Grothendieck called them as “real

jewel” in his Esquisse d'un Programme.
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