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Consider covers ¢ : X — PL with r branch with
this equivalence: ¢ : X — Pl is D-equivalent to
¢ : X' — Pl if there is a smooth deformation
from ¢ to ¢’ through r branch point covers.

Deformation means there is a total family & :
T — S x Pl with prg : S xPL — S and pr, :
S x PI — Pl projection maps. Further:

e 7 and prgo @ are smooth; & is finite.

e For s S, a fiber prods: 75 — s x PL is an
r branch point cover.

e For s,s" € S, Ts (resp. T) is inner (or ab-
solute, reduced) equivalent to ¢ (resp. ¢').



MOTIVATION

Take all curves, and covers over C. If GQ ac-
tion occurs, assume everything defined over Q.
Let ¢ : X — PL be a cover. Call it a (G,C)
cover (or in the Nielsen class Ni(G,C)) if G is
the group of its Galois closure ¢ : X — Pl and
its local monodromy groups are in the set of
conjugacy classes C.

Problem! Given (G, C):

e Explain the geometric significance of D-
equivalence classes of (G, C) covers.

e Find fields of moduli and G@ orbits of such
classes.



MAIN DEFINITION

Up to D-equivalence may assume two covers
have the same branch points. For

def
g — (gla'” 797“) S GT? I—I(g) — g1 -°-3gr-

Then, g € Ni(G, C) means:

geC, (gg =G and N(g) = 1.

Two D-equivalent covers are in the same Nielsen
class Ni(G,C) computed from classical gener-
ators on the r-punctured sphere.

Given (G, C), consider vy : H—G, and a choice
of conjugacy classes Cy: r conjugacy classes
lifting to H those of C.

For g € Ni(G,C), consider the (H, Cy)-lifting
invariant: sy c,(9)=

{N(g*) | g* = g mod ker(yy), g* € Cy, (¢%) = H}.



MAIN TOOL

Use )y for the collection of sy ¢, (g) running
over all (H,Cy) to separate D-inequivalent el-
ements in Ni(G,C). Recall the Hurwitz mon-
odromy group H, from [Fri99, Talk 2].
Lemma 1. ), is an Hy, invariant:

su,cy(9) = su,c,;((9)Q) for Q € Hr,
any (H,Cyg). It is a D-equivalence invariant.

Definition 2. Call g and ¢’ in Ni(G, C) Nielsen
separated if the collection )g differs from yg,.

Question 3. Does this reasonably (practically,
significantly) separate D-equivalence classes?



GROUP THEORY THAT WORKS

Here is a situation that produces several D-
equivalence classes (H, orbits) in a Nielsen class.
Let ¢ : H—G be a Frattini central extension
with ker(vy) of order prime to the orders of
elements in C. Choose Cygy to be the lifted
conjugacy classes of C with the same orders.
Lemma 4. For g € Ni(G,C), sg.c,(9) = s(g)
is a single element. Assume Ni(G,C) %= 0 and

e conjugacy classes in C appear many times.

Then {s(g) | g € Ni(G,C)} = ker(v). So, there
are at least |ker(«)| orbits for H, on Ni(G, C).



SMALL H—G EXAMPLE

Example 5. Letn >4, A, =G, and C = Cgr:
r > n — 1 repetitions of conjugacy class of 3-
cycles. Take Z/2 — A, — A, the Spin cover of
A,. With H = A,,, hypotheses of Lem. 4 hold.
For g € Ni(Ap, C3r), s(g) € {£1}.

Nielsen separation components, Ex. 5 [Fri96]
Genus at (n,r) of degree n cover: g, =r—n+1

of the Galois cover: g,, = =22
g>1 1<g
—> XD XD —
9=0 O0=g
® D
n>4 | neven | nodd|4<n

Locations containing symbols ® or & attach
to pair (n,r). Labels for rows are by genuses
of degree n covers of PL. Each symbol is one
component: @ means lifting invariant is value
-1: @ that it is +1.



REMAINING TOPICS

Nielsen Separation uses complicated witness-
ing pairs (H,Cyg). In the last example, (H,Cgy)
witnessing separation is a small cover of (G, C).
Remaining topics relate to Frattini covers.

e Relation of H = A,,, G = A,, to 6 functions.
e Using A, when G < Aj,: Serre’s Theorem.

e Complete D-equivalence separation for C
large: Conway-Parker Theorem ([CP87],

[FV91, App]).

e How the universal p-Frattini cover of G shows
Conway-Parker isn't enough: Infinitely many
groups with C fixed.

I cover these topics until I run out of timel



-CHARACTERISTICS

Definition 6. Let X be a compact Riemann
surface, and w a meromorphic differential on
X. Suppose {Uq, ¢a}acr iS @ coordinate chart
for X and ¢%(w)(za) = (fa(za))?dze. Then,
fa(za)Vdzo is a half-canonical differential. It
defines a (meromorphic) section of some sheaf,
attached to a divisor (Vdw): 2(vdw) is in the
canonical class.

Example 7. Let ¢ : X — PL be a cover with
odd order ramification. Then, 4/d¢ is a half-
canonical differential. If v € PSL>(C), (1/d(y 0 ¢))
is linearly equivalent to (1/d¢$) on X.




APPEARANCE OF 6-FUNCTIONS

Let [D] be a 6-characteristic. Denote divisor
classes of degree d on X by Picé(X). There
is a natural map X971 — Pic9~1(X). Denote
its image by ©x. Then, ©x — [D] defines a
divisor in Pic%(X): The © divisor attached to
[D]. Let L(D) ={f e C(X) | (f) + D > 0}.

According to dimg L(D) mod 2, [D] is called
even or odd. If [D] is odd, the corresponding
6 function is odd. So it is zero at the origin.
The following is a special case of [Ser90b]

Let @p : Xp — PL run over equivalence classes
of covers parametrized by p € H(A,, Csr)'Nrd.
Theorem 8. (@) is even if and only ifp is
on the @ component of H(An, Czr)'.



A THETA NULL

Example: If H, orbit on Ni(A,, C3r) contains
H-M reps. ([Fri99, Talk 4]), it gives @ compo-
nent of H(An, Csr)'9. Moduli map:

MUn,r - P € H(An, CST)in = [Xp] € M;

gn,r
Let 8p be the theta function (almost canonical)
on the universal cover of Pic%(Xp) (p on the @
component). Let 0 be the origin of Pic®(Xp).
Theorem 9. If un, Is generically surjective,
then © x — [Dp] doesn’t contain the origin of
PicO(Xp) for most p in @ component. Also,
6p(0) is locally nonconstant as a function of p.

Yet, un,r isn't often generically surjective. Let
0p(0) be its value at the origin.

10



A VARYING THETA NULL

Theorem 10 (Tentative). 0,(0) is locally non-
constant.

Idea! So, 6p(0) is an automorphic function on
H(An,C3r)9. (Case: r=4,n=5, H(A,, Csr)"
a j-line cover.)

There is a Y — Xp unramified cover with Y —
IP’% having group A,: from an A,-equivarient
2-division point on Pic%(Xp) \ {p}. As p ap-
proaches an H-M cusp, this cover degenerates.
Gives a pole of 6,(0) (inspired by [IN97]).
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SERRE'S LIFTING INVARIANT THEOREM

For g with disjoint cycle lengths sq1,...,s¢, let
w(g) = Y(s? — 1)/8.

Proposition 11 ([Ser90a]). Assume G < A,
and entries of ¢ = (g1,...,9r) € Ni(G,C) have
odd order. Let g € (A,, C) lift g. Suppose:

e Transitivity: (g) is transitive in Ap.

e Genus 0 condition: Y i_;ind(g;) = 2(n—1).

Then, s(g) det [I—q 9 = (—1)2i=1w(91)

Exercise Lifting Computation:
e g1 =((123),(134),(143)): s(g1) = —-1.

e go = ((12345),(13524),(351),(241)):
s(g) = —1 [BFr99, §5].
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D-EQUIVALENCE CLASSES: C LARGE

Let My = H2(G,C*) be the Schur-Multiplier
of G. Suppose C/,...,C} are conjugacy classes
of ¢G. Let R — G be a representation cover of
G: Central Frattini cover having Mg as kernel.
Choose C;- to be a lift of C/ to R. For g€ G
let g be any lift of g to R. Denote the set

by Rc/. The following is in [FV91, App] based
on a preprint of Conway-Parker.
Theorem 12. Given (G,C), assume:

e Fach conjugacy class in C is from the list
c,,...,Ch

e Each C! appears in C many times (how
many?).

The number of components of M, acting on

Ni(G, C) is exactly |[M/(Rc N M)|. Branch cy-

cle lemmma computes their fields of definition.
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UNIVERSAL p-FRATTINI ,G

Recall the universal p-Frattini cover ,G of G
and its characteristic quotients {G}72  [Fri99,
Talk 3,4]. Let Schy be the exponent p quotient
of the Schur multiplier of Gy..

Lemma 13. Let ker, be the kernel of ,G —
Gr. A G} quotient of kery /Kergyq is isomor-
phic to Schy. Also, |Schiy 1| > |Schg|, k > 0.
Example 14 (Use of [CP87]). Assume

e C is a fixed p’ conjugacy class of G.
e (G has nontrivial p Schur multiplier.

Let C, be r repetitions of C. Then, there is
r, With Ni(G;, Cr,) having exactly |Sch;| orbits
under Hy,, j <k.
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COMPONENTS FROM FIXED C
Use assumptions of Example 14.

e What do M, orbits of Ni(Gg, C) look like if
r iIs fixed, and k is large?

o Let G, = »Ag5/ ker;, be the k-th character-
istic quotient of »As. What do M, orbits
of Ni(G, C3a) loOK like if k is large.

Recall: When r = 4, each My orbit is a curve
whose closure covers the j-line. Denote the
My orbits on Ni(Gg, C34) by Ni(Gy, Cga)/My.
The following is from [Fri99, Talk 4].
Theorem 15. |Ni(Go,C34)/My| = 1 and the
curve component has genus 0.

Also, [Ni(Gg, C34)/My| = 2 and the curve com-
ponents have genus 12 and genus 9. Only the
genus 12 component has real points.
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Web: http://www.math.uci.edu/~ mfried/#ret, Overview of RET.
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