j-LINE COVERS AND θ -CHARACTERISTICS

Michael D. Fried, UC Irvine, October 15, 1999

Consider covers $\phi: X \to \mathbb{P}^1_z$ with r branch with this equivalence: $\phi: X \to \mathbb{P}^1_z$ is D-equivalent to $\phi': X' \to \mathbb{P}^1_z$ if there is a smooth deformation from ϕ to ϕ' through r branch point covers.

Deformation means there is a total family Φ : $\mathcal{T} \to S \times \mathbb{P}^1_z$ with $\operatorname{pr}_S: S \times \mathbb{P}^1_z \to S$ and $\operatorname{pr}_z: S \times \mathbb{P}^1_z \to \mathbb{P}^1_z$ projection maps. Further:

- \mathcal{T} and $pr_S \circ \Phi$ are smooth; Φ is finite.
- For $s \in S$, a fiber $\operatorname{pr} \circ \Phi_s : \mathcal{T}_s \to s \times \mathbb{P}^1_z$ is an r branch point cover.
- For $s, s' \in S$, \mathcal{T}_s (resp. $\mathcal{T}_{s'}$) is inner (or absolute, reduced) equivalent to ϕ (resp. ϕ').

MOTIVATION

Take all curves, and covers over \mathbb{C} . If $G_{\mathbb{Q}}$ action occurs, assume everything defined over $\overline{\mathbb{Q}}$. Let $\phi: X \to \mathbb{P}^1_z$ be a cover. Call it a (G, \mathbf{C}) cover (or in the *Nielsen class* $\mathrm{Ni}(G, \mathbf{C})$) if G is the group of its Galois closure $\widehat{\phi}: \widehat{X} \to \mathbb{P}^1_z$ and its local monodromy groups are in the set of conjugacy classes \mathbf{C} .

Problem! Given (G, \mathbf{C}) :

- Explain the geometric significance of Dequivalence classes of (G, \mathbf{C}) covers.
- Find fields of moduli and $G_{\mathbb{Q}}$ orbits of such classes.

MAIN DEFINITION

Up to D-equivalence may assume two covers have the same branch points. For

$$\mathbf{g} = (g_1, \dots, g_r) \in G^r, \ \Pi(\mathbf{g}) \stackrel{\text{def}}{=} g_1 \cdots g_r.$$

Then, $g \in Ni(G, \mathbb{C})$ means:

$$g \in \mathbf{C}, \langle g \rangle = G \text{ and } \Pi(g) = 1.$$

Two D-equivalent covers are in the same Nielsen class $Ni(G, \mathbf{C})$ computed from classical generators on the r-punctured sphere.

Given (G, \mathbf{C}) , consider $\psi_H : H \longrightarrow G$, and a choice of conjugacy classes $\mathbf{C}_H : r$ conjugacy classes lifting to H those of \mathbf{C} .

For $g \in Ni(G, \mathbf{C})$, consider the (H, \mathbf{C}_H) -lifting invariant: $s_{H,\mathbf{C}_H}(g) =$

$$\{\Pi(\boldsymbol{g}^*) \mid \boldsymbol{g}^* = \boldsymbol{g} \text{ mod ker}(\psi_H), \ \boldsymbol{g}^* \in \mathbf{C}_H, \ \langle \boldsymbol{g}^* \rangle = H\}.$$

MAIN TOOL

Use \mathcal{Y}_{g} for the collection of $s_{H,\mathbf{C}_{H}}(g)$ running over all (H,\mathbf{C}_{H}) to separate D-inequivalent elements in $\mathrm{Ni}(G,\mathbf{C})$. Recall the *Hurwitz monodromy group* H_{r} from [Fri99, Talk 2].

Lemma 1. \mathcal{Y}_{g} is an H_{r} invariant:

$$s_{H,\mathbf{C}_H}(\mathbf{g}) = s_{H,\mathbf{C}_H}((\mathbf{g})Q)$$
 for $Q \in H_r$,

any (H, \mathbf{C}_H) . It is a D-equivalence invariant.

Definition 2. Call g and g' in Ni (G, \mathbb{C}) Nielsen separated if the collection \mathcal{Y}_g differs from $\mathcal{Y}_{g'}$.

Question 3. Does this *reasonably (practically, significantly)* separate D-equivalence classes?

GROUP THEORY THAT WORKS

Here is a situation that produces several Dequivalence classes (H_r orbits) in a Nielsen class. Let $\psi: H \longrightarrow G$ be a Frattini central extension with $ker(\psi)$ of order prime to the orders of elements in C. Choose C_H to be the lifted conjugacy classes of **C** with the same orders. Lemma 4. For $g \in Ni(G, \mathbb{C})$, $s_{H,\mathbb{C}_H}(g) = s(g)$ is a single element. Assume $Ni(G, \mathbb{C}) \neq \emptyset$ and

conjugacy classes in C appear many times.

Then $\{s(\mathbf{g}) \mid \mathbf{g} \in Ni(G, \mathbf{C})\} = \ker(\psi)$. So, there are at least $|\ker(\psi)|$ orbits for H_r on $Ni(G, \mathbb{C})$.

SMALL $H \rightarrow G$ EXAMPLE

Example 5. Let $n \geq 4$, $A_n = G$, and $\mathbf{C} = \mathbf{C}_{3^r}$: $r \geq n-1$ repetitions of conjugacy class of 3-cycles. Take $\mathbb{Z}/2 \to \widehat{A}_n \to A_n$ the Spin cover of A_n . With $H = \widehat{A}_n$, hypotheses of Lem. 4 hold. For $\mathbf{g} \in \operatorname{Ni}(A_n, \mathbf{C}_{3^r})$, $s(\mathbf{g}) \in \{\pm 1\}$.

Nielsen separation components, Ex. 5 [Fri96]

Genus at (n,r) of degree n cover: $g_{n,r}=r-n+1$ of the Galois cover: $\widehat{g}_{n,r}=\frac{(r-3)n!}{6}$

$g \ge 1$	$\otimes \oplus$	$\otimes \oplus$	<u>1≤g</u>
g=0	\otimes	\oplus	0 <u>=</u> <i>g</i>
$n \geq 4$	n even	n odd	$4 \le n$

Locations containing symbols \otimes or \oplus attach to pair (n,r). Labels for rows are by genuses of degree n covers of \mathbb{P}^1_z . Each symbol is one component: \otimes means lifting invariant is value -1; \oplus that it is +1.

REMAINING TOPICS

Nielsen Separation uses complicated witnessing pairs (H, \mathbf{C}_H) . In the last example, (H, \mathbf{C}_H) witnessing separation is a *small* cover of (G, \mathbf{C}) . Remaining topics relate to *Frattini covers*.

- Relation of $H = \hat{A}_n$, $G = A_n$ to θ functions.
- Using \widehat{A}_n when $G \leq A_n$: Serre's Theorem.
- Complete D-equivalence separation for C large: Conway-Parker Theorem ([CP87], [FV91, App]).
- How the universal p-Frattini cover of G shows Conway-Parker isn't enough: Infinitely many groups with C fixed.

I cover these topics until I run out of time!

θ -CHARACTERISTICS

Definition 6. Let X be a compact Riemann surface, and ω a meromorphic differential on X. Suppose $\{U_{\alpha},\phi_{\alpha}\}_{\alpha\in I}$ is a coordinate chart for X and $\phi_{\alpha}^{*}(\omega)(z_{\alpha})=(f_{\alpha}(z_{\alpha}))^{2}dz_{\alpha}$. Then, $f_{\alpha}(z_{\alpha})\sqrt{dz_{\alpha}}$ is a half-canonical differential. It defines a (meromorphic) section of some sheaf, attached to a divisor $(\sqrt{d\omega})$: $2(\sqrt{d\omega})$ is in the canonical class.

Example 7. Let $\phi: X \to \mathbb{P}^1_z$ be a cover with odd order ramification. Then, $\sqrt{d\,\phi}$ is a half-canonical differential. If $\gamma \in \mathsf{PSL}_2(\mathbb{C})$, $(\sqrt{d(\gamma \circ \phi)})$ is linearly equivalent to $(\sqrt{d\phi})$ on X.

APPEARANCE OF θ -FUNCTIONS

Let [D] be a θ -characteristic. Denote divisor classes of degree d on X by $\operatorname{Pic}^d(X)$. There is a natural map $X^{g-1} \to \operatorname{Pic}^{g-1}(X)$. Denote its image by Θ_X . Then, $\Theta_X - [D]$ defines a divisor in $\operatorname{Pic}^0(X)$: The Θ divisor attached to [D]. Let $L(D) = \{f \in \mathbb{C}(X) \mid (f) + D \geq 0\}$.

According to $\dim_{\mathbb{C}} L(D) \mod 2$, [D] is called even or odd. If [D] is odd, the corresponding θ function is odd. So it is zero at the origin. The following is a special case of [Ser90b]

Let $\widehat{\phi}_{\pmb{p}}:\widehat{X}_{\pmb{p}}\to\mathbb{P}^1_z$ run over equivalence classes of covers parametrized by $\pmb{p}\in\mathcal{H}(A_n,\mathbf{C}_{3^r})^{\mathrm{in},\mathrm{rd}}$. Theorem 8. $(\sqrt{d\widehat{\phi}_{\pmb{p}}})$ is even if and only if \pmb{p} is on the \oplus component of $\mathcal{H}(A_n,\mathbf{C}_{3^r})^{\mathrm{rd}}$.

A THETA NULL

Example: If H_r orbit on Ni (A_n, \mathbf{C}_{3^r}) contains H-M reps. ([Fri99, Talk 4]), it gives \oplus component of $\mathcal{H}(A_n, \mathbf{C}_{3^r})^{\text{rd}}$. Moduli map:

$$\mu_{n,r}: \boldsymbol{p} \in \mathcal{H}(A_n, \mathbf{C}_{3^r})^{\mathsf{in}} \mapsto [\widehat{X}_{\boldsymbol{p}}] \in \mathcal{M}_{\widehat{g}_{n,r}}.$$

Let θ_p be the *theta function* (almost canonical) on the *universal cover* of $\operatorname{Pic}^0(\hat{X}_p)$ (p on the \oplus component). Let $\mathbf{0}$ be the origin of $\operatorname{Pic}^0(\hat{X}_p)$. Theorem 9. If $\mu_{n,r}$ is generically surjective, then $\Theta_X - [D_p]$ doesn't contain the origin of $\operatorname{Pic}^0(\hat{X}_p)$ for most p in \oplus component. Also, $\theta_p(\mathbf{0})$ is locally nonconstant as a function of p.

Yet, $\mu_{n,r}$ isn't often generically surjective. Let $\theta_p(\mathbf{0})$ be its value at the origin.

A VARYING THETA NULL

Theorem 10 (Tentative). $\theta_p(0)$ is locally non-constant.

Idea! So, $\theta_p(\mathbf{0})$ is an automorphic function on $\mathcal{H}(A_n, \mathbf{C}_{3^r})^{\mathrm{rd}}$. (Case: r = 4, n = 5, $\mathcal{H}(A_n, \mathbf{C}_{3^r})^{\mathrm{rd}}$ a j-line cover.)

There is a $Y \to \widehat{X}_{p}$ unramified cover with $Y \to \mathbb{P}^{1}_{z}$ having group \widetilde{A}_{n} : from an A_{n} -equivarient 2-division point on $\operatorname{Pic}^{0}(\widehat{X}_{p}) \setminus \{p\}$. As p approaches an H-M cusp, this cover degenerates. Gives a pole of $\theta_{p}(\mathbf{0})$ (inspired by [IN97]).

SERRE'S LIFTING INVARIANT THEOREM

For g with disjoint cycle lengths s_1, \ldots, s_t , let $\omega(g) = \sum (s_i^2 - 1)/8$.

Proposition 11 ([Ser90a]). Assume $G \leq A_n$ and entries of $\mathbf{g} = (g_1, \dots, g_r) \in \text{Ni}(G, \mathbf{C})$ have odd order. Let $\hat{\mathbf{g}} \in (\widehat{A}_n, \mathbf{C})$ lift \mathbf{g} . Suppose:

- Transitivity: $\langle \boldsymbol{g} \rangle$ is transitive in A_n .
- Genus 0 condition: $\sum_{i=1}^{r} \operatorname{ind}(g_i) = 2(n-1)$.

Then,
$$s(\mathbf{g}) \stackrel{\text{def}}{=} \prod_{i=1}^{r} g_i^* = (-1)^{\sum_{i=1}^{r} \omega(g_i)}$$
.

Exercise Lifting Computation:

- $\mathbf{g}_1 = ((123), (134), (143))$: $s(\mathbf{g}_1) = -1$.
- $g_2 = ((12345), (13524), (351), (241))$: s(g) = -1 [BFr99, §5].

D-EQUIVALENCE CLASSES: C LARGE

Let $M_G = H^2(G, \mathbf{C}^*)$ be the *Schur-Multiplier* of G. Suppose C_1', \ldots, C_t' are conjugacy classes of G. Let $R \to G$ be a representation cover of G: *Central Frattini cover* having M_G as kernel. Choose \hat{C}_j' to be a lift of C_i' to R. For $g \in G$ let \hat{g} be any lift of g to R. Denote the set

$$\{(\hat{g}_i, \hat{g}_j) \mid g_i \in \hat{C}'_i, g_j \in \hat{C}'_j, \ 1 \le i, j \le t\} \cap M_G$$

by $R_{\mathbf{C}'}$. The following is in [FV91, App] based on a preprint of Conway-Parker.

Theorem 12. Given (G, \mathbf{C}) , assume:

- Each conjugacy class in C is from the list C'_1, \ldots, C'_t .
- Each C'_i appears in C many times (how many?).

The number of components of M_r acting on $Ni(G, \mathbf{C})$ is exactly $|M/\langle R_{\mathbf{C}'} \cap M \rangle|$. Branch cycle lemma computes their fields of definition.

UNIVERSAL p-FRATTINI $_p ilde{G}$

Recall the universal p-Frattini cover $_p\tilde{G}$ of G and its characteristic quotients $\{G_k\}_{k=0}^{\infty}$ [Fri99, Talk 3,4]. Let Sch_k be the exponent p quotient of the Schur multiplier of G_k .

Lemma 13. Let \ker_k be the kernel of $_p\tilde{G} \to G_k$. A G_k quotient of \ker_k / \ker_{k+1} is isomorphic to Sch_k . Also, $|\operatorname{Sch}_{k+1}| \ge |\operatorname{Sch}_k|$, $k \ge 0$. **Example 14 (Use of [CP87]).** Assume

- C is a fixed p' conjugacy class of G.
- ullet G has nontrivial p Schur multiplier.

Let \mathbf{C}_r be r repetitions of C. Then, there is r_k with $\mathrm{Ni}(G_j,\mathbf{C}_{r_k})$ having exactly $|\mathrm{Sch}_j|$ orbits under H_{r_k} , $j \leq k$.

COMPONENTS FROM FIXED C

Use assumptions of Example 14.

- What do M_r orbits of Ni (G_k, \mathbf{C}) look like if r is fixed, and k is large?
- Let $G_k = {}_2\tilde{A}_5/\ker_k$ be the k-th characteristic quotient of ${}_2\tilde{A}_5$. What do M_4 orbits of Ni (G_k, \mathbf{C}_{3^4}) look like if k is large.

Recall: When r=4, each M_4 orbit is a curve whose closure covers the j-line. Denote the M_4 orbits on $\mathrm{Ni}(G_k, \mathbf{C}_{3^4})$ by $\mathrm{Ni}(G_k, \mathbf{C}_{3^4})/M_4$. The following is from [Fri99, Talk 4].

Theorem 15. $|Ni(G_0, \mathbf{C}_{3^4})/M_4| = 1$ and the curve component has genus 0.

Also, $|Ni(G_0, \mathbf{C}_{3^4})/M_4| = 2$ and the curve components have genus 12 and genus 9. Only the genus 12 component has real points.

- Web: http://www.math.uci.edu/~mfried/#ret, Overview of RET.
- [BFr99] P. Bailey and M. Fried, The Hurwitz monodromy group H_4 and components of an A_5 Modular Tower, 60 page preprint, Oct. 1999.
- [CP87] J.H. Conway and R. Parker, Braid group orbits and Schur multipliers, preprint, Spring 1987.
- [FrV89] M.D. Fried and H. Völklein, Unramified abelian extensions of Galois covers, Proceedings of Symposia in Pure Mathematics, Part 1 49 (1989), 675–693.
 - [Fri95] M.D. Fried, *Introduction to Modular Towers:*Generalizing the relation between dihedral groups and modular curves, vol. 186, 1995,
 Cont. Math series, Recent Dev. in IGP, pp. 111–171.
 - [Fri96] M.D. Fried, Alternating groups and lifting invariants, Preprint as of 07/01/96 (1996), 1–34.
 - [Fri99] M.D. Fried, Talks 1-4 of this MSRI Semester on website.

- [FV91] M.D. Fried and H. Völklein, *The inverse Galois* problem and rational points on moduli spaces, Math. Annalen **290** (1991), 771–800.
- [IN97] , Y. Ihara and H. Nakamura, On deformation of maximally degenerate stable marked curves and Oda's problem, J. Reine. Angew. Math 487 (1997), 125–151.
- [Ser90a] J.-P. Serre, $Rel\widehat{e}vements\ dans\ \widetilde{A}_n$, C. R. Acad. Sci. Paris **311** (1990), 477–482.
- [Ser90b] J.-P. Serre, Revêtements a ramification impaire et thêta-caractéristiques, C. R. Acad. Sci. Paris **311** (1990), 547–552.