A generalization of Magnus duality

Vu NGUYEN DINH Department of General Education University of Science and Technology of Hanoi 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam nguyen-dinh.vu@usth.edu.vn

May 31, 2025

Abstract

Let X be the finite graded set X = B + Z (where $B = \{b_1, \ldots, b_M\}$ and $Z = \{z_1, \ldots, z_N\}$) and K being a fixed ring. In this talk, we first review a Zinbiel bialgebra structure over the associative algebra $\mathbb{K}\langle X \rangle$ and its graded dual studied in [5, 1, 2]. We then use the concept of the classical Lazard elimination to construct a K-linear basis of $\mathbb{K}\langle X \rangle$ which is called Magnus basis ([3]). As the main purpose, we will explain how to use these generalized bialgebra structures over $\mathbb{K}\langle X \rangle$ to provide combinatorial tools in order to obtain the duality of Magnus basis. We claim that the duality can be automatically approached to any graded set X = B + Z where $B = \{b_{\gamma}\}_{\gamma \in \Gamma}$ and $Z = \{z_{\lambda}\}_{\lambda \in \Lambda}$ (Γ, Λ are nonempty index sets). In case X = B + Z where $B = \{x_0\}$ and $Z = \{x_{\lambda}\}_{\lambda \in \Lambda}$ (Λ : a nonempty index set, for example \mathbb{N}_+), the Magnus duality was appeared in [4], Theorem 3.2 to derive a formula of Le-Murakami, Furusho type that expresses arbitrary coefficients of a group-like series $J \in \mathbb{K}\langle\langle x_0, x_1 \rangle\rangle$ in terms of the regular coefficients of J ([4], Theorem 4.1).

This is based on join works with Prof. Gerard Duchamp and Prof. Vincel Hoang Ngoc Minh ([6]).

References

- [1] E. Burgunder, A symmetric version of Kontsevich graph complex and Leibniz homology, J. Lie Theory, 20 (1) : 127-165, 2010.
- [2] J. L. Loday, Generalized bialgebras and triples of operads, Asterisque 320 (2008), x+116 pp.
- [3] W. Magnus, A. Karass, D. Solitar, Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations, Dover Publications (1976).
- [4] H. Nakamura, Demi-shuffle duals of Magnus polynomials in free associative algebra, Algebraic Combinatorics, Volume 6 (2023) no. 4, pp. 929-939.

- [5] M. P. Schzenberger, Sur une proprit combinatoire des algbres de Lie libres pouvant tre utilise dans un problme de mathatiques appliqus, Sminaire DubreilJacotin Pisot (Algbre et thorie des nombres) (1958/59).
- [6] Vu NGUYEN DINH, Combinatorics of Lazard Elimination and Interactions, These (2023), Universit Sorbonne Paris Nord.