Multiplicative structure of some multivariate functions

Jean-Yves Enjalbert

1 Introduction

It is now well known that the famous Riemann zeta function admits a multivariate extension given by

$$\zeta(s_1;\ldots;s_n) = \sum_{n_1 > \ldots > n_r} \frac{1}{n_1^{s_1} \ldots n_r^{s_r}}$$

with, initially, s_1, \ldots, s_r being natural numbers. This family of functions is studied for both its arithmetic [1] and computational interest, particularly in quantum physics. To obtain this, an efficient coding approach has been proposed using two-letter or *n*-letter alphabets. We will generalize this process to other families of functions: colored polyzetas, reals Hurwitz polyzetas [5], multifunctional Polylerch, etc. For each of these families, we explain how their multiplicative structures relate via their coding to the φ -shuffle, defined recursively by:

$$\forall (a,b) \in X^2, \forall (u,v) \in (X^*)^2, \quad au \sqcup_{\varphi} vb = a(u \sqcup_{\varphi} bv) + b(au \sqcup_{\varphi} v) + \varphi(a,b)(u \sqcup_{\varphi} v), \qquad (1)$$

thus providing an implementable computational path. We will then begin a systematic study of φ -shuffles.

2 II- different type of φ -shuffle

In this study, we will be led to distinguish five types of φ -shuffle :

- 1. Type I : factor φ comes from a product (possibly with zero) between letters (i.e. $X \cup \{0\}$ is a semigroup).
- 2. Type II : factor φ comes from the deformation of a semigroup product by a bicharacter.
- 3. Type III : factor φ comes from the deformation of a semigroup product by a colour factor.
- 4. Type IV : factor φ is the commutative law of an associative algebra (CAA) on A.X
- 5. Type V : factor φ is the law of an associative algebra (AA) on A.X

These classes are ordered by the following (strict) inclusion diagram:

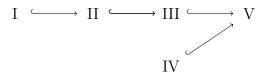


Figure 1: Hasse diagram of the inclusions between classes.

We have collected examples from the literature, with the corresponding formulas, and give a classication table.

3 III - Radford's theorem for AC-shuffle

Once the multiplicative laws are transferred via coding, it becomes easier to work on the alphabet X. This alphabet has a total order relation <, we then have the family $\mathcal{L}yn(X)$ of Lyndon words on X [3]. We will note the decompositions based on $\mathcal{L}yn(X)$ as follows:

Definition 1 Let \star be an associative law, with unit, over $A\langle X \rangle$. For any $\alpha \in \mathbb{N}^{(Lyn(X))}$ and $\{l_1, \dots, l_r\} \supset supp(\alpha)$ in strict decreasing order (i.e. $l_1 > \dots > l_r$), we set

$$\mathbb{X}^{\star\alpha} = l_1^{\star\alpha_1} \star \dots \star l_r^{\star\alpha_r},\tag{2}$$

where $\alpha_i = \alpha(l_i)$ for all *i* and, for short, $\mathbb{X} = Lyn(X)$.

We will establish the following theorem :

Theorem 3.1 Let A be a commutative ring (with unit) such that $\mathbb{Q} \subset A$ and $\sqcup_{\varphi} : A\langle X \rangle \otimes A\langle X \rangle \rightarrow A\langle X \rangle$ is associative.

If X is totally ordered by <, then $(\mathbb{X}^{\sqcup \varphi^{\alpha}})_{\alpha \in \mathbb{N}^{(\mathcal{L}yn(X))}}$ is a linear basis of $A\langle X \rangle$.

So, $\mathcal{L}yn(X)$ is a transcendence basis of $\mathcal{A} = (A\langle X \rangle, \sqcup_{\varphi}, 1_{X^*}).$

4 IV -Bialgebra structure ... in the way of Hofp algebra

It turns out to be very efficient to dualize, if possible, the algebra $\mathcal{A} = (A\langle X \rangle, \sqcup_{\varphi}, 1_{X^*})$ in the following way :

Definition 2 A law \star defined over $A\langle X \rangle$ is a dual law (or dualizable) if there exists a linear mapping $\Delta_{\star} : A\langle X \rangle \to A\langle X \rangle \otimes A\langle X \rangle$ such

$$\forall (u, v, w) \in X^* \times X^* \times X^*, \quad \langle u \star v | w \rangle = \langle u \otimes v | \Delta_\star(w) \rangle^{\otimes 2} .$$
(3)

In this case, Δ_* will be called the comultiplication dual to \star .

Here again, exactly the same conditions allow dualization :

¹This condition amounts to ask that $\mathbb{N}^+.1_A \subset A^{\times}$

Theorem 4.1 Let A be a commutative ring (with unit). We suppose that the product $\sqcup_{\varphi} : A\langle X \rangle \otimes A\langle X \rangle \to A\langle X \rangle$ is an associative and commutative law on $A\langle X \rangle$, then the algebra $(A\langle X \rangle, \sqcup_{\varphi}, 1_{X^*})$ can be endowed with the comultiplication Δ_{conc} dual to the concatenation

$$\Delta_{\rm conc}(w) = \sum_{uv=w} u \otimes v \tag{4}$$

and the "constant term" character $\epsilon(P) = \langle P | 1_{X^*} \rangle$.

(i) With this setting

$$\mathcal{B}_{\varphi} = (A\langle X \rangle, \sqcup_{\varphi}, 1_{X^*}, \Delta_{\text{conc}}, \epsilon)$$
(5)

is a bialgebra 2 .

(ii) The bialgebra (5) is, in fact, a Hopf Algebra.

So we need to find the condition over \Box_{φ} to be commutative and associative. We will given :

- **Theorem 4.2** (i) The law \sqcup_{φ} is commutative if and only if the extension $\varphi : AX \otimes AX \to AX$ is commutative.
 - (ii) The law \square_{φ} is associative if and only if the extension $\varphi : AX \otimes AX \to AX$ is associative.

Proposition 1 We call $\gamma_{x,y}^z := \langle \varphi(x,y) | z \rangle$ the structure constants of φ (w.r.t. the basis X). The product \sqcup_{φ} is a dual law if and only if $(\gamma_{x,y}^z)_{x,y,z \in X}$ is dualizable in the following sense

$$(\forall z \in X)(\#\{(x,y) \in X^2 | \gamma_{x,y}^z \neq 0\} < +\infty)$$
. (6)

4.1 The Hopf-Hurwitz algebra

In the end we explicitly give the product \coprod of <u>reals</u> Hurwitz polyzetas, and check its commutativity and associativity, making $(A\langle N \rangle, \coprod, 1_N)$ into a A-CAAU : the Radford's theorem can be generalised here.

References

- M. Waldschmidt.- <u>Valeurs zêta multiples : une introduction</u>, Journal de Théorie des Nombres de Bordeaux, **12**.2, 2000, pages 581-595.
- [2] M.E. Hoffman.- <u>Quasi-shuffle products</u>, Journal of Algebraic Combinatorics, 11 (2000), 49-68. volume 11, 2000, pages 49-68.
- [3] C. Reutenauer C.- <u>Free Lie Algebras</u>, Clarendon Press (London Mathematical Society Monographs, vol. 7, Oxford, 1993.
- [4] S. Weinzierl.– <u>Hopf algebras and Dyson-Schwinger equations</u>, Lectures given at the workshop "Dyson-Schwinger Equations in Modern Physics and Mathematics", Trento, September 2014.
- [5] J.Y.-Enjalbert and V. Hoang Ngoc Minh V.- <u>Analytic and combinatoric aspects of Hurwitz</u> polyzêtas, Journal Théorie des Nombres de Bordeaux, volume **23**(2), 2011, pages 353-386.

²Commutative and, when $|X| \ge 2$, noncocommutative.