30th Applications of Computer Algebra

Various Bialgebras of Representative Functions on Free Monoids

V. Hoang Ngoc Minh

University of Lille, 1 Place Déliot, 59024 Lille, France.

14-18 July 2025, Heraklion (Greece)

Outline

- Introduction: Fuchsian linear differential equations and functions on free monoids
- 2. Graded bialgebras $(A\langle \mathcal{X} \rangle, \mathsf{conc}, 1_{\mathcal{X}^*}, \Delta_{\coprod \cup}) \atop (A\langle \mathcal{Y} \rangle, \mathsf{conc}, 1_{\mathcal{Y}^*}, \Delta_{\coprod \cup})$
 - 2.1 Factorization of the diagonal series in the graded bialgebra $(A\langle \mathcal{X} \rangle, \text{conc}, 1_{\mathcal{X}^*}, \Delta_{\text{LLL}})$
 - 2.2 φ -deformation of shuffle product
 - 2.3 Factorization of the diagonal series in the graded bialgebra $(A\langle Y \rangle, \text{conc}, 1_{Y^*}, \Delta_{\coprod_{\wp}})$
- 3. Sweedler's dual of graded bialgebras $\frac{(K\langle X \rangle, \operatorname{conc}, 1_{X^*}, \Delta_{\coprod})}{(K\langle Y \rangle, \operatorname{conc}, 1_{Y^*}, \Delta_{\coprod})_{\varphi}}$
 - 3.1 Bialgebras $(A^{\mathrm{rat}}\langle\langle \boldsymbol{\mathcal{X}} \rangle\rangle, \sqcup 1_{\boldsymbol{\mathcal{X}}^*}, \Delta_{\mathrm{conc}})$ $(A^{\mathrm{rat}}\langle\langle \boldsymbol{\mathcal{Y}} \rangle\rangle, \sqcup 1_{\varphi}, 1_{\boldsymbol{\mathcal{Y}}^*}, \Delta_{\mathrm{conc}})$
 - 3.2 Factorization and decomposition of rational series
 - 3.3 Kleene stars of the planes

A (resp. K) denotes a ring containing \mathbb{Q} (resp. an algebraic closed field) $A\langle \mathcal{X} \rangle$ (resp. $A\langle \langle \mathcal{X} \rangle \rangle$) denotes the set of noncommutative polynomials (resp. series).

 $^{^{1}\}mathcal{X}$ denotes a finite or infinite alphabet.

Fuchsian linear differential equations and hyperlogarithms

(ED)
$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}z} q(z) &= \left(\sum_{i\geq 0} \mathbf{u}_i(\mathbf{z}) M_i\right) q(z), & \text{with } M_i \in \mathcal{M}_{n,n}(\mathbb{C}) \\ q(z_0) &= \eta, \\ y(z) &= \lambda q(z). \end{cases}$$

Let $\sigma=\{\underline{s_i}\}_{i\geq 0}$ with $\underline{s_0}=0$ and $B=\mathbb{C}\setminus\sigma$. For any $i\geq 0$, let $\underline{\omega_i}=\underline{u_i}\mathrm{d}z$. For simplification, if $i\neq j$ then $\underline{s_i}\neq\underline{s_j}$ and $\underline{s_i}=e^{\mathrm{i}\theta_i},\theta_i\in[0,2\pi[$.

Let $X = \{x_i\}_{i \geq 0}$ and $\mathcal{H}(\tilde{B})$ be the ring of holomorphic functions over \tilde{B} . Considering the following functions over the monoid $(X^*, 1_{X^*})$

considering the colorwing functions over the moloid
$$(X, 1_{X^*})$$
 $\alpha_{z_0}^z: X^* \longrightarrow \mathcal{H}(\tilde{B})$ and $\mu: X^* \longrightarrow \mathcal{M}_{n,n}(\mathbb{C}),$ defined by $\alpha_{z_0}^z(1_{X^*}) = 1_{\mathcal{H}(\tilde{B})}, \qquad \mu(1_{X^*}) = \mathrm{Id}_n,$ $\forall w = x_i v \in XX^*, \quad \alpha_{z_0}^z(w) = \int\limits_{z_0}^z \omega_i(s) \alpha_{z_0}^s(v), \quad \mu(w) = M_i \mu(v),$ one obtains $U(z_0; z) = \sum_{w \in X^*} \mu(w) \alpha_{z_0}^z(w)$ and $y(z) = \lambda U(z_0; z) \eta$.

The iterated integrals (of $\{\omega_i\}_{i\geq 0}$ and along $z_0\leadsto z$) $\{\alpha_{z_0}^z(w)\}_{w\in X^*}$, as being functions on the free monoid $(X^*,1_{X^*})$, are hyperlogarithms and their algebra is isomorphic to the shuffle $(\mathbb{C}\langle X\rangle, \underline{\omega},1_{X^*})$.

The case of hypergeometric equation (m = 1)

$$z(1-z)\frac{\mathrm{d}^2}{\mathrm{d}z^2}y(z) + [t_2 - (t_0 + t_1 + 1)z]\frac{\mathrm{d}}{\mathrm{d}z}y(z) - t_0t_1y(z) = 0.$$

Introducing $q_1(z) = y(z)$ and $q_2(z) = (1-z)\frac{\mathrm{d}}{\mathrm{d}z}y(z)$ and letting

$$\begin{split} \omega_0(z) &= z^{-1} \mathrm{d}z \text{ and } \omega_1(z) = (1-z)^{-1} \mathrm{d}z, \text{ one has} \\ \frac{\mathrm{d}}{\mathrm{d}z} \begin{pmatrix} q_1 \\ q_2 \end{pmatrix} &= \begin{pmatrix} 0 & \frac{1}{1-z} \\ \frac{ab}{z} & \frac{a+b-c}{1-z} - \frac{c}{z} \end{pmatrix} \begin{pmatrix} q_1 \\ q_2 \end{pmatrix} \\ &= \begin{bmatrix} \begin{pmatrix} 0 & 0 \\ -t_0t_1 & -t_2 \end{pmatrix} \omega_0(z) - \begin{pmatrix} 0 & 1 \\ 0 & t_2 - t_0 - t_1 \end{pmatrix} \omega_1(z) \end{bmatrix} \begin{pmatrix} q_1 \\ q_2 \end{pmatrix}. \end{split}$$
 For any $w = x_0^{s_1-1} x_1 \cdots x_0^{s_r-1} x_1 \in X^* x_1$, where $X = \{x_0, x_1\}$, one has

 $\alpha_0^{z}(w) = \operatorname{Li}_{s_1, \dots, s_r}(z) = \sum_{\substack{n_1 > \dots > n_r > 0 \\ n_1 > \dots > s_r}} n_1^{-s_1} \cdots n_r^{-s_r} z^{n_1},$ $(1 - z)^{-1} \operatorname{Li}_{s_1, \dots, s_r}(z) = \sum_{n > 0}^{\sum_{r > 0}} \operatorname{H}_{s_1, \dots, s_r}(n) z^n,$

$$\mathbf{H}_{\mathsf{s}_1,\cdots,\mathsf{s}_r}(n) = \sum_{\substack{n \geq 0 \\ n \geq n_1 > \cdots > n_r > 0}} n_1^{-\mathsf{s}_1} \cdots n_r^{-\mathsf{s}_r}.$$

The map Li_{\bullet} (resp. H_{\bullet}) is a function on $(\mathbb{N}_{\geq 1})^*$ to the rings of holomorphic (resp. arithmetical) functions $\{\mathrm{Li}_{s_1,\cdots,s_r}\}_{s_1,\cdots,s_r\geq 1}$ (resp. $\{\mathrm{H}_{s_1,\cdots,s_r}\}_{s_1,\cdots,s_r\geq 1}$).

For
$$s_1 > 1$$
, $\lim_{r \to 1} \text{Li}_{s_1, \dots, s_r}(z) = \lim_{n \to +\infty} \text{H}_{s_1, \dots, s_r}(n) = \zeta(s_1, \dots, s_r)$.

The case of coulored polylogarithms $(m \ge 1)$

Let
$$X = \{x_0, \dots, x_m\}$$
 and $\mathcal{O}_m = \{\rho_i\}_{1 \le i \le m}$, where $\frac{\rho_i}{\rho_i} = e^{i\frac{2\pi}{m}i}$. Let $\omega_0(z) = \frac{\mathrm{d}z}{z}$, $\omega_i(z) = \rho_i \frac{\mathrm{d}z}{1 - \rho_i z} = \frac{\mathrm{d}z}{\bar{\rho}_i - z}$, $1 \le i \le m$.

For any
$$w = x_0^{s_1-1} x_{i_1} \cdots x_0^{s_r-1} x_{i_r} \in X^*X$$
, one has
$$\alpha_0^z(w) = \operatorname{Li}_{\frac{\rho_{i_1}}{s_1}, \dots, \frac{\rho_{i_r}}{s_r}}(z) = \sum_{\substack{n_1 > \dots > n_r > 0}} \frac{\rho_{i_1}^{n_1} \cdots \rho_{i_r}^{n_r}}{n_1^{s_1} \cdots n_r^{s_r}} z^{n_1},$$

$$(1-z)^{-1} \operatorname{Li}_{\frac{\rho_{i_1}}{s_1}, \dots, \frac{\rho_{i_r}}{s_r}}(z) = \sum_{n \geq 0} \operatorname{H}_{\frac{\rho_{i_1}}{s_1}, \dots, \frac{\rho_{i_r}}{s_r}}(n) z^n,$$

$$\operatorname{H}_{\frac{\rho_{i_1}}{s_1}, \dots, \frac{\rho_{i_r}}{s_r}}(n) = \sum_{n \geq n_1 > \dots > n_r > 0} \frac{\rho_{i_1}^{n_1} \cdots \rho_{i_r}^{n_r}}{n_1^{s_1} \cdots n_r^{s_r}}.$$

The map Li_{ullet} (resp. H_{ullet}) is a function on $\binom{\mathcal{O}_m}{\mathbb{N} \geq 1}^*$ to the rings of holomorphic (resp. arithmetical) functions $\{ \mathrm{Li}_{\stackrel{\rho_{i_1}}{s_1}, \dots, \stackrel{\rho_{i_r}}{s_r}} \}_{\stackrel{\rho_{i_1}, \dots, \rho_{i_r}}{s_1, \dots, s_r \geq 1, r \geq 0}}$ (resp. $\{ \mathrm{H}_{\stackrel{\rho_{i_1}}{s_1}, \dots, \stackrel{\rho_{i_r}}{s_r}} \}_{\stackrel{\rho_{i_1}, \dots, \rho_{i_r}}{s_1, \dots, s_r \geq 1, r \geq 0}}$). For $\binom{\rho_1}{s_1} \neq \binom{1}{1}$, $\lim_{z \to 1} \mathrm{Li}_{\stackrel{\rho_{i_1}}{s_1}, \dots, \stackrel{\rho_{i_r}}{s_r}} (z) = \lim_{n \to +\infty} \mathrm{H}_{\stackrel{\rho_{i_1}}{s_1}, \dots, \stackrel{\rho_{i_r}}{s_r}} (n) = \zeta \binom{\rho_{i_1}}{s_1}, \dots, \binom{\rho_{i_r}}{s_r}.$

Functions on the free monoids $(X^*, 1_{X^*})$ and $(Y^*, 1_{Y^*})$

- Polylogarithms ($X = \{x_0, x_1\}, x_0 \prec x_1$) and hamonic sums ($Y = \{y_k\}_{k \geq 1}, y_1 \succ y_2 \succ \cdots$). $(s_1, \dots, s_r) \in \mathbb{N}_+^r \leftrightarrow y_{s_1} \cdots y_{s_r} \in Y^* \stackrel{\pi_X}{\underset{\pi}{\rightleftharpoons}} x_0^{s_1 1} x_1 \cdots x_0^{s_r 1} x_1 \in X^* x_1.$
- Coulored polylogarithms $(X = \{x_0, \cdots, x_m\}, x_0 \prec \cdots \prec x_m)$ and coulored hamonic sums $(Y = \{Y_k\}_{k \geq 1}, Y_1 \succ Y_2 \succ \cdots, \text{ where } Y_k = \{y_{k,\rho_1}, \cdots, y_{k,\rho_m}\}, y_{k,\rho_1} \prec \cdots \prec y_{k,\rho_m}).$ $\begin{pmatrix} \rho_{i_1} \\ s_1 \end{pmatrix}, \cdots, \begin{pmatrix} \rho_{i_r} \\ s_r \end{pmatrix} \in \begin{pmatrix} \mathcal{O}_m \\ \mathbb{N} \geq 1 \end{pmatrix}^* \iff y_{s_1,\rho_{i_1}} \cdots y_{s_r,\rho_{i_r}} \in Y^*$ $\stackrel{\pi_X}{\rightleftharpoons} \qquad x_0^{s_1-1} x_{i_1} \cdots x_0^{s_r-1} x_{i_r} \in X^*(X \setminus \{x_0\}).$
- Hyperlogarithms $(X = \{x_i\}_{i \geq 0}, x_0 \prec x_1 \prec \cdots)$ and extended hamonic sums $(Y = \{Y_k\}_{k \geq 1}, Y_1 \succ Y_2 \succ \cdots, \text{ where } Y_k = \{y_{k,\rho_i}\}_{i \geq 1}, y_{k,\rho_1} \prec y_{k,\rho_2} \prec \cdots)$. $\begin{pmatrix} \rho_{i_1} & \cdots & \rho_{i_r} \\ s_1 & \cdots & s_r \end{pmatrix} \in \begin{pmatrix} \sigma \\ N \geq 1 \end{pmatrix}^* \quad \leftrightarrow \quad y_{s_1,\rho_{i_1}} \cdots y_{s_r,\rho_{i_r}} \in Y^*$ $\stackrel{\pi_X}{\rightleftharpoons} \quad x_0^{s_1-1} x_{i_1} \cdots x_0^{s_r-1} x_{i_r} \in X^*(X \setminus \{x_0\}).$

In any case, for
$$\mathbf{Y} = \{y_k\}_{k \geq 1}$$
 or $\mathbf{Y} = \{y_{k,\rho_i}\}_{k \geq 1, 1 \leq i \leq m}$ or $\mathbf{Y} = \{y_{k,\rho_i}\}_{k,i \geq 1}$, $I \in \mathcal{L}yn\mathbf{X} - \{x_0\} \iff \pi_{\mathbf{Y}}(I) \in \mathcal{L}yn\mathbf{Y}$.

Graph of representative function on free monoids

Let f be a function on the free monoid $(\mathcal{X}^*, 1_{\mathcal{X}^*})$ to A. It is said to be representative iff there is finitely many functions $\{f'_i, f''_i\}_{i \in I_{finite}}$ of $A^{\mathcal{X}^*}$, choosen to be representative functions s.t.

$$\forall u, v \in \mathcal{X}^*, \quad f(uv) = \sum f_i'(u)f_i''(v).$$

The coproduct of the representative function f is defined in duality with the concatenation (denoted by conc) in \mathcal{X}^* as follows

$$\forall u, v \in \mathcal{X}^*, \quad \Delta_{\text{conc}}(f)(u \otimes v) = f(uv), \quad \Delta_{\text{conc}}(f) = \sum_{i \in I_{\text{finite}}} f_i' \otimes f_i''.$$

The graph of f is given by the following noncommutative series²:

$$S = \sum \langle S|w\rangle w$$
, where $\langle S|w\rangle = f(w)$.

Using the following pairing

$$A\langle\!\langle \mathcal{X} \rangle\!\rangle \otimes A\langle \mathcal{X} \rangle \longrightarrow A, \quad T \otimes P \longmapsto \langle T|P \rangle := \sum_{w \in \mathcal{X}^*} \langle T|w \rangle \langle P|w \rangle,$$

there is a natural duality between $A^{\mathcal{X}^*} = A\langle\!\langle \mathcal{X} \rangle\!\rangle$ and $A[\mathcal{X}^*] \cong A\langle\mathcal{X} \rangle$: $A\langle\!\langle \mathcal{X} \rangle\!\rangle = A\langle\mathcal{X} \rangle^{\vee}$.

²Any series S is a function (on \mathcal{X}^* to A) mapping $w \in \mathcal{X}^*$ to $\langle S|w \rangle \in A$. The sets of noncommutative series and of polynomials (over \mathcal{X} and with coefficients in A) are denoted by $A\langle\langle\mathcal{X}\rangle\rangle$ and $A\langle\mathcal{X}\rangle$, respectively.

$\begin{array}{l} \mathsf{GRADED} \ \mathsf{BIALGEBRAS} \ \ \overset{(A\langle\mathcal{X}\rangle,\mathsf{conc},1_{\mathcal{X}^*},\Delta_{\sqcup\sqcup})}{(A\langle\mathcal{Y}\rangle,\mathsf{conc},1_{\mathcal{Y}^*},\Delta_{\sqcup\sqcup}_{\varphi})} \end{array}$

Dual bases in graded bialgebra $(A\langle \mathcal{X} \rangle, \texttt{conc}, 1_{\mathbf{Y}^*}, \Delta_{\scriptscriptstyle{\coprod}})$

$$\mathcal{D}_{\boldsymbol{\mathcal{X}}} := \sum_{w \in \boldsymbol{\mathcal{X}}^*} w \otimes w = \sum_{w \in \boldsymbol{\mathcal{X}}^*} P_w \otimes S_w = \prod_{l \in \mathcal{L}yn\boldsymbol{\mathcal{X}}} \exp(S_l \otimes P_l),$$

where (see Reutenauer, 1993)

- \triangleright $\mathcal{L}yn\mathcal{X}$ is the set³ of Lyndon words over \mathcal{X} .
- ▶ $\{P_I\}_{I \in \mathcal{L}yn\mathcal{X}}$: basis of the Lie algebra $\mathcal{L}ie_A\langle \mathcal{X} \rangle$ and P_I is defined by $P_I = I$ if $I \in \mathcal{X}$ and $P_I = [P_u, P_v]$ if $I \in \mathcal{L}yn\mathcal{X}$ and $\mathsf{st}(I) = (u, v)$.
- ▶ $\{P_w\}_{w \in \mathcal{X}^*}$: Lyndon-PBW basis of $\mathcal{U}(\mathcal{L}ie_A\langle \mathcal{X}\rangle)$, obtained by putting $P_w = P_h^{i_1} \cdots P_h^{i_k}$ for $w = I_1^{i_1} \cdots I_k^{i_k}, I_1, \cdots, I_k \in \mathcal{L}yn\mathcal{X}, I_1 \succ \cdots \succ I_k$.
- The dual⁴ basis $\{S_w\}_{w \in \mathcal{X}^*}$, containing $\{S_l\}_{l \in \mathcal{L}yn\mathcal{X}}$, is as follows $S_l = xS_u, \qquad \text{for} \quad l = xu \in \mathcal{L}yn\mathcal{X},$ $S_w = \frac{S_{l_1}^{\text{lil}} \stackrel{i_1}{\text{lil}} \cdots \stackrel{i_N}{\text{lil}} \stackrel{i_N}{\text{lil}}}{\text{lil}}, \quad \text{for} \quad w = l_1^{i_1} \cdots l_k^{i_k}, l_1 \succ \cdots \succ l_k.$

³It forms a pure transcendence basis of $(A\langle \mathcal{X} \rangle, \mathbb{1}, 1_{\mathcal{X}^*})$.

⁴*i.e.* $\langle P_u | S_v \rangle = \delta_{u,v}$, for u and $v \in \mathcal{X}^*$.

φ -deformed shuffle products

Let φ be an arbitrary mapping defined by its structure constants

$$\varphi: Y \times Y \longrightarrow AY$$
, $(y_i, y_j) \longmapsto \sum_{k \in I} \gamma_{i,j}^k y_k$.

Let ${\,{\scriptscriptstyle \coprod}\,}_{\varphi}$ be the product ${\bf Y}^* \times {\bf Y}^* \longrightarrow {\it A} \langle {\bf Y} \rangle$ satisfying

- 1. $\forall w \in \mathbf{Y}^*$, $1_{\mathbf{Y}^*} \coprod_{\varphi} w = w \coprod_{\varphi} 1_{\mathbf{Y}^*} = w$,
- 2. $\forall a, b \in Y, \forall u, v \in Y^*,$ (R) $au \coprod_{\varphi} bv = a(u \coprod_{\varphi} bv) + b(au \coprod_{\varphi} v) + \varphi(a, b)(u \coprod_{\varphi} v),$

defining a unique mapping $\mbox{$\msup$}_{\varphi}: Y^* \times Y^* \longrightarrow A\langle Y \rangle$ which is at once extended as a law \msup_{\varphi}: A\langle Y \rangle \otimes A\langle Y \rangle \longrightarrow A\langle Y \rangle$ and \msup_{\varphi}$ is said to be dualizable if there is Δ_{\msup}_{(\msup$)}: A\langle Y \rangle \longrightarrow A\langle Y \rangle \otimes A\langle Y \rangle$ s.t. the dual mapping $(A\langle Y \rangle \otimes A\langle Y \rangle)^{\vee} \longrightarrow A\langle Y \rangle$ restricts to \msup_{\varphi}$.

- ▶ \sqsubseteq_{φ} is commutative iff $\varphi : AY \times AY \longrightarrow AY$ is so.
- ▶ ${\scriptstyle \coprod_{\varphi}}$ is associative iff $\varphi: AY \times AY \longrightarrow AY$ is so.

Example (q-shuffle product⁵, $\varphi(y_i, y_j) = q^{i+j}$)

The q-shuffle is defined, for any $y_i,y_j\in Y^*$ and $u,v\in Y^*$, by $u \mathrel{\hbox{$\sqcup$}}_q 1_{Y^*} = 1_{Y^*} \mathrel{\hbox{\sqcup}}_q u = u,$

$$u \coprod_{q} 1_{Y^{*}} = 1_{Y^{*}} \coprod_{q} u = u,$$

$$(y_{i}u) \coprod_{q} (y_{j}v) = y_{i}(u \coprod_{q} y_{j}v) + y_{j}((y_{i}u) \coprod_{q} v + q^{i+j}y_{i+j}(u \coprod_{q} v).$$

Example (product of extended harmonic sums)

For $Y = \{y_{s,i}\}_{s,i \geq 1}$, the product, in particular, of coulored harmonic sums is defined, for any $y_{s,\rho_i}, y_{r,\rho_i} \in Y^*$ and $u, v \in Y^*$, by

$$(y_{s,\rho_i}u) \uplus (y_{r,\rho_j}v) = y_{r,\rho_j}((y_{s,\rho_i}u) \uplus v) + y_{s,\rho_i}(u \uplus (y_{r,\rho_j}v)) + y_{s+r,\rho_i\rho_j}(u \uplus v).$$

 $u \perp 1_{v*} = 1_{v*} \perp u = u$.

Let $\mathcal{B}_{\varphi} = (A\langle Y \rangle, \text{conc}, 1_{Y^*}, \Delta_{\sqcup_{\varphi}})$, for ass., comm. and dualizable \sqcup_{φ} . Then the following assertions are equivalent.

- $\triangleright \mathcal{B}_{\alpha}$ is an enveloping algebra.
 - $\triangleright \mathcal{B}_{\omega} \cong (A(Y), \text{conc}, 1_{Y*}, \Delta_{\omega}), \text{ as bialgebras.}$

Now, we are in situation to consider the following Eulerian idempotent

$$\forall w \in \mathbf{Y}^*, \quad \pi_1(w) = \sum_{k \geq 1} \frac{(-1)^{k-1}}{k} \sum_{u_1, \dots, u_k \in \mathbf{Y}^+} \langle w | u_1 \coprod_{\varphi} \dots \coprod_{\varphi} u_k \rangle u_1 \dots u_k.$$

Dual bases in graded bialgebra $(A\langle Y \rangle, \mathtt{conc}, 1_{Y^*}, \Delta_{\square_{\varphi}})$

$$\mathcal{D}_{\mathbf{Y}} := \sum_{\mathbf{w} \in \mathbf{Y}^*} \mathbf{w} \otimes \mathbf{w} = \mathcal{D}_{\mathbf{Y}} = \sum_{\mathbf{w} \in \mathbf{Y}^*} \mathbf{\Sigma}_{\mathbf{w}} \otimes \mathbf{\Pi}_{\mathbf{w}} = \prod_{l \in \mathcal{L}_{\mathsf{Y}} \mathbf{n}^{\mathsf{Y}}} \exp(\mathbf{\Sigma}_{l} \otimes \mathbf{\Pi}_{l}).$$

- Letting $Y' = \{y_k'\}_{k \geq 1}$, with $y_k' = \pi_1(y_k)$, $\{\Pi_I\}_{I \in \mathcal{L}ynY}$ is a basis of the Lie algebra $\mathcal{L}ie_A\langle Y' \rangle$, where Π_I is defined by $\Pi_{y_k} = y_k'$ and $\Pi_I = [\Pi_U, \Pi_V]$ if $I \in \mathcal{L}ynY$ and $\mathsf{st}(I) = (u, v)$.
- ▶ $\{ \prod_{w} \}_{w \in Y^*}$, where for any $w = l_1^{i_1} \cdots l_k^{i_k}$ satisfying $l_1 \succ \cdots \succ l_k$ and $l_1, \cdots, l_k \in \mathcal{L}yn_{Y}, \prod_{w} = \prod_{k=1}^{i_k} \cdots \prod_{k=k}^{i_k}$.
- The dual basis $\{\Sigma_w\}_{w \in Y^*}$, containing $\{\Sigma_I\}_{I \in \mathcal{L}ynY}$, is as follows $\Sigma_I = \sum_{(*)} \frac{y_{s_{l_1} + \dots + s_{l_r}}}{i!} \Sigma_{l_1 \dots l_n}, \qquad \text{for} \quad I = yI' \in \mathcal{L}ynY,$ $\Sigma_w = \frac{\sum_{l_1}^{\coprod \bigcup_{\varphi} i_1} \coprod_{\varphi} \dots \coprod_{\varphi} \sum_{l_k}^{\coprod \bigcup_{\varphi} i_k}}{i! \coprod_{\varphi} \dots \coprod_{\varphi} \sum_{l_k} \dots i}, \quad \text{for} \quad w = l_1^{i_1} \dots l_k^{i_k}, l_1 \succ \dots \succ l_k.$

$$\sum_{w} = \frac{1}{i_1! \cdots i_k!}, \quad \text{for } w = i_1 \cdots i_k, \quad i_1 = i_k.$$

 $\begin{array}{c} \{\prod_{l}\}_{l \in \mathcal{L}ynY} \\ \{\Sigma_{l}\}_{l \in \mathcal{L}ynY} \end{array} \text{ are triangular and homogenous in weight } (b_{v}, d_{v} \in A): \\ \sum_{l} = l + \sum_{v \succ l, (v) = (l)} b_{v}v \quad \text{and} \quad \prod_{l} = l + \sum_{v \prec l, (v) = (l)} d_{v}v. \end{array}$

Hence, $(A\langle Y \rangle, \coprod_{\varphi}, 1_{Y^*})$ admits $\mathcal{L}ynY$ as pure trancendence basis.

⁶The Lyndon-PBW basis of $\mathcal{U}(\mathcal{L}ie_A\langle Y'\rangle)$.

SWEEDLER'S DUAL OF THE GRADED BIALGEBRAS $(\kappa\langle\mathcal{X}\rangle,\mathrm{conc},1_{\mathcal{X}^*},\Delta_{\sqcup\sqcup}) \atop (\kappa\langle\mathcal{Y}\rangle,\mathrm{conc},1_{\mathcal{Y}^*},\Delta_{\sqcup\sqcup_{\wp}})$

Ext. of products, coproducts over $A\langle\langle \mathcal{X} \rangle\rangle$ and Kleene stars

$$\begin{split} \operatorname{conc}, & \text{ if } A \langle\!\langle \boldsymbol{\mathcal{X}} \rangle\!\rangle \otimes A \langle\!\langle \boldsymbol{\mathcal{X}} \rangle\!\rangle \longrightarrow A \langle\!\langle \boldsymbol{\mathcal{X}} \rangle\!\rangle, & \text{ if } _{\varphi} : A \langle\!\langle \boldsymbol{Y} \rangle\!\rangle \otimes A \langle\!\langle \boldsymbol{Y} \rangle\!\rangle \longrightarrow A \langle\!\langle \boldsymbol{Y} \rangle\!\rangle, \\ & \forall S, R \in A \langle\!\langle \boldsymbol{\mathcal{X}} \rangle\!\rangle, & S \text{ if } R & = \sum\limits_{\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{\mathcal{X}}^*} \left\langle S | \boldsymbol{u} \rangle \langle R | \boldsymbol{v} \rangle \boldsymbol{u} \text{ if } \boldsymbol{v} \right\rangle, \\ & \forall S, R \in A \langle\!\langle \boldsymbol{\mathcal{X}} \rangle\!\rangle, & S \text{ if } R & = \sum\limits_{\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{\mathcal{X}}^*} \langle S | \boldsymbol{u} \rangle \langle R | \boldsymbol{v} \rangle \boldsymbol{u} \text{ if } \boldsymbol{v} \\ & \forall S, R \in A \langle\!\langle \boldsymbol{Y} \rangle\!\rangle, & S \text{ if } _{\varphi} R & = \sum\limits_{\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{\mathcal{Y}}^*} \langle S | \boldsymbol{u} \rangle \langle R | \boldsymbol{v} \rangle \boldsymbol{u} \text{ if } \boldsymbol{v} \rangle \boldsymbol{v}. \end{split}$$

If $\langle S|1_{\mathcal{X}^*}\rangle=0$ then Kleene star of S is the sum $S^*=1_{\mathcal{X}^*}+S+S^2+\cdots$. $A^{\mathrm{rat}}\langle\!\langle\mathcal{X}\rangle\!\rangle$ denotes the smallest algebra containing $\widehat{A\mathcal{X}}$, closed by $\{+,\mathtt{conc},*\}$. A series $S\in A^{\mathrm{rat}}\langle\!\langle\mathcal{X}\rangle\!\rangle$ is said to be rational.

$$\begin{split} & \Delta_{\mathrm{conc}}, \Delta_{\mathrm{lll}} : A\langle\!\langle \boldsymbol{\mathcal{X}} \rangle\!\rangle \longrightarrow A\langle\!\langle \boldsymbol{\mathcal{X}}^* \otimes \boldsymbol{\mathcal{X}}^* \rangle\!\rangle, \quad \Delta_{\mathrm{llll}_{\varphi}} : A\langle\!\langle \boldsymbol{Y} \rangle\!\rangle \longrightarrow A\langle\!\langle \boldsymbol{Y}^* \otimes \boldsymbol{Y}^* \rangle\!\rangle, \\ & \forall S \in A\langle\!\langle \boldsymbol{\mathcal{X}} \rangle\!\rangle, \quad \Delta_{\mathrm{conc}} S \quad = \sum\limits_{w \in \boldsymbol{\mathcal{X}}^*} \langle S|w \rangle \Delta_{\mathrm{conc}} w \in A\langle\!\langle \boldsymbol{\mathcal{X}}^* \otimes \boldsymbol{\mathcal{X}}^* \rangle\!\rangle, \\ & \forall S \in A\langle\!\langle \boldsymbol{\mathcal{X}} \rangle\!\rangle, \quad \Delta_{\mathrm{lll}} S \quad = \sum\limits_{w \in \boldsymbol{\mathcal{X}}^*} \langle S|w \rangle \Delta_{\mathrm{lll}} w \in A\langle\!\langle \boldsymbol{\mathcal{X}}^* \otimes \boldsymbol{\mathcal{X}}^* \rangle\!\rangle, \\ & \forall S \in A\langle\!\langle \boldsymbol{Y} \rangle\!\rangle, \quad \Delta_{\mathrm{lll}_{\varphi}} S \quad = \sum\limits_{w \in \boldsymbol{\mathcal{Y}}^*} \langle S|w \rangle \Delta_{\mathrm{lll}_{\varphi}} w \in A\langle\!\langle \boldsymbol{Y}^* \otimes \boldsymbol{Y}^* \rangle\!\rangle. \end{split}$$

Characters, primitive and grouplike series

For \sqsubseteq_{φ} (resp. \sqsubseteq and conc), a series $S \in A(\langle \mathcal{X} \rangle)$ is said to be

- 1. a character of $A\langle Y \rangle$ (resp. $A\langle \mathcal{X} \rangle$) iff $\langle S|1_{\mathcal{X}^*} \rangle = 1$ and, for any u and $v \in Y^*$ (resp. \mathcal{X}^*), one has $\langle S|u = u \rangle \langle S|u = v \rangle$ (resp. $\langle S|u = v \rangle \langle S|u \rangle \langle S|v \rangle$.
 - 2. an infinitesimal character of $A\langle Y \rangle$ (resp. $A\langle \mathcal{X} \rangle$) iff, for any u and $v \in Y^*$ (resp. \mathcal{X}^*), one has

$$\langle S|u \sqcup_{\varphi} v \rangle$$
 (resp. $\langle S|u \sqcup v \rangle$ and $\langle S|uv \rangle$) = $\langle S|u \rangle \langle v|1_{Y^*} \rangle + \langle u|1_{Y^*} \rangle \langle S|v \rangle$.

For $\Delta_{{}_{\square\!\!\!\square_{\varphi}}}$ (resp. $\Delta_{{}_{\square\!\!\!\square}}$ and $\Delta_{{}_{\operatorname{conc}}}$), a series S is 1. primitive iff $\Delta_{{}_{\square\!\!\!\square_{G}}}S$ (resp. $\Delta_{{}_{\square\!\!\!\square_{G}}}S$ and $\Delta_{{}_{\operatorname{conc}}}S$) = $1_{Y^{*}}\otimes S + S\otimes 1_{Y^{*}}$.

- 2. grouplike iff $\Delta_{{\scriptscriptstyle \sqcup\!\sqcup}_{\varphi}}S$ (resp. $\Delta_{{\scriptscriptstyle \sqcup\!\sqcup}}S$ and $\Delta_{{\scriptscriptstyle \operatorname{conc}}}S$) = $S\otimes S$ and $\langle S|1_{\mathcal{X}^*}\rangle=1$.

 et \mathcal{P}^Y (resp. \mathcal{P}^X and \mathcal{P}^X) and \mathcal{G}^Y (resp. \mathcal{G}^X and \mathcal{G}^X) the sets of
- Let $\mathcal{P}_{\square_{\varphi}}^{Y}$ (resp. $\mathcal{P}_{\square_{\varphi}}^{\mathcal{X}}$ and $\mathcal{P}_{\text{conc}}^{\mathcal{X}}$) and $\mathcal{G}_{\square_{\varphi}}^{Y}$ (resp. $\mathcal{G}_{\square_{\varphi}}^{\mathcal{X}}$ and $\mathcal{G}_{\text{conc}}^{\mathcal{X}}$) the sets of primitive and grouplike series, respectively. For \square_{φ} (resp. \square and conc),

 1. $S \in \mathcal{G}_{\square_{\varphi}}^{Y}$ (resp. $\mathcal{G}_{\square_{\varphi}}^{\mathcal{X}}$ and $\mathcal{G}_{\text{conc}}^{\mathcal{X}}$) iff S is a character.
 - 2. $S \in \mathcal{P}_{uu}^{\gamma}$ (resp. \mathcal{P}_{uu}^{χ} and $\mathcal{P}_{conc}^{\chi}$) iff S is an infinitesimal character.

$$\mathcal{P}_{\underline{\mathsf{u}},\underline{\mathsf{u}}}^{\mathsf{Y}}$$
 is a Lie algebra and $\mathcal{G}_{\underline{\mathsf{u}},\underline{\mathsf{u}}}^{\mathsf{Y}}$ (resp. $\mathcal{G}_{\underline{\mathsf{u}}}^{\mathcal{X}}$ and $\mathcal{G}_{\mathtt{conc}}^{\mathcal{X}}$) is a group.

Factorization and decomposition of rational series

Let $S \in A(\langle \mathcal{X} \rangle)$. $S \in A^{\text{rat}}(\langle \mathcal{X} \rangle)$ iff one of the following assertions holds

- 1. The shifts⁷ $\{S \triangleleft w\}_{w \in \mathcal{X}^*}$ (resp. $\{w \triangleright S\}_{w \in \mathcal{X}^*}$) lie within a finitely generated shift-invariant A-module (**Jacob**, 1978).
- 2. There is $n \in \mathbb{N}$ and (ν, μ, η) , where (**Schützenberger**, 1961) $\nu \in M_{1,n}(\mathbb{C})$ and $\eta \in M_{n,1}(\mathbb{C})$ and $\mu : \mathcal{X}^* \longrightarrow M_{n,n}(\mathbb{C})$ s.t. $S = \nu \Big(\sum_{w \in \mathcal{X}^*} \mu(w) w \eta \Big) = \nu \Big((\mu \otimes \operatorname{Id}) \mathcal{D}_{\mathcal{X}} \Big) \eta.$

The triplet (ν, μ, η) is so-called linear representation of rang n of S.

Letting
$$M: \mathcal{X}^* \longrightarrow M_{n,n}(A\langle\!\langle \mathcal{X} \rangle\!\rangle), x \longmapsto \mu(x)x$$
, one has $S = \nu M(\mathcal{X}^*)\eta$,

- 1. $M(\mathcal{X}^*) = \prod_{l \in \mathcal{L} \setminus P_l} e^{\mu(P_l)S_l} \text{ (resp. } M(\mathbf{Y}^*) = \prod_{l \in \mathcal{L} \setminus P_l} e^{\mu(\Pi_l)\Sigma_l} \text{)}.$
- 2. If $\{M(x)\}_{x \in \mathcal{X}}$ are upper triangular then, using diagonal and strictly upper triangular matrices D(x) and N(x), M(x) = D(x) + N(x). Moreover, since $D(\mathcal{X}^*)N(\mathcal{X})$ is nilpotent of order k then $M(\mathcal{X}^*) = \sum_{0 \le i \le k} (D(\mathcal{X}^*)N(\mathcal{X}^*))^i D(\mathcal{X}^*)$.

⁷The left (resp. right) shift of $S \in A\langle\!\langle \mathcal{X} \rangle\!\rangle$ by $P \in A\langle\!\langle \mathcal{X} \rangle\!\rangle$ is defined by $\forall w \in \mathcal{X}^*$, $\langle P \triangleright S | w \rangle = \langle S | wP \rangle$, $\langle S \triangleleft P | w \rangle = \langle S | Pw \rangle$).

Sweedler's dual of the graded bialgebras $(K\langle \mathbf{X} \rangle, \text{conc}, 1_{\mathbf{X}^*}, \Delta_{\coprod})$

$$\begin{array}{c} (\mathcal{K}\langle \mathcal{X} \rangle, \mathtt{conc}, 1_{\mathcal{X}^*}, \Delta_{\coprod}) \\ (\mathcal{K}\langle \mathbf{Y} \rangle, \mathtt{conc}, 1_{\mathbf{Y}^*}, \Delta_{\coprod_{\wp}}) \end{array}$$

Let $S \in A^{\text{rat}}(\langle \mathcal{X} \rangle)$ admitting (ν, μ, η) as linear representation of rank n. For any $1 \le i \le n$, let $\{(\nu, \mu, \mathbf{e}_i)\}_{1 \le i \le n}$ (resp. $\{({}^t\mathbf{e}_i, \mu, \eta)\}_{1 \le i \le n}$) be a linear representation of rang n of the rational series G_i (resp. D_i), where $\mathbf{e}_i \in \mathcal{M}_{1,n}(A)$ and ${}^t\mathbf{e}_i = (0 \cdots 0 \ 1 \ 0 \cdots 0).$

Theorem

Let
$$S \in A\langle\!\langle \mathcal{X} \rangle\!\rangle$$
. With the above notations, one has $S \in A^{\mathrm{rat}}\langle\!\langle \mathcal{X} \rangle\!\rangle \iff \Delta_{\mathrm{conc}}S = \sum\limits_{1 \leq i \leq n} G_i \otimes D_i$.

The Sweedler's dual
$$\mathcal{H}^{\circ}_{\square \square}(\mathcal{X})$$
 (resp. $\mathcal{H}^{\circ}_{\square \square_{\varphi}}(Y)$) of $(K\langle \mathcal{X} \rangle, \operatorname{conc}, 1_{\mathcal{X}^{*}}, \Delta_{\square})$ (resp. $(K\langle Y \rangle, \operatorname{conc}, 1_{Y^{*}}, \Delta_{\square_{\varphi}})$) is defined, for any series S , as follows $S \in \mathcal{H}^{\circ}_{\square \square}(\mathcal{X})$ (resp. $\mathcal{H}^{\circ}_{\square \square_{\varphi}}(Y)$) $\iff \Delta_{\operatorname{conc}}S = \sum_{i \in I}G_{i} \otimes D_{i}$, where I is finite, $\{G_{i}, D_{i}\}_{i \in I}$ are series, choosen in $\mathcal{H}^{\circ}_{\square \square}(\mathcal{X})$ (resp. $\mathcal{H}^{\circ}_{\square \square_{\varphi}}(Y)$).

Corollary

$$\begin{array}{l} \mathcal{H}^{\circ}_{\scriptscriptstyle{\sqcup\!\sqcup}}(\textcolor{red}{\mathcal{X}})\cong (K^{\mathrm{rat}}\langle\!\langle \textcolor{red}{\mathcal{X}}\rangle\!\rangle, {\scriptscriptstyle{\sqcup\!\sqcup}}, 1_{\textcolor{red}{\mathcal{X}^*}}, \Delta_{\mathrm{conc}}), \\ \mathcal{H}^{\circ}_{\scriptscriptstyle{\sqcup\!\sqcup},\scriptscriptstyle{\square}}(\textcolor{red}{Y})\cong (K^{\mathrm{rat}}\langle\!\langle \textcolor{red}{Y}\rangle\!\rangle, {\scriptscriptstyle{\sqcup\!\sqcup}}_{\varphi}, 1_{\textcolor{red}{Y^*}}, \Delta_{\mathrm{conc}}). \end{array}$$

Kleene stars of the plane (1/2)

Proposition

- 2. Let $\theta: (K[\{x^*\}_{x \in \mathcal{X}}]\langle \mathcal{X} \rangle, \mathbb{I}_{\mathcal{X}^*}) \longrightarrow (K, \times, 1)$ be a \mathbb{I} -morphism. Let $E:=K[\{\theta(x^*)\}_{x \in \mathcal{X}}]$ and $F:=K[\{\theta(I)\}_{I \in \mathcal{L}yn\mathcal{X}}]$. Then the following assertions are equivalent
 - 2.1 The morphism θ is injective.
 - 2.2 The K-algebras E and F s.t. $E \cap F = K.1$ are generated by the transcendent bases $\{\theta(x^*)\}_{x \in \mathcal{X}}$ and $\{\theta(I)\}_{I \in \mathcal{L}yn\mathcal{X}}$, respectively.
- If 1. (or 2.) holds then E and F are K-algebraically disjoint and $\{\theta(x^*), \theta(I)\}_{\substack{x \in \mathbf{X} \\ I \in \mathcal{L}yn\mathbf{X}}}$ generates freely $K[\{\theta(x^*)\}_{x \in \mathbf{X}}][\{\theta(I)\}_{I \in \mathcal{L}yn\mathbf{X}}] \cong K[\{\theta(x^*), \theta(I)\}_{\substack{x \in \mathbf{X} \\ I \in \mathcal{L}yn\mathbf{X}}}].$

Kleene stars of the plane (2/2)

Corollary

Let $R, L \in A^{\mathrm{rat}}\langle\langle \mathcal{X} \rangle\rangle$ such that $\langle R|1_{\mathcal{X}^*}\rangle = 1, \langle L|1_{\mathcal{X}^*}\rangle = 0$ and $L^* = R$. The following assertions are equivalent

- 1. R is a conc-character of $(A\langle \mathcal{X} \rangle, \text{conc}, 1_{\mathcal{X}^*})$.
- 2. There is a family of coefficients $(c_x)_{x \in \mathcal{X}}$ such that $R = (\sum_{x \in \mathcal{X}} c_x x)^*$.
- 3. The series R admits a linear representation of rank 1.
- 4. L belongs to the plane AX.
- 5. L is an infinitesimal conc-character of $(A\langle \mathcal{X} \rangle, \text{conc}, 1_{\mathcal{X}^*})$.

Corollary

Let $\{\alpha_x\}_{x \in \mathcal{X}}$, $\{\beta_x\}_{x \in \mathcal{X}}$, $\{a_s\}_{s \geq 1}$, $\{b_s\}_{s \geq 1}$ be complex numbers. Then $\Big(\sum_{x \in \mathcal{X}} \alpha_x x\Big)^* \sqcup \Big(\sum_{x \in \mathcal{X}} \beta_x x\Big)^* = \Big(\sum_{x \in \mathcal{X}} (\alpha_x + \beta_x) x\Big)^*$, $\Big(\sum_{s \geq 1} a_s y_s\Big)^* \sqcup_{\varphi} \Big(\sum_{s \geq 1} b_s y_s\Big)^* = \Big(\sum_{s \geq 1} (a_s + b_s) y_s + \sum_{r, s \geq 1} a_s b_r \varphi(y_s, y_r) y_{s+r}\Big)^*$.

THANK YOU FOR YOUR ATTENTION