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Introduction

1 The story of automata theory (in the large, i.e.
Eilenberg-Schützenberger machines) is all about states, ations
(command letters), alphabets, transitions and multiplicities (outputs).

2 In this review, we will see several sets of states
1 (Free) monoid on the alphabet X “ tx0, x1u

2 (If times permits), the free group (on X )
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The free monoid tx0, x1u
˚.

skip slide PNCDE

1X˚

x0

x20

x30x1x
2
0

x1x0

x0x1x0x21x0

x1

x0x1

x20x1x1x0x1

x21

x0x
2
1x31
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Free Group, here Γpa, bq.
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Factorizations

Two years ago (CAP10), one of us (H. Nakamura) began his talk by some
combinatorics on words (stringology) i.e. any string (word) on the alphabet
Σ “ tX ,Y u could be written

w “ X h1YX h2Y ¨ ¨ ¨YX hdY |X h8 . (1)

Doing this, save the last factor X h8 , we obtain a factorization into blocs of the
form X hY . We will later write this set X˚Y “ Y ` XY ` X 2Y ` ..., the (free)
monoid they generate pX˚Y q˚ “ 1 ` pX˚Y q` a. The set of all words, therefore,
is pX ` Y q˚ “ pX˚Y q˚X˚ “ pX˚Y q`X˚ ` X˚, (2)

an instance of Lazard’s elimination theorem (discussed in CAP 9).
Factorization (1) can be computed by the following (boolean or N-) automaton

A B

Y

X

X

Y

words with h8 ­“ 0 or empty first (non empty) factor

aWhere S`
“ S ` S2

` ¨ ¨ ¨ and S˚
“ 1 ` S`
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A simple transition system: flow charts or flow diagrams

P

B

C

M

D

L

3

10

10

10

4 9

4

5

10

Directed graph weighted by numbers which can be lengths, time (durations),
costs, fuel consumption, probabilities. This graph is equivalent to a square matrix.
Coefficients are taken in different semirings (i.e. rings without the “minus”
operation, as tropical or [min,+]) according to the type of computations to be
done. Tropical semirings were so called by MPS school because they were founded
by the Hungarian-born Brazilian mathematician and computer scientist Imre
Simon. Evaluation is done by multiplications in series and addition in parallel.
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Weighted (or multiplicity) automata: the forefathers

Samuel Eilenberg, Automata,
Languages, and Machines (Vol. A &
B) Acad. Press, New York, (1974)

Marcel-Paul Schützenberger, On the
definition of a family of automata,
Inf. and Contr., 4 (1961)
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Multiplicity Automaton (Eilenberg, Schützenberger)

1

2 3

4

5

a|α1

b|α2

b|α3

a|α9

c |α5

c |α7

a|α8

c |α4

λ1

λ2

γ1

γ2

Example: Evaluate 2.bccabc.
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Multiplicity automaton (linear representation) & behaviour

Linear representation

Due to the left-to-right word reading, it is

λ “
`

λ2 λ1 0 0 0
˘

, γ “
`

0 0 γ1 0 γ2
˘T

µpaq “

¨

˚

˚

˚

˚

˝

0 α1 0 0 0
α9 0 0 0 0
0 0 0 0 0
0 0 0 0 α8

0 0 0 0 0

˛

‹

‹

‹

‹

‚

µpbq “

¨

˚

˚

˚

˚

˝

0 0 0 α2 0
0 0 α3 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

˛

‹

‹

‹

‹

‚

µpcq “

¨

˚

˚

˚

˚

˝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 α5

0 0 0 0 α7

0 α4 0 0 0

˛

‹

‹

‹

‹

‚

(3)
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Multiplicities.

1 Multiplicities are taken within a semiring R. Each time you change R,
you change your universe.

2 If R “ B, you get the theory of languages, if R “ N, you are able to
count the paths for example.

3 If R is commutative, you have the theory of rational series and if R is
a field, you get a way to compute within Sweedler’s duals.

4 If the multiplicities are probabilities, you get stochastic automata.
5 But R does not need to be commutative

1 If R “ kxΓy for some alphabet Γ, you get transducers
2 R can be a semiring of operators, this opens the door to application of

rational identities to the plane of transition matrices.
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Linear representation & Behaviour

Remark

For a right-to-left word reading, data have to be transposed.

Non commutative series

Series are functions X˚ Ñ R where R is a semiring (i.e. a ring without the
“minus” operation as example the tropical semiring). We have different ways to
consider a series, namely:
Math: Functions, elements of a dual (total, restricted, Sweedler’s &c.)
Computer Sci.: Behaviour of a system (automaton, transducer, grammar &c.)

Physics: Non comm. diff. equations, evaluation of paths, normal orderings &c.

Behaviour of a “word machine”, the series BpMq.

xBpMq|wy “ λµpwq γ “
ÿ

i,j
states

λpiq
´

ÿ

weightppq

¯

loooooooomoooooooon

weight of all paths i○ Ñ j○
with label w

γpjq (4)
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Operations and definitions on series (R semiring).

Addition, Scaling: As for functions because RxxX yy “ RX˚

(viewed as
R-R modules)
Concatenation: f .gpwq “

ř

w“uv f puqgpvq

Polynomials: Series s.t. supppf q “ twuf pwq­“0 is finite.
The set of polynomials will be denoted RxX y.
Pairing: xS |Py “

ř

wPX˚ SpwqPpwq (S series, P polynomial)
Summation:

ř

iPI Si summable iff f or all w P X ˚, i ÞÑ xSi |wy is finitely
supported. In particular, we have

ÿ

iPI

Si :“
ÿ

wPX˚

p
ÿ

iPI

xSi |wyqw

Remark: This notion is exactly the one of limit of the net of partial sums

p
ř

iPF Si qFĂfinite I with respect to the sup-lattice of finite subsets of I , topology

being the product of discrete topologies on R (see [13] “summable”).
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Operations and definitions on series (R semiring)/2

Star: For all series S s.t. xS |1X˚y “ 0, the family pSnqně0 is summable
and we set S˚ :“

ř

ně0 S
n “ 1 ` S ` S2 ` ¨ ¨ ¨ (if R is a ring, we have

S˚ “ p1 ´ Sq´1) and the plus-notation S` :“
ř

ně0 S
n “ S ` S2 ` ¨ ¨ ¨

(again, if R is a ring we have S` “ S .p1 ´ Sq´1 “ p1 ´ Sq´1.S).
Shifts: xu´1S |wy “ xS |uwy and xSu´1|wy “ xS |wuy.

Let M be the automaton (p, q, r , a, b, c can be operators).

A B

y |r

x |p x |q

a

b c

I “
`

a 0
˘

T “

ˆ

p.x r .y
0 q.x

˙

F “

ˆ

b
c

˙

T ˚ “

ˆ

pp.xq˚ pp.xq˚.r .y .pq.xq˚

0 pq.xq˚

˙

BpMq “ I .T ˚.F “ a.pp.xq˚.b ` a.pp.xq˚.r .y .pq.xq˚.b
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Rational series (Sweedler’s duals & Schützenberger’s shifts)

skip slide

Theorem A (k field, X finite), see [11].

Let S P kxxX yy TFAE
i) The family pSu´1quPX˚ is of finite rank.
ii) The family pu´1SquPX˚ is of finite rank.
iii) The family pu´1Sv´1qu,vPX˚ is of finite rank.
iv) It exists n P N, λ P k1ˆn, µ : X ˚ Ñ knˆn (a multiplicative morphism)
and γ P knˆ1 such that, for all w P X ˚

pS ,wq “ λµpwqγ (5)

v) The series S is in the closure of kxX y for p`, conc ,˚ q within kxxX yy.

Definition

A series which fulfills one of the conditions of Theorem A will be called
rational. The set of these series will be denoted by k ratxxX yy. In the theory
of Hopf algebras it is Sweedler’s dual of kxX y.

14 / 47



Sweedler’s duals & Kleene-Schützenberger’s Theorem.

Remarks
1 (i Ø iii) needs k to be a field.

2 (iv) needs X to be finite, (iv Ø v) is known as the theorem of
Kleene-Schützenberger (M.P. Schützenberger, On the definition of a
family of automata, Inf. and Contr., 4 (1961), 245-270.)

3 For the sake of Combinatorial Physics (where the alphabets can be
infinite), (iv) has been extended to infinite alphabets and replaced by

iv’) The series S is in the rational closure of kX (linear series) within
kxxX yy.

4 When k is a ring, the rational closure of a subset P Ă kxxX yy is
exactly the inverse-closed subalgebra of kxxX yy generated by P.

5 In the vein of (v) expressions like ab˚ or identities like
pab˚q˚a˚ “ pa ` bq˚ (Lazard’s elimination) will be called rational.
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Sweedler’s duals & Kleene-Schüzenberger’s Theorem./2

6 For the needs of CS, an analogue of Theorem A has been proved for k
a commutative semiring (see [16, 12, 14]) where “is of finite rank” is
replaced mutatis mutandis by “is contained in a shift-invariant
submodule of finite type”.

7 Contrariwise to the case when k is a field, the property of being a
submodule of finite type is not hereditary (as soon as we only have a
ring). It can then happen that the module generated by the shifts of
a rational series be not of finite type. The case
k “ N, S “ a˚a˚ “

ř

ně0pn ` 1qan is typical: when one computes
the shifts on the series S “ a˚a˚ “

ř

ně0 pn ` 1qan (considered as a
function), we get a shift-invariant module of infinite type whereas,
following Eilenberg [11], when we perform them on its rational
expression a˚a˚, we get a FS automaton.

8 This theorem is linked to the following subjects: Representative
functions on X ˚ (see Eiichi Abe [1], Chari & Pressley [4]), Sweedler’s
duals [9] &c).
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Words and paths

Powers of a (generic) transfer matrix

1 2

a12

a21

a11 a22 T “

ˆ

a11 a12
a21 a22

˙

T 2 “

ˆ

a211 ` a12a21 a11a12 ` a12a22
a21a11 ` a22a21 a222 ` a21a12

˙

T n “

ˆ
ř

n-paths 1 Ñ 1
ř

n-paths 1 Ñ 2
ř

n-paths 2 Ñ 1
ř

n-paths 2 Ñ 2

˙

Star notation and Mc Naughton-Yamada formulae.

We set T` :“
ř

ně1 T n, T ˚ :“ 1 ` T` “ 1 ` T ` T 2 ` ¨ ¨ ¨ “
ř

ně0 T n.
This matrix T ˚ is the (unique) solution R P kxxaijyy of the self-reproducing
equations

R “ I ` TR “ I ` RT
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Mac Naughton-Yamada (with multiplicities) formulae.

Expressions

With T “

ˆ

a11 a12
a21 a22

˙

we have T ˚ “

ˆ

A11 A12

A21 A22

˙

with (6)

A11 “ pa11 ` a12a
˚
22a21q˚ A12 “ A11a12a

˚
22 (or “ a˚

11a12A22)

A21 “ A22a21a
˚
11 (or “ a˚

22a21A11) A22 “ pa22 ` a21a
˚
11a12q˚

(7)

Applications of “word machines”.

These expressions have many incarnations/applications. Among them

Sweedler’s duals (and explicit/combinatorial computations
within them)

NCDE and, in particular, Hyper- (and Poly-) logarithms (today)

Noncommutative geometry
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Remarks

1 If the multiplicities of slide 12 are taken in some Σ ˆ kxΓy (resp.
Σ ˆ Γ), we have a finite-state (resp. letter-to-letter) transducer.

2 Σ (resp. Γ) is called (and understood as) input (resp. output)
alphabet.

3 If, in all loops, multiplicities belong to k`xxΓyy (i.e. series with no
constant term), it is always possible to compute the star of the
transfer matrix.

4 In a more general way, if multiplicities are taken in an augmented ring
pA, ϵq which is complete (i.e. Hausdorff and complete with the
topology defined by tpA`qnuně0) and aij P A` the generic matrix T
possesses a star (computable by formulas Eq. 7). This is the case of
many rings of formal series (krrX ss, krrMss).

5 One obtains rational identities by factoring the sets of paths differently
(see dual expressions of A12,A21 in formulas formulas Eq. 7).
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Application 1: Transducer

0

1

2

3

4

5

6

7

1|1

9|4

4|9

3|2

1 1 9 4 3
3 9

7 4
2 3

7

8
1 4 9 2

With this simple
transducer, we see
that “states” can
mean “cases”. Here
Σ “ Γ “ t0, ¨ ¨ ¨ 9u.
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Application 2: Difference and differential equations

1 We have seen the shifts which give rise to a calculus on rational
expressions, that we recall here

1 x´1 is (left and right) linear
2 x´1pE .F q “ x´1pE q.F ` xE |1X˚ yx´1pF q

3 x´1pE˚q “ x´1pE q.E˚

but not only, as transpose of right and left multiplication, they
operate on series and can be used to set difference equations.

2 In the same way, we can consider differential equations of the type

dpSq “ MS ; xS |1X˚y “ 1A (8)

where dpSq “
ř

wPX˚pxS |wyq1.w (term by term differentiation) and
M, the multiplier, is a series without constant term. The case when
M “

ř

xPX ux x (homogeneous of degree one) is of particular interest
and is used to better understand iterated integrals.
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Construction of a solution: Picard iterations.

1 In the case when pA, dq admits a section (then pA, d ,
ş

q), one can
construct a particular solution of

"

dpSq “ M.S with M P A`xxX yy

xS |1X˚y “ 1A
(9)

using Picard iterations.

S0 “ 1X˚ ; Sn`1 “ 1X˚ `

ż

M.Sn (10)

Then, it is not difficult to see that Sn admits a limit SPic which
satisfies (9).
The complete set of solutions of (9) is SPic .CxxX yy.
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Example of iterated integrals. return Lie group

2 For example, let us consider a perturbated version of the
polylogarithmic system (here
Ω “ C∖ ps ´ 8, 0s Y r1,`8rq, h P HpΩq and S P HpΩqxxx0, x1yy)

#

dpSq “

´

x0
z `

x1
1´z ` hpzq.rx0, x1s

¯

.S pNCDE -Per1q

Spz0q “ 1X˚ pInit. Cond .q
(11)

SPic
z0 pzq satisfies and can be computed by the following recursion

xS |wyrzs “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

1Ω if w “ 1X˚

şz
z0

xS |uyrssdss if w “ x0u
şz
z0

ds
1´s “ logp

1´z0
1´z q if w “ x1

xS |x0x1uyrzs `
şz
z0

xS |uyrss.hpsq ds if w “ x1x0u
şz
z0

xS |x1uyrss ds
1´s if w “ x1x1u
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Computation by levels and from left to right.

1X˚

x0

x20

x30x1x
2
0

x1x0

x0x1x0x21x0

x1

x0x1

x20x1x1x0x1

x21

x0x
2
1x31
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(Very) quick review of Polylogarithms.

3 Here we consider Ω “ C∖ ps ´ 8, 0s Y r1,`8rq

4 Classical polylogarithms are defined, for k ě 1, |z | ă 1, by

´ logp1 ´ zq “ Li1 “
ÿ

ně1

zn

n1
; Li2 “

ÿ

ně1

zn

n2
; . . . ; Likpzq :“

ÿ

ně1

zn

nk

5 Multiple polylogarithms extend classical ones twofold, they are
indexed by words (i.e. lists) and satisfy the following system

#

dpSq “ p
x0
z `

x1
1´z q.S pNCDE q

lim zÑ0
zPΩ

Spzqe´x0logpzq “ 1HpΩqxxX yy pAsympt. Init. Cond .q
(12)

from the general theory (differential Galois group of NCDE + Lazard
elimination), this system has a unique solution over Ω which is
precisely Li (called G1 in [6]).
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Explicit construction of Li.

Given a word w , we note |w |x1 the number of occurrences of x1 within w

xLi |wyrzs “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1Ω if w “ 1X˚

şz
0xLi |uyrss ds

1´s if w “ x1u
şz
1xLi |uyrssdss if w “ x0u and |u|x1 “ 0

şz
0xLi |uyrssdss if w “ x0u and |u|x1 ą 0

The third line of this recursion implies

αz
0pxn0 q “

logpzqn

n!

one can check that (a) all the integrals (improper for the fourth line) are
well defined and (b) the series S “

ř

wPX˚ αz
0pwqw is Li (G1 in [1]).
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1X˚

x0

x20

x30x1x
2
0

x1x0

x0x1x0x21x0

x1

x0x1

x20x1x1x0x1

x21

x0x
2
1x31

Some coefficients with X “ tx0, x1u; u0pzq “ 1
z
; u1pzq “ 1

1´z
, t0 “ 0

xS|xn1 y “
p´logp1 ´ zqqn

n!
; xS|x0x1y “ Li2pzq

looomooon

cl.not.

“ Lix0x1 pzq “
ÿ

ně1

zn

n2

xS|x20 x1y “ Li3pzq
looomooon

cl.not.

“ Li
x2
0
x1

pzq “
ÿ

ně1

zn

n3
; xS|x1x0x1y “ Lix1x0x1 pzq “ Lir1,2spzq “

ÿ

n1ąn2ě1

zn1

n1n
2
2

xS|x0x
2
1 y “ Li

x0x
2
1

pzq “ Lir2,1spzq “
ÿ

n1ąn2ě1

zn1

n21n2
; xS|xn0 y “

lognpzq

n!
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Computation of integrators by transducer

The two cases of the transducer are given by the languages x˚
0 and

X ˚x1X
˚ and the generating series Li by the behaviour of the transducer

x˚
0 X ˚x1X

˚

x1|
şz
0 ˝ ds

1´s

x0|
şz
1 ˝ds

s

x0|
şz
0 ˝ds

s

x1|
şz
0 ˝ ds

1´s

Start

Out Out

T “

¨

˝

x0|
şz
1 ˝ds

s 0

x1|
şz
0 ˝ ds

1´s x0|
şz
0 ˝ds

s ` x1|
şz
0 ˝ ds

1´s

˛

‚

Alphabet : Σ “ tx0, x1u ˆ EndpW q » EndpW q.tx0, x1u with W Ă HpΩq (13)
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The space W .

1 We define H0 as the space of f P HpΩq admitting an analytic continuation
around zero. This space embeds naturally in HpΩq. Then we define W as
the algebra generated by H0pΩq and logpzq.

2 Due to the fact that f P W∖ t0u ùñ f „0 αk .z
k for some k and αk ­“ 0, it

is an easy exercise to see that W is a free H0-module with basis
tlognpzquně0. We also remark that W is closed by all the integrators.
More precisely, with splitting H0 “ H`

0 ‘ C.1Ω w.r.t. the evaluation at zero
(i.e. H`

0 “ kerpδ0q) we see that

W “ W`

à

p‘ně0C. lognpzqq
looooooooomooooooooon

Wr p“rightmost branchq

“ W`

à

Wr . (14)

1 the integrator
şz

1
, ˝ ds

s acts within Wr

2 W` is made of sums zp logqpzq with p ě 1 so that the other
integrators (with lower bound 0) act in W`

3
şz

0
˝ ds
1´s sends Wr to W`.
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Computation of the behaviour/1

Linear representation

Due to the fact that the action is on the left (i.e. right-left reading of the
word), we have (with the alphabet EndpW q.tx0, x1u)

λ “
`

1 1
˘

γ “

ˆ

1Ω
0

˙

T “

¨

˝

şz
1 ˝ds

s .x0 0
şz
0 ˝ ds

1´s .x1
şz
0 ˝ds

s .x0 `
şz
0 ˝ ds

1´s .x1

˛

‚

Computation of the star/1

Applying formulas of Eq. (7), we get

T ˚ “

ˆ

a11 0
a21 a22

˙˚

“

ˆ

a˚
11 0

a˚
22a21a

˚
11 a˚

22

˙

30 / 47



Computation of the star/2

This star can be factored, considering that

T “

¨

˝

şz
1 ˝ds

s .x0 0
şz
0 ˝ ds

1´s .x1
şz
0 ˝ds

s .x0 `
şz
0 ˝ ds

1´s .x1

˛

‚“

ˆşz
1 ˝ds

s 0

0
şz
0 ˝ds

s

˙

.x0 `

ˆ

0 0
şz
0 ˝ ds

1´s

şz
0 ˝ ds

1´s

˙

.x1 “

T0.x0 ` T1.x1

and using formula (2), we get

T ˚ “

´

pT0.x0q˚T1.x1

¯˚

pT0.x0q˚ “

´

pT0.x0q˚T1.x1

¯`

pT0.x0q˚ ` pT0.x0q˚

(15)
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About the asymptotic condition

3 We then have

Li “
`

1 1
˘

T ˚

ˆ

1Ω
0

˙

“

`

1 1
˘

´

pT0.x0q˚T1.x1

¯`

pT0.x0q˚

ˆ

1Ω
0

˙

`
`

1 1
˘

pT0.x0q˚

ˆ

1Ω
0

˙

“
`

1 1
˘

´

pT0.x0q˚T1.x1

¯`

pT0.x0q˚

ˆ

1Ω
0

˙

looooooooooooooooooooooooomooooooooooooooooooooooooon

Li` only words s.t. |w |x1ą0

`ex0 logpzq (16)

In this way Li “ Li` `ex0 logpzq and we get

lim
z´ą0

e´x0 logpzq Li “ lim
z´ą0

Li e´x0 logpzq “ 1 (17)

this allows to prove unicity by means of the differential Galois group
of (12).
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About the asymptotic condition/2

4 Li “ G1 is a shuffle character (due to the fact that the multiplier and
the asymptotic condition are grouplike i.e. characters).

5 For a Rs ´ 8, 0s, the integrator
şz
1 ˝ds

s can be replaced by
şz
a ˝ds

s , one
then finds a series Ga which fullfils system (12) where the asymptotic
initial condition is modified to
lim zÑ0

zPΩ
Spzqe´x0plogpzq´logpaqq “ 1HpΩqxxX yy.

6 Due to the fact that, on the one hand the asymptotic counterterm
e´x0plogpzq´logpaqq is grouplike (i.e. a shuffle character) and, on the
other hand the multiplier is primitive (i.e. a shuffle infinitesimal
character), one easily sees that all Ga are shuffle characters.

7 Computing xGa|x˚
0 y “

ř

ně0xGa|xn0 y “ eplogpzq´logpaqq “ z{a,
one sees that all shuffle characters Ga are differenta.

aMore generally, the possibility of setting a series in the RHS place of a scalar
product has been explored in [8].
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The Lie group of characters. return

Group of characters G .

LpG q: Infinitesimal characters.

Spz0q

Spzq

c

S 1pzq
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Domain of Li (definition)

In order to extend Li to series, we define DompLi ; Ωq (or DompLiq) if the context
is clear) as the set of series S “

ř

ně0 Sn (decomposition by homogeneous
components) such that

ř

ně0 LiSnpzq converges unconditionally for the compact
convergence in Ω (see [8]). One sets

LiSpzq :“
ÿ

ně0

LiSnpzq (18)

Due to the nuclearity of HpΩ,Cq, one can prove that DompLi ; Ωq is a shuffle
subalgebra of Cxxx0, x1yy.

The ladder (outer frame)

pCxX y, x , 1X˚ q HpΩq

DompLi ; Ωq HpΩq

Li‚

Li
p1q
‚
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Coefficients in the Ladder

pCxX y, x , 1X˚ q CtLiwuwPX˚

pCxX y, x , 1X˚ qrx˚
0 , p´x0q˚, x˚

1 s CZtLiwuwPX˚

CxX yxCratxxx0yyxCratxxx1yy CCtLiwuwPX˚

Li‚

Li
p1q
‚

Li
p2q
‚

Were, for every additive subgroup pH,`q Ă pC,`q, CH has been set to the
following subring of C

CH :“ Ctzαp1 ´ zq´βuα,βPH . (19)

Examples

Lix˚
0

pzq “ z , Lix˚
1

pzq “ p1 ´ zq´1

Lipαx0`βx1q˚pzq “ Lipαx0q˚ x pβx1q˚pzq “ zαp1 ´ zq´β
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Concluding remarks

1 We have indicated the structure of automaton with multiplicities in a
(non necessarily commutative) semiring R, following the original
thought of Eilenberg and Schützenberger.

2 The computation of its behaviour, a generating series, entails that of
the star of a matrix (in general with noncommutative coefficients).

3 When one specializes R to R “ Σ ˆ k (k a ring of operators), one
gets a powerful notion of Σ-action which is powerful enough to, for
example, generate Hyperlogarithms and, through Lazard elimination,
explain the asymptotic initial conditions.

4 When one specializes R to R “ Σ ˆ k (k a commutative semiring),
one gets the classical structure of automaton with multiplicities in k,
rational series, rational calculus.
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Concluding remarks/2

5 If, moreover, k is a field, one can use the this rational calculus to
compute within every Sweedler’s dual of a k Hopf or bi-algebra.

6 The trick is the following. Let σ : X A be an (indexed) generating
family of A, µ : kxX y A the corresponding (onto) morphism and
µ˚ : A˚ ãÑ kxxX yy its transpose. Then, due to the formula
µ˚pfµpuqq “ µ˚pf qu we have µ˚pA˝q “ kratxxX yy X Impµ˚q which
allows the rational calculus within A˝.
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THANK YOU FOR YOUR ATTENTION !
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Annex: Formalization of the result of Slide 23

The general theorem is the following. It can be generalized in many
directions (differential algebra, analysis &c.)

Theorem (A)

Let X be an alphabet, Ω Ă C a connected open subset and HpΩq, the
C-algebra of (complex valued) holomorphic functions on Ω.

rΣs

"

dpSq “ M.S pNCDE -Genq

Spz0q “ 1X˚ pInit. Cond .q
(20)

Where the multiplier M P HpΩqxxX yy has constant term zero. Then

1 Due to the fact that xM|1X˚y “ 0, the system rΣs admits a unique
solution SrΣs.

2 If the multiplier is primitive (i.e. a Lie series, see [3, 17]) then, for all
z P Ω, SrΣspzq is group-like.
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Proof

Firstly Picard iterations of Slide 22, with lower bound z0, can be applied to prove
existence of a solution of rΣs. Let us call SrΣs this solution. Unicity is obtained
remarking that since any other solution is of the form SrΣs.C where C P CxxX yy,
condition Spz0q “ 1X˚ forces C to be 1X˚ .
If, moreover, the multiplier is primitive, we have to apply the theory of differential

equations with unknown S P {HpΩqrMs (where {HpΩqrMs is the total algebra of
X˚ b X˚ “ X˚ ˆ X˚, direct product of the free monoid with itself), with
coefficients in HpΩq (see e.g. [2, 20]). We can extend the derivation d

dz of HpΩq

as a derivation on these “double series”. One then checks easily that
T “ ∆x pSq (S “ SrΣs) and S b S satify the same differential equation with the
same initial condition T pz0q “ 1X˚ b 1X˚ and we are done.

Remark. – If, in rΣs, the initial condition “pInit. Cond .q” is replaced by any
limiting condition of type limz´ąz0 Spzq.T pzq “ 1 where T is group-like, then
any solution S of the system is group-like. This proves that Polylogarithms, which
satisfy system (12), have a group-like generating series.
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