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Introduction

Definition:

The numbers Zes1,··· ,sr defined by

Zes1,··· ,sr =
∑

0<nr<···<n1

1

n1s1 · · · nr sr
,

where s1, · · · , sr ∈ C such that ℜ(s1 + · · ·+ sk) > k, k ∈ [[ 1 ; r ]], are called
multiple zeta values.

Fact: There exists at least three different ways to renormalize multiple zeta
values at negative integers.

Ze0,−2
MP (0) =

7

720
, Ze0,−2

GZ (0) =
1

120
, Ze0,−2

FKMT (0) =
1

18
.

Question: Is there a group acting on the set of all possible multiple zeta values
renormalisations?

Main goal: Define multiple Bernoulli numbers in relation with this.
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Definition and first notations.

Ecalle’s concrete definition:

A mould is a function with a varying number of variables.

Mathematical definition:

A mould is a function defined over a free monoid Ω⋆ of (finite) sequences (or
words) constructed over the alphabet Ω (or sometimes over a subset of Ω⋆)
with values in a commutative algebra C.

Typical example : The Multizetas Values !

Notations:

Functional notations Mould notations

Evaluation f (x) Ms

Name f M• ∈ M•
C(Ω)



Main idea of mould calculus - The so-called Mould/comould’s contractions.

Moulds might be contracted with dual objects, called comoulds (which are also
functions with a variable number of variables) :

Definition:

The mould-comould contraction of a mould M• and a comould B• is:∑
•

M•B• :=
∑
ω∈Ω⋆

MωBω

(if the sum is well-defined...)

For analytical reasons, a mould-comould contraction might be understood to
be an algebra automorphism or a derivation.

Important remark:

Mould’s operations and symmetries come from such an interpretation.



First abstraction - Formal mould/comould contraction

To each letter ω ∈ Ω, we define a symbol aω, which will be, when
necessary, specialized to Bω.

⇝ The symbols aω do not commute.

⇝ The symbols aω are extended to words:

aω1···ωr = aω1 · · · aωr .

To each mould M• ∈ M•
C(Ω), we define a series s(M•) ∈ C⟨⟨A⟩⟩, where

A = {aω ; ω ∈ Ω} by:

s(M•) =
∑
ω∈Ω⋆

Mω aω :=
∑
•

M• a• .

s is called the formal mould/comould contraction.

⇝ If φ is a specialization map (not necessarily morphism) defined by
φ(aω) = Bω, then:

φ(s(M•)) =
∑
•

M• B• .



Mould operations anf primary symmetries

This defines + and × of moulds as you can imagine.
The composition ◦ is a more complicated operation. . ., which mimics a change
of alphabet.



Examples of mould multiplication.

Example of mould product computation: P• = M• × N•

P∅ = M∅N∅

Pω1 = Mω1N∅ +M∅Nω1

Pω1,ω2 = Mω1,ω2N∅ +Mω1Nω2 +M∅Nω1,ω2

For all n ∈ N∗, let us consider the mould I•n defined over the alphabet
Ω = N∗ by:

Is
n =


1

ns1
, if l(s) = 1 .

0 , otherwise.

A new expression of the mould of multiple zeta values Ze• is the following
factorisation:

Proposition: (B., 18)

Ze• = · · · × (1• + I•3 )× (1• + I•2 )× (1• + I•1 ) =
↘∏
n>0

(1• + I•n ) .

where the last product is a convergent one if we restrict ourself to sequences
s ∈ Ω⋆

CV = {(s1, · · · , sr ) ∈ N⋆
1 ; s1 ≥ 2}.



Formal moulds and secondary symmetries

Another point of view on moulds: A mould is a collection of functions
(f0, f1, f2, · · · ), where fn : Ωn 7−→ C.

Definition:

A formal mould is a collection of formal series (S0,S1,S2, · · · ), where Sn is a
formal power series in n indeterminates (and consequently, S0 is constant)

Notation: FM•
C = {formal mould with values in the algebra C} .

What is the difference between a mould and a formal mould?

Mould M• ∈ M•
C(Ω) Formal mould M• ∈ FM•

C

where Ω = (X1,X2, · · · ).

No link between MX1,X2 and MX2,X1 !!! MX1,X2 and MX2,X1 are related by
the substitution of the indeterminates.

Nevertheless, FM•
C ⊂ M•

C(X1,X2, · · · ) .

Definition:

If a formal mould satisfies some symmetry, we say it is a secondary symmetries.



Generics example of formal moulds

Definition:

With a mould M• ∈ M•
C(N), we associate two formal moulds Mog• and Meg•

defined by:
MogX1,··· ,Xr =

∑
s1,··· ,sr∈N∗

Ms1,··· ,srX s1−1
1 · · ·X sr−1

r .

MegX1,··· ,Xr =
∑

s1,··· ,sr∈N

Ms1,··· ,sr X
s1
1

s1!
· · · X

sr
r

sr !
.

This produces two operators on moulds:

og : M•
C(Ω) −→ FM•

C(X)

M• 7−→ Mog•

, eg : M•
C(Ω) −→ FM•

C(X)

M• 7−→ Meg• .

Proposition: (B., 15)

og and eg are algebra morphisms:
og

(
M• × N•

)
= og(M•)× og(N•) and eg

(
M• × N•

)
= eg(M•)× eg(N•).



Second algebraic abstraction:l settings

Main objective: Adapt the Hopf algebraic setting to the case of formal moulds.

Let us consider:

• X = {X1,X2, · · · } an infinite set of indeterminates.

• X̂ an extended alphabet: A-case: X̂ = X .

E-case: X̂ = X ∪
⋃
r≥2

{
r∑

i=1

Xi ,X1, · · · ,Xr ∈ X

}

• A = {Ax ; x ∈ X̂}, with symbols that do not commute.

• ∆∆ : C[[X̂]]⟨⟨A⟩⟩ −→ C[[X̂]]⟨⟨A⟩⟩ ⊗ C[[X̂]]⟨⟨A⟩⟩ defined by:

∆∆ (Ax) = Ax ⊗ 1 +
∑
u,v∈X̂
u+v=x

Au ⊗ Av + 1⊗ Ax

and extended to words of A⋆ such that ∆∆ is a morphism for
the concatenation product and then by C[[X̂]]-linearity to C[[X̂]]⟨⟨A⟩⟩.



Second abstraction: secondary formal mould/comould contraction

Lemma: (B., 15)

Let us define
η : C[[X̂]] −→ C[[X̂]]⟨⟨A⟩⟩

S 7−→ S · 1

and ε : C[[X̂]]⟨⟨A⟩⟩ −→ C[[X̂]]

S 7−→ ⟨S |1⟩ .
So, (C[[X̂]]⟨⟨A⟩⟩, ·, η,∆∆ , ε) is a bialgebra.

Secondary formal mould/comould contraction

To a formal mould FM• ∈ FM•
C, we associate a series S(FM•) ∈ C[[X]]⟨⟨A⟩⟩

by:

S(FM•) =
∑
ω∈A⋆

FMω Aω :=
∑
•

FM• A• .



Generics theorem for secondary symmetries

Theorem: (Ecalle, ∼ 90′s, see [SNAG] in French! )

Let M• ∈ M•
C(N) be a mould.

1 M• is symmetral if, and only if, Mog• is symmetral .

2 M• is alternal if, and only if, Mog• is alternal .

3 M• is symmetrel if, and only if, Meg• is symmetril .

4 M• is alternel if, and only if, Meg• is alternil .

Theorem: (B., 2015)

Let M• ∈ M•
C(N) be a mould.

1 M• is symmetral if, and only if, Meg• is symmetral .

2 M• is alternal if, and only if, Meg• is alternal .

3 M• is symmetrel if, and only if, Meg• is symmetrel .

4 M• is alternel if, and only if, Meg• is alternel .



Summary of mould calculus



Choose of a paradigm

From now on,

all computations will be done using noncommutative series,

keeping in mind the mould calculus framework.

And. . .

. . . let’s go to Bernoulli polynomials!
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Two Equivalent Definitions of Bernoulli Polynomials / Numbers

Bernoulli numbers: Bernoulli polynomials:

By a generating function: By a generating function:

t

et − 1
=

∑
n≥0

bn
tn

n!
.

text

et − 1
=

∑
n≥0

Bn(x)
tn

n!
.

By a recursive formula: By a recursive formula:


b0 = 1 ,

∀n ∈ N ,

n∑
k=0

(
n + 1
k

)
bk = 0 .


B0(x) = 1 ,
∀n ∈ N , B ′n+1(x) = (n + 1)Bn(x) ,

∀n ∈ N∗ ,
∫ 1

0

Bn(x) dx = 0 .

First examples: First examples:

bn = 1,−1

2
,
1

6
, 0,− 1

30
, 0,

1

42
, · · · B0(x) = 1 ,

B1(x) = x − 1

2
,

B2(x) = x2 − x +
1

6
,

...



Elementary properties satisfied by the Bernoulli polynomials and numbers

P1 b2n+1 = 0 if n > 0.

P2 Bn(0) = Bn(1) if n > 1.

P3
m∑

k=0

(
m + 1

k

)
bk = 0, m > 0.

P4


B ′n(z) = nBn−1(z) if n > 0.

Bn(x + y) =
n∑

k=0

(
n
k

)
Bk(x)y

n−k for all n.

P5 Bn(x + 1)− Bn(x) = nxn−1, for all n.

P6 (−1)nBn(1− x) = Bn(x), for all n.

P7
N−1∑
k=0

kn =
Bn+1(N)− Bn+1(0)

n + 1
.

P8

∫ x

a

Bn(t) dt =
Bn+1(x)− Bn+1(a)

n + 1
.

P9 Bn(mx) = mn−1
m−1∑
k=0

Bn

(
x +

k

m

)
for all m > 0 and n ≥ 0.



Elementary properties satisfied by the Bernoulli polynomials and numbers

P1 b2n+1 = 0 if n > 0.

P2 Bn(0) = Bn(1) if n > 1.

 Have to be extended,
but is not restritive enough.

P3
m∑

k=0

(
m + 1

k

)
bk = 0, m > 0. Has to be extended, but too particular.

P4


B ′n(z) = nBn−1(z) if n > 0.

Bn(x + y) =
n∑

k=0

(
n
k

)
Bk(x)y

n−k for all n.

Important property, but turns
out to have a generalization
with a corrective term...

P5 Bn(x + 1)− Bn(x) = nxn−1, for all n. Has to be extended, but how???

P6 (−1)nBn(1− x) = Bn(x), for all n. Has to be extended, but how???

P7
N−1∑
k=0

kp =
Bn+1(N)− Bn+1(0)

n + 1
. Does not depend of the Bernoulli numbers...

P8

∫ x

a

Bn(t) dt =
Bn+1(x)− Bn+1(a)

n + 1
.

Has a generalization using the derivative
of a multiple Bernoulli polynomial instead
of the Bernoulli polynmials.

P9 Bn(mx) = mn−1
m−1∑
k=0

Bn

(
x +

k

m

)
for all m > 0 and n ≥ 0. ???



On the Hurwitz Zeta Function

Definition:

The Hurwitz Zeta Function is defined, for ℜe s > 1, and z ∈ C− N<0, by:

ζ(s, z) =
∑
n>0

1

(n + z)s
.

Property:

s 7−→ ζ(s, z) can be analytically extended to a meromorphic function on C,
with a simple pole located at 1.

Property:

H1


∂ζ

∂z
(s, z) = −sζ(s + 1, z).

ζ(s, x + y) =
∑
n≥0

(
−s
n

)
ζ(s + n, x)yn.

H2 ζ(s, z − 1)− ζ(s, z) = z−s .

H3 ζ(−n, z) = −Bn+1(z)

n + 1
for all n ∈ N and z ∈ C .



On Hurwitz Multiple Zeta Functions

Definition of Hurwitz Multiple Zeta Functions

Hes1,··· ,sr (z) =
∑

0<nr<···<n1

1

(n1 + z)s1 · · · (nr + z)sr
, if z ∈ C− N<0 and

(s1, · · · , sr ) ∈ (N∗)r , such that s1 ≥ 2 .

Lemma 1: (B., J. Ecalle, 2012)

For all sequences (s1, · · · , sr ) ∈ (N∗)r , s1 ≥ 2, we have:

Hes1,··· ,sr (z − 1)−Hes1,··· ,sr (z) = Hes1,··· ,sr−1(z) · z−sr .

Lemma 2:

The Hurwitz Multiple Zeta Functions multiply by the stuffle product (of N∗).
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Main Goal

Heuristic:

Bes1,··· ,sr (z) = Multiple (Divided) Bernoulli Polynomials = He−s1,··· ,−sr (z) .

bes1,··· ,sr = Multiple (Divided) Bernoulli Numbers = He−s1,··· ,−sr (0) .

We want to define Bes1,··· ,sr (z) such that:

their properties are similar to Hurwitz Multiple Zeta Functions’ properties.

their properties generalize these of Bernoulli polynomials.

Main Goal:

Find some polynomials Bes1,··· ,sr such that:
Ben(z) =

Bn+1(z)

n + 1
, where n ≥ 0 ,

Ben1,··· ,nr (z + 1)− Ben1,··· ,nr (z) = Ben1,··· ,nr−1(z)znr , for n1, · · · , nr ≥ 0 ,

the Ben1,··· ,nr multiply by the stuffle product.



An algebraic construction

Notation 1:

Let X = {X1, · · · ,Xn, · · · } be a (commutative) alphabet of indeterminates ;

X̂ its corresponding extended alphabet.

We denotes:

BeegY1,··· ,Yr (z) =
∑

n1,··· ,nr≥0

Ben1,··· ,nr (z)
Y n1

1

n1!
· · · Y

nr
r

nr !
,

for all r ∈ N∗, Y1, · · · ,Yr ∈ X̂.

Remark: BeegY1,··· ,Yr (z + 1)− BeegY1,··· ,Yr (z) = BeegY1,··· ,Yr−1(z)ezYr .

Notation 2:

Let A = {a1, · · · , an, · · · } be a non-commutative alphabet.
We denotes:

B(z) = 1 +
∑
r>0

∑
k1,··· ,kr>0

BeegXk1
,··· ,Xkr (z)ak1 · · · akr ∈ C[z][[X̂]]⟨⟨A⟩⟩ .

Remark: B(z + 1) = B(z) ·
(
1 +

∑
k>0

ezXk ak
)



Reformulation of the main goal

From secondary symmetries of mould calculus:

Ben1,··· ,nr multiply the stuffle on non-negative integers
⇐⇒ BeY1,··· ,Yr multiply the stuffle on X

⇐⇒ B is group-like in C[z][[X̂]]⟨⟨A⟩⟩.

Reformulation of the main goal

Find some polynomials Bn1,··· ,nr such that:

⟨B(z)|ak⟩ =
ezXk

eXk − 1
− 1

Xk
,

B(z + 1) = B(z) · E(z) , where E(z) = 1 +
∑
k>0

ezXk ak ,

B is a “group-like” element of C[z][[X̂]]⟨⟨A⟩⟩ .
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A singular solution

Remainder: E(z) = 1 +
∑
k>0

ezXk ak .

From a false solution to a singular solution...

S(z) =
↘∏
n>0

E(z − n) = 1 +
∑
r>0

∑
k1,··· ,kr>0

ez(Xk1
+···+Xkr )

r∏
i=1

(eXk1
+···+Xki − 1)

ak1 · · · akr is a

false solution to system


⟨B(z)|ak⟩ =

ezXk

eXk − 1
− 1

Xk
,

B(z + 1) = B(z) · E(z) ,
B is a “group-like” element of C[z][[X̂]]⟨⟨A⟩⟩ .

Explanations: 1. B(z) = · · · = B(z − n) · E(z − n) · · ·E(z − 1)

= · · · =
(

lim
n−→+∞

B(z − n)

)
·
←−∏
n>0

E(z − n) .

2. S(z) ∈ C[z]((X̂))⟨⟨A⟩⟩, S(z) ̸∈ C[z][[X̂]]⟨⟨A⟩⟩.

Question: How to find a correction of S, to send it into C[z][[X̂]]⟨⟨A⟩⟩.



Another solution

Fact: If ∆(f )(z) = f (z − 1)− f (z), ker ∆ ∩ zC[z] = {0}.

Consequence: There exist a unique family of polynomials such that:{
Ben1,··· ,nr0 (z + 1)− Ben1,··· ,nr0 (z) = Be

n1,··· ,nr−1
0 (z)znr .

Ben1,··· ,nr0 (0) = 0 .

This produces a series B0 ∈ C[z][[X]]⟨⟨A⟩⟩ defined by:

B0(z) = 1 +
∑
r>0

∑
k1,··· ,kr>0

BeegXk1
,··· ,Xkr

0 (z) ak1 · · · akr .

Lemma: (B., 2013)

1 The noncommutative series B0 is a “group-like” element of C[z][[X]]⟨⟨A⟩⟩.
2 The coefficients of B0(z) satisfy a recurence relation, where Y1, · · · ,

Yr ∈ C[z][[X̂]]⟨⟨A⟩⟩
BeegY1

0 (z) =
ezY1 − 1

eY1 − 1

BeegY1,··· ,Yr
0 (z) =

BeegY1+Y2,Y3,··· ,Yr
0 (z)− BeegY2,Y3,··· ,Yr

0 (z)

eY1 − 1

3 The series B0 can be expressed in terms of S: B0(z) =
(
S(0)

)−1 · S(z).



Characterization of the set of solutions

Reminder: A family of multiple Bernoulli polynomials produces a series B such
that: 

B(z + 1) = B(z) · E(z) , where E(z) = 1 +
∑
k>0

ezXk ak ,

B is a “group-like” element of C[z][[X̂]]⟨⟨A⟩⟩ ,

⟨B(z)|ak⟩ =
ezXk

eXk − 1
− 1

Xk
.

Proposition: (B. 2013)

Any familly of polynomials which are solution of the previous system comes
from a noncommutative series B ∈ C[z][[X̂]]⟨⟨A⟩⟩ such that there exists

b ∈ C[[X̂]]⟨⟨A⟩⟩ satisfying:
1. ⟨b|Ak⟩ =

1

eXk − 1
− 1

Xk
2. b is “group-like”

3. B(z) = b ·B0 = b ·
(
S(0)

)−1 · S(z) .

Theorem: (B., 2013)

The subgroup of “group-like” series of C[z][[X̂]]⟨⟨A⟩⟩, with vanishing coefficients
in length 1, acts on the set of all possible multiple Bernoulli polynomials, i.e.
on the set of all possible algebraic renormalization.
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Some notations

New Goal:

From B(z) = b ·B0, determine a suitable series b such that the reflexion
formula

(−1)nBn(1− z) = Bn(z) , n ∈ N

has a nice generalization.

For a generic series s ∈ C[z][[X̂]]⟨⟨A⟩⟩,

s(z) =
∑
r∈N

∑
k1,··· ,kr>0

sXk1
,··· ,Xkr (z) ak1 · · · akr ,

we consider:

s(z) =
∑
r∈N

∑
k1,··· ,kr>0

sXkr ,··· ,Xk1 (z) ak1 · · · akr

s̃(z) =
∑
r∈N

∑
k1,··· ,kr>0

s−Xk1
,··· ,−Xkr (z) ak1 · · · akr



The reflection equation for B0(z)

Proposition: (B. 2014)

Let sg = 1 +
∑
r>0

∑
k1,··· ,kr>0

(−1)rak1 · · · akr =
(
1 +

∑
n>0

an
)−1

. Then,

S̃(0) =
(
S(0)

)−1 · sg and S̃(1− z) =
(
S(z)

)−1
.

Corollary 1: (B. 2014)

For all z ∈ C, we have: sg · B̃0(1− z) =
(
B0(z)

)−1
.

Example:

B−X ,−Y ,−Z
0 (1− z) = −BX ,Y ,Z

0 (z)− BX+Y ,Z
0 (z)− BX ,Y+Z

0 (z)

−BX+Y+Z
0 (z) + BY ,Z

0 (z) + BY+Z
0 (z) .



The generalization of the reflection formula

Corollary 2: (B. 2014)

B̃(1− z) ·B(z) = b̃ · sg−1 · b . (1)

Remark: S̃(0) · sg−1 · S(0) = 1.

Heuristic:

A reasonable candidate for a multi-Bernoulli polynomial comes from the
coefficients of a series B(z) = b ·B0(z) where b satisfies:

1. ⟨b|ak⟩ =
1

eXk − 1
− 1

Xk
2. b is “group-like”

3. b̃ · sg−1 · b = 1 .
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Resolution of an equation

Goal: Characterise the solutions of

{
ũ · sg−1 · u = 1 .
u is “group-like” .

Proposition: (B., 2014)

Let us denote
√
sg = 1 +

∑
r>0

∑
k1,··· ,kr>0

(−1)r

22r

(
2r
r

)
ak1 · · · akr ..

Any “group-like” solution u of ũ · sg−1 · u = 1 comes from a “primitive” series
v satisfying

v+ ṽ = 0 ,

and is given by:
u = exp(v) · √sg .

If moreover ⟨u|ak⟩ =
1

eXk − 1
− 1

Xk
, then necessarily, we have:

⟨v|ak⟩ =
1

eXk − 1
− 1

Xk
+

1

2
:= f (Xk) .



The choice of a series v

New goal: Find a nice series v satisfying:

1. v is “primitive”. 2. v+ ṽ = 0. 3. ⟨v|ak⟩ =
1

eXk − 1
− 1

Xk
+

1

2
= f (Xk) .

Remark: ⟨v|ak⟩ is an odd formal series in Xk ∈ X.

Generalization: ṽ = −v , so v = v .

=⇒ ⟨v|ak1ak2⟩ = −1

2
f (Xk1 + Xk2), but does not determine ⟨v|ak1ak2ak3⟩ .

A restrictive condition:

A natural condition is to have:

there exists αr ∈ C such that ⟨v|ak1 · · · akr ⟩ = αr f (Xk1 + · · ·+ Xkr ) .

Now, there is a unique “primitive” series v satisfying this condition and the new
goal:

⟨v|ak1 · · · akr ⟩ =
(−1)r−1

r
f (Xk1 + · · ·+ Xkr ) .



Definition

Definition : (B., 2014)

The series B(z) and b defined by{
B(z) = exp(v) ·

√
Sg · (S(0))−1 · S(z)

b = exp(v) ·
√
Sg

are noncommutative series of C[z][[X]]⟨⟨A⟩⟩ whose coefficients are respectively
the exponential generating functions of multiple Bernoulli polynomials and
multiple Bernoulli numbers.

Example:

The exponential generating function of bi-Bernoulli polynomials and numbers
are respectively:∑
n1,n2≥0

Bn1,n2(z)
X n1

n1!

Y n2

n2!
= −1

2
f (X + Y ) +

1

2
f (X )f (Y )− 1

2
f (X ) +

3

8

+f (X )
ezY − 1

eY − 1
− 1

2

ezY − 1

eY − 1

+
ez(X+Y ) − 1

(eX − 1)(eX+Y − 1)
− ezY − 1

(eX − 1)(eY − 1)
.



Examples of explicit expression for multiple Bernoulli numbers:

Consequently, we obtain explicit expressions like, for n1, n2, n3 > 0:

bn1,n2 =
1

2

(
bn1+1

n1 + 1

bn2+1

n2 + 1
− bn1+n2+1

n1 + n2 + 1

)
.

bn1,n2,n3 = +
1

6

bn1+1

n1 + 1

bn2+1

n2 + 1

bn3+1

n3 + 1

−1

4

(
bn1+n2+1

n1 + n2 + 1

bn3+1

n3 + 1
+

bn1+1

n1 + 1

bn2+n3+1

n2 + n3 + 1

)
+
1

3

bn1+n2+n3+1

n1 + n2 + n3 + 1
.

Remark: If n1 = 0, n2 = 0 or n3 = 0, the expressions are not so simple...



Table of Multiple Bernoulli Numbers in length 2

bp,q p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

q = 0
3

8
− 1

12
0

1

120
0 − 1

252
0

q = 1 − 1

24

1

288

1

240
− 1

2880
− 1

504

1

6048

1

480

q = 2 0
1

240
0 − 1

504
0

1

480
0

q = 3
1

240
− 1

2880
− 1

504

1

28800

1

480
− 1

60480
− 1

264

q = 4 0 − 1

504
0

1

480
0 − 1

264
0

q = 5 − 1

504

1

6048

1

480
− 1

60480
− 1

264

1

127008

691

65520



Conclusion

1. We have respectively defined the Multiple (divided) Bernoulli Polynomials
and Multiple (divided) Bernoulli Numbers by:

B(z) = exp(v) ·
√
Sg · (S(0))−1 · S(z)

b = exp(v) ·
√
Sg

where v is defined by:


⟨v|ak⟩ =

1

eXk − 1
− 1

Xk
+ 1

2
:= f (Xk)

⟨v|ak1 · · · akr ⟩ =
(−1)r−1

r
f (Xk1 + · · ·+ Xkr )

They both multiply the stuffle.

2. The Multiple Bernoulli Polynomials satisfy a nice generalization of:

the nullity of b2n+1 if n > 0.

the symmetry Bn(1) = Bn(0) if n > 1.

the difference equation ∆(Bn)(x) = nxn−1.

the reflection formula (−1)nBn(1− x) = Bn(x).
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On mould composition

Let us suppose that the alphabet (Ω,+) has an additive semi-group structure.
Let us denote ω1 + · · ·+ ωr by ||ω|| for all sequences ω ∈ Ω⋆.

Definition:

Let M• and N• be two moulds of M•
C(Ω) such that N∅ = 0.

Then, the mould composition C• = M• ◦ N• is defined for all sequences
ω ∈ Ω⋆ by:

(
M•◦N•

)ω
=


M∅ , if ω = ∅

∑
k>0

∑
ω1,··· ,ωk∈Ω⋆−{∅}

ω1···ωk=ω

M ||ω
1||,··· ,||ωk ||Nω1

· · ·Nωk

, otherwise

Let us consider two constant-type moulds M• and N• ∈ M•
C(Ω), i.e. such that

N∅ = 0 and defined by Mω = mr and Nω = nr for all sequences ω ∈ Ω⋆ of
length r .

If well-defined, the composition C• = M• ◦ N• is a constant-type mould.

Then, denoting M =
∑
r≥0

mrX
r ∈ C[[X ]], N =

∑
r>0

nrX
r ∈ XC[[X ]] and

C := M◦N =
∑
r≥0

crX
r ∈ C[[X ]], then cr = Cω, if l(ω) = r .



Examples of mould composition

Let us suppose that the alphabet (Ω,+) has an additive semi-group structure.

Let M•, N• ∈ M•
C(Ω) such that N∅ = 0 and ω1, ω2 and ω3 ∈ Ω.

We then have:(
M• ◦ N•

)∅
= M∅ .

(
M• ◦ N•

)ω1 = Mω1Nω1 .(
M• ◦ N•

)ω1,ω2 = Mω1+ω2Nω1,ω2 +Mω1,ω2Nω1Nω2 .(
M• ◦ N•

)ω1,ω2,ω3 = Mω1+ω2+ω3Nω1,ω2,ω3 +Mω1+ω2,ω3Nω1,ω2Nω3 +

Mω1,ω2+ω3Nω1Nω2,ω3 +Mω1,ω2,ω3Nω1Nω2Nω3 .

Let Zea• = Ze• ◦ (exp• − 1•), where exp• and 1• are the constant-type
mould coming from the exponential map and the constant 1 map.

Then:

Zea∅ = 1 . Zeap = Zep .

Zeap,q = Zep,q +
1

2
Zep+q .

Zeap,q,r = Zep,q,r +
1

2

(
Zep+q,r + Zep,q+r)+ Zep+q+r .

Remark: Zeap,q+Zeaq,p = ZeapZeaq andZeap,q,r+Zeap,r,q+Zear,p,q = Zeap,qZear



Algebraic structure with composition

Let us suppose that the alphabet (Ω,+) has an additive semi-group structure.

Proposition: Algebraic structure (Ecalle, 81 / complete detailed proof in B. 18)

(M•
C(Ω),+, .,×, ◦) is an algebra with composition i.e. that

1 (M•
C(Ω),+, .,×) is a C-algebra;

2 the internal operation ◦ : M•
C(Ω)×M•

C(Ω) −→ M•
C(Ω) is:

associative;

unitary;

distributive relatively to the addition;

left-distributive relatively to the multiplication.



Composition stability properties

Proposition: (Ecalle, 81 / / complete detailed proof in B., 18)

Let us assume that (Ω,+) is a commutative semi-group, so that the mould
composition is well-defined.

We have the following stability properties:

1 symmetral ◦ alternel ∈ symmetrel;

2 symmetrel ◦(symmetral −1•) ∈ symmetral;

3 . . .

Corollary

Zea• is a symmetral mould, i.e. multiply the shuffle product! (Really, not the stuffle!).
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