Multiple divided Bernoulli polynomials and numbers

Olivier Bouillot, Gustave Eiffel University, France

 $\begin{array}{c} \text{A.C.A. 30.} \\ \text{Wenesday, } 16^{\text{th}} \text{ July 2025 }. \end{array}$

Introduction

Definition:

The numbers $\mathbb{Z}e^{s_1,\cdots,s_r}$ defined by

$$\mathcal{Z}e^{s_1,\dots,s_r} = \sum_{0 < n_r < \dots < n_1} \frac{1}{n_1^{s_1} \cdots n_r^{s_r}} ,$$

where $s_1, \dots, s_r \in \mathbb{C}$ such that $\Re(s_1 + \dots + s_k) > k$, $k \in [1; r]$, are called multiple zeta values.

<u>Fact:</u> There exists at least three different ways to renormalize multiple zeta values at negative integers.

$$\mathcal{Z}e_{MP}^{0,-2}(0) = \frac{7}{720} \quad \ , \quad \ \mathcal{Z}e_{GZ}^{0,-2}(0) = \frac{1}{120} \quad \ , \quad \ \mathcal{Z}e_{FKMT}^{0,-2}(0) = \frac{1}{18} \ .$$

Question: Is there a group acting on the set of all possible multiple zeta values renormalisations?

Main goal: Define multiple Bernoulli numbers in relation with this.

Outline

- 1 Algebraic settings from moulds calculus.
- 2 Construction of Multiple divided Bernoulli polynomials

Definition and first notations.

Ecalle's concrete definition:

A mould is a function with a varying number of variables.

Mathematical definition:

A mould is a function defined over a free monoid Ω^* of (finite) sequences (or words) constructed over the alphabet Ω (or sometimes over a subset of Ω^*) with values in a commutative algebra C.

Typical example: The Multizetas Values!

Notations:

	Functional notations	Mould notations
Evaluation	f(x)	M⁵
Name	f	$M^{ullet}\in\mathcal{M}^{ullet}_{C}(\Omega)$

Main idea of mould calculus - The so-called Mould/comould's contractions.

Moulds might be contracted with dual objects, called **comoulds** (which are also functions with a variable number of variables):

Definition:

The mould-comould contraction of a mould M^{\bullet} and a comould B_{\bullet} is:

$$\sum_{\bullet} M^{\bullet} B_{\bullet} := \sum_{\underline{\omega} \in \Omega^{\star}} M^{\underline{\omega}} B_{\underline{\omega}}$$

(if the sum is well-defined...)

For analytical reasons, a mould-comould contraction might be understood to be an **algebra automorphism** or a **derivation**.

Important remark:

Mould's operations and symmetries come from such an interpretation.

First abstraction - Formal mould/comould contraction

- To each letter $\omega \in \Omega$, we define a symbol a_{ω} , which will be, when necessary, specialized to B_{ω} .
 - \rightsquigarrow The symbols a_{ω} do not commute.
 - \rightsquigarrow The symbols a_{ω} are extended to words:

$$a_{\omega_1\cdots\omega_r}=a_{\omega_1}\cdots a_{\omega_r}$$
.

■ To each mould $M^{\bullet} \in \mathcal{M}^{\bullet}_{\mathbf{C}}(\Omega)$, we define a series $s(M^{\bullet}) \in \mathbf{C}(A)$, where $A = \{a_{\omega} ; \omega \in \Omega\}$ by:

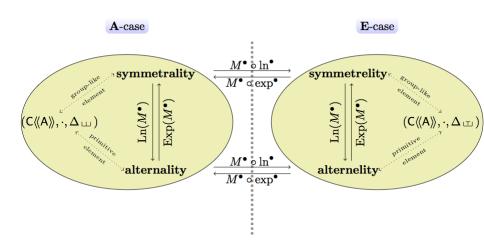
$$s(M^{\bullet}) = \sum_{\omega \in \Omega^{*}} M^{\underline{\omega}} \ a_{\underline{\omega}} := \sum_{\bullet} M^{\bullet} \ a_{\bullet} \ .$$

s is called the **formal mould/comould contraction**.

 \leadsto If φ is a specialization map (not necessarily morphism) defined by $\varphi(a_\omega)=B_\omega$, then:

$$\varphi(s(M^{\bullet})) = \sum_{\bullet} M^{\bullet} B_{\bullet} .$$

Mould operations anf primary symmetries



This defines + and \times of moulds as you can imagine.

The composition \circ is a more complicated operation..., which mimics a change of alphabet.

Examples of mould multiplication.

Example of mould product computation: $P^{\bullet} = M^{\bullet} \times N^{\bullet}$

$$P^{\emptyset} = M^{\emptyset} N^{\emptyset}$$

$$P^{\omega_{1}} = M^{\omega_{1}} N^{\emptyset} + M^{\emptyset} N^{\omega_{1}}$$

$$P^{\omega_{1},\omega_{2}} = M^{\omega_{1},\omega_{2}} N^{\emptyset} + M^{\omega_{1}} N^{\omega_{2}} + M^{\emptyset} N^{\omega_{1},\omega_{2}}$$

■ For all $n \in \mathbb{N}^*$, let us consider the mould \mathcal{I}_n^{\bullet} defined over the alphabet $\Omega = \mathbb{N}^*$ by:

$$\mathcal{I}^{\underline{s}}_{\overline{n}} = \left\{ egin{array}{ll} rac{1}{n^{s_1}} & ext{, if } \emph{I}(\underline{s}) = 1 \ . \ 0 & ext{, otherwise.} \end{array}
ight.$$

A new expression of the mould of multiple zeta values $\mathcal{Z}e^{\bullet}$ is the following factorisation:

Proposition: (B., 18)

$$\mathcal{Z}e^{ullet} = \cdots imes (1^{ullet} + \mathcal{I}_3^{ullet}) imes (1^{ullet} + \mathcal{I}_2^{ullet}) imes (1^{ullet} + \mathcal{I}_1^{ullet}) = \prod_{n>0}^{igwedge} (1^{ullet} + \mathcal{I}_n^{ullet}) \ .$$

where the last product is a convergent one if we restrict ourself to sequences $s \in \Omega_{\text{CV}}^* = \{(s_1, \dots, s_r) \in \mathbb{N}_1^* : s_1 > 2\}.$

CUPADIPAZPAZP Z 990

Formal moulds and secondary symmetries

Another point of view on moulds: A mould is a collection of functions (f_0, f_1, f_2, \cdots) , where $f_n : \Omega^n \longmapsto \mathbf{C}$.

Definition:

A formal mould is a collection of formal series (S_0, S_1, S_2, \cdots) , where S_n is a formal power series in n indeterminates (and consequently, S_0 is constant)

 $\underline{\text{Notation:}}\ \mathcal{FM}_{\textbf{C}}^{\bullet} = \{\text{formal mould with values in the algebra }\textbf{C}\}\ .$

What is the difference between a mould and a formal mould?

Mould $M^{ullet} \in \mathcal{M}^{ullet}_{oldsymbol{C}}(\Omega)$ where $\Omega = (X_1, X_2, \cdots)$.	Formal mould $M^{ullet}\in\mathcal{FM}^{ullet}_{C}$		
No link between M^{X_1,X_2} and M^{X_2,X_1} !!!	M^{X_1,X_2} and M^{X_2,X_1} are related by the <u>substitution</u> of the indeterminates.		

Nevertheless, $\mathcal{FM}^{ullet}_{\mathbf{C}}\subset\mathcal{M}^{ullet}_{\mathbf{C}}(X_1,X_2,\cdots)$.

Definition:

If a formal mould satisfies some symmetry, we say it is a *secondary symmetries*.

Generics example of formal moulds

Definition:

With a mould $M^{\bullet} \in \mathcal{M}^{\bullet}_{\mathbf{C}}(\mathbb{N})$, we associate two formal moulds Mog^{\bullet} and Meg^{\bullet} defined by:

$$\left\{ \begin{array}{ll} \textit{Mog}^{X_1,\cdots,X_r} & = & \displaystyle\sum_{s_1,\cdots,s_r\in\mathbb{N}^*} \textit{M}^{s_1,\cdots,s_r} \textit{X}_1^{s_1-1}\cdots \textit{X}_r^{s_r-1} \;. \\ \\ \textit{Meg}^{X_1,\cdots,X_r} & = & \displaystyle\sum_{s_1,\cdots,s_r\in\mathbb{N}} \textit{M}^{s_1,\cdots,s_r} \frac{\textit{X}_1^{s_1}}{s_1!}\cdots \frac{\textit{X}_r^{s_r}}{s_r!} \;. \end{array} \right.$$

This produces two operators on moulds:

Proposition: (B., 15)

og and eg are algebra morphisms:

og and eg are algebra morphisms:
$$og(M^{\bullet} \times N^{\bullet}) = og(M^{\bullet}) \times og(N^{\bullet}) \text{ and } eg(M^{\bullet} \times N^{\bullet}) = eg(M^{\bullet}) \times eg(N^{\bullet}).$$

Second algebraic abstraction: settings

Main objective: Adapt the Hopf algebraic setting to the case of formal moulds.

Let us consider:

- $\mathbf{X} = \{X_1, X_2, \cdots\}$ an infinite set of indeterminates.
- $\widehat{\mathbf{X}}$ an extended alphabet: $\underline{\mathbf{A}\text{-case:}}\ \widehat{\mathbf{X}} = \mathbf{X}$.

$$\underline{\textbf{E-case:}} \ \widehat{\textbf{X}} = \textbf{X} \cup \bigcup_{r \geq 2} \left\{ \sum_{i=1}^{r} X_i, X_1, \cdots, X_r \in \textbf{X} \right\}$$

- $\mathcal{A} = \{A_x ; x \in \widehat{\mathbf{X}}\}$, with symbols that do not commute.
- $\Delta \sqcup : C[\![\widehat{\mathbf{X}}]\!]\langle\!\langle \mathcal{A} \rangle\!\rangle \longrightarrow C[\![\widehat{\mathbf{X}}]\!]\langle\!\langle \mathcal{A} \rangle\!\rangle \otimes C[\![\widehat{\mathbf{X}}]\!]\langle\!\langle \mathcal{A} \rangle\!\rangle$ defined by:

$$extbf{\Delta}$$
 if $(A_x) = A_x \otimes 1 + \sum_{\substack{u,v \in \widehat{X} \ u+v=x}} A_u \otimes A_v + 1 \otimes A_x$

and extended to words of \mathcal{A}^* such that Δ is a morphism for the concatenation product and then by $\mathbb{C}[\widehat{X}]$ -linearity to $\mathbb{C}[\widehat{X}](\langle \mathcal{A} \rangle)$.

Second abstraction: secondary formal mould/comould contraction

Lemma: (B., 15)

Let us define

So, $(C[\widehat{X}]\langle A\rangle, \cdot, \eta, \triangle \sqcup, \varepsilon)$ is a bialgebra.

Secondary formal mould/comould contraction

To a formal mould $FM^{\bullet} \in \mathcal{FM}_{\mathbf{C}}^{\bullet}$, we associate a series $S(FM^{\bullet}) \in \mathbf{C}[\![\mathbf{X}]\!] \langle\!\langle \mathbf{A} \rangle\!\rangle$ by:

$$S(FM^{\bullet}) = \sum_{\omega \in A^{\star}} FM^{\underline{\omega}} A_{\underline{\omega}} := \sum_{\bullet} FM^{\bullet} A_{\bullet} .$$

Generics theorem for secondary symmetries

Theorem: (Ecalle, $\sim 90's$, see [SNAG] in French!)

Let $M^{ullet} \in \mathcal{M}^{ullet}_{\mathbf{C}}(\mathbb{N})$ be a mould.

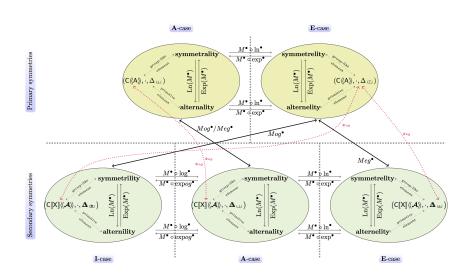
- $\coprod M^{\bullet}$ is symmetr<u>al</u> if, and only if, Mog^{\bullet} is symmetr<u>al</u>.
- $\underline{\mathbf{Q}}$ M^{\bullet} is altern $\underline{\mathbf{a}}$ l if, and only if, Mog^{\bullet} is altern $\underline{\mathbf{a}}$ l.
- M^{\bullet} is symmetr<u>e</u>l if, and only if, Meg^{\bullet} is symmetr<u>il</u>.
- $\underline{\mathbf{M}}^{\bullet}$ is altern<u>e</u>l if, and only if, Meg^{\bullet} is altern<u>i</u>l.

Theorem: (B., 2015)

Let $M^{ullet} \in \mathcal{M}^{ullet}_{\mathbf{C}}(\mathbb{N})$ be a mould.

- $\underline{\mathbf{I}} M^{\bullet}$ is symmetr $\underline{\mathbf{a}}$ l if, and only if, Meg^{\bullet} is symmetr $\underline{\mathbf{a}}$ l.
- $\underline{\mathbf{Q}}$ M^{\bullet} is alternal if, and only if, Meg^{\bullet} is alternal.
- M^{\bullet} is symmetrel if, and only if, Meg^{\bullet} is symmetrel.
- $\underline{\mathbf{M}}^{\bullet}$ is alternel if, and only if, Meg^{\bullet} is alternel.

Summary of mould calculus



Choose of a paradigm

From now on,

- all computations will be done USING NONCOMMUTATIVE SERIES,
- keeping in mind THE MOULD CALCULUS FRAMEWORK.

And...

... let's go to Bernoulli polynomials!

Outline

- 1 Algebraic settings from moulds calculus
- 2 Construction of Multiple divided Bernoulli polynomials
 - Reminders on Bernoulli polynomials and Hurwitz multiple zeta functions
 - Algebraic reformulation of the problem
 - The Structure of a Multiple Bernoulli Polynomial
 - The General Reflexion Formula of Multiple Bernoulli Polynomial
 - An Example of Multiple Bernoulli Polynomial

Outline

- 2 Construction of Multiple divided Bernoulli polynomials
 - Reminders on Bernoulli polynomials and Hurwitz multiple zeta functions
 - Algebraic reformulation of the problem
 - The Structure of a Multiple Bernoulli Polynomial
 - The General Reflexion Formula of Multiple Bernoulli Polynomial
 - An Example of Multiple Bernoulli Polynomial

Two Equivalent Definitions of Bernoulli Polynomials / Numbers

Bernoulli numbers:	Bernoulli polynomials:			
By a generating function:	By a generating function:			
$rac{t}{e^t-1} = \sum_{n\geq 0} b_n rac{t^n}{n!} \; .$	$\frac{te^{xt}}{e^t-1}=\sum_{n\geq 0}B_n(x)\frac{t^n}{n!}.$			
By a recursive formula:	By a recursive formula:			
$\left\{ egin{array}{l} b_0=1 \ , \ \ orall n\in \mathbb{N} \ , \ \sum_{k=0}^n inom{n+1}{k} \ b_k=0 \ . \end{array} ight.$	$\left\{egin{array}{l} B_0(x)=1\ ,\ orall n\in\mathbb{N}\ ,\ B_{n+1}'(x)=(n+1)B_n(x)\ ,\ orall n\in\mathbb{N}^*\ , \int_0^1 B_n(x)\ dx=0\ . \end{array} ight.$			
First examples:	First examples:			
$b_n = 1, -\frac{1}{2}, \frac{1}{6}, 0, -\frac{1}{30}, 0, \frac{1}{42}, \cdots$	$B_0(x) = 1,$ $B_1(x) = x - \frac{1}{2},$ $B_2(x) = x^2 - x + \frac{1}{6},$			

Elementary properties satisfied by the Bernoulli polynomials and numbers

P1
$$b_{2n+1} = 0$$
 if $n > 0$.

P2
$$B_n(0) = B_n(1)$$
 if $n > 1$.

P3
$$\sum_{k=0}^{m} {m+1 \choose k} b_k = 0, m > 0.$$

P4
$$\begin{cases} B'_n(z) = nB_{n-1}(z) \text{ if } n > 0. \\ B_n(x+y) = \sum_{k=0}^n \binom{n}{k} B_k(x) y^{n-k} \text{ for all } n. \end{cases}$$

P5
$$B_n(x+1) - B_n(x) = nx^{n-1}$$
, for all n .

P6
$$(-1)^n B_n(1-x) = B_n(x)$$
, for all n .

P7
$$\sum_{n=0}^{N-1} k^n = \frac{B_{n+1}(N) - B_{n+1}(0)}{n+1}$$
.

P8
$$\int_{a}^{x} B_{n}(t) dt = \frac{B_{n+1}(x) - B_{n+1}(a)}{n+1}.$$

P9
$$B_n(mx) = m^{n-1} \sum_{k=0}^{m-1} B_n\left(x + \frac{k}{m}\right) \text{ for all } m > 0 \text{ and } n \ge 0.$$

Elementary properties satisfied by the Bernoulli polynomials and numbers

- P1 $b_{2n+1} = 0$ if n > 0. P2 $B_n(0) = B_n(1)$ if n > 1. Have to be extended, but is not restritive enough.
- $\mathbf{P3} \quad \sum_{k=0}^{m} {m+1 \choose k} b_k = 0, \ m > 0.$ Has to be extended, but too particular.
- **P4** $\begin{cases} B'_n(z) = nB_{n-1}(z) \text{ if } n > 0. \\ B_n(x+y) = \sum_{k=0}^{n} \binom{n}{k} B_k(x) y^{n-k} \text{ for all } n. \end{cases}$ Important property, but turns out to have a generalization with a corrective term...
- $B_n(x+1) B_n(x) = nx^{n-1}$, for all n. Has to be extended, but how??? P5
- $(-1)^n B_n(1-x) = B_n(x)$, for all n. Has to be extended, but how???
- **P7** $\sum_{n=1}^{N-1} k^p = \frac{B_{n+1}(N) B_{n+1}(0)}{n+1}$. Does not depend of the Bernoulli numbers...
- **P8** $\int_{0}^{x} B_n(t) dt = \frac{B_{n+1}(x) B_{n+1}(a)}{n+1}$. Has a generalization using the derivative of a multiple Bernoulli polynomial instead of the Bernoulli polynmials.
- **P9** $B_n(mx) = m^{n-1} \sum_{k=0}^{m-1} B_n\left(x + \frac{k}{m}\right)$ for all m > 0 and $n \ge 0$. ???

On the Hurwitz Zeta Function

Definition:

The Hurwitz Zeta Function is defined, for $\Re e\ s>1$, and $z\in\mathbb{C}-\mathbb{N}_{<0}$, by:

$$\zeta(s,z)=\sum_{n>0}\frac{1}{(n+z)^s}.$$

Property:

 $s \longmapsto \zeta(s,z)$ can be analytically extended to a meromorphic function on \mathbb{C} , with a simple pole located at 1.

Property:

H1
$$\begin{cases} \frac{\partial \zeta}{\partial z}(s,z) = -s\zeta(s+1,z). \\ \zeta(s,x+y) = \sum_{n\geq 0} {\binom{-s}{n}} \zeta(s+n,x)y^n. \end{cases}$$

H2
$$\zeta(s, z - 1) - \zeta(s, z) = z^{-s}$$
.

H3
$$\zeta(-n,z) = -\frac{B_{n+1}(z)}{n+1}$$
 for all $n \in \mathbb{N}$ and $z \in \mathbb{C}$.

On Hurwitz Multiple Zeta Functions

Definition of Hurwitz Multiple Zeta Functions

$$\mathcal{H}e^{s_1,\cdots,s_r}(z) = \sum_{\substack{0 < n_r < \cdots < n_1\\ (s_1,\cdots,s_r) \in (\mathbb{N}^*)^r, \text{ such that } s_1 \geq 2}} \frac{1}{(n_1+z)^{s_1}\cdots(n_r+z)^{s_r}} \ , \text{ if } z \in \mathbb{C} - \mathbb{N}_{<0} \text{ and }$$

Lemma 1: (B., J. Ecalle, 2012)

For all sequences $(s_1,\cdots,s_r)\in (\mathbb{N}^*)^r$, $s_1\geq 2$, we have:

$$\mathcal{H}e^{s_1,\cdots,s_r}(z-1)-\mathcal{H}e^{s_1,\cdots,s_r}(z)=\mathcal{H}e^{s_1,\cdots,s_{r-1}}(z)\cdot z^{-s_r}\ .$$

Lemma 2:

The Hurwitz Multiple Zeta Functions multiply by the stuffle product (of \mathbb{N}^*).

Outline

- 2 Construction of Multiple divided Bernoulli polynomials
 - Reminders on Bernoulli polynomials and Hurwitz multiple zeta functions
 - Algebraic reformulation of the problem
 - The Structure of a Multiple Bernoulli Polynomial
 - The General Reflexion Formula of Multiple Bernoulli Polynomial
 - An Example of Multiple Bernoulli Polynomial

Heuristic:

$$Be^{s_1, \cdots, s_r}(z) = ext{Multiple (Divided) Bernoulli Polynomials} = \mathcal{H}e^{-s_1, \cdots, -s_r}(z)$$
. $be^{s_1, \cdots, s_r} = ext{Multiple (Divided) Bernoulli Numbers} = \mathcal{H}e^{-s_1, \cdots, -s_r}(0)$.

We want to define $Be^{s_1, \dots, s_r}(z)$ such that:

- their properties are similar to Hurwitz Multiple Zeta Functions' properties.
- their properties generalize these of Bernoulli polynomials.

Main Goal:

Find some polynomials Be^{s_1, \dots, s_r} such that:

$$\left\{ \begin{array}{l} Be^n(z)=\frac{B_{n+1}(z)}{n+1} \text{ , where } n\geq 0 \text{ ,} \\ Be^{n_1,\cdots,n_r}(z+1)-Be^{n_1,\cdots,n_r}(z)=Be^{n_1,\cdots,n_{r-1}}(z)z^{n_r} \text{ , for } n_1,\cdots,n_r\geq 0 \text{ ,} \\ \text{the } Be^{n_1,\cdots,n_r} \text{ multiply by the stuffle product.} \end{array} \right.$$

An algebraic construction

Notation 1:

Let $\mathbf{X} = \{X_1, \cdots, X_n, \cdots\}$ be a (commutative) alphabet of indeterminates; $\widehat{\mathbf{X}}$ its corresponding extended alphabet.

We denotes:

$$\mathcal{B}eeg^{Y_1, \dots, Y_r}(z) = \sum_{n_1, \dots, n_r \geq 0} \mathcal{B}e^{n_1, \dots, n_r}(z) \frac{Y_1^{n_1}}{n_1!} \cdots \frac{Y_r^{n_r}}{n_r!} ,$$

for all $r \in \mathbb{N}^*$, $Y_1, \dots, Y_r \in \widehat{\mathbf{X}}$.

$$\underline{\text{Remark:}} \ \mathcal{B}\text{eeg}^{Y_1,\cdots,Y_r}(z+1) - \mathcal{B}\text{eeg}^{Y_1,\cdots,Y_r}(z) = \mathcal{B}\text{eeg}^{Y_1,\cdots,Y_{r-1}}(z)e^{zY_r} \ .$$

Notation 2:

Let $A = \{a_1, \dots, a_n, \dots\}$ be a non-commutative alphabet.

We denotes:

$$\mathfrak{B}(z) = 1 + \sum_{r>0} \ \sum_{k_1,\cdots,k_r>0} \mathcal{B}\text{eeg}^{X_{k_1},\cdots,X_{k_r}}(z) \mathsf{a}_{k_1}\cdots \mathsf{a}_{k_r} \in \mathbb{C}[z] \llbracket \widehat{\mathbf{X}} \rrbracket \langle\!\langle \mathsf{A} \rangle\!\rangle \ .$$

Remark:
$$\mathfrak{B}(z+1) = \mathfrak{B}(z) \cdot \left(1 + \sum_{k>0} e^{zX_k} a_k\right)$$

Reformulation of the main goal

From secondary symmetries of mould calculus:

$$\begin{array}{c} \textit{Be}^{\textit{n}_1,\cdots,\textit{n}_r} \text{ multiply the stuffle on non-negative integers} \\ \iff \mathcal{B}e^{\textit{Y}_1,\cdots,\textit{Y}_r} \text{ multiply the stuffle on X} \\ \iff \mathfrak{B} \text{ is group-like in } \mathbb{C}[z] \widehat{\pmb{[X]}} \langle\!\langle A \rangle\!\rangle. \end{array}$$

Reformulation of the main goal

Find some polynomials B^{n_1,\dots,n_r} such that:

$$\left\{ \begin{array}{l} \langle \mathfrak{B}(z) | a_k \rangle = \frac{\mathrm{e}^{z X_k}}{\mathrm{e}^{X_k} - 1} - \frac{1}{X_k} \ , \\ \\ \mathfrak{B}(z+1) = \mathfrak{B}(z) \cdot \mathfrak{E}(z) \ , \ \text{where} \ \mathfrak{E}(z) = 1 + \sum_{k > 0} \mathrm{e}^{z X_k} \ a_k \ , \\ \\ \mathfrak{B} \ \text{is a "group-like" element of } \mathbb{C}[z] [\![\widehat{\mathbf{X}}]\!] \langle \!\langle \mathsf{A} \rangle \!\rangle \ . \end{array} \right.$$

Outline

- 2 Construction of Multiple divided Bernoulli polynomials
 - Reminders on Bernoulli polynomials and Hurwitz multiple zeta functions
 - Algebraic reformulation of the problem
 - The Structure of a Multiple Bernoulli Polynomial
 - The General Reflexion Formula of Multiple Bernoulli Polynomial
 - An Example of Multiple Bernoulli Polynomial

A singular solution

Remainder:
$$\mathfrak{E}(z) = 1 + \sum_{k>0} e^{zX_k} a_k$$
.

From a false solution to a singular solution...

$$\begin{split} \mathcal{S}(z) &= \prod_{n>0}^{\searrow} \mathfrak{E}(z-n) = 1 + \sum_{r>0} \sum_{k_1, \cdots, k_r>0} \frac{e^{z(X_{k_1}+\cdots + X_{k_r})}}{\prod\limits_{i=1}^r (e^{X_{k_1}+\cdots + X_{k_i}}-1)} a_{k_1} \cdots a_{k_r} \text{ is a} \\ & \\ \text{false solution to system} \left\{ \begin{array}{l} \langle \mathfrak{B}(z) | a_k \rangle = \frac{e^{zX_k}}{e^{X_k}-1} - \frac{1}{X_k} \ , \\ \mathfrak{B}(z+1) = \mathfrak{B}(z) \cdot \mathfrak{E}(z) \ , \\ \mathfrak{B} \text{ is a "group-like" element of } \mathbb{C}[z] \llbracket \widehat{\mathbf{X}} \rrbracket \langle\!\langle \mathbf{A} \rangle\!\rangle \ . \end{array} \right. \end{split}$$

Explanations: 1.
$$\mathfrak{B}(z) = \cdots = \mathfrak{B}(z-n) \cdot \mathfrak{E}(z-n) \cdots \mathfrak{E}(z-1)$$

= $\cdots = \left(\lim_{n \to +\infty} \mathfrak{B}(z-n)\right) \cdot \prod_{j=0}^{n} \mathfrak{E}(z-n)$.

2. $S(z) \in \mathbb{C}[z]((\widehat{\mathbf{X}}))(\langle A \rangle), S(z) \notin \mathbb{C}[z][[\widehat{\mathbf{X}}]](\langle A \rangle).$

Question: How to find a correction of S, to send it into $\mathbb{C}[z][\widehat{\mathbf{X}}]\langle\langle A \rangle\rangle$.

Fact: If
$$\Delta(f)(z) = f(z-1) - f(z)$$
, ker $\Delta \cap z\mathbb{C}[z] = \{0\}$.

Consequence: There exist a unique family of polynomials such that:

$$\left\{ \begin{array}{l} Be_0^{n_1,\cdots,n_r}(z+1) - Be_0^{n_1,\cdots,n_r}(z) = Be_0^{n_1,\cdots,n_{r-1}}(z)z^{n_r} \ . \\ Be_0^{n_1,\cdots,n_r}(0) = 0 \ . \end{array} \right.$$

This produces a series $\mathfrak{B}_0 \in \mathbb{C}[z][\![X]\!]\langle\!\langle A \rangle\!\rangle$ defined by:

$$\mathfrak{B}_{0}(z) = 1 + \sum_{r>0} \sum_{k_{1}, \cdots, k_{r}>0} \mathcal{B}eeg_{0}^{X_{k_{1}}, \cdots, X_{k_{r}}}(z) \ a_{k_{1}} \cdots a_{k_{r}} \ .$$

Lemma: (B., 2013)

- **1** The noncommutative series \mathfrak{B}_0 is a "group-like" element of $\mathbb{C}[z][\![X]\!]\langle\!(A\rangle\!\rangle$.
- The coefficients of $\mathfrak{B}_0(z)$ satisfy a recurence relation, where $Y_1, \dots, Y_r \in \mathbb{C}[z][\widehat{\mathbf{X}}]\langle\!\langle \mathsf{A} \rangle\!\rangle$

$$\begin{cases} \mathcal{B}eeg_0^{Y_1}(z) = \frac{e^{zY_1} - 1}{e^{Y_1} - 1} \\ \mathcal{B}eeg_0^{Y_1, \cdots, Y_r}(z) = \frac{\mathcal{B}eeg_0^{Y_1 + Y_2, Y_3, \cdots, Y_r}(z) - \mathcal{B}eeg_0^{Y_2, Y_3, \cdots, Y_r}(z)}{e^{Y_1} - 1} \end{cases}$$

In The series \mathfrak{B}_0 can be expressed in terms of \mathcal{S} : $\mathfrak{B}_0(z) = (\mathcal{S}(0))^{-1} \cdot \mathcal{S}(z)$.

Characterization of the set of solutions

Reminder: A family of multiple Bernoulli polynomials produces a series $\mathfrak B$ such that:

$$\left\{ \begin{array}{l} \mathfrak{B}(z+1) = \mathfrak{B}(z) \cdot \mathfrak{E}(z) \text{ , where } \mathfrak{E}(z) = 1 + \sum_{k>0} \mathrm{e}^{zX_k} \, a_k \text{ ,} \\ \\ \mathfrak{B} \text{ is a "group-like" element of } \mathbb{C}[z] \llbracket \widehat{\mathbf{X}} \rrbracket \langle\!\langle \mathsf{A} \rangle\!\rangle \text{ ,} \\ \\ \langle \mathfrak{B}(z) | a_k \rangle = \frac{\mathrm{e}^{zX_k}}{\mathrm{e}^{X_k} - 1} - \frac{1}{X_k} \text{ .} \end{array} \right.$$

Proposition: (B. 2013)

Any familly of polynomials which are solution of the previous system comes from a noncommutative series $\mathfrak{B} \in \mathbb{C}[z] \widehat{\mathbf{X}} \langle\!\!| \langle A \rangle\!\!|$ such that there exists

$$\begin{split} \mathfrak{b} &\in \mathbb{C} [\![\widehat{\mathbf{X}}]\!] \langle\!\langle \mathsf{A} \rangle\!\rangle \text{ satisfying:} \\ 1. & \langle \mathfrak{b} | A_k \rangle = \frac{1}{e^{X_k} - 1} - \frac{1}{X_k} \\ 2. & \mathfrak{b} \text{ is "group-like"} \\ 3. & \mathfrak{B}(z) = \mathfrak{b} \cdot \mathfrak{B}_0 = \mathfrak{b} \cdot \left(\mathcal{S}(0)\right)^{-1} \cdot \mathcal{S}(z) \;. \end{split}$$

3.
$$\mathfrak{B}(z) = \mathfrak{b} \cdot \mathfrak{B}_0 = \mathfrak{b} \cdot (\mathcal{S}(0))^{-1} \cdot \mathcal{S}(z)$$
.

Theorem: (B., 2013)

The subgroup of "group-like" series of $\mathbb{C}[z][\widehat{\mathbf{X}}]\langle\!\langle \mathsf{A} \rangle\!\rangle$, with vanishing coefficients in length 1, acts on the set of all possible multiple Bernoulli polynomials, i.e. on the set of all possible algebraic renormalization.

Outline

- 2 Construction of Multiple divided Bernoulli polynomials
 - Reminders on Bernoulli polynomials and Hurwitz multiple zeta functions
 - Algebraic reformulation of the problem
 - The Structure of a Multiple Bernoulli Polynomial
 - The General Reflexion Formula of Multiple Bernoulli Polynomial
 - An Example of Multiple Bernoulli Polynomial

Some notations

New Goal:

From $\mathfrak{B}(z)=\mathfrak{b}\cdot\mathfrak{B}_0$, determine a suitable series \mathfrak{b} such that the reflexion formula

$$(-1)^n B_n(1-z) = B_n(z)$$
, $n \in \mathbb{N}$

has a nice generalization.

For a generic series $s \in \mathbb{C}[z][\widehat{\mathbf{X}}]\langle\langle A \rangle\rangle$,

$$s(z) = \sum_{r \in \mathbb{N}} \sum_{k_1, \dots, k_r > 0} s^{X_{k_1}, \dots, X_{k_r}}(z) a_{k_1} \cdots a_{k_r}$$

we consider:

$$\overline{s}(z) = \sum_{r \in \mathbb{N}} \sum_{k_1, \dots, k_r > 0} s^{X_{k_r}, \dots, X_{k_1}}(z) a_{k_1} \dots a_{k_r}
\widetilde{s}(z) = \sum_{r \in \mathbb{N}} \sum_{k_1, \dots, k_r > 0} s^{-X_{k_1}, \dots, -X_{k_r}}(z) a_{k_1} \dots a_{k_r}$$

The reflection equation for $\mathfrak{B}_0(z)$

Proposition: (B. 2014)

Let
$$sg = 1 + \sum_{r>0} \sum_{k_1, \dots, k_r>0} (-1)^r a_{k_1} \cdots a_{k_r} = \left(1 + \sum_{n>0} a_n\right)^{-1}$$
. Then,

$$\widetilde{\mathcal{S}}(0) = \left(\overline{\mathcal{S}}(0)\right)^{-1} \cdot \textit{sg} \quad \text{ and } \quad \widetilde{\mathcal{S}}(1-z) = \left(\overline{\mathcal{S}}(z)\right)^{-1} \; .$$

Corollary 1: (B. 2014)

For all $z\in\mathbb{C}$, we have: $sg\cdot\widetilde{\mathfrak{B}}_0(1-z)=\left(\overline{\mathfrak{B}}_0(z)\right)^{-1}$.

Example:

$$\begin{array}{rcl} \mathcal{B}_0^{-X,-Y,-Z}(1-z) & = & -\mathcal{B}_0^{X,Y,Z}(z) - \mathcal{B}_0^{X+Y,Z}(z) - \mathcal{B}_0^{X,Y+Z}(z) \\ & & -\mathcal{B}_0^{X+Y+Z}(z) + \mathcal{B}_0^{Y,Z}(z) + \mathcal{B}_0^{Y+Z}(z) \; . \end{array}$$

The generalization of the reflection formula

Corollary 2: (B. 2014)

$$\widetilde{\mathfrak{B}}(1-z)\cdot\overline{\mathfrak{B}}(z)=\widetilde{\mathfrak{b}}\cdot sg^{-1}\cdot\overline{\mathfrak{b}}$$
 (1)

Remark: $\widetilde{\mathcal{S}}(0) \cdot sg^{-1} \cdot \overline{\mathcal{S}}(0) = 1$.

Heuristic:

A reasonable candidate for a multi-Bernoulli polynomial comes from the coefficients of a series $\mathfrak{B}(z) = \mathfrak{b} \cdot \mathfrak{B}_0(z)$ where \mathfrak{b} satisfies:

1.
$$\langle \mathfrak{b} | a_k \rangle = \frac{1}{e^{X_k} - 1} - \frac{1}{X_k}$$

2. b is "group-like"

3.
$$\widetilde{\mathfrak{b}} \cdot sg^{-1} \cdot \overline{\mathfrak{b}} = 1$$
.

Outline

2 Construction of Multiple divided Bernoulli polynomials

- Reminders on Bernoulli polynomials and Hurwitz multiple zeta functions
- Algebraic reformulation of the problem
- The Structure of a Multiple Bernoulli Polynomial
- The General Reflexion Formula of Multiple Bernoulli Polynomial
- An Example of Multiple Bernoulli Polynomial

Resolution of an equation

Goal: Characterise the solutions of $\left\{ \begin{array}{l} \widetilde{\mathfrak{u}} \cdot sg^{-1} \cdot \overline{\mathfrak{u}} = 1 \ . \\ \mathfrak{u} \text{ is "group-like"} \ . \end{array} \right.$

Proposition: (B., 2014)

Let us denote
$$\sqrt{sg}=1+\sum_{r>0}\sum_{k_1,\cdots,k_r>0}\frac{(-1)^r}{2^{2r}}\binom{2r}{r}a_{k_1}\cdots a_{k_r}$$
 ..

Any "group-like" solution $\mathfrak u$ of $\widetilde{\mathfrak u} \cdot sg^{-1} \cdot \overline{\mathfrak u} = 1$ comes from a "primitive" series $\mathfrak v$ satisfying

$$\overline{\mathfrak{v}} + \widetilde{\mathfrak{v}} = 0$$
 ,

and is given by:

$$\mathfrak{u} = exp(\mathfrak{v}) \cdot \sqrt{sg}$$
 .

If moreover $\langle \mathfrak{u} | a_k \rangle = \frac{1}{e^{X_k} - 1} - \frac{1}{X_k}$, then necessarily, we have:

$$\langle v|a_k\rangle = rac{1}{e^{X_k}-1} - rac{1}{X_k} + rac{1}{2} := f(X_k)$$
.

The choice of a series v

New goal: Find a nice series \mathfrak{v} satisfying:

1.
$$\mathfrak v$$
 is "primitive"

$$2. \ \overline{\mathfrak{v}} + \widetilde{\mathfrak{v}} = 0.$$

1.
$$\mathfrak{v}$$
 is "primitive". 2. $\overline{\mathfrak{v}} + \widetilde{\mathfrak{v}} = 0$. 3. $\langle \mathfrak{v} | a_k \rangle = \frac{1}{e^{X_k} - 1} - \frac{1}{X_k} + \frac{1}{2} = f(X_k)$.

Remark: $\langle v | a_k \rangle$ is an odd formal series in $X_k \in X$.

Generalization: $\widetilde{\mathfrak{v}} = -\mathfrak{v}$, so $\overline{\mathfrak{v}} = \mathfrak{v}$.

$$\implies \langle \mathfrak{v} | a_{k_1} a_{k_2} \rangle = -\frac{1}{2} f(X_{k_1} + X_{k_2})$$
, but does not determine $\langle \mathfrak{v} | a_{k_1} a_{k_2} a_{k_3} \rangle$.

A restrictive condition:

A natural condition is to have:

there exists
$$\alpha_r \in \mathbb{C}$$
 such that $\langle \mathfrak{v} | a_{k_1} \cdots a_{k_r} \rangle = \alpha_r f(X_{k_1} + \cdots + X_{k_r})$.

Now, there is a unique "primitive" series v satisfying this condition and the new goal:

$$\langle \mathfrak{v}|a_{k_1}\cdots a_{k_r}\rangle=\frac{(-1)^{r-1}}{r}f(X_{k_1}+\cdots+X_{k_r}).$$

Definition: (B., 2014)

The series $\mathfrak{B}(z)$ and \mathfrak{b} defined by

$$\begin{cases} \mathfrak{B}(z) = \exp(\mathfrak{v}) \cdot \sqrt{Sg} \cdot (S(0))^{-1} \cdot S(z) \\ \mathfrak{b} = \exp(\mathfrak{v}) \cdot \sqrt{Sg} \end{cases}$$

are noncommutative series of $\mathbb{C}[z][X]\langle A\rangle$ whose coefficients are respectively the exponential generating functions of $\underline{multiple\ Bernoulli\ polynomials}$ and $\underline{multiple\ Bernoulli\ numbers}$.

Example:

The exponential generating function of bi-Bernoulli polynomials and numbers are respectively:

$$\sum_{n_1,n_2 \ge 0} B^{n_1,n_2}(z) \frac{X^{n_1}}{n_1!} \frac{Y^{n_2}}{n_2!} = -\frac{1}{2} f(X+Y) + \frac{1}{2} f(X) f(Y) - \frac{1}{2} f(X) + \frac{3}{8}$$

$$+ f(X) \frac{e^{zY} - 1}{e^Y - 1} - \frac{1}{2} \frac{e^{zY} - 1}{e^Y - 1}$$

$$+ \frac{e^{z(X+Y)} - 1}{(e^X - 1)(e^{X+Y} - 1)} - \frac{e^{zY} - 1}{(e^X - 1)(e^Y - 1)}.$$

Examples of explicit expression for multiple Bernoulli numbers:

Consequently, we obtain explicit expressions like, for $n_1, n_2, n_3 > 0$:

$$b^{n_1,n_2} = \frac{1}{2} \left(\frac{b_{n_1+1}}{n_1+1} \frac{b_{n_2+1}}{n_2+1} - \frac{b_{n_1+n_2+1}}{n_1+n_2+1} \right).$$

$$b^{n_1,n_2,n_3} = +\frac{1}{6} \frac{b_{n_1+1}}{n_1+1} \frac{b_{n_2+1}}{n_2+1} \frac{b_{n_3+1}}{n_3+1}$$

$$-\frac{1}{4} \left(\frac{b_{n_1+n_2+1}}{n_1+n_2+1} \frac{b_{n_3+1}}{n_3+1} + \frac{b_{n_1+1}}{n_1+1} \frac{b_{n_2+n_3+1}}{n_2+n_3+1} \right)$$

$$+\frac{1}{3} \frac{b_{n_1+n_2+n_3+1}}{n_1+n_2+n_3+1} .$$

Remark: If $n_1 = 0$, $n_2 = 0$ or $n_3 = 0$, the expressions are not so simple...

Table of Multiple Bernoulli Numbers in length 2

$b^{p,q}$	p = 0	p = 1	p = 2	p = 3	p = 4	p = 5	<i>p</i> = 6
q = 0	3 8	$-\frac{1}{12}$	0	$\frac{1}{120}$	0	$-\frac{1}{252}$	0
q = 1	$-\frac{1}{24}$	$\frac{1}{288}$	$\frac{1}{240}$	$-\frac{1}{2880}$	$-\frac{1}{504}$	$\frac{1}{6048}$	$\frac{1}{480}$
q=2	0	$\frac{1}{240}$	0	$-\frac{1}{504}$	0	$\frac{1}{480}$	0
q=3	$\frac{1}{240}$	$-\frac{1}{2880}$	$-\frac{1}{504}$	$\frac{1}{28800}$	$\frac{1}{480}$	$-\frac{1}{60480}$	$-\frac{1}{264}$
q = 4	0	$-\frac{1}{504}$	0	$\frac{1}{480}$	0	$-\frac{1}{264}$	0
q = 5	$-\frac{1}{504}$	$\frac{1}{6048}$	$\frac{1}{480}$	$-\frac{1}{60480}$	$-\frac{1}{264}$	$\frac{1}{127008}$	691 65520

1. We have respectively defined the Multiple (divided) Bernoulli Polynomials and Multiple (divided) Bernoulli Numbers by:

$$\begin{cases}
\mathfrak{B}(z) = \exp(\mathfrak{v}) \cdot \sqrt{Sg} \cdot (S(0))^{-1} \cdot S(z) \\
\mathfrak{b} = \exp(\mathfrak{v}) \cdot \sqrt{Sg}
\end{cases}$$

where
$$\mathfrak v$$
 is defined by:
$$\begin{cases} \langle \mathfrak v | a_k \rangle & = & \frac{1}{e^{X_k}-1} - \frac{1}{X_k} + \frac{1}{2} := f(X_k) \\ \langle \mathfrak v | a_{k_1} \cdots a_{k_r} \rangle & = & \frac{(-1)^{r-1}}{r} f(X_{k_1} + \cdots + X_{k_r}) \end{cases}$$

They both multiply the stuffle.

- 2. The Multiple Bernoulli Polynomials satisfy a nice generalization of:
 - the nullity of b_{2n+1} if n > 0.
 - the symmetry $B_n(1) = B_n(0)$ if n > 1.
 - the difference equation $\Delta(B_n)(x) = nx^{n-1}$.
 - the reflection formula $(-1)^n B_n(1-x) = B_n(x)$.

References

- J. Ecalle: Les fonctions résurgentes [vol. 1 : 81-05] (1981).
- J. Ecalle: Singularités non abordables par la géométrie (1992).
- J. Cresson: Calcul moulien (2009).
- D. SAUZIN: Mould Expansion for the Saddle-node and Resurgence Monomials (2009).
- O. BOUILLOT: From primary to secondary mould symmetries (2018) (with \geq 80 complete examples)

THANK YOU FOR YOUR ATTENTION!

On mould composition

Let us suppose that the alphabet $(\Omega, +)$ has an additive semi-group structure. Let us denote $\omega_1 + \cdots + \omega_r$ by $||\underline{\omega}||$ for all sequences $\underline{\omega} \in \Omega^*$.

Definition:

Let M^{\bullet} and N^{\bullet} be two moulds of $\mathcal{M}^{\bullet}_{\mathsf{C}}(\Omega)$ such that $N^{\emptyset}=0$. Then, the mould composition $C^{\bullet}=M^{\bullet}\circ N^{\bullet}$ is defined for all sequences $\underline{\omega}\in\Omega^{\star}$ by:

$$(M^{\bullet} \circ N^{\bullet})^{\underline{\omega}} = \left\{ \begin{array}{ll} M^{\emptyset} & \text{, if } \underline{\omega} = \emptyset \\ \\ \sum_{k>0} \sum_{\underline{\omega}^1, \cdots, \underline{\omega}^k \in \Omega^{\star} - \{\emptyset\}} M^{||\underline{\omega}^1||, \cdots, ||\underline{\omega}^k||} N^{\underline{\omega}^1} \cdots N^{\underline{\omega}^k} \\ \\ \underline{\omega}^1 \cdots \underline{\omega}^k = \underline{\omega} \end{array} \right. , \text{ otherwise}$$

Let us consider two constant-type moulds M^{\bullet} and $N^{\bullet} \in \mathcal{M}_{\mathbb{C}}^{\bullet}(\Omega)$, *i.e.* such that $N^{\emptyset} = 0$ and defined by $M^{\underline{\omega}} = m_r$ and $N^{\underline{\omega}} = n_r$ for all sequences $\underline{\omega} \in \Omega^{\star}$ of length r.

If well-defined, the composition $C^{\bullet} = M^{\bullet} \circ N^{\bullet}$ is a constant-type mould. Then, denoting $\mathcal{M} = \sum_{r \geq 0} m_r X^r \in \mathbb{C}[\![X]\!]$, $\mathcal{N} = \sum_{r > 0} n_r X^r \in X\mathbb{C}[\![X]\!]$ and

Examples of mould composition

Let us suppose that the alphabet $(\Omega, +)$ has an additive semi-group structure.

Let M^{\bullet} , $N^{\bullet} \in \mathcal{M}^{\bullet}_{\mathbb{C}}(\Omega)$ such that $N^{\emptyset} = 0$ and ω_1 , ω_2 and $\omega_3 \in \Omega$. We then have:

■ Let $\mathcal{Z}ea^{\bullet} = \mathcal{Z}e^{\bullet} \circ (exp^{\bullet} - 1^{\bullet})$, where exp^{\bullet} and 1^{\bullet} are the constant-type mould coming from the exponential map and the constant 1 map.

Then:

$$\begin{split} \mathcal{Z}ea^{\emptyset} &=& 1 \; . \qquad \mathcal{Z}ea^{\rho} \; = \; \mathcal{Z}e^{\rho} \; . \\ \mathcal{Z}ea^{\rho,q} &=& \mathcal{Z}e^{\rho,q} + \frac{1}{2}\mathcal{Z}e^{\rho+q} \; . \\ \\ \mathcal{Z}ea^{\rho,q,r} &=& \mathcal{Z}e^{\rho,q,r} + \frac{1}{2}\left(\mathcal{Z}e^{\rho+q,r} + \mathcal{Z}e^{\rho,q+r}\right) + \mathcal{Z}e^{\rho+q+r} \; . \end{split}$$

Remark: $Zea^{p,q} + Zea^{q,p} = Zea^p Zea^q$ and $Zea^{p,q,r} + Zea^{p,r,q} + Zea^{r,p,q} = Zea^{p,q} Zea^r$

Algebraic structure with composition

Let us suppose that the alphabet $(\Omega,+)$ has an additive semi-group structure.

Proposition: Algebraic structure (Ecalle, 81 / complete detailed proof in B. 18)

 $(\mathcal{M}^{ullet}_{\mathsf{C}}(\Omega),+,., imes,\circ)$ is an algebra with composition i.e. that

- $\coprod (\mathcal{M}_{\mathsf{C}}^{\bullet}(\Omega), +, ., \times)$ is a C-algebra;
- f 2 the internal operation $\circ: \mathcal{M}_{\mathsf{C}}^{ullet}(\Omega) imes \mathcal{M}_{\mathsf{C}}^{ullet}(\Omega) \longrightarrow \mathcal{M}_{\mathsf{C}}^{ullet}(\Omega)$ is:
 - associative;
- distributive relatively to the addition;

unitary;

left-distributive relatively to the multiplication.

Composition stability properties

Proposition: (Ecalle, 81 / / complete detailed proof in B., 18)

Let us assume that $(\Omega, +)$ is a commutative semi-group, so that the mould composition is well-defined.

We have the following stability properties:

- **2** symmetrel \circ (symmetral -1^{\bullet}) ∈ symmetral;
- 3

Corollary

Zea• is a symmetral mould, i.e. multiply the **shuffle** product! (Really, not the stuffle!).