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Let ¢(s) be the Riemann zeta-function. Then for k > 1, the weight 2k
Eisenstein series is given by

Gar(2) = 5C(1 = 20) + 3 omea(m)a™

n=1

For 2k > 4, Gay(z) is a weight 2k modular form on SLs(Z).
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p-adic modular forms in the sense of Serre

First examples of p-adic modular forms come from Eisenstein series.

Theorem (Serre, 1972)

Let () (s) be the p-adic zeta-function and

U,(cp) (n) := Z d.

d|n
ged(d,p)=1

Then for k > 1, we have that

1 = "
G (x) = 3¢V -20) + Y off) 1 (n)g

n=1

s a p-adic modular form of weight 2k.
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p-adic Eisenstein series

G,(fi)(z) = G,(f;)(z) (mod p®) whenever k1 = ky (mod (p — 1)p®~1) and
kl,k‘g 5_'5 0 (HlOd p— 1)

Example
6 =10 (mod 4) and 6,10 # 0 (mod 4) so

781
GO (2) = o T4+ 33¢% 4 244¢% +1057¢* + ¢® + -+ -,

and

488281

G0 (z) = o Tat 5132 + 19684¢° + 262657¢* + ¢° + - - -

are congruent modulo 5.




Introduction

Mazur’s question

The eigencurve is a rigid-analytic curve whose points correspond to
normalized finite slope p-adic overconvergent modular eigenforms.




Introduction

Mazur’s question

The eigencurve is a rigid-analytic curve whose points correspond to
normalized finite slope p-adic overconvergent modular eigenforms.

Question (Mazur)

Does an eigencurve-like object exists for harmonic Maass forms?




Introduction

Mazur’s question

The eigencurve is a rigid-analytic curve whose points correspond to
normalized finite slope p-adic overconvergent modular eigenforms.

Question (Mazur)

Does an eigencurve-like object exists for harmonic Maass forms?

The standard constructions of harmonic Maass forms rarely lead to
eigenforms:

@ Poincaré series,
@ Mock theta functions,

o Indefinite theta functions.
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defined by
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Harmonic Maass forms

For k € R, the weight £ hyperbolic Laplacian operator on H is
defined by

02 0? 0 0 0 0
.2 v o v Y)Y 429 9 g v
Ay = —y (8m2 + 8y2> +iky ((’h —I—zay) 4y 9 93 —&-szyaz.

Definition

A smooth function f: H — C is a weight £ harmonic Maass form
with manageable growth on I' (denoted Hj (I")) if

o f transforms like a modular form of weight k& on T,
o Ay(f) =0,
o f(z) =0(e%) as y — oo for some € > 0 at all cusps.
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Remarks about harmonic Maass forms

Remark

The Fourier expansion of f naturally splits as

flz)= Z c;{(n)q" +c; (0)y' =" + Z ¢y (n)IL(1 -k, —4mny)q" .
nz>—oo n<g oo
S— n#0

holomorphic part -
mock modular form non-holomorphic part
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P(giz):= Y. lw1(2)

'YGFOO\FO(N)
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Examples of harmonic Maass forms

|n e Z}. Given a translation invariant

function ¢(z), the weight k level N Poincaré series for ¢(z) is

P(gz):= Y,  ¢lr(2)

'YGFOO\FO(N)

Example

Ono constructed a Maass-Poincaré series of weight —10 and level 1

65520
Froiz)=q¢"- ol — 184289472+ — 23274.07545 - P

which is connected to A(z).

N
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Examples of harmonic Maass forms

Given a quadratic form @ of type (r — 1,1), the theta function
associated to ) with characteristic a € R" and b € R" is the series

Oap(z) = Z p(n; z)e2™ B Q)
nea+7"

Example

ogl-

For Q(j,k) = £(55% — 2k?), a = (1

), and b = (?) we have
1

502
aF 9.3 J 2425
Of(z)=2¢w | > - > |(-1ygErEiT,
n+j>0 n+;5<0
n—j>0 n—3<0

which is related to Ramanujan’s fifth order mock theta function.
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Applications of harmonic Maass forms

o Partitions (Bruinier-Ono, Dyson, Atkin-Swinnerton-Dyer,...).
e Singular moduli (Borcherds, Zagier, Duke-Imamoglu-Téth,...).
o Derivatives of L-functions (Gross-Zagier, Bruinier-Ono,...).

o Donaldson invariants (Gottsche-Zagier, Malmendier-Ono,...).

o Kac-Wakimoto characters (Bringmann-Ono,
Dabholkar-Murty-Zagier,...).

o Moonshine (Borcherds, Harvey, Duncan-Griffin-Ono,...).
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”
Proposition

For any k£ > 2, we have that

€a-1 + Hy_,(Co(IV)) — M (To(N)).

A
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&, = 2iy" et

Proposition

For any k£ > 2, we have that

ok : Hy 1(To(N)) = My (To(N)).

Suppose f € H! (To(N)) with x € 1Z Then the following are true.
@ For m € N, f|T(m) € H.(To(N)).

(
Q p(lim)flﬂ(ﬂTn(p)) = gn( )|T2 n( ) if k € Z.

h




Mazur’s question

Two families of harmonic Maass forms

Define the weight k differential operator & by

&, = 2iy" et

Proposition

For any k£ > 2, we have that

ok : Hy 1(To(N)) = My (To(N)).

Suppose f € H! (To(N)) with x € 1Z Then the following are true.
@ For m € N, f|T(m) € H.(To(N)).
@ P E(fITe(p) = &el(f)Ta—r(p) if K € Z.
© P L (fIT (1) = &u(N)|To—s(@®) if k € § + Z.

h
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Pullback of integer weight Eisenstein series

e For k£ > 0, define

(2K)1C(2k + 1) (=1)kt1yl+2Rl42krc( 2k — 1)

G(z,—2k) :=

(2m)2k 2k+1
- — 02k 41(n)
+(~DFEm) R Y
n=1
g
+ (=1)*(2n) 2k Z 2k2J;1+1 (14 2k, 4mny)g™".
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Pullback of Cohen-Eisenstein series

Let T (v Zu a" tog_1(v/a).

alv

Set (—1)"N = Dv? with D the discriminant of Q(v/D) and xp = (2).
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Pullback of Cohen-Eisenstein series

Let T)X(v Zu a" tog_1(v/a).

alv

Set (—1)"N = Dv? with D the discriminant of Q(vD) and xp = (2).

Let
P2TIL(1 + xp)ﬁTr’fﬂ(v) N >0
o1 92r+d, 2r+1 T+%C(*1*2r) _
cr(N)=<1 C(1+2r)+ o= 3§yF(2r+l) N =0

72/2L(—r,xp)T. r+1(v)r( 2 )
"I (=Fr (]

T (r+ %,747rNy) N <0,

where a = 0 if r is odd and a = 1 if r is even.
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Statement of results

Pullback of Cohen-Eisenstein series

Let T)X(v Zu a" tog_1(v/a).

alv

Set (—1)"N = Dv? with D the discriminant of Q(vD) and xp = (2).

Let
P2TIL(1 + xp)ﬁTr’fﬂ(v) N >0
o1 92r+d, 2r+1 T+%C(*1*2r) _
cr(N)=<1 C(1+2r)+ o= 3§yF(2r+l) N =0

72/2L(—r,xp)T. r+1(v)r( 2 )
"I (=Fr (]

T (r+ %,747rNy) N <0,

where a = 0 if r is odd and a = 1 if r is even.

Then, for r > 1, define H (2, —r + 3) := Y. yez &r(N)gV

X
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Theorem 1

Theorem 1 (W)

Assuming the notation above, the following are true.

Q For k € N, we have that G(z,—2k) € H' ,, (SL2(Z)).
Furthermore, G(z,—2k) has eigenvalue 1 + pz,c% under the Hecke
operator T(p).

Q@ Forr € N, we have that H (z,—r + 3) € HLT+ (To(4)).

1
2
Furthermore, H (z, —r+ %) has eigenvalue 1 + zﬁ under the

Hecke operator T (p?).




Statement of results

p-adic harmonic Maass forms in the sense of Serre

Definition
A weight k p-adic harmonic Maass form is a formal power series

flz)= Z c}'(n)q"—l—cf ytk 4 Z ¢y ()l (1 —k,—4mny) ¢"

n>>—oo 0#n <K oo

where I'(1 — k, —47ny) is taken as a formal symbol and where the
coefficients c}c (n) are in C,, such that there exists a series of harmonic
Maass forms f;(z) such that the following properties are satisfied:

(1) limiﬁoonlfkici( ) =nl"k i( ) for n # 0.

@ lim; o ¢ (0) = ¢ (0).
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p-adic harmonic Maass forms in the sense of Serre

A weight k p-adic harmonic Maass form is a formal power series

flz)= Z c}f(n)q"—l—cf ytk 4 Z ¢y ()l (1 —k,—4mny) ¢"

n>>—oo 0#n <K oo

where I'(1 — k, —47ny) is taken as a formal symbol and where the
coefficients ¢£(n) are in C,, such that there exists a series of harmonic
Maass forms f;(z) such that the following properties are satisfied:

(1) limiﬁoonlfkici( ) =nl"k i( ) for n # 0.

@ lim; o ¢ (0) = ¢ (0).

Remark

\
: |

Here lim; o n means
vp(nlfkici (n) — nl’kcjf(n)) tends to oo.

kA —k £
1 klcfi(n)—nl kcf( )

5
X
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o Define the usual p-adic Gamma function by

IPm):=-0" [[ i ifnez,
0<j<n
ptj

and L@ () := lim T® (n) if x € Zy,.
n—x

e For any z € Z, we have v,(I'P)(z)) = 1. In the following
formulas we define 7 := T'(P) (%)2 so that v, (m) = 1.
o Let L,(s,x) be the p-adic L-function.




Statement of results

p-adic harmonic Maass forms in the sense of Serre

Definitions

o Define the usual p-adic Gamma function by

r®(n) = "I i ifnez
0<j<n
plj
and L@ () := lim T® (n) if x € Zy,.
n—x

e For any z € Z, we have v,(I'P)(z)) = 1. In the following
formulas we define 7 := T'(P) (%)2 so that v, (m) = 1.

o Let L,(s,x) be the p-adic L-function.

o Define

TXP) = > pla)x(@)a " o) (v/a).

alv
ged(a,p)=1




Statement of results

Answer to Mazur’s question for integer weights

Theorem 2 (W)

Suppose p is prime. Then the following are true. For each

ke X :=7Zy,xZ/(p—1)Z, we have that

I'® 2k +1)¢P)(2k + 1)
(2,”)219
(—1)k+1y1+2k21+2kﬂ'§(1’)(—2/€ _ 1)
2k +1

G®) (2, —2k) :=

+

oo (P) (n)

+(~1)FEm) #T® 2k +1) Y 2’“;,;1

n=1

ok 02k+1
+( Z 2k+1 L(1+ 2k, dmny)q

s a weight —2k p-adic harmonic Maass form.

—n




Statement of results

Answer to Mazur’s question for half-integral weights

Theorem (W)
For each —r + % e X, let

2L (1 + 7, xD) s TEE P (v ) N>0
I Y 92r+4; 2r+1 r+2C(p)(_1_2) .
C@(N) = I 4 2r) + e e G N=0
m/ Ly (—rxp) TR @ @)re (ze)

[ (r+3,—47rNy) N <0.

Nt D) ( e )F(p) (7"-‘,—%)

Then H®) (z, —r+ %) = Nez cgp)(N)qN is a weight —r + % 5 p-adic
harmonic Maass form.




Statement of results

Two corollaries

For k € Z, G®)(z, —2k) satisfies
GW)(z, —2k) = G(z,—2k) — G(pz, —2k).

This implies that G®) (2, —2k) € H',, (To(p))-
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Two corollaries

Remark

For k € Z, G®)(z, —2k) satisfies
GW)(z, —2k) = G(z,—2k) — G(pz, —2k).

This implies that G) (2, —2k) € H' ,, (To(p)).

Remark

| \

The half-integral weight result implies that the Cohen-Eisenstein
series are p-adic modular forms in the sense of Serre.

X
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Hecke’s trick

Proof sketch

For k € Z, define

2k
Gz, —2k,s) = = (mz 4 n)

2s ’
00 tmamez: IM#+ 7l

and

f(z,—2k,s) := i (z+n)*|z +n|72

n=—oo

27r7lnac —2Tny
E hn(y, —2k, s) e ,
——o0




Hecke’s trick

Proof sketch

For k € Z, define

1 2k
G(z, —2k,s) = = M
(0,0)#(n,m)€Z? mz +nl
and
f(Z, —2k,s) = Z (Z+n)2k|z—|—n|_23
n=—00

= .
= Z hn(y’_2k7s)e27mnm€727rny’

n=—oo
where by the Poisson summation formula

1Y +00 .
hn(ya _Zk,S) = / Z2k|2|*256727r1nzdz'

L 0 /32
1Y — 00




Construction of the integer weight forms

Proof sketch

e We find

G(z,—2k,s) = ((2s — 2k) + Z m1+2k_28hmn(y, —9%k, S)ezmnmz_

nez
m2>1




Proofs

Construction of the integer weight forms

Proof sketch

e We find

G(z,—2k,s) = ((2s — 2k) + Z m1+2k_28hmn(y, —9%k, S)ezmnmz_

nez
m2>1

e For each n € Z, h,(y, —2k,0) = 0, so define

. d
G(z,—2k) := 21_{% £g(z, —2k, s).




Proofs

Construction of the integer weight forms

Proof sketch

e We find

Q(z, —2k, S) = C(ZS — Qk) L Z m1+2k—23hmn(y’ —2k, S)eQWinmm-

nez
m2>1

e For each n € Z, h,(y, —2k,0) = 0, so define

. d
G(z,—2k) := gl_r% £g(z, —2k, s).

o Compute each coefficient by contour integration to complete the
proof.
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A result of Zagier

Proposition (Zagier)

There exists a Dirichlet series

1

E,(s) 5

(Ep™(s) + E;"e"(s))

such that if n = Dv?, then

0 ifn=2,3 (mod 4)
Ep(s) = { Hexp)le20) if = 0,1 (mod 4)
((2s—1)

<eD) if n=0.




Proofs

Construction of the half-integral weight forms

Proof sketch

Let k = 2r — 1 € N. Define the two Eisenstein series F’ (z, L s) and

E(z,fg,s) by
k my\ _, (mz+n)k/?
F sy TS = (7) k 3
<Z 2 S> n;ez n) Tzt
n>0
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Construction of the half-integral weight forms

Proof sketch

Let k = 2r — 1 € N. Define the two Eisenstein series F’ (z, L s) and

E (z,fg,s) by
k my\ _, (mz+n)k/?
F sy TS = (7) k 3
(Z 2 S) Z n)cr |mz + n|?s
n,mez
n>0
4|m
and
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Construction of the half-integral weight forms

Proof sketch

Let k = 2r — 1 € N. Define the two Eisenstein series F’ (z, L s) and

E (z,fg,s) by
k my\ _, (mz+n)k/?
F sy TS = (7) k 3
(Z 2 S) Z n)cr |mz + n|?s
n,mez
n>0
4|m
and

k (22)%/2 (-1 k
Elz—n,s) =2 _p(—, -2
(z’ 2’8) 2212 C \4z " 20°)

where (%) is the Kronecker symbol and

S 1 ifn=1 (mod 4)
" li ifn=3 (mod4).
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Construction of the half-integral weight forms

Proof sketch
We have




Proofs

Construction of the half-integral weight forms

Proof sketch
We have

where

k D
a(N) =2 "*ay <y, —2,s> i > (@) e R
n
n>0




Proof sketch

We have

where

a(N) = 252 ay <y_§s> ot Y (1)

n>0 m  (mod n)
n odd

and by the Poisson summation formula

k‘ 1y—+oo B _ )
an (y,—2,8 = 2% |z| 7252 NZ gy,
i

Yy—0o
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Construction of the half-integral weight forms

Proof sketch

Similarly, we have




Proofs

Construction of the half-integral weight forms

Proof sketch

Similarly, we have
F<z _k s) =1 i b(N)g™
) 2 ) ,
N=—00
where

b(N) =an (y,—l;,s) SomEir N (%) ek

m>0 n  (mod m)
4|m




Construction of the half-integral weight forms

Proof sketch

Using the Proposition of Zagier, we find

k 1 k1
a(N) S 2%4’17250{]\/ (y72,8> §E(m_i?)rN <2 — 5 +2S> 5
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Construction of the half-integral weight forms

Proof sketch

Using the Proposition of Zagier, we find

k 1 k1
a(N) S 2%4’17250{]\/ (y72,8> §E(m_i?)rN <2 — 5 +2S> 5

and

2T L d_ S k 1 even k 1
b(N) = (1 +'L2 +1)42+2 2 anN <y,—2,8> iE(—l)"'N <—2 — 5 +2S) o




Proofs

Construction of the half-integral weight forms

Proof sketch

Using the Proposition of Zagier, we find

k 1 k1
a(N) S 2%4’17250{]\/ (y72,8> §E(m_i?)rN <2 — 5 +2S> 5

and

2T L d_ S k 1 even k 1
b(N) = (1 +'L2 +1)42+2 2 anN <y,—2,8> iE(—l)"'N <—2 — 5 +2S) o

Define

LY or_1 1
H (z,—r+2> o= gl_%g(1+2r 4s) [z F (2,—7“4-2’3)

1 1
422 (14 HE (z, -+ > s)] .




Harmonic Maass eigenforms

Proof sketch

Note that
§ok(G(2, —2k)) = Eay2(2),
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Proof sketch

Note that
§ok(G(2, —2k)) = Eay2(2),

. <7—[ (z, —r+ ;)) =H,,:(2).

and




Proofs

Harmonic Maass eigenforms

Proof sketch

Note that
§ok(G(2, —2k)) = Eay2(2),

. <7—[ (z, —r+ ;)) =H,,:(2).

It is well known that

and

Eni2(2)|T(p) = (1 + p** 1) Eaiya(2),

and
Hy o3 (2)IT(2) = (1+p*+)H, 5 (2).




Proofs

Harmonic Maass eigenforms

Proof sketch
We find

G(z, —2k)|T(p) — (1 + pQ,}+1> G(z, —2k),

H <z —r+ ;) )T(pQ) - (1 + p;H) N (z —r+ ;)

both vanish.

and




Generalized Bernoulli numbers

The generalized Bernoulli numbers B(n,x) are defined by the
generating function

= tm x(a)te
D BX) =D S
n=0 a=1

Where x is a Dirichlet character modulo m.




Generalized Bernoulli numbers

The generalized Bernoulli numbers B(n,x) are defined by the
generating function

= tm x(a)te
D BX) =D S
n=0 a=1

Where x is a Dirichlet character modulo m.

Proposition

If k is a positive integer and x is a Dirichlet character, then

L(1—k,x) = —@.




Kummer’s congruences

For n > 1 we have that

Lyl—n,x)=—-(1-x-w"(@p" ")

where w is the Teichmiiller character.
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where w is the Teichmiiller character.

Remark

If n=m (mod (p—1)p*) and (p — 1) { n,m for an odd prime p, then
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Kummer’s congruences

Proposition

For n > 1 we have that

Lyl—n,x)=—-(1-x-w"(@p" ")

where w is the Teichmiiller character.

Remark

If n=m (mod (p—1)p*) and (p — 1) { n,m for an odd prime p, then
B, B,

(1 _pn—l) = (1 _ pm—l) (mod pa-',-l)7
n m

where a is a nonnegative integer.

If let x # 1 be a primitive Dirichlet character with conductor not
divisible by p, then if n = m (mod p®) we have

M = (1_X.w—m(p)pm—l)w.

n—1
) n m

(I=xw " (p)p




Proofs

Congruences for p-adic harmonic Maass forms

The p-adic zeta function at positive integers does not behave as nicely
as at negative integers. However, it is still expected that it satisfies
similar congruences modulo some p-adic regulator.




Proofs

Congruences for p-adic harmonic Maass forms

Remark
The p-adic zeta function at positive integers does not behave as nicely

as at negative integers. However, it is still expected that it satisfies
similar congruences modulo some p-adic regulator.

We have

G+0O)(z,-2)

= 7% <C(5)(3)+q+2q2+§§q3+;iq4+715q5+~~> :
and
G+0O)(z,—6)

Tat 157 T 51577 T 163827 T 781257

45 129 2188 16513 1
46<C(5)(7) 2 3+ 4 5+)



Summary

Theorem (W)

We have constructed two infinite families of harmonic Maass forms,
one integer weight and one half-integral weight. Furthermore, these
forms are eigenforms for the Hecke operators T(p) and T (p?).




Proofs

Summary

Theorem (W)

We have constructed two infinite families of harmonic Maass forms,
one integer weight and one half-integral weight. Furthermore, these
forms are eigenforms for the Hecke operators T(p) and T (p?).

We construct two infinite families of p-adic harmonic Maass forms in
the sense of Serre. These constructions provide a partial answer to
Mazur’s question about the existence of an eigencurve for harmonic

Maass forms.
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