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Introduction
Mazur’s question

Statement of results
Proofs

p-adic modular forms in the sense of Serre

Definition

A power series f is a p-adic modular form if there is a sequence of
classical modular forms fi such that vp(f − fi)→∞ as i→∞.

Definition

Let ζ(s) be the Riemann zeta-function. Then for k ≥ 1, the weight 2k
Eisenstein series is given by

G2k(z) :=
1

2
ζ(1− 2k) +

∞∑
n=1

σ2k−1(n)qn.

Remark

For 2k ≥ 4, G2k(z) is a weight 2k modular form on SL2(Z).
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p-adic modular forms in the sense of Serre

Remark

First examples of p-adic modular forms come from Eisenstein series.

Theorem (Serre, 1972)

Let ζ(p)(s) be the p-adic zeta-function and

σ
(p)
k (n) :=

∑
d|n

gcd(d,p)=1

dk.

Then for k ≥ 1, we have that

G
(p)
2k (z) =
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2
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σ
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p-adic Eisenstein series

Remark

G
(p)
k1

(z) ≡ G(p)
k2

(z) (mod pa) whenever k1 ≡ k2 (mod (p− 1)pa−1) and
k1, k2 6≡ 0 (mod p− 1).

Example

6 ≡ 10 (mod 4) and 6, 10 6≡ 0 (mod 4) so

G
(5)
6 (z) =

781

126
+ q + 33q2 + 244q3 + 1057q4 + q5 + · · · ,

and

G
(5)
10 (z) =

488281

66
+ q + 513q2 + 19684q3 + 262657q4 + q5 + · · ·

are congruent modulo 5.
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Mazur’s question

Definition

The eigencurve is a rigid-analytic curve whose points correspond to
normalized finite slope p-adic overconvergent modular eigenforms.

Question (Mazur)

Does an eigencurve-like object exists for harmonic Maass forms?

Remark

The standard constructions of harmonic Maass forms rarely lead to
eigenforms:

Poincaré series,

Mock theta functions,

Indefinite theta functions.
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Poincaré series,

Mock theta functions,

Indefinite theta functions.

5 / 32



Introduction
Mazur’s question

Statement of results
Proofs

Mazur’s question

Definition

The eigencurve is a rigid-analytic curve whose points correspond to
normalized finite slope p-adic overconvergent modular eigenforms.

Question (Mazur)

Does an eigencurve-like object exists for harmonic Maass forms?

Remark

The standard constructions of harmonic Maass forms rarely lead to
eigenforms:

Poincaré series,
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Harmonic Maass forms

Definition

For k ∈ R, the weight k hyperbolic Laplacian operator on H is
defined by

∆k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
= −4y2 ∂

∂z

∂

∂z
+ 2iky

∂

∂z
.

Definition

A smooth function f : H→ C is a weight k harmonic Maass form
with manageable growth on Γ (denoted H !

k(Γ)) if

f transforms like a modular form of weight k on Γ,

∆k(f) = 0,

f(z) = O(eεy) as y →∞ for some ε > 0 at all cusps.
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Remarks about harmonic Maass forms

Remark

The Fourier expansion of f naturally splits as

f(z) =
∑

n�−∞
c+f (n)qn︸ ︷︷ ︸

holomorphic part
mock modular form

+ c−f (0)y1−k +
∑
n�∞
n 6=0

c−f (n)Γ(1− k,−4πny)qn

︸ ︷︷ ︸
non-holomorphic part

.
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Examples of harmonic Maass forms

Definition

Let Γ∞ := ±
{(

1 n
0 1

)
| n ∈ Z

}
. Given a translation invariant

function φ(z), the weight k level N Poincaré series for φ(z) is

P(φ; z) :=
∑

γ∈Γ∞\Γ0(N)

φ|kγ(z).

Example

Ono constructed a Maass-Poincaré series of weight −10 and level 1

F+
−10,1(z) = q−1 − 65520

691
− 1842.89472 · · · q − 23274.07545 · · · q2 + · · ·

which is connected to ∆(z).
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Examples of harmonic Maass forms

Definition

Given a quadratic form Q of type (r − 1, 1), the theta function
associated to Q with characteristic a ∈ Rr and b ∈ Rr is the series

Θa,b(z) =
∑

n∈a+Zr
ρ(n; z)e2πiB(n,b)qQ(n).

Example

For Q(j, k) = 1
2 (5j2 − 2k2), a =

(
1
10
0

)
, and b =

(
0
1
4

)
we have

Θ+
a,b(z) = 2q

1
40

 ∑
n+j≥0
n−j≥0

−
∑

n+j<0
n−j<0

 (−1)jq
5n2

2 +n
2−j

2

,

which is related to Ramanujan’s fifth order mock theta function.
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Applications of harmonic Maass forms

Partitions (Bruinier-Ono, Dyson, Atkin-Swinnerton-Dyer,...).

Singular moduli (Borcherds, Zagier, Duke-Imamoğlu-Tóth,...).

Derivatives of L-functions (Gross-Zagier, Bruinier-Ono,...).

Donaldson invariants (Göttsche-Zagier, Malmendier-Ono,...).

Kac-Wakimoto characters (Bringmann-Ono,
Dabholkar-Murty-Zagier,...).

Moonshine (Borcherds, Harvey, Duncan-Griffin-Ono,...).
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Two families of harmonic Maass forms

Definition

Define the weight k differential operator ξk by

ξk := 2iyk
∂

∂z
.

Proposition

For any k ≥ 2, we have that

ξ2−k : H !
2−k(Γ0(N)) �M !

k(Γ0(N)).

Proposition

Suppose f ∈ H !
κ(Γ0(N)) with κ ∈ 1

2Z. Then the following are true.

1 For m ∈ N, f |T (m) ∈ H !
κ(Γ0(N)).

2 p(1−κ)ξκ(f |Tκ(p)) = ξκ(f)|T2−κ(p) if κ ∈ Z.

3 p2(1−κ)ξκ(f |Tκ(p2)) = ξκ(f)|T2−κ(p2) if κ ∈ 1
2 + Z.
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Pullback of integer weight Eisenstein series

For k > 0, define

G(z,−2k) :=
(2k)!ζ(2k + 1)

(2π)2k
+

(−1)k+1y1+2k21+2kπζ(−2k − 1)

2k + 1

+ (−1)k(2π)−2k(2k)!

∞∑
n=1

σ2k+1(n)

n2k+1
qn

+ (−1)k(2π)−2k
∞∑
n=1

σ2k+1(n)

n2k+1
Γ(1 + 2k, 4πny)q−n.

.
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Pullback of Cohen-Eisenstein series

Definition

Let Tχr (v) :=
∑
a|v

µ(a)χ(a)ar−1σ2r−1(v/a).

Set (−1)rN = Dv2 with D the discriminant of Q(
√
D) and χD =

(
D
·
)
.

Definition

Let

cr(N) =


i2r+1L(1 + r, χD) 1

v2r+1T
χD
r+1(v) N > 0

i2r−1ζ(1 + 2r) + 22r+4iπ2r+1yr+
1
2 ζ(−1−2r)

(2r−3)Γ(2r+1) N = 0
π3/2L(−r,χD)T

χD
r+1(v)Γ( r+a2 )

Nr+
1
2 Γ( r+1+a

2 )Γ(r+ 1
2 )

Γ
(
r + 1

2 ,−4πNy
)

N < 0,

where a = 0 if r is odd and a = 1 if r is even.

Then, for r ≥ 1, define H
(
z,−r + 1

2

)
:=
∑
N∈Z cr(N)qN .

13 / 32
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π3/2L(−r,χD)T

χD
r+1(v)Γ( r+a2 )

Nr+
1
2 Γ( r+1+a

2 )Γ(r+ 1
2 )

Γ
(
r + 1

2 ,−4πNy
)

N < 0,

where a = 0 if r is odd and a = 1 if r is even.

Then, for r ≥ 1, define H
(
z,−r + 1

2

)
:=
∑
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Theorem 1

Theorem 1 (W)

Assuming the notation above, the following are true.

1 For k ∈ N, we have that G(z,−2k) ∈ H !
−2k(SL2(Z)).

Furthermore, G(z,−2k) has eigenvalue 1 + 1
p2k+1 under the Hecke

operator T (p).

2 For r ∈ N, we have that H
(
z,−r + 1

2

)
∈ H !

−r+ 1
2

(Γ0(4)).

Furthermore, H
(
z,−r + 1

2

)
has eigenvalue 1 + 1

p2r+1 under the

Hecke operator T (p2).
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Introduction
Mazur’s question

Statement of results
Proofs

p-adic harmonic Maass forms in the sense of Serre

Definition

A weight k p-adic harmonic Maass form is a formal power series

f(z) =
∑

n�−∞
c+f (n)qn + c−f (0)y1−k +

∑
0 6=n�∞

c−f (n)Γ (1− k,−4πny) qn,

where Γ(1− k,−4πny) is taken as a formal symbol and where the
coefficients c±f (n) are in Cp, such that there exists a series of harmonic
Maass forms fi(z) such that the following properties are satisfied:

1 limi→∞ n1−kic±fi(n) = n1−kc±f (n) for n 6= 0.

2 limi→∞ c±fi(0) = c±f (0).

Remark

Here limi→∞ n1−kic±fi(n) = n1−kc±f (n) means

vp(n
1−kic±fi(n)− n1−kc±f (n)) tends to ∞.

15 / 32



Introduction
Mazur’s question

Statement of results
Proofs

p-adic harmonic Maass forms in the sense of Serre

Definition

A weight k p-adic harmonic Maass form is a formal power series

f(z) =
∑

n�−∞
c+f (n)qn + c−f (0)y1−k +

∑
0 6=n�∞

c−f (n)Γ (1− k,−4πny) qn,

where Γ(1− k,−4πny) is taken as a formal symbol and where the
coefficients c±f (n) are in Cp, such that there exists a series of harmonic
Maass forms fi(z) such that the following properties are satisfied:

1 limi→∞ n1−kic±fi(n) = n1−kc±f (n) for n 6= 0.

2 limi→∞ c±fi(0) = c±f (0).

Remark

Here limi→∞ n1−kic±fi(n) = n1−kc±f (n) means

vp(n
1−kic±fi(n)− n1−kc±f (n)) tends to ∞.

15 / 32



Introduction
Mazur’s question

Statement of results
Proofs

p-adic harmonic Maass forms in the sense of Serre

Definitions

Define the usual p-adic Gamma function by

Γ(p)(n) := (−1)n
∏

0<j<n
p-j

j if n ∈ Z,

and Γ(p)(x) := lim
n→x

Γ(p)(n) if x ∈ Zp.

For any x ∈ Zp we have vp(Γ
(p)(x)) = 1. In the following

formulas we define π := Γ(p)
(

1
2

)2
so that vp(π) = 1.

Let Lp(s, χ) be the p-adic L-function.

Define

Tχ,(p)r (v) :=
∑
a|v

gcd(a,p)=1

µ(a)χ(a)ar−1σ
(p)
2r−1(v/a).
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Introduction
Mazur’s question

Statement of results
Proofs

Answer to Mazur’s question for integer weights

Theorem 2 (W)

Suppose p is prime. Then the following are true. For each
k ∈ X := Zp × Z/(p− 1)Z, we have that

G(p)(z,−2k) :=
Γ(p)(2k + 1)ζ(p)(2k + 1)

(2π)2k

+
(−1)k+1y1+2k21+2kπζ(p)(−2k − 1)

2k + 1

+ (−1)k(2π)−2kΓ(p)(2k + 1)

∞∑
n=1

σ
(p)
2k+1(n)

n2k+1
qn

+ (−1)k(2π)−2k
∞∑
n=1

σ
(p)
2k+1(n)

n2k+1
Γ(1 + 2k, 4πny)q−n

is a weight −2k p-adic harmonic Maass form.
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Introduction
Mazur’s question

Statement of results
Proofs

Answer to Mazur’s question for half-integral weights

Theorem (W)

For each −r + 1
2 ∈ X, let

c(p)r (N) :=


i2r+1Lp(1 + r, χD) 1

v2r+1T
χD,(p)
r+1 (v) N > 0

i2r−1ζ(p)(1 + 2r) + 22r+4iπ2r+1yr+
1
2 ζ(p)(−1−2r)

(2r−3)Γ(p)(2r+1)
N = 0

π3/2Lp(−r,χD)T
χD,(p)

r+1 (v)Γ(p)( r+a2 )
Nr+

1
2 Γ(p)( r+1+a

2 )Γ(p)(r+ 1
2 )

Γ
(
r + 1

2 ,−4πNy
)

N < 0.

Then H(p)
(
z,−r + 1

2

)
=
∑
N∈Z c

(p)
r (N)qN is a weight −r + 1

2 p-adic
harmonic Maass form.
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Introduction
Mazur’s question

Statement of results
Proofs

Two corollaries

Remark

For k ∈ Z, G(p)(z,−2k) satisfies

G(p)(z,−2k) = G(z,−2k)−G(pz,−2k).

This implies that G(p)(z,−2k) ∈ H !
−2k(Γ0(p)).

Remark

The half-integral weight result implies that the Cohen-Eisenstein
series are p-adic modular forms in the sense of Serre.
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Introduction
Mazur’s question

Statement of results
Proofs

Hecke’s trick

Proof sketch

For k ∈ Z, define

G(z,−2k, s) :=
1

2

∑
(0,0) 6=(n,m)∈Z2

(mz + n)2k

|mz + n|2s
,

and

f(z,−2k, s) :=

∞∑
n=−∞

(z + n)2k|z + n|−2s

=
∞∑

n=−∞
hn(y,−2k, s)e2πinxe−2πny,

where by the Poisson summation formula

hn(y,−2k, s) =

∫ iy+∞

iy−∞
z2k|z|−2se−2πinzdz.
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Introduction
Mazur’s question

Statement of results
Proofs

Construction of the integer weight forms

Proof sketch

We find

G(z,−2k, s) = ζ(2s− 2k) +
∑
n∈Z
m≥1

m1+2k−2shmn(y,−2k, s)e2πinmx.

For each n ∈ Z, hn(y,−2k, 0) = 0, so define

G(z,−2k) := lim
s→0

d

ds
G(z,−2k, s).

Compute each coefficient by contour integration to complete the
proof.
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Introduction
Mazur’s question

Statement of results
Proofs

A result of Zagier

Proposition (Zagier)

There exists a Dirichlet series

En(s) =
1

2

(
Eoddn (s) + Eevenn (s)

)
,

such that if n = Dv2, then

En(s) =


0 if n ≡ 2, 3 (mod 4)
L(s,χD)T

χD
s (v)

ζ(2s)v2s−1 if n ≡ 0, 1 (mod 4)
ζ(2s−1)
ζ(2s) if n = 0.
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Introduction
Mazur’s question

Statement of results
Proofs

Construction of the half-integral weight forms

Proof sketch

Let k = 2r − 1 ∈ N. Define the two Eisenstein series F
(
z,−k2 , s

)
and

E
(
z,−k2 , s

)
by

F

(
z,−k

2
, s

)
=
∑
n,m∈Z
n>0
4|m

(m
n

)
ε−kn

(mz + n)k/2

|mz + n|2s
,

and

E

(
z,−k

2
, s

)
=

(2z)k/2

|2z|2s
F

(
−1

4z
,−k

2
, s

)
,

where
(
m
n

)
is the Kronecker symbol and

εn :=

{
1 if n ≡ 1 (mod 4)

i if n ≡ 3 (mod 4).
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Introduction
Mazur’s question

Statement of results
Proofs

Construction of the half-integral weight forms

Proof sketch

We have

E

(
z,−k

2
, s

)
=

∞∑
N=−∞

a(N)qN ,

where

a(N) = 2
k
2−2sαN

(
y,−k

2
, s

) ∑
n>0
n odd

ε−kn n
k
2−2s

∑
m (mod n)

(m
n

)
e−

2πiNm
n ,

and by the Poisson summation formula

αN

(
y,−k

2
, s

)
=

∫ iy+∞

iy−∞
z
k
2 |z|−2se−2πiNzdz.
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Statement of results
Proofs

Construction of the half-integral weight forms

Proof sketch

Similarly, we have

F

(
z,−k

2
, s

)
= 1 +

∞∑
N=−∞

b(N)qN ,

where

b(N) = αN

(
y,−k

2
, s

)∑
m>0
4|m

m
k
2−2s

∑
n (mod m)

(m
n

)
ε−kn e

2πiNn
m .
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Introduction
Mazur’s question

Statement of results
Proofs

Construction of the half-integral weight forms

Proof sketch

Using the Proposition of Zagier, we find

a(N) = 2
k
2 +1−2sαN

(
y,−k

2
, s

)
1

2
Eodd(−1)rN

(
−k

2
− 1

2
+ 2s

)
,

and

b(N) = (1 + i2r+1)4
k
2 + 1

2−2sαN

(
y,−k

2
, s

)
1

2
Eeven(−1)rN

(
−k

2
− 1

2
+ 2s

)
.

Define

H
(
z,−r +

1

2

)
:= lim

s→0
ζ(1 + 2r − 4s)

[
i2r−1F

(
z,−r +

1

2
, s

)
+2r−

1
2 (1 + i2r−1)E

(
z,−r +

1

2
, s

)]
.
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2 (1 + i2r−1)E

(
z,−r +

1

2
, s

)]
.
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Construction of the half-integral weight forms

Proof sketch

Using the Proposition of Zagier, we find
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Harmonic Maass eigenforms

Proof sketch

Note that
ξ−2k(G(z,−2k))

.
= E2k+2(z),

and

ξ−r+ 1
2

(
H
(
z,−r +

1

2

))
.
= Hr+ 3

2
(z).

It is well known that

E2k+2(z)|T (p) = (1 + p2k+1)E2k+2(z),

and
Hr+ 3

2
(z)|T (p2) = (1 + p2r+1)Hr+ 3

2
(z).
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Harmonic Maass eigenforms

Proof sketch

We find

G(z,−2k)|T (p)−
(

1 +
1

p2k+1

)
G(z,−2k),

and

H
(
z,−r +

1

2

) ∣∣∣T (p2)−
(

1 +
1

p2r+1

)
H
(
z,−r +

1

2

)
both vanish.
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Generalized Bernoulli numbers

Definition

The generalized Bernoulli numbers B(n, χ) are defined by the
generating function

∞∑
n=0

B(n, χ)
tn

n!
=

m−1∑
a=1

χ(a)teat

emt − 1
,

Where χ is a Dirichlet character modulo m.

Proposition

If k is a positive integer and χ is a Dirichlet character, then

L(1− k, χ) = −B(k, χ)

k
.
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Kummer’s congruences

Proposition

For n ≥ 1 we have that

Lp(1− n, χ) = −(1− χ · ω−n(p)pn−1)
B(n, χ · ω−n)

n
,

where ω is the Teichmüller character.

Remark

If n ≡ m (mod (p− 1)pa) and (p− 1) - n,m for an odd prime p, then

(1− pn−1)
Bn
n
≡ (1− pm−1)

Bm
m

(mod pa+1),

where a is a nonnegative integer.
If let χ 6= 1 be a primitive Dirichlet character with conductor not
divisible by p, then if n ≡ m (mod pa) we have

(1−χ·ω−n(p)pn−1)
B(n, χ · ω−n)

n
≡ (1−χ·ω−m(p)pm−1)

B(m,χ · ω−m)

m
.
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Congruences for p-adic harmonic Maass forms

Remark

The p-adic zeta function at positive integers does not behave as nicely
as at negative integers. However, it is still expected that it satisfies
similar congruences modulo some p-adic regulator.

Example

We have

G+,(5)(z,−2)

= − 1

2π2

(
ζ(5)(3) + q +

9

8
q2 +

28

27
q3 +

73

64
q4 +

1

75
q5 + · · ·

)
,

and

G+,(5)(z,−6)

= − 45

4π6

(
ζ(5)(7) + q +

129

128
q2 +

2188

2187
q3 +

16513

16384
q4 +

1

78125
q5 + · · ·

)
.
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Summary

Theorem (W)

We have constructed two infinite families of harmonic Maass forms,
one integer weight and one half-integral weight. Furthermore, these
forms are eigenforms for the Hecke operators T (p) and T (p2).

Theorem (W)

We construct two infinite families of p-adic harmonic Maass forms in
the sense of Serre. These constructions provide a partial answer to
Mazur’s question about the existence of an eigencurve for harmonic
Maass forms.
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