Harmonic Hecke eigenlines and Mazur's problem

Ian Wagner

Emory University

イロト イロト イヨト イヨト 三日

p-adic modular forms in the sense of Serre

Definition

A power series f is a p-adic modular form if there is a sequence of classical modular forms f_i such that $v_p(f - f_i) \to \infty$ as $i \to \infty$.

イロト イヨト イヨト イヨト 三日

p-adic modular forms in the sense of Serre

Definition

A power series f is a p-adic modular form if there is a sequence of classical modular forms f_i such that $v_p(f - f_i) \to \infty$ as $i \to \infty$.

Definition

Let $\zeta(s)$ be the Riemann zeta-function. Then for $k \ge 1$, the weight 2k **Eisenstein series** is given by

$$G_{2k}(z) := \frac{1}{2}\zeta(1-2k) + \sum_{n=1}^{\infty} \sigma_{2k-1}(n)q^n.$$

p-adic modular forms in the sense of Serre

Definition

A power series f is a p-adic modular form if there is a sequence of classical modular forms f_i such that $v_p(f - f_i) \to \infty$ as $i \to \infty$.

Definition

Let $\zeta(s)$ be the Riemann zeta-function. Then for $k \ge 1$, the weight 2k **Eisenstein series** is given by

$$G_{2k}(z) := \frac{1}{2}\zeta(1-2k) + \sum_{n=1}^{\infty} \sigma_{2k-1}(n)q^n.$$

Remark

For $2k \ge 4$, $G_{2k}(z)$ is a weight 2k modular form on $SL_2(\mathbb{Z})$.

p-adic modular forms in the sense of Serre

Remark

First examples of *p*-adic modular forms come from Eisenstein series.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

p-adic modular forms in the sense of Serre

Remark

First examples of *p*-adic modular forms come from Eisenstein series.

Theorem (Serre, 1972)

Let $\zeta^{(p)}(s)$ be the p-adic zeta-function and

$$\sigma_k^{(p)}(n) := \sum_{\substack{d|n\\ \gcd(d,p)=1}} d^k.$$

Then for $k \geq 1$, we have that

$$G_{2k}^{(p)}(z) = \frac{1}{2}\zeta^{(p)}(1-2k) + \sum_{n=1}^{\infty} \sigma_{2k-1}^{(p)}(n)q^n$$

is a p-adic modular form of weight 2k.

p-adic Eisenstein series

Remark

$$G_{k_1}^{(p)}(z) \equiv G_{k_2}^{(p)}(z) \pmod{p^a}$$
 whenever $k_1 \equiv k_2 \pmod{(p-1)p^{a-1}}$ and $k_1, k_2 \not\equiv 0 \pmod{p-1}$.

<ロ> (四) (四) (三) (三) (三)

p-adic Eisenstein series

Remark

$$G_{k_1}^{(p)}(z) \equiv G_{k_2}^{(p)}(z) \pmod{p^a}$$
 whenever $k_1 \equiv k_2 \pmod{(p-1)p^{a-1}}$ and $k_1, k_2 \not\equiv 0 \pmod{p-1}$.

Example

 $6\equiv 10 \pmod{4}$ and $6,10\not\equiv 0 \pmod{4}$ so

$$G_6^{(5)}(z) = \frac{781}{126} + q + 33q^2 + 244q^3 + 1057q^4 + q^5 + \cdots,$$

and

p-adic Eisenstein series

Remark

$$G_{k_1}^{(p)}(z) \equiv G_{k_2}^{(p)}(z) \pmod{p^a}$$
 whenever $k_1 \equiv k_2 \pmod{(p-1)p^{a-1}}$ and $k_1, k_2 \not\equiv 0 \pmod{p-1}$.

Example

 $6\equiv 10 \pmod{4}$ and $6,10\not\equiv 0 \pmod{4}$ so

$$G_6^{(5)}(z) = \frac{781}{126} + q + 33q^2 + 244q^3 + 1057q^4 + q^5 + \cdots,$$

and

$$G_{10}^{(5)}(z) = \frac{488281}{66} + q + 513q^2 + 19684q^3 + 262657q^4 + q^5 + \cdots$$

are congruent modulo 5.

Mazur's question

Definition

The **eigencurve** is a rigid-analytic curve whose points correspond to normalized finite slope *p*-adic overconvergent modular eigenforms.

イロト イヨト イヨト イヨト 三日

Mazur's question

Definition

The **eigencurve** is a rigid-analytic curve whose points correspond to normalized finite slope *p*-adic overconvergent modular eigenforms.

Question (Mazur)

Does an eigencurve-like object exists for harmonic Maass forms?

Mazur's question

Definition

The **eigencurve** is a rigid-analytic curve whose points correspond to normalized finite slope *p*-adic overconvergent modular eigenforms.

Question (Mazur)

Does an eigencurve-like object exists for harmonic Maass forms?

Remark

The standard constructions of harmonic Maass forms rarely lead to eigenforms:

- Poincaré series,
- Mock theta functions,
- Indefinite theta functions.

Harmonic Maass forms

Definition

For $k \in \mathbb{R}$, the weight k hyperbolic Laplacian operator on \mathbb{H} is defined by

$$\Delta_k := -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + iky \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) = -4y^2 \frac{\partial}{\partial z} \frac{\partial}{\partial \overline{z}} + 2iky \frac{\partial}{\partial \overline{z}}.$$

イロト イロト イヨト イヨト 三日

Harmonic Maass forms

Definition

For $k \in \mathbb{R}$, the weight k hyperbolic Laplacian operator on \mathbb{H} is defined by

$$\Delta_k := -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + iky \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) = -4y^2 \frac{\partial}{\partial z} \frac{\partial}{\partial \overline{z}} + 2iky \frac{\partial}{\partial \overline{z}}.$$

Definition

A smooth function $f : \mathbb{H} \to \mathbb{C}$ is a weight k harmonic Maass form with manageable growth on Γ (denoted $H_k^!(\Gamma)$) if

Harmonic Maass forms

Definition

For $k \in \mathbb{R}$, the weight k hyperbolic Laplacian operator on \mathbb{H} is defined by

$$\Delta_k := -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + iky \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) = -4y^2 \frac{\partial}{\partial z} \frac{\partial}{\partial \overline{z}} + 2iky \frac{\partial}{\partial \overline{z}}.$$

Definition

A smooth function $f : \mathbb{H} \to \mathbb{C}$ is a weight k harmonic Maass form with manageable growth on Γ (denoted $H_k^!(\Gamma)$) if

• f transforms like a modular form of weight k on Γ ,

Harmonic Maass forms

Definition

For $k \in \mathbb{R}$, the weight k hyperbolic Laplacian operator on \mathbb{H} is defined by

$$\Delta_k := -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + iky \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) = -4y^2 \frac{\partial}{\partial z} \frac{\partial}{\partial \overline{z}} + 2iky \frac{\partial}{\partial \overline{z}}.$$

Definition

A smooth function $f : \mathbb{H} \to \mathbb{C}$ is a weight k harmonic Maass form with manageable growth on Γ (denoted $H_k^!(\Gamma)$) if

• f transforms like a modular form of weight k on Γ ,

•
$$\Delta_k(f) = 0$$
,

Harmonic Maass forms

Definition

For $k \in \mathbb{R}$, the weight k hyperbolic Laplacian operator on \mathbb{H} is defined by

$$\Delta_k := -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + iky \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) = -4y^2 \frac{\partial}{\partial z} \frac{\partial}{\partial \overline{z}} + 2iky \frac{\partial}{\partial \overline{z}}.$$

Definition

A smooth function $f : \mathbb{H} \to \mathbb{C}$ is a weight k harmonic Maass form with manageable growth on Γ (denoted $H_k^!(\Gamma)$) if

• f transforms like a modular form of weight k on Γ ,

•
$$\Delta_k(f) = 0$$
,

• $f(z) = O(e^{\varepsilon y})$ as $y \to \infty$ for some $\varepsilon > 0$ at all cusps.

Remarks about harmonic Maass forms

Remark

The Fourier expansion of f naturally splits as

$$f(z) = \underbrace{\sum_{\substack{n \gg -\infty \\ \text{holomorphic part} \\ \text{mock modular form}}}_{\text{holomorphic part}} c_f^{-}(0)y^{1-k} + \sum_{\substack{n \ll \infty \\ n \neq 0}} c_f^{-}(n)\Gamma(1-k, -4\pi ny)q^n \,.$$

4 ロ ト 4 部 ト 4 書 ト 4 書 ト 書 の 4 で
7 / 32

Examples of harmonic Maass forms

Definition

Let $\Gamma_{\infty} := \pm \left\{ \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \mid n \in \mathbb{Z} \right\}$. Given a translation invariant function $\phi(z)$, the weight k level N **Poincaré series** for $\phi(z)$ is

$$\mathbb{P}(\phi; z) := \sum_{\gamma \in \Gamma_{\infty} \setminus \Gamma_{0}(N)} \phi|_{k} \gamma(z).$$

◆□ → < 部 → < 差 → < 差 → 差 の Q () 8 / 32

Examples of harmonic Maass forms

Definition

Let $\Gamma_{\infty} := \pm \left\{ \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \mid n \in \mathbb{Z} \right\}$. Given a translation invariant function $\phi(z)$, the weight k level N **Poincaré series** for $\phi(z)$ is

$$\mathbb{P}(\phi; z) := \sum_{\gamma \in \Gamma_{\infty} \setminus \Gamma_{0}(N)} \phi|_{k} \gamma(z).$$

Example

Ono constructed a Maass-Poincaré series of weight -10 and level 1

$$F^{+}_{-10,1}(z) = q^{-1} - \frac{65520}{691} - 1842.89472 \cdots q - 23274.07545 \cdots q^2 + \cdots$$

which is connected to $\Delta(z)$.

Examples of harmonic Maass forms

Definition

Given a quadratic form Q of type (r-1, 1), the **theta function** associated to Q with characteristic $a \in \mathbb{R}^r$ and $b \in \mathbb{R}^r$ is the series

$$\Theta_{a,b}(z) = \sum_{n \in a + \mathbb{Z}^r} \rho(n; z) e^{2\pi i B(n,b)} q^{Q(n)}.$$

イロト イヨト イヨト イヨト 三日

Examples of harmonic Maass forms

Definition

Given a quadratic form Q of type (r-1, 1), the **theta function** associated to Q with characteristic $a \in \mathbb{R}^r$ and $b \in \mathbb{R}^r$ is the series

$$\Theta_{a,b}(z) = \sum_{n \in a + \mathbb{Z}^r} \rho(n; z) e^{2\pi i B(n,b)} q^{Q(n)}$$

Example

For
$$Q(j,k) = \frac{1}{2}(5j^2 - 2k^2)$$
, $a = \begin{pmatrix} \frac{1}{10} \\ 0 \end{pmatrix}$, and $b = \begin{pmatrix} 0 \\ \frac{1}{4} \end{pmatrix}$ we have
 $\Theta_{a,b}^+(z) = 2q^{\frac{1}{40}} \left(\sum_{\substack{n+j \ge 0 \\ n-j \ge 0}} -\sum_{\substack{n+j < 0 \\ n-j < 0}} \right) (-1)^j q^{\frac{5n^2}{2} + \frac{n}{2} - j^2},$

which is related to Ramanujan's fifth order mock theta function.

Applications of harmonic Maass forms

- Partitions (Bruinier-Ono, Dyson, Atkin-Swinnerton-Dyer,...).
- Singular moduli (Borcherds, Zagier, Duke-Imamoğlu-Tóth,...).
- Derivatives of *L*-functions (Gross-Zagier, Bruinier-Ono,...).
- Donaldson invariants (Göttsche-Zagier, Malmendier-Ono,...).
- Kac-Wakimoto characters (Bringmann-Ono, Dabholkar-Murty-Zagier,...).
- Moonshine (Borcherds, Harvey, Duncan-Griffin-Ono,...).

Two families of harmonic Maass forms

<ロ> < (回)、< (回)、< (目)、< (目)、< (目)、 11 / 32

Two families of harmonic Maass forms

Definition

Define the weight k differential operator ξ_k by

$$\xi_k := 2iy^k \overline{\frac{\partial}{\partial \overline{z}}}.$$

< □ > < ⑦ > < ≧ > < ≧ > 差 ● ≥ の Q (℃ 11/32

Two families of harmonic Maass forms

Definition

Define the weight k differential operator ξ_k by

$$\xi_k := 2iy^k \overline{\frac{\partial}{\partial \overline{z}}}.$$

Proposition

For any $k \geq 2$, we have that

$$\xi_{2-k}: H^!_{2-k}(\Gamma_0(N)) \twoheadrightarrow M^!_k(\Gamma_0(N)).$$

Two families of harmonic Maass forms

Definition

Define the weight k differential operator ξ_k by

$$\xi_k := 2iy^k \overline{\frac{\partial}{\partial \overline{z}}}.$$

Proposition

For any $k \geq 2$, we have that

$$\xi_{2-k}: H^!_{2-k}(\Gamma_0(N)) \twoheadrightarrow M^!_k(\Gamma_0(N)).$$

Proposition

Suppose $f \in H^{!}_{\kappa}(\Gamma_{0}(N))$ with $\kappa \in \frac{1}{2}\mathbb{Z}$. Then the following are true.

Two families of harmonic Maass forms

Definition

Define the weight k differential operator ξ_k by

$$\xi_k := 2iy^k \overline{\frac{\partial}{\partial \overline{z}}}.$$

Proposition

For any $k \geq 2$, we have that

$$\xi_{2-k}: H^!_{2-k}(\Gamma_0(N)) \twoheadrightarrow M^!_k(\Gamma_0(N)).$$

Proposition

Suppose $f \in H^!_{\kappa}(\Gamma_0(N))$ with $\kappa \in \frac{1}{2}\mathbb{Z}$. Then the following are true. • For $m \in \mathbb{N}$, $f|T(m) \in H^!_{\kappa}(\Gamma_0(N))$.

Two families of harmonic Maass forms

Definition

Define the weight k differential operator ξ_k by

$$\xi_k := 2iy^k \overline{\frac{\partial}{\partial \overline{z}}}.$$

Proposition

For any $k \geq 2$, we have that

$$\xi_{2-k}: H^!_{2-k}(\Gamma_0(N)) \twoheadrightarrow M^!_k(\Gamma_0(N)).$$

Proposition

Suppose $f \in H^{!}_{\kappa}(\Gamma_{0}(N))$ with $\kappa \in \frac{1}{2}\mathbb{Z}$. Then the following are true.

• For $m \in \mathbb{N}$, $f|T(m) \in H^{!}_{\kappa}(\Gamma_{0}(N))$.

$$p^{(1-\kappa)}\xi_{\kappa}(f|T_{\kappa}(p)) = \xi_{\kappa}(f)|T_{2-\kappa}(p) \text{ if } \kappa \in \mathbb{Z}.$$

Two families of harmonic Maass forms

Definition

Define the weight k differential operator ξ_k by

$$\xi_k := 2iy^k \overline{\frac{\partial}{\partial \overline{z}}}.$$

Proposition

For any $k \geq 2$, we have that

$$\xi_{2-k}: H^!_{2-k}(\Gamma_0(N)) \twoheadrightarrow M^!_k(\Gamma_0(N)).$$

Proposition

Suppose $f \in H^{!}_{\kappa}(\Gamma_{0}(N))$ with $\kappa \in \frac{1}{2}\mathbb{Z}$. Then the following are true.

• For
$$m \in \mathbb{N}$$
, $f|T(m) \in H^!_{\kappa}(\Gamma_0(N))$.

$$p^{(1-\kappa)}\xi_{\kappa}(f|T_{\kappa}(p)) = \xi_{\kappa}(f)|T_{2-\kappa}(p) \text{ if } \kappa \in \mathbb{Z}.$$

$$p^{2(1-\kappa)}\xi_{\kappa}(f|T_{\kappa}(p^2)) = \xi_{\kappa}(f)|T_{2-\kappa}(p^2) \text{ if } \kappa \in \frac{1}{2} + \mathbb{Z}.$$

うく(や 1 / 32

Pullback of integer weight Eisenstein series

Pullback of integer weight Eisenstein series

• For k > 0, define

٠

$$G(z, -2k) := \frac{(2k)!\zeta(2k+1)}{(2\pi)^{2k}} + \frac{(-1)^{k+1}y^{1+2k}2^{1+2k}\pi\zeta(-2k-1)}{2k+1}$$
$$+ (-1)^k(2\pi)^{-2k}(2k)!\sum_{n=1}^{\infty}\frac{\sigma_{2k+1}(n)}{n^{2k+1}}q^n$$
$$+ (-1)^k(2\pi)^{-2k}\sum_{n=1}^{\infty}\frac{\sigma_{2k+1}(n)}{n^{2k+1}}\Gamma(1+2k, 4\pi ny)q^{-n}.$$

イロト イロト イヨト イヨト 三日

Pullback of Cohen-Eisenstein series

Pullback of Cohen-Eisenstein series

Definition

Let
$$T_r^{\chi}(v) := \sum_{a|v} \mu(a)\chi(a)a^{r-1}\sigma_{2r-1}(v/a).$$

Set $(-1)^r N = Dv^2$ with D the discriminant of $\mathbb{Q}(\sqrt{D})$ and $\chi_D = \left(\frac{D}{\cdot}\right).$

Pullback of Cohen-Eisenstein series

Definition

Let
$$T_r^{\chi}(v) := \sum_{a|v} \mu(a)\chi(a)a^{r-1}\sigma_{2r-1}(v/a).$$

Set $(-1)^r N = Dv^2$ with D the discriminant of $\mathbb{Q}(\sqrt{D})$ and $\chi_D = \left(\frac{D}{\cdot}\right).$

Definition

Let

$$\int (i^{2r+1}L(1+r,\chi_D)\frac{1}{v^{2r+1}}T^{\chi_D}_{r+1}(v) = N > 0$$

$$c_r(N) = \begin{cases} i^{2r-1}\zeta(1+2r) + \frac{2^{2r+4}i\pi^{2r+1}y^{r+\frac{1}{2}}\zeta(-1-2r)}{(2r-3)\Gamma(2r+1)} & N = 0\\ \frac{\pi^{3/2}L(-r,\chi_D)T_{r+1}^{\chi_D}(v)\Gamma(\frac{r+a}{2})}{N^{r+\frac{1}{2}}\Gamma(\frac{r+1+a}{2})\Gamma(r+\frac{1}{2})}\Gamma\left(r+\frac{1}{2},-4\pi Ny\right) & N < 0, \end{cases}$$

where a = 0 if r is odd and a = 1 if r is even.

うく(や 3 / 32

Pullback of Cohen-Eisenstein series

Definition

Let
$$T_r^{\chi}(v) := \sum_{a|v} \mu(a)\chi(a)a^{r-1}\sigma_{2r-1}(v/a).$$

Set $(-1)^r N = Dv^2$ with D the discriminant of $\mathbb{Q}(\sqrt{D})$ and $\chi_D = \left(\frac{D}{\cdot}\right).$

Definition

Let

$$\left(i^{2r+1}L(1+r,\chi_D)\frac{1}{v^{2r+1}}T^{\chi_D}_{r+1}(v)\right) \qquad N>0$$

$$c_r(N) = \begin{cases} i^{2r-1}\zeta(1+2r) + \frac{2^{2r+4}i\pi^{2r+1}y^{r+\frac{1}{2}}\zeta(-1-2r)}{(2r-3)\Gamma(2r+1)} & N = 0\\ \frac{\pi^{3/2}L(-r,\chi_D)T_{r+1}^{\chi_D}(v)\Gamma(\frac{r+a}{2})}{N^{r+\frac{1}{2}}\Gamma(\frac{r+1+a}{2})\Gamma(r+\frac{1}{2})}\Gamma\left(r+\frac{1}{2},-4\pi Ny\right) & N < 0 \end{cases}$$

where a = 0 if r is odd and a = 1 if r is even.

Then, for
$$r \ge 1$$
, define $\mathcal{H}\left(z, -r + \frac{1}{2}\right) := \sum_{N \in \mathbb{Z}} c_r(N) q^N$.

) Q (* 3 / 32
Theorem 1

Theorem 1 (W)

Assuming the notation above, the following are true.

Theorem 1

Theorem 1 (W)

Assuming the notation above, the following are true.

• For $k \in \mathbb{N}$, we have that $G(z, -2k) \in H^!_{-2k}(SL_2(\mathbb{Z}))$. Furthermore, G(z, -2k) has eigenvalue $1 + \frac{1}{p^{2k+1}}$ under the Hecke operator T(p).

Theorem 1

Theorem 1 (W)

Assuming the notation above, the following are true.

- For k ∈ N, we have that G(z, -2k) ∈ H[!]_{-2k}(SL₂(Z)). Furthermore, G(z, -2k) has eigenvalue 1 + ¹/_{p^{2k+1}} under the Hecke operator T(p).
- **2** For $r \in \mathbb{N}$, we have that $\mathcal{H}\left(z, -r + \frac{1}{2}\right) \in H^!_{-r+\frac{1}{2}}(\Gamma_0(4))$. Furthermore, $\mathcal{H}\left(z, -r + \frac{1}{2}\right)$ has eigenvalue $1 + \frac{1}{p^{2r+1}}$ under the Hecke operator $T(p^2)$.

イロト イヨト イヨト イヨト 三日

14/32

p-adic harmonic Maass forms in the sense of Serre

Definition

A weight k p-adic harmonic Maass form is a formal power series

$$f(z) = \sum_{n \gg -\infty} c_f^+(n) q^n + c_f^-(0) y^{1-k} + \sum_{0 \neq n \ll \infty} c_f^-(n) \Gamma \left(1 - k, -4\pi n y\right) q^n,$$

where $\Gamma(1-k, -4\pi ny)$ is taken as a formal symbol and where the coefficients $c_f^{\pm}(n)$ are in \mathbb{C}_p , such that there exists a series of harmonic Maass forms $f_i(z)$ such that the following properties are satisfied:

•
$$\lim_{i \to \infty} n^{1-k_i} c_{f_i}^{\pm}(n) = n^{1-k} c_f^{\pm}(n)$$
 for $n \neq 0$.

2
$$\lim_{i \to \infty} c_{f_i}^{\pm}(0) = c_f^{\pm}(0).$$

p-adic harmonic Maass forms in the sense of Serre

Definition

A weight k p-adic harmonic Maass form is a formal power series

$$f(z) = \sum_{n \gg -\infty} c_f^+(n) q^n + c_f^-(0) y^{1-k} + \sum_{0 \neq n \ll \infty} c_f^-(n) \Gamma \left(1 - k, -4\pi ny\right) q^n,$$

where $\Gamma(1-k, -4\pi ny)$ is taken as a formal symbol and where the coefficients $c_f^{\pm}(n)$ are in \mathbb{C}_p , such that there exists a series of harmonic Maass forms $f_i(z)$ such that the following properties are satisfied:

•
$$\lim_{i \to \infty} n^{1-k_i} c_{f_i}^{\pm}(n) = n^{1-k} c_f^{\pm}(n)$$
 for $n \neq 0$.

$$im_{i\to\infty} c_{f_i}^{\pm}(0) = c_f^{\pm}(0).$$

Remark

Here
$$\lim_{i\to\infty} n^{1-k_i} c_{f_i}^{\pm}(n) = n^{1-k} c_f^{\pm}(n)$$
 means $v_p(n^{1-k_i} c_{f_i}^{\pm}(n) - n^{1-k} c_f^{\pm}(n))$ tends to ∞ .

p-adic harmonic Maass forms in the sense of Serre

Definitions

• Define the usual *p*-adic Gamma function by

$$\Gamma^{(p)}(n) := (-1)^n \prod_{\substack{0 < j < n \\ p \nmid j}} j \qquad \text{if } n \in \mathbb{Z},$$

and
$$\Gamma^{(p)}(x) := \lim_{n \to x} \Gamma^{(p)}(n)$$
 if $x \in \mathbb{Z}_p$.

p-adic harmonic Maass forms in the sense of Serre

Definitions

• Define the usual *p*-adic Gamma function by

$$\Gamma^{(p)}(n) := (-1)^n \prod_{\substack{0 < j < n \\ p \nmid j}} j \qquad \text{if } n \in \mathbb{Z},$$

and
$$\Gamma^{(p)}(x) := \lim_{n \to x} \Gamma^{(p)}(n)$$
 if $x \in \mathbb{Z}_p$.

• For any $x \in \mathbb{Z}_p$ we have $v_p(\Gamma^{(p)}(x)) = 1$. In the following formulas we define $\pi := \Gamma^{(p)}\left(\frac{1}{2}\right)^2$ so that $v_p(\pi) = 1$.

p-adic harmonic Maass forms in the sense of Serre

Definitions

• Define the usual *p*-adic Gamma function by

$$\Gamma^{(p)}(n) := (-1)^n \prod_{\substack{0 < j < n \\ p \nmid j}} j \qquad \text{if } n \in \mathbb{Z},$$

and
$$\Gamma^{(p)}(x) := \lim_{n \to x} \Gamma^{(p)}(n)$$
 if $x \in \mathbb{Z}_p$.

- For any $x \in \mathbb{Z}_p$ we have $v_p(\Gamma^{(p)}(x)) = 1$. In the following formulas we define $\pi := \Gamma^{(p)}\left(\frac{1}{2}\right)^2$ so that $v_p(\pi) = 1$.
- Let $L_p(s, \chi)$ be the *p*-adic *L*-function.

p-adic harmonic Maass forms in the sense of Serre

Definitions

• Define the usual *p*-adic Gamma function by

$$\Gamma^{(p)}(n) := (-1)^n \prod_{\substack{0 < j < n \\ p \nmid j}} j \qquad \text{if } n \in \mathbb{Z},$$

and
$$\Gamma^{(p)}(x) := \lim_{n \to x} \Gamma^{(p)}(n)$$
 if $x \in \mathbb{Z}_p$.

- For any $x \in \mathbb{Z}_p$ we have $v_p(\Gamma^{(p)}(x)) = 1$. In the following formulas we define $\pi := \Gamma^{(p)}\left(\frac{1}{2}\right)^2$ so that $v_p(\pi) = 1$.
- Let $L_p(s, \chi)$ be the *p*-adic *L*-function.
- Define

$$T_r^{\chi,(p)}(v) := \sum_{\substack{a|v\\\gcd(a,p)=1}} \mu(a)\chi(a)a^{r-1}\sigma_{2r-1}^{(p)}(v/a).$$

16/32

Answer to Mazur's question for integer weights

Theorem 2 (W)

Suppose p is prime. Then the following are true. For each $k \in X := \mathbb{Z}_p \times \mathbb{Z}/(p-1)\mathbb{Z}$, we have that

$$\begin{split} G^{(p)}(z,-2k) &:= \frac{\Gamma^{(p)}(2k+1)\zeta^{(p)}(2k+1)}{(2\pi)^{2k}} \\ &+ \frac{(-1)^{k+1}y^{1+2k}2^{1+2k}\pi\zeta^{(p)}(-2k-1)}{2k+1} \\ &+ (-1)^k(2\pi)^{-2k}\Gamma^{(p)}(2k+1)\sum_{n=1}^{\infty}\frac{\sigma^{(p)}_{2k+1}(n)}{n^{2k+1}}q^n \\ &+ (-1)^k(2\pi)^{-2k}\sum_{n=1}^{\infty}\frac{\sigma^{(p)}_{2k+1}(n)}{n^{2k+1}}\Gamma(1+2k,4\pi ny)q^{-n} \end{split}$$

is a weight -2k p-adic harmonic Maass form.

Answer to Mazur's question for half-integral weights

Theorem (W)

For each $-r + \frac{1}{2} \in X$, let

$$\int (i^{2r+1}L_p(1+r,\chi_D)\frac{1}{v^{2r+1}}T_{r+1}^{\chi_D,(p)}(v) \qquad N > 0$$

$$c_r^{(p)}(N) := \begin{cases} i^{2r-1} \zeta^{(p)}(1+2r) + \frac{2^{2r+4}i\pi^{2r+1}y^{r+\frac{1}{2}}\zeta^{(p)}(-1-2r)}{(2r-3)\Gamma^{(p)}(2r+1)} & N = 0\\ \frac{\pi^{3/2}L_p(-r,\chi_D)T_{r+1}^{\chi_D,(p)}(v)\Gamma^{(p)}\left(\frac{r+a}{2}\right)}{N^{r+\frac{1}{2}}\Gamma^{(p)}\left(\frac{r+1+a}{2}\right)\Gamma^{(p)}\left(r+\frac{1}{2}\right)} \Gamma\left(r+\frac{1}{2},-4\pi Ny\right) & N < 0. \end{cases}$$

Then $\mathcal{H}^{(p)}\left(z, -r + \frac{1}{2}\right) = \sum_{N \in \mathbb{Z}} c_r^{(p)}(N) q^N$ is a weight $-r + \frac{1}{2}$ p-adic harmonic Maass form.

(ロ)・(日)・(目)・(目)・(目)・(の)へ(*) 18/32

Two corollaries

Remark

For $k \in \mathbb{Z}$, $G^{(p)}(z, -2k)$ satisfies

$$G^{(p)}(z, -2k) = G(z, -2k) - G(pz, -2k).$$

This implies that $G^{(p)}(z, -2k) \in H^!_{-2k}(\Gamma_0(p)).$

Two corollaries

Remark

For $k \in \mathbb{Z}$, $G^{(p)}(z, -2k)$ satisfies

$$G^{(p)}(z, -2k) = G(z, -2k) - G(pz, -2k).$$

This implies that $G^{(p)}(z, -2k) \in H^!_{-2k}(\Gamma_0(p)).$

Remark

The half-integral weight result implies that the Cohen-Eisenstein series are p-adic modular forms in the sense of Serre.

Hecke's trick

Proof sketch

For $k \in \mathbb{Z}$, define

$$\mathcal{G}(z, -2k, s) := \frac{1}{2} \sum_{(0,0) \neq (n,m) \in \mathbb{Z}^2} \frac{(mz+n)^{2k}}{|mz+n|^{2s}},$$

Hecke's trick

Proof sketch

For $k \in \mathbb{Z}$, define

$$\mathcal{G}(z,-2k,s) := \frac{1}{2} \sum_{(0,0) \neq (n,m) \in \mathbb{Z}^2} \frac{(mz+n)^{2k}}{|mz+n|^{2s}},$$

and

$$f(z, -2k, s) := \sum_{n=-\infty}^{\infty} (z+n)^{2k} |z+n|^{-2s}$$
$$= \sum_{n=-\infty}^{\infty} h_n(y, -2k, s) e^{2\pi i n x} e^{-2\pi n y}$$

うへで 0/32

Hecke's trick

Proof sketch

For $k \in \mathbb{Z}$, define

$$\mathcal{G}(z,-2k,s) := \frac{1}{2} \sum_{(0,0) \neq (n,m) \in \mathbb{Z}^2} \frac{(mz+n)^{2k}}{|mz+n|^{2s}},$$

and

$$f(z, -2k, s) := \sum_{n=-\infty}^{\infty} (z+n)^{2k} |z+n|^{-2s}$$
$$= \sum_{n=-\infty}^{\infty} h_n(y, -2k, s) e^{2\pi i n x} e^{-2\pi n y}$$

where by the Poisson summation formula

$$h_n(y, -2k, s) = \int_{iy-\infty}^{iy+\infty} z^{2k} |z|^{-2s} e^{-2\pi i nz} dz.$$

うへで 0/32

Construction of the integer weight forms

Proof sketch

• We find

$$\mathcal{G}(z, -2k, s) = \zeta(2s - 2k) + \sum_{\substack{n \in \mathbb{Z} \\ m \ge 1}} m^{1 + 2k - 2s} h_{mn}(y, -2k, s) e^{2\pi i n m x}.$$

Construction of the integer weight forms

Proof sketch

• We find

$$\mathcal{G}(z, -2k, s) = \zeta(2s - 2k) + \sum_{\substack{n \in \mathbb{Z} \\ m \ge 1}} m^{1+2k-2s} h_{mn}(y, -2k, s) e^{2\pi i nmx}.$$

• For each $n \in \mathbb{Z}$, $h_n(y, -2k, 0) = 0$, so define

$$G(z, -2k) := \lim_{s \to 0} \frac{d}{ds} \mathcal{G}(z, -2k, s).$$

◆□ → < 部 → < 差 → < 差 → 差 の Q (~ 21 / 32)

Construction of the integer weight forms

Proof sketch

• We find

$$\mathcal{G}(z, -2k, s) = \zeta(2s - 2k) + \sum_{\substack{n \in \mathbb{Z} \\ m \ge 1}} m^{1+2k-2s} h_{mn}(y, -2k, s) e^{2\pi i nmx}.$$

• For each
$$n \in \mathbb{Z}$$
, $h_n(y, -2k, 0) = 0$, so define

$$G(z, -2k) := \lim_{s \to 0} \frac{d}{ds} \mathcal{G}(z, -2k, s).$$

• Compute each coefficient by contour integration to complete the proof.

A result of Zagier

Proposition (Zagier)

There exists a Dirichlet series

$$E_n(s) = \frac{1}{2} \left(E_n^{odd}(s) + E_n^{even}(s) \right),$$

A result of Zagier

Proposition (Zagier)

There exists a Dirichlet series

$$E_n(s) = \frac{1}{2} \left(E_n^{odd}(s) + E_n^{even}(s) \right),$$

such that if $n = Dv^2$, then

$$E_n(s) = \begin{cases} 0 & \text{if } n \equiv 2,3 \pmod{4} \\ \frac{L(s,\chi_D)T_s^{\chi_D}(v)}{\zeta(2s)v^{2s-1}} & \text{if } n \equiv 0,1 \pmod{4} \\ \frac{\zeta(2s-1)}{\zeta(2s)} & \text{if } n = 0. \end{cases}$$

4 ロ ト 4 日 ト 4 目 ト 4 目 ト 目 の 4 ペ 22 / 32

Construction of the half-integral weight forms

Proof sketch

Let $k=2r-1\in\mathbb{N}.$ Define the two Eisenstein series $F\left(z,-\frac{k}{2},s\right)$ and $E\left(z,-\frac{k}{2},s\right)$ by

$$F\left(z, -\frac{k}{2}, s\right) = \sum_{\substack{n, m \in \mathbb{Z} \\ n > 0 \\ 4|m}} \left(\frac{m}{n}\right) \varepsilon_n^{-k} \frac{(mz+n)^{k/2}}{|mz+n|^{2s}}$$

Construction of the half-integral weight forms

Proof sketch

Let $k=2r-1\in\mathbb{N}.$ Define the two Eisenstein series $F\left(z,-\frac{k}{2},s\right)$ and $E\left(z,-\frac{k}{2},s\right)$ by

$$F\left(z, -\frac{k}{2}, s\right) = \sum_{\substack{n, m \in \mathbb{Z} \\ n > 0 \\ 4|m}} \left(\frac{m}{n}\right) \varepsilon_n^{-k} \frac{(mz+n)^{k/2}}{|mz+n|^{2s}},$$

and

$$E\left(z, -\frac{k}{2}, s\right) = \frac{(2z)^{k/2}}{|2z|^{2s}} F\left(\frac{-1}{4z}, -\frac{k}{2}, s\right),$$

23 / 32

Construction of the half-integral weight forms

Proof sketch

Let $k=2r-1\in\mathbb{N}.$ Define the two Eisenstein series $F\left(z,-\frac{k}{2},s\right)$ and $E\left(z,-\frac{k}{2},s\right)$ by

$$F\left(z,-\frac{k}{2},s\right) = \sum_{\substack{n,m\in\mathbb{Z}\\n>0\\4|m}} \left(\frac{m}{n}\right)\varepsilon_n^{-k}\frac{(mz+n)^{k/2}}{|mz+n|^{2s}},$$

and

$$E\left(z, -\frac{k}{2}, s\right) = \frac{(2z)^{k/2}}{|2z|^{2s}} F\left(\frac{-1}{4z}, -\frac{k}{2}, s\right),$$

where $\left(\frac{m}{n}\right)$ is the Kronecker symbol and

$$\varepsilon_n := \begin{cases} 1 & \text{if } n \equiv 1 \pmod{4} \\ i & \text{if } n \equiv 3 \pmod{4}. \end{cases}$$

23/32

Construction of the half-integral weight forms

Proof sketch

We have

$$E\left(z,-\frac{k}{2},s\right) = \sum_{N=-\infty}^{\infty} a(N)q^N,$$

Construction of the half-integral weight forms

Proof sketch

We have

$$E\left(z,-\frac{k}{2},s\right)=\sum_{N=-\infty}^{\infty}a(N)q^N,$$

where

$$a(N) = 2^{\frac{k}{2} - 2s} \alpha_N\left(y, -\frac{k}{2}, s\right) \sum_{\substack{n > 0\\ n \text{ odd}}} \varepsilon_n^{-k} n^{\frac{k}{2} - 2s} \sum_{\substack{m \pmod{n}}} \left(\frac{m}{n}\right) e^{-\frac{2\pi i N m}{n}},$$

Construction of the half-integral weight forms

Proof sketch

We have

$$E\left(z,-\frac{k}{2},s
ight) = \sum_{N=-\infty}^{\infty} a(N)q^N,$$

where

$$a(N) = 2^{\frac{k}{2} - 2s} \alpha_N\left(y, -\frac{k}{2}, s\right) \sum_{\substack{n > 0 \\ n \text{ odd}}} \varepsilon_n^{-k} n^{\frac{k}{2} - 2s} \sum_{\substack{m \pmod{n}}} \left(\frac{m}{n}\right) e^{-\frac{2\pi i N m}{n}},$$

and by the Poisson summation formula

$$\alpha_N\left(y, -\frac{k}{2}, s\right) = \int_{iy-\infty}^{iy+\infty} z^{\frac{k}{2}} |z|^{-2s} e^{-2\pi iNz} dz.$$

Construction of the half-integral weight forms

Proof sketch

Similarly, we have

$$F\left(z, -\frac{k}{2}, s\right) = 1 + \sum_{N=-\infty}^{\infty} b(N)q^N,$$

Construction of the half-integral weight forms

Proof sketch

Similarly, we have

$$F\left(z,-\frac{k}{2},s\right) = 1 + \sum_{N=-\infty}^{\infty} b(N)q^N,$$

where

$$b(N) = \alpha_N\left(y, -\frac{k}{2}, s\right) \sum_{\substack{m>0\\4|m}} m^{\frac{k}{2}-2s} \sum_{\substack{n \pmod{m}}} \left(\frac{m}{n}\right) \varepsilon_n^{-k} e^{\frac{2\pi i Nn}{m}}.$$

▲□▶ 4 @▶ 4 @▶ 4 @▶ 25 / 32

Construction of the half-integral weight forms

Proof sketch

Using the Proposition of Zagier, we find

$$a(N) = 2^{\frac{k}{2} + 1 - 2s} \alpha_N\left(y, -\frac{k}{2}, s\right) \frac{1}{2} E^{odd}_{(-1)^r N}\left(-\frac{k}{2} - \frac{1}{2} + 2s\right),$$

Construction of the half-integral weight forms

Proof sketch

Using the Proposition of Zagier, we find

$$a(N) = 2^{\frac{k}{2} + 1 - 2s} \alpha_N\left(y, -\frac{k}{2}, s\right) \frac{1}{2} E^{odd}_{(-1)^r N}\left(-\frac{k}{2} - \frac{1}{2} + 2s\right),$$

and

$$b(N) = (1+i^{2r+1})4^{\frac{k}{2}+\frac{1}{2}-2s}\alpha_N\left(y,-\frac{k}{2},s\right)\frac{1}{2}E^{even}_{(-1)^rN}\left(-\frac{k}{2}-\frac{1}{2}+2s\right).$$

Construction of the half-integral weight forms

Proof sketch

Using the Proposition of Zagier, we find

$$a(N) = 2^{\frac{k}{2} + 1 - 2s} \alpha_N\left(y, -\frac{k}{2}, s\right) \frac{1}{2} E^{odd}_{(-1)^r N}\left(-\frac{k}{2} - \frac{1}{2} + 2s\right),$$

and

$$b(N) = (1+i^{2r+1})4^{\frac{k}{2}+\frac{1}{2}-2s}\alpha_N\left(y,-\frac{k}{2},s\right)\frac{1}{2}E^{even}_{(-1)^rN}\left(-\frac{k}{2}-\frac{1}{2}+2s\right).$$

Define

$$\begin{aligned} \mathcal{H}\left(z, -r + \frac{1}{2}\right) &:= \lim_{s \to 0} \zeta(1 + 2r - 4s) \left[i^{2r-1} F\left(z, -r + \frac{1}{2}, s\right) \right. \\ &+ 2^{r-\frac{1}{2}} (1 + i^{2r-1}) E\left(z, -r + \frac{1}{2}, s\right) \right]. \end{aligned}$$

Harmonic Maass eigenforms

Proof sketch

Note that

$$\xi_{-2k}(G(z,-2k)) \doteq E_{2k+2}(z),$$

Harmonic Maass eigenforms

Proof sketch

Note that

$$\xi_{-2k}(G(z,-2k)) \doteq E_{2k+2}(z),$$

and

$$\xi_{-r+\frac{1}{2}}\left(\mathcal{H}\left(z,-r+\frac{1}{2}\right)\right)\doteq H_{r+\frac{3}{2}}(z).$$

Harmonic Maass eigenforms

Proof sketch

Note that

$$\xi_{-2k}(G(z,-2k)) \doteq E_{2k+2}(z),$$

and

$$\xi_{-r+\frac{1}{2}}\left(\mathcal{H}\left(z,-r+\frac{1}{2}\right)\right)\doteq H_{r+\frac{3}{2}}(z).$$

It is well known that

$$E_{2k+2}(z)|T(p) = (1 + p^{2k+1})E_{2k+2}(z),$$

and

$$H_{r+\frac{3}{2}}(z)|T(p^2) = (1+p^{2r+1})H_{r+\frac{3}{2}}(z)$$

< □ ▶ < □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ 27/32

Harmonic Maass eigenforms

Proof sketch

We find

$$G(z, -2k)|T(p) - \left(1 + \frac{1}{p^{2k+1}}\right)G(z, -2k),$$

and

$$\mathcal{H}\left(z,-r+\frac{1}{2}\right)\left|T(p^2)-\left(1+\frac{1}{p^{2r+1}}\right)\mathcal{H}\left(z,-r+\frac{1}{2}\right)\right.$$

28/32

both vanish.
Generalized Bernoulli numbers

Definition

The generalized Bernoulli numbers $B(n,\chi)$ are defined by the generating function

$$\sum_{n=0}^{\infty} B(n,\chi) \frac{t^n}{n!} = \sum_{a=1}^{m-1} \frac{\chi(a)te^{at}}{e^{mt} - 1},$$

Where χ is a Dirichlet character modulo m.

Generalized Bernoulli numbers

Definition

The generalized Bernoulli numbers $B(n, \chi)$ are defined by the generating function

$$\sum_{n=0}^{\infty} B(n,\chi) \frac{t^n}{n!} = \sum_{a=1}^{m-1} \frac{\chi(a)te^{at}}{e^{mt} - 1},$$

Where χ is a Dirichlet character modulo m.

Proposition

If k is a positive integer and χ is a Dirichlet character, then

$$L(1-k,\chi) = -\frac{B(k,\chi)}{k}.$$

Kummer's congruences

Proposition

For $n \geq 1$ we have that

$$L_p(1-n,\chi) = -(1-\chi \cdot \omega^{-n}(p)p^{n-1})\frac{B(n,\chi \cdot \omega^{-n})}{n},$$

where ω is the Teichmüller character.

Kummer's congruences

Proposition

For $n \geq 1$ we have that

$$L_p(1-n,\chi) = -(1-\chi \cdot \omega^{-n}(p)p^{n-1})\frac{B(n,\chi \cdot \omega^{-n})}{n}$$

where ω is the Teichmüller character.

Remark

If $n \equiv m \pmod{(p-1)p^a}$ and $(p-1) \nmid n, m$ for an odd prime p, then $(1-p^{n-1})\frac{B_n}{n} \equiv (1-p^{m-1})\frac{B_m}{m} \pmod{p^{a+1}}$, where a is a nonnegative integer.

うく(や 0 / 32

Kummer's congruences

Proposition

For $n \geq 1$ we have that

$$L_p(1-n,\chi) = -(1-\chi \cdot \omega^{-n}(p)p^{n-1})\frac{B(n,\chi \cdot \omega^{-n})}{n}$$

where ω is the Teichmüller character.

Remark

If
$$n \equiv m \pmod{(p-1)p^a}$$
 and $(p-1) \nmid n, m$ for an odd prime p , then
 $(1-p^{n-1})\frac{B_n}{n} \equiv (1-p^{m-1})\frac{B_m}{m} \pmod{p^{a+1}}$,
where a is a nonnegative integer.
If let $\chi \neq 1$ be a primitive Dirichlet character with conductor not
divisible by p , then if $n \equiv m \pmod{p^a}$ we have

$$(1-\chi\cdot\omega^{-n}(p)p^{n-1})\frac{B(n,\chi\cdot\omega^{-n})}{n} \equiv (1-\chi\cdot\omega^{-m}(p)p^{m-1})\frac{B(m,\chi\cdot\omega^{-m})}{m}.$$

Congruences for p-adic harmonic Maass forms

Remark

The p-adic zeta function at positive integers does not behave as nicely as at negative integers. However, it is still expected that it satisfies similar congruences modulo some p-adic regulator.

Congruences for p-adic harmonic Maass forms

Remark

The p-adic zeta function at positive integers does not behave as nicely as at negative integers. However, it is still expected that it satisfies similar congruences modulo some p-adic regulator.

Example

We have

$$G^{+,(5)}(z,-2) = -\frac{1}{2\pi^2} \left(\zeta^{(5)}(3) + q + \frac{9}{8}q^2 + \frac{28}{27}q^3 + \frac{73}{64}q^4 + \frac{1}{75}q^5 + \cdots \right),$$

and

Theorem (W)

We have constructed two infinite families of harmonic Maass forms, one integer weight and one half-integral weight. Furthermore, these forms are eigenforms for the Hecke operators T(p) and $T(p^2)$.

Theorem (W)

We have constructed two infinite families of harmonic Maass forms, one integer weight and one half-integral weight. Furthermore, these forms are eigenforms for the Hecke operators T(p) and $T(p^2)$.

Theorem (W)

We construct two infinite families of p-adic harmonic Maass forms in the sense of Serre. These constructions provide a partial answer to Mazur's question about the existence of an eigencurve for harmonic Maass forms.