Harmonic Hecke eigenlines and Mazur's problem

Ian Wagner
Emory University

p-adic modular forms in the sense of Serre

Definition

A power series f is a p-adic modular form if there is a sequence of classical modular forms f_{i} such that $v_{p}\left(f-f_{i}\right) \rightarrow \infty$ as $i \rightarrow \infty$.

p-adic modular forms in the sense of Serre

Definition

A power series f is a p-adic modular form if there is a sequence of classical modular forms f_{i} such that $v_{p}\left(f-f_{i}\right) \rightarrow \infty$ as $i \rightarrow \infty$.

Definition

Let $\zeta(s)$ be the Riemann zeta-function. Then for $k \geq 1$, the weight $2 k$ Eisenstein series is given by

$$
G_{2 k}(z):=\frac{1}{2} \zeta(1-2 k)+\sum_{n=1}^{\infty} \sigma_{2 k-1}(n) q^{n} .
$$

p-adic modular forms in the sense of Serre

Definition

A power series f is a p-adic modular form if there is a sequence of classical modular forms f_{i} such that $v_{p}\left(f-f_{i}\right) \rightarrow \infty$ as $i \rightarrow \infty$.

Definition

Let $\zeta(s)$ be the Riemann zeta-function. Then for $k \geq 1$, the weight $2 k$ Eisenstein series is given by

$$
G_{2 k}(z):=\frac{1}{2} \zeta(1-2 k)+\sum_{n=1}^{\infty} \sigma_{2 k-1}(n) q^{n} .
$$

Remark

For $2 k \geq 4, G_{2 k}(z)$ is a weight $2 k$ modular form on $S L_{2}(\mathbb{Z})$.

p-adic modular forms in the sense of Serre

Remark

First examples of p-adic modular forms come from Eisenstein series.

p-adic modular forms in the sense of Serre

Remark

First examples of p-adic modular forms come from Eisenstein series.

Theorem (Serre, 1972)

Let $\zeta^{(p)}(s)$ be the p-adic zeta-function and

$$
\sigma_{k}^{(p)}(n):=\sum_{\substack{d \mid n \\ \operatorname{gcd}(d, p)=1}} d^{k}
$$

Then for $k \geq 1$, we have that

$$
G_{2 k}^{(p)}(z)=\frac{1}{2} \zeta^{(p)}(1-2 k)+\sum_{n=1}^{\infty} \sigma_{2 k-1}^{(p)}(n) q^{n}
$$

is a p-adic modular form of weight $2 k$.

p-adic Eisenstein series

Remark

$G_{k_{1}}^{(p)}(z) \equiv G_{k_{2}}^{(p)}(z)\left(\bmod p^{a}\right)$ whenever $k_{1} \equiv k_{2}\left(\bmod (p-1) p^{a-1}\right)$ and $k_{1}, k_{2} \not \equiv 0(\bmod p-1)$.

p-adic Eisenstein series

Remark

$G_{k_{1}}^{(p)}(z) \equiv G_{k_{2}}^{(p)}(z)\left(\bmod p^{a}\right)$ whenever $k_{1} \equiv k_{2}\left(\bmod (p-1) p^{a-1}\right)$ and $k_{1}, k_{2} \not \equiv 0(\bmod p-1)$.

Example

$6 \equiv 10(\bmod 4)$ and $6,10 \not \equiv 0(\bmod 4)$ so

$$
G_{6}^{(5)}(z)=\frac{781}{126}+q+33 q^{2}+244 q^{3}+1057 q^{4}+q^{5}+\cdots
$$

and

p-adic Eisenstein series

Remark

$G_{k_{1}}^{(p)}(z) \equiv G_{k_{2}}^{(p)}(z)\left(\bmod p^{a}\right)$ whenever $k_{1} \equiv k_{2}\left(\bmod (p-1) p^{a-1}\right)$ and $k_{1}, k_{2} \not \equiv 0(\bmod p-1)$.

Example

$6 \equiv 10(\bmod 4)$ and $6,10 \not \equiv 0(\bmod 4)$ so

$$
G_{6}^{(5)}(z)=\frac{781}{126}+q+33 q^{2}+244 q^{3}+1057 q^{4}+q^{5}+\cdots
$$

and

$$
G_{10}^{(5)}(z)=\frac{488281}{66}+q+513 q^{2}+19684 q^{3}+262657 q^{4}+q^{5}+\cdots
$$

are congruent modulo 5 .

Mazur's question

Definition

The eigencurve is a rigid-analytic curve whose points correspond to normalized finite slope p-adic overconvergent modular eigenforms.

Mazur's question

Definition

The eigencurve is a rigid-analytic curve whose points correspond to normalized finite slope p-adic overconvergent modular eigenforms.

Question (Mazur)

Does an eigencurve-like object exists for harmonic Maass forms?

Mazur's question

Definition

The eigencurve is a rigid-analytic curve whose points correspond to normalized finite slope p-adic overconvergent modular eigenforms.

Question (Mazur)

Does an eigencurve-like object exists for harmonic Maass forms?

Remark

The standard constructions of harmonic Maass forms rarely lead to eigenforms:

- Poincaré series,
- Mock theta functions,
- Indefinite theta functions.

Harmonic Maass forms

Definition

For $k \in \mathbb{R}$, the weight k hyperbolic Laplacian operator on \mathbb{H} is defined by

$$
\Delta_{k}:=-y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)+i k y\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)=-4 y^{2} \frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}}+2 i k y \frac{\partial}{\partial \bar{z}} .
$$

Harmonic Maass forms

Definition

For $k \in \mathbb{R}$, the weight k hyperbolic Laplacian operator on \mathbb{H} is defined by
$\Delta_{k}:=-y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)+i k y\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)=-4 y^{2} \frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}}+2 i k y \frac{\partial}{\partial \bar{z}}$.

Definition

A smooth function $f: \mathbb{H} \rightarrow \mathbb{C}$ is a weight k harmonic Maass form with manageable growth on Γ (denoted $H_{k}^{!}(\Gamma)$) if

Harmonic Maass forms

Definition

For $k \in \mathbb{R}$, the weight k hyperbolic Laplacian operator on \mathbb{H} is defined by
$\Delta_{k}:=-y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)+i k y\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)=-4 y^{2} \frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}}+2 i k y \frac{\partial}{\partial \bar{z}}$.

Definition

A smooth function $f: \mathbb{H} \rightarrow \mathbb{C}$ is a weight k harmonic Maass form with manageable growth on Γ (denoted $H_{k}^{!}(\Gamma)$) if

- f transforms like a modular form of weight k on Γ,

Harmonic Maass forms

Definition

For $k \in \mathbb{R}$, the weight k hyperbolic Laplacian operator on \mathbb{H} is defined by
$\Delta_{k}:=-y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)+i k y\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)=-4 y^{2} \frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}}+2 i k y \frac{\partial}{\partial \bar{z}}$.

Definition

A smooth function $f: \mathbb{H} \rightarrow \mathbb{C}$ is a weight k harmonic Maass form with manageable growth on Γ (denoted $H_{k}^{!}(\Gamma)$) if

- f transforms like a modular form of weight k on Γ,
- $\Delta_{k}(f)=0$,

Harmonic Maass forms

Definition

For $k \in \mathbb{R}$, the weight k hyperbolic Laplacian operator on \mathbb{H} is defined by
$\Delta_{k}:=-y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)+i k y\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)=-4 y^{2} \frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}}+2 i k y \frac{\partial}{\partial \bar{z}}$.

Definition

A smooth function $f: \mathbb{H} \rightarrow \mathbb{C}$ is a weight k harmonic Maass form with manageable growth on Γ (denoted $H_{k}^{!}(\Gamma)$) if

- f transforms like a modular form of weight k on Γ,
- $\Delta_{k}(f)=0$,
- $f(z)=O\left(e^{\varepsilon y}\right)$ as $y \rightarrow \infty$ for some $\varepsilon>0$ at all cusps.

Remarks about harmonic Maass forms

Remark

The Fourier expansion of f naturally splits as

$$
f(z)=\underbrace{\sum_{n \gg-\infty} c_{f}^{+}(n) q^{n}}_{\substack{\text { holomorphic part } \\ \text { mock modular form }}}+\underbrace{c_{f}^{-}(0) y^{1-k}+\sum_{\substack{n \ll \infty \\ n \neq 0}} c_{f}^{-}(n) \Gamma(1-k,-4 \pi n y) q^{n}}_{\text {non-holomorphic part }} .
$$

Examples of harmonic Maass forms

Definition

Let $\Gamma_{\infty}:= \pm\left\{\left.\left(\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\}$. Given a translation invariant function $\phi(z)$, the weight k level N Poincaré series for $\phi(z)$ is

$$
\mathbb{P}(\phi ; z):=\left.\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma_{0}(N)} \phi\right|_{k} \gamma(z) .
$$

Examples of harmonic Maass forms

Definition

Let $\Gamma_{\infty}:= \pm\left\{\left.\left(\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\}$. Given a translation invariant function $\phi(z)$, the weight k level N Poincaré series for $\phi(z)$ is

$$
\mathbb{P}(\phi ; z):=\left.\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma_{0}(N)} \phi\right|_{k} \gamma(z) .
$$

Example

Ono constructed a Maass-Poincaré series of weight -10 and level 1

$$
F_{-10,1}^{+}(z)=q^{-1}-\frac{65520}{691}-1842.89472 \cdots q-23274.07545 \cdots q^{2}+\cdots
$$

which is connected to $\Delta(z)$.

Examples of harmonic Maass forms

Definition

Given a quadratic form Q of type $(r-1,1)$, the theta function associated to Q with characteristic $a \in \mathbb{R}^{r}$ and $b \in \mathbb{R}^{r}$ is the series

$$
\Theta_{a, b}(z)=\sum_{n \in a+\mathbb{Z}^{r}} \rho(n ; z) e^{2 \pi i B(n, b)} q^{Q(n)} .
$$

Examples of harmonic Maass forms

Definition

Given a quadratic form Q of type ($r-1,1$), the theta function associated to Q with characteristic $a \in \mathbb{R}^{r}$ and $b \in \mathbb{R}^{r}$ is the series

$$
\Theta_{a, b}(z)=\sum_{n \in a+\mathbb{Z}^{r}} \rho(n ; z) e^{2 \pi i B(n, b)} q^{Q(n)}
$$

Example

For $Q(j, k)=\frac{1}{2}\left(5 j^{2}-2 k^{2}\right), a=\binom{\frac{1}{10}}{0}$, and $b=\binom{0}{\frac{1}{4}}$ we have

$$
\Theta_{a, b}^{+}(z)=2 q^{\frac{1}{40}}\left(\sum_{\substack{n+j \geq 0 \\ n-j \geq 0}}-\sum_{\substack{n+j<0 \\ n-j<0}}\right)(-1)^{j} q^{\frac{5 n^{2}}{2}+\frac{n}{2}-j^{2}},
$$

which is related to Ramanujan's fifth order mock theta function.

Applications of harmonic Maass forms

- Partitions (Bruinier-Ono, Dyson, Atkin-Swinnerton-Dyer,...).
- Singular moduli (Borcherds, Zagier, Duke-Imamoğlu-Tóth,...).
- Derivatives of L-functions (Gross-Zagier, Bruinier-Ono,...).
- Donaldson invariants (Göttsche-Zagier, Malmendier-Ono,...).
- Kac-Wakimoto characters (Bringmann-Ono, Dabholkar-Murty-Zagier,...).
- Moonshine (Borcherds, Harvey, Duncan-Griffin-Ono,...).

Two families of harmonic Maass forms

Two families of harmonic Maass forms

Definition

Define the weight k differential operator ξ_{k} by

$$
\xi_{k}:=2 i y^{k} \overline{\frac{\partial}{\partial \bar{z}}} .
$$

Two families of harmonic Maass forms

Definition

Define the weight k differential operator ξ_{k} by

$$
\xi_{k}:=2 i y^{k} \overline{\frac{\partial}{\partial \bar{z}}} .
$$

Proposition
For any $k \geq 2$, we have that

$$
\xi_{2-k}: H_{2-k}^{!}\left(\Gamma_{0}(N)\right) \rightarrow M_{k}^{!}\left(\Gamma_{0}(N)\right)
$$

Two families of harmonic Maass forms

Definition

Define the weight k differential operator ξ_{k} by

$$
\xi_{k}:=2 i y^{k} \overline{\frac{\partial}{\partial \bar{z}}} .
$$

Proposition

For any $k \geq 2$, we have that

$$
\xi_{2-k}: H_{2-k}^{!}\left(\Gamma_{0}(N)\right) \rightarrow M_{k}^{!}\left(\Gamma_{0}(N)\right) .
$$

Proposition

Suppose $f \in H_{\kappa}^{!}\left(\Gamma_{0}(N)\right)$ with $\kappa \in \frac{1}{2} \mathbb{Z}$. Then the following are true.

Two families of harmonic Maass forms

Definition

Define the weight k differential operator ξ_{k} by

$$
\xi_{k}:=2 i y^{k} \frac{\bar{\partial}}{\partial \bar{z}} .
$$

Proposition

For any $k \geq 2$, we have that

$$
\xi_{2-k}: H_{2-k}^{!}\left(\Gamma_{0}(N)\right) \rightarrow M_{k}^{!}\left(\Gamma_{0}(N)\right) .
$$

Proposition

Suppose $f \in H_{\kappa}^{!}\left(\Gamma_{0}(N)\right)$ with $\kappa \in \frac{1}{2} \mathbb{Z}$. Then the following are true.
(1) For $m \in \mathbb{N}, f \mid T(m) \in H_{\kappa}^{!}\left(\Gamma_{0}(N)\right)$.

Two families of harmonic Maass forms

Definition

Define the weight k differential operator ξ_{k} by

$$
\xi_{k}:=2 i y^{k} \frac{\bar{\partial}}{\partial \bar{z}} .
$$

Proposition

For any $k \geq 2$, we have that

$$
\xi_{2-k}: H_{2-k}^{!}\left(\Gamma_{0}(N)\right) \rightarrow M_{k}^{!}\left(\Gamma_{0}(N)\right) .
$$

Proposition

Suppose $f \in H_{\kappa}^{!}\left(\Gamma_{0}(N)\right)$ with $\kappa \in \frac{1}{2} \mathbb{Z}$. Then the following are true.
(1) For $m \in \mathbb{N}, f \mid T(m) \in H_{\kappa}^{!}\left(\Gamma_{0}(N)\right)$.
(2) $p^{(1-\kappa)} \xi_{\kappa}\left(f \mid T_{\kappa}(p)\right)=\xi_{\kappa}(f) \mid T_{2-\kappa}(p)$ if $\kappa \in \mathbb{Z}$.

Two families of harmonic Maass forms

Definition

Define the weight k differential operator ξ_{k} by

$$
\xi_{k}:=2 i y^{k} \frac{\bar{\partial}}{\partial \bar{z}} .
$$

Proposition

For any $k \geq 2$, we have that

$$
\xi_{2-k}: H_{2-k}^{!}\left(\Gamma_{0}(N)\right) \rightarrow M_{k}^{!}\left(\Gamma_{0}(N)\right) .
$$

Proposition

Suppose $f \in H_{\kappa}^{!}\left(\Gamma_{0}(N)\right)$ with $\kappa \in \frac{1}{2} \mathbb{Z}$. Then the following are true.
(1) For $m \in \mathbb{N}, f \mid T(m) \in H_{\kappa}^{!}\left(\Gamma_{0}(N)\right)$.
(2) $p^{(1-\kappa)} \xi_{\kappa}\left(f \mid T_{\kappa}(p)\right)=\xi_{\kappa}(f) \mid T_{2-\kappa}(p)$ if $\kappa \in \mathbb{Z}$.
(3) $p^{2(1-\kappa)} \xi_{\kappa}\left(f \mid T_{\kappa}\left(p^{2}\right)\right)=\xi_{\kappa}(f) \mid T_{2-\kappa}\left(p^{2}\right)$ if $\kappa \in \frac{1}{2}+\mathbb{Z}$.

Pullback of integer weight Eisenstein series

Pullback of integer weight Eisenstein series

- For $k>0$, define

$$
\begin{aligned}
G(z,-2 k) & :=\frac{(2 k)!\zeta(2 k+1)}{(2 \pi)^{2 k}}+\frac{(-1)^{k+1} y^{1+2 k} 2^{1+2 k} \pi \zeta(-2 k-1)}{2 k+1} \\
& +(-1)^{k}(2 \pi)^{-2 k}(2 k)!\sum_{n=1}^{\infty} \frac{\sigma_{2 k+1}(n)}{n^{2 k+1}} q^{n} \\
& +(-1)^{k}(2 \pi)^{-2 k} \sum_{n=1}^{\infty} \frac{\sigma_{2 k+1}(n)}{n^{2 k+1}} \Gamma(1+2 k, 4 \pi n y) q^{-n}
\end{aligned}
$$

Pullback of Cohen-Eisenstein series

Pullback of Cohen-Eisenstein series

Definition

Let $T_{r}^{\chi}(v):=\sum_{a \mid v} \mu(a) \chi(a) a^{r-1} \sigma_{2 r-1}(v / a)$.
Set $(-1)^{r} N=D v^{2}$ with D the discriminant of $\mathbb{Q}(\sqrt{D})$ and $\chi_{D}=\left(\frac{D}{.}\right)$.

Pullback of Cohen-Eisenstein series

Definition

Let $T_{r}^{\chi}(v):=\sum_{a \mid v} \mu(a) \chi(a) a^{r-1} \sigma_{2 r-1}(v / a)$.
Set $(-1)^{r} N=D v^{2}$ with D the discriminant of $\mathbb{Q}(\sqrt{D})$ and $\chi_{D}=\left(\frac{D}{.}\right)$.

Definition

Let

$$
c_{r}(N)= \begin{cases}i^{2 r+1} L\left(1+r, \chi_{D}\right) \frac{1}{\bar{v}^{2 r+1}} T_{r+1}^{\chi_{D}}(v) & N>0 \\ \left.i^{2 r-1} \zeta(1+2 r)+\frac{2^{2 r+4} i \pi^{2 r+1} y^{r+\frac{1}{2}} \zeta(-1-2 r)}{2 r-3}\right) & N=0 \\ \frac{\pi^{3 / 2} L\left(-r, \chi_{D}\right) T_{r+1}^{\chi_{D}(v) \Gamma\left(\frac{r+a}{2}\right)}}{N^{r+\frac{1}{2}} \Gamma\left(\frac{r+1+a}{2}\right) \Gamma\left(r+\frac{1}{2}\right)} \Gamma\left(r+\frac{1}{2},-4 \pi N y\right) & N<0,\end{cases}
$$

where $a=0$ if r is odd and $a=1$ if r is even.

Pullback of Cohen-Eisenstein series

Definition

Let $T_{r}^{\chi}(v):=\sum_{a \mid v} \mu(a) \chi(a) a^{r-1} \sigma_{2 r-1}(v / a)$.
Set $(-1)^{r} N=D v^{2}$ with D the discriminant of $\mathbb{Q}(\sqrt{D})$ and $\chi_{D}=\left(\frac{D}{.}\right)$.

Definition

Let

$$
c_{r}(N)= \begin{cases}i^{2 r+1} L\left(1+r, \chi_{D}\right) \frac{1}{v^{2 r+1}} T_{r+1}^{\chi_{D}}(v) & N>0 \\ i^{2 r-1} \zeta(1+2 r)+\frac{2^{2 r+4} i \pi^{2 r+1} y^{r+\frac{1}{2}} \zeta(-1-2 r)}{(2 r-3) \Gamma(2 r+1)} & N=0 \\ \frac{\pi^{3 / 2} L\left(-r, \chi_{D}\right) T_{r+1}^{\chi_{D}}(v) \Gamma\left(\frac{r+a}{2}\right)}{N^{r+\frac{1}{2}} \Gamma\left(\frac{r+1+a}{2}\right) \Gamma\left(r+\frac{1}{2}\right)} \Gamma\left(r+\frac{1}{2},-4 \pi N y\right) & N<0\end{cases}
$$

where $a=0$ if r is odd and $a=1$ if r is even.
Then, for $r \geq 1$, define $\mathcal{H}\left(z,-r+\frac{1}{2}\right):=\sum_{N \in \mathbb{Z}} c_{r}(N) q^{N}$.

Theorem 1

Theorem 1 (W)

Assuming the notation above, the following are true.

Theorem 1

Theorem 1 (W)

Assuming the notation above, the following are true.
(1) For $k \in \mathbb{N}$, we have that $G(z,-2 k) \in H_{-2 k}^{!}\left(S L_{2}(\mathbb{Z})\right)$.

Furthermore, $G(z,-2 k)$ has eigenvalue $1+\frac{1}{p^{2 k+1}}$ under the Hecke operator $T(p)$.

Theorem 1

Theorem 1 (W)

Assuming the notation above, the following are true.
(1) For $k \in \mathbb{N}$, we have that $G(z,-2 k) \in H_{-2 k}^{!}\left(S L_{2}(\mathbb{Z})\right)$.

Furthermore, $G(z,-2 k)$ has eigenvalue $1+\frac{1}{p^{2 k+1}}$ under the Hecke operator $T(p)$.
(2) For $r \in \mathbb{N}$, we have that $\mathcal{H}\left(z,-r+\frac{1}{2}\right) \in H_{-r+\frac{1}{2}}^{!}\left(\Gamma_{0}(4)\right)$.

Furthermore, $\mathcal{H}\left(z,-r+\frac{1}{2}\right)$ has eigenvalue $1+\frac{1}{p^{2 r+1}}$ under the Hecke operator $T\left(p^{2}\right)$.

p-adic harmonic Maass forms in the sense of Serre

Definition

A weight $k p$-adic harmonic Maass form is a formal power series $f(z)=\sum_{n \gg-\infty} c_{f}^{+}(n) q^{n}+c_{f}^{-}(0) y^{1-k}+\sum_{0 \neq n \ll \infty} c_{f}^{-}(n) \Gamma(1-k,-4 \pi n y) q^{n}$,
where $\Gamma(1-k,-4 \pi n y)$ is taken as a formal symbol and where the coefficients $c_{f}^{ \pm}(n)$ are in \mathbb{C}_{p}, such that there exists a series of harmonic Maass forms $f_{i}(z)$ such that the following properties are satisfied:
(1) $\lim _{i \rightarrow \infty} n^{1-k_{i}} c_{f_{i}}^{ \pm}(n)=n^{1-k} c_{f}^{ \pm}(n)$ for $n \neq 0$.
(c) $\lim _{i \rightarrow \infty} c_{f_{i}}^{ \pm}(0)=c_{f}^{ \pm}(0)$.

p-adic harmonic Maass forms in the sense of Serre

Definition

A weight $k p$-adic harmonic Maass form is a formal power series $f(z)=\sum_{n \gg-\infty} c_{f}^{+}(n) q^{n}+c_{f}^{-}(0) y^{1-k}+\sum_{0 \neq n \ll \infty} c_{f}^{-}(n) \Gamma(1-k,-4 \pi n y) q^{n}$, where $\Gamma(1-k,-4 \pi n y)$ is taken as a formal symbol and where the coefficients $c_{f}^{ \pm}(n)$ are in \mathbb{C}_{p}, such that there exists a series of harmonic Maass forms $f_{i}(z)$ such that the following properties are satisfied:
(1) $\lim _{i \rightarrow \infty} n^{1-k_{i}} c_{f_{i}}^{ \pm}(n)=n^{1-k} c_{f}^{ \pm}(n)$ for $n \neq 0$.
(c) $\lim _{i \rightarrow \infty} c_{f_{i}}^{ \pm}(0)=c_{f}^{ \pm}(0)$.

Remark

Here $\lim _{i \rightarrow \infty} n^{1-k_{i}} c_{f_{i}}^{ \pm}(n)=n^{1-k} c_{f}^{ \pm}(n)$ means
$v_{p}\left(n^{1-k_{i}} c_{f_{i}}^{ \pm}(n)-n^{1-k} c_{f}^{ \pm}(n)\right)$ tends to ∞.

p-adic harmonic Maass forms in the sense of Serre

Definitions

- Define the usual p-adic Gamma function by

$$
\begin{aligned}
& \\
& \qquad \begin{aligned}
\Gamma^{(p)}(n) & :=(-1)^{n} \prod_{\substack{0<j<n \\
p \nmid j}} j \quad \text { if } n \in \mathbb{Z}, \\
\text { and } \quad & \Gamma^{(p)}(x):=\lim _{n \rightarrow x} \Gamma^{(p)}(n) \quad \text { if } x \in \mathbb{Z}_{p} .
\end{aligned}, .
\end{aligned}
$$

p-adic harmonic Maass forms in the sense of Serre

Definitions

- Define the usual p-adic Gamma function by

$$
\begin{gathered}
\Gamma^{(p)}(n):=(-1)^{n} \prod_{\substack{0<j<n \\
p \nmid j}} j \quad \text { if } n \in \mathbb{Z}, \\
\Gamma^{(p)}(x):=\lim _{n \rightarrow x} \Gamma^{(p)}(n) \quad \text { if } x \in \mathbb{Z}_{p} .
\end{gathered}
$$

- For any $x \in \mathbb{Z}_{p}$ we have $v_{p}\left(\Gamma^{(p)}(x)\right)=1$. In the following formulas we define $\pi:=\Gamma^{(p)}\left(\frac{1}{2}\right)^{2}$ so that $v_{p}(\pi)=1$.

p-adic harmonic Maass forms in the sense of Serre

Definitions

- Define the usual p-adic Gamma function by

$$
\begin{gathered}
\Gamma^{(p)}(n):=(-1)^{n} \prod_{\substack{0<j<n \\
p \nmid j}} j \quad \text { if } n \in \mathbb{Z}, \\
\Gamma^{(p)}(x):=\lim _{n \rightarrow x} \Gamma^{(p)}(n) \quad \text { if } x \in \mathbb{Z}_{p} .
\end{gathered}
$$

- For any $x \in \mathbb{Z}_{p}$ we have $v_{p}\left(\Gamma^{(p)}(x)\right)=1$. In the following formulas we define $\pi:=\Gamma^{(p)}\left(\frac{1}{2}\right)^{2}$ so that $v_{p}(\pi)=1$.
- Let $L_{p}(s, \chi)$ be the p-adic L-function.

p-adic harmonic Maass forms in the sense of Serre

Definitions

- Define the usual p-adic Gamma function by

$$
\begin{array}{cc}
\Gamma^{(p)}(n):=(-1)^{n} \prod_{\substack{0<j<n \\
p \nmid j}} j \quad \text { if } n \in \mathbb{Z}, \\
\Gamma^{(p)}(x):=\lim _{n \rightarrow x} \Gamma^{(p)}(n) & \text { if } x \in \mathbb{Z}_{p} .
\end{array}
$$

- For any $x \in \mathbb{Z}_{p}$ we have $v_{p}\left(\Gamma^{(p)}(x)\right)=1$. In the following formulas we define $\pi:=\Gamma^{(p)}\left(\frac{1}{2}\right)^{2}$ so that $v_{p}(\pi)=1$.
- Let $L_{p}(s, \chi)$ be the p-adic L-function.
- Define

$$
T_{r}^{\chi,(p)}(v):=\sum_{\substack{a \mid v \\ \operatorname{gcd}(a, p)=1}} \mu(a) \chi(a) a^{r-1} \sigma_{2 r-1}^{(p)}(v / a)
$$

Answer to Mazur's question for integer weights

Theorem 2 (W)

Suppose p is prime. Then the following are true. For each $k \in X:=\mathbb{Z}_{p} \times \mathbb{Z} /(p-1) \mathbb{Z}$, we have that

$$
\begin{aligned}
G^{(p)}(z,-2 k) & :=\frac{\Gamma^{(p)}(2 k+1) \zeta^{(p)}(2 k+1)}{(2 \pi)^{2 k}} \\
& +\frac{(-1)^{k+1} y^{1+2 k} 2^{1+2 k} \pi \zeta^{(p)}(-2 k-1)}{2 k+1} \\
& +(-1)^{k}(2 \pi)^{-2 k} \Gamma^{(p)}(2 k+1) \sum_{n=1}^{\infty} \frac{\sigma_{2 k+1}^{(p)}(n)}{n^{2 k+1}} q^{n} \\
& +(-1)^{k}(2 \pi)^{-2 k} \sum_{n=1}^{\infty} \frac{\sigma_{2 k+1}^{(p)}(n)}{n^{2 k+1}} \Gamma(1+2 k, 4 \pi n y) q^{-n}
\end{aligned}
$$

is a weight $-2 k$ p-adic harmonic Maass form.

Answer to Mazur's question for half-integral weights

Theorem (W)

For each $-r+\frac{1}{2} \in X$, let

$$
c_{r}^{(p)}(N):= \begin{cases}i^{2 r+1} L_{p}\left(1+r, \chi_{D}\right) \frac{1}{v^{2 r r 1}} T_{r+1}^{\chi_{D},(p)}(v) & N>0 \\ i^{2 r-1} \zeta^{(p)}(1+2 r)+\frac{2^{2 r+4} i \pi^{2 r+1} y^{r+\frac{1}{2}} \zeta^{(p)}(-1-2 r)}{2 r-3) \Gamma^{(p)}(2 r+1)} & N=0 \\ \frac{\pi^{3 / 2} L_{p}\left(-r, \chi_{D}\right) T_{r+1}^{\chi D}(p)(v) \Gamma^{(p)}\left(\frac{r+a}{2}\right)}{N^{r+\frac{1}{2}} \Gamma^{(p)}\left(\frac{r+1+a}{2}\right) \Gamma^{(p)}\left(r+\frac{1}{2}\right)} \Gamma\left(r+\frac{1}{2},-4 \pi N y\right) & N<0 .\end{cases}
$$

Then $\mathcal{H}^{(p)}\left(z,-r+\frac{1}{2}\right)=\sum_{N \in \mathbb{Z}} c_{r}^{(p)}(N) q^{N}$ is a weight $-r+\frac{1}{2} p$-adic harmonic Maass form.

Two corollaries

Remark

For $k \in \mathbb{Z}, G^{(p)}(z,-2 k)$ satisfies

$$
G^{(p)}(z,-2 k)=G(z,-2 k)-G(p z,-2 k)
$$

This implies that $G^{(p)}(z,-2 k) \in H_{-2 k}^{!}\left(\Gamma_{0}(p)\right)$.

Two corollaries

Remark

For $k \in \mathbb{Z}, G^{(p)}(z,-2 k)$ satisfies

$$
G^{(p)}(z,-2 k)=G(z,-2 k)-G(p z,-2 k) .
$$

This implies that $G^{(p)}(z,-2 k) \in H_{-2 k}^{!}\left(\Gamma_{0}(p)\right)$.

Remark

The half-integral weight result implies that the Cohen-Eisenstein series are p-adic modular forms in the sense of Serre.

Hecke's trick

Proof sketch

For $k \in \mathbb{Z}$, define

$$
\mathcal{G}(z,-2 k, s):=\frac{1}{2} \sum_{(0,0) \neq(n, m) \in \mathbb{Z}^{2}} \frac{(m z+n)^{2 k}}{|m z+n|^{2 s}}
$$

Hecke's trick

Proof sketch

For $k \in \mathbb{Z}$, define

$$
\mathcal{G}(z,-2 k, s):=\frac{1}{2} \sum_{(0,0) \neq(n, m) \in \mathbb{Z}^{2}} \frac{(m z+n)^{2 k}}{|m z+n|^{2 s}}
$$

and

$$
\begin{aligned}
f(z,-2 k, s) & :=\sum_{n=-\infty}^{\infty}(z+n)^{2 k}|z+n|^{-2 s} \\
& =\sum_{n=-\infty}^{\infty} h_{n}(y,-2 k, s) e^{2 \pi i n x} e^{-2 \pi n y}
\end{aligned}
$$

Hecke's trick

Proof sketch

For $k \in \mathbb{Z}$, define

$$
\mathcal{G}(z,-2 k, s):=\frac{1}{2} \sum_{(0,0) \neq(n, m) \in \mathbb{Z}^{2}} \frac{(m z+n)^{2 k}}{|m z+n|^{2 s}}
$$

and

$$
\begin{aligned}
f(z,-2 k, s) & :=\sum_{n=-\infty}^{\infty}(z+n)^{2 k}|z+n|^{-2 s} \\
& =\sum_{n=-\infty}^{\infty} h_{n}(y,-2 k, s) e^{2 \pi i n x} e^{-2 \pi n y}
\end{aligned}
$$

where by the Poisson summation formula

$$
h_{n}(y,-2 k, s)=\int_{i y-\infty}^{i y+\infty} z^{2 k}|z|^{-2 s} e^{-2 \pi i n z} d z
$$

Construction of the integer weight forms

Proof sketch

- We find

$$
\mathcal{G}(z,-2 k, s)=\zeta(2 s-2 k)+\sum_{\substack{n \in \mathbb{Z} \\ m \geq 1}} m^{1+2 k-2 s} h_{m n}(y,-2 k, s) e^{2 \pi i n m x}
$$

Construction of the integer weight forms

Proof sketch

- We find

$$
\mathcal{G}(z,-2 k, s)=\zeta(2 s-2 k)+\sum_{\substack{n \in \mathbb{Z} \\ m \geq 1}} m^{1+2 k-2 s} h_{m n}(y,-2 k, s) e^{2 \pi i n m x}
$$

- For each $n \in \mathbb{Z}, h_{n}(y,-2 k, 0)=0$, so define

$$
G(z,-2 k):=\lim _{s \rightarrow 0} \frac{d}{d s} \mathcal{G}(z,-2 k, s)
$$

Construction of the integer weight forms

Proof sketch

- We find

$$
\mathcal{G}(z,-2 k, s)=\zeta(2 s-2 k)+\sum_{\substack{n \in \mathbb{Z} \\ m \geq 1}} m^{1+2 k-2 s} h_{m n}(y,-2 k, s) e^{2 \pi i n m x}
$$

- For each $n \in \mathbb{Z}, h_{n}(y,-2 k, 0)=0$, so define

$$
G(z,-2 k):=\lim _{s \rightarrow 0} \frac{d}{d s} \mathcal{G}(z,-2 k, s) .
$$

- Compute each coefficient by contour integration to complete the proof.

A result of Zagier

Proposition (Zagier)

There exists a Dirichlet series

$$
E_{n}(s)=\frac{1}{2}\left(E_{n}^{\text {odd }}(s)+E_{n}^{\text {even }}(s)\right),
$$

A result of Zagier

Proposition (Zagier)

There exists a Dirichlet series

$$
E_{n}(s)=\frac{1}{2}\left(E_{n}^{\text {odd }}(s)+E_{n}^{e v e n}(s)\right)
$$

such that if $n=D v^{2}$, then

$$
E_{n}(s)=\left\{\begin{array}{lll}
0 & \text { if } n \equiv 2,3 & (\bmod 4) \\
\frac{L\left(s, \chi_{D}\right) T_{S}^{\chi} D}{\zeta(2 s))^{2 s s-1}} & \text { if } n \equiv 0,1 \quad(\bmod 4) \\
\frac{\left.\zeta(2 s-1)^{2 s}\right)}{\zeta(2 s)} & \text { if } n=0 .
\end{array}\right.
$$

Construction of the half-integral weight forms

Proof sketch

Let $k=2 r-1 \in \mathbb{N}$. Define the two Eisenstein series $F\left(z,-\frac{k}{2}, s\right)$ and $E\left(z,-\frac{k}{2}, s\right)$ by

$$
F\left(z,-\frac{k}{2}, s\right)=\sum_{\substack{n, m \in \mathbb{Z} \\ n>0 \\ 4 \mid m}}\left(\frac{m}{n}\right) \varepsilon_{n}^{-k} \frac{(m z+n)^{k / 2}}{|m z+n|^{2 s}}
$$

Construction of the half-integral weight forms

Proof sketch

Let $k=2 r-1 \in \mathbb{N}$. Define the two Eisenstein series $F\left(z,-\frac{k}{2}, s\right)$ and $E\left(z,-\frac{k}{2}, s\right)$ by

$$
F\left(z,-\frac{k}{2}, s\right)=\sum_{\substack{n, m \in \mathbb{Z} \\ n>0 \\ 4 \backslash m}}\left(\frac{m}{n}\right) \varepsilon_{n}^{-k} \frac{(m z+n)^{k / 2}}{|m z+n|^{2 s}},
$$

and

$$
E\left(z,-\frac{k}{2}, s\right)=\frac{(2 z)^{k / 2}}{|2 z|^{2 s}} F\left(\frac{-1}{4 z},-\frac{k}{2}, s\right),
$$

Construction of the half-integral weight forms

Proof sketch

Let $k=2 r-1 \in \mathbb{N}$. Define the two Eisenstein series $F\left(z,-\frac{k}{2}, s\right)$ and $E\left(z,-\frac{k}{2}, s\right)$ by

$$
F\left(z,-\frac{k}{2}, s\right)=\sum_{\substack{n, m \in \mathbb{Z} \\ n>0 \\ 4>m}}\left(\frac{m}{n}\right) \varepsilon_{n}^{-k} \frac{(m z+n)^{k / 2}}{|m z+n|^{2 s}},
$$

and

$$
E\left(z,-\frac{k}{2}, s\right)=\frac{(2 z)^{k / 2}}{|2 z|^{2 s}} F\left(\frac{-1}{4 z},-\frac{k}{2}, s\right),
$$

where $\left(\frac{m}{n}\right)$ is the Kronecker symbol and

$$
\varepsilon_{n}:=\left\{\begin{array}{lll}
1 & \text { if } n \equiv 1 \quad(\bmod 4) \\
i & \text { if } n \equiv 3 \quad(\bmod 4)
\end{array}\right.
$$

Construction of the half-integral weight forms

Proof sketch
We have

$$
E\left(z,-\frac{k}{2}, s\right)=\sum_{N=-\infty}^{\infty} a(N) q^{N},
$$

Construction of the half-integral weight forms

Proof sketch

We have

$$
E\left(z,-\frac{k}{2}, s\right)=\sum_{N=-\infty}^{\infty} a(N) q^{N},
$$

where

$$
\left.a(N)=2^{\frac{k}{2}-2 s} \alpha_{N}\left(y,-\frac{k}{2}, s\right) \sum_{\substack{n>0 \\ n \text { odd }}} \varepsilon_{n}^{-k} n^{\frac{k}{2}-2 s} \sum_{m}^{(\bmod n)} \right\rvert\, ~\left(\frac{m}{n}\right) e^{-\frac{2 \pi i N m}{n}},
$$

Construction of the half-integral weight forms

Proof sketch

We have

$$
E\left(z,-\frac{k}{2}, s\right)=\sum_{N=-\infty}^{\infty} a(N) q^{N}
$$

where

$$
\left.a(N)=2^{\frac{k}{2}-2 s} \alpha_{N}\left(y,-\frac{k}{2}, s\right) \sum_{\substack{n>0 \\ n \text { odd }}} \varepsilon_{n}^{-k} n^{\frac{k}{2}-2 s} \sum_{m}^{(\bmod n)} \right\rvert\,\left(\frac{m}{n}\right) e^{-\frac{2 \pi i N m}{n}}
$$

and by the Poisson summation formula

$$
\alpha_{N}\left(y,-\frac{k}{2}, s\right)=\int_{i y-\infty}^{i y+\infty} z^{\frac{k}{2}}|z|^{-2 s} e^{-2 \pi i N z} d z
$$

Construction of the half-integral weight forms

Proof sketch
Similarly, we have

$$
F\left(z,-\frac{k}{2}, s\right)=1+\sum_{N=-\infty}^{\infty} b(N) q^{N}
$$

Construction of the half-integral weight forms

Proof sketch

Similarly, we have

$$
F\left(z,-\frac{k}{2}, s\right)=1+\sum_{N=-\infty}^{\infty} b(N) q^{N}
$$

where

$$
b(N)=\alpha_{N}\left(y,-\frac{k}{2}, s\right) \sum_{\substack{m>0 \\ 4 \mid m}} m^{\frac{k}{2}-2 s} \sum_{n}(\bmod m)<\left(\frac{m}{n}\right) \varepsilon_{n}^{-k} e^{\frac{2 \pi i N n}{m}} .
$$

Construction of the half-integral weight forms

Proof sketch

Using the Proposition of Zagier, we find

$$
a(N)=2^{\frac{k}{2}+1-2 s} \alpha_{N}\left(y,-\frac{k}{2}, s\right) \frac{1}{2} E_{(-1)^{r} N}^{o d d}\left(-\frac{k}{2}-\frac{1}{2}+2 s\right)
$$

Construction of the half-integral weight forms

Proof sketch

Using the Proposition of Zagier, we find

$$
a(N)=2^{\frac{k}{2}+1-2 s} \alpha_{N}\left(y,-\frac{k}{2}, s\right) \frac{1}{2} E_{(-1)^{r} N}^{o d d}\left(-\frac{k}{2}-\frac{1}{2}+2 s\right)
$$

and
$b(N)=\left(1+i^{2 r+1}\right) 4^{\frac{k}{2}+\frac{1}{2}-2 s} \alpha_{N}\left(y,-\frac{k}{2}, s\right) \frac{1}{2} E_{(-1)^{r} N}^{e v e n}\left(-\frac{k}{2}-\frac{1}{2}+2 s\right)$.

Construction of the half-integral weight forms

Proof sketch

Using the Proposition of Zagier, we find

$$
a(N)=2^{\frac{k}{2}+1-2 s} \alpha_{N}\left(y,-\frac{k}{2}, s\right) \frac{1}{2} E_{(-1)^{r} N}^{\text {odd }}\left(-\frac{k}{2}-\frac{1}{2}+2 s\right),
$$

and
$b(N)=\left(1+i^{2 r+1}\right) 4^{\frac{k}{2}+\frac{1}{2}-2 s} \alpha_{N}\left(y,-\frac{k}{2}, s\right) \frac{1}{2} E_{(-1)^{r} N}^{e v e n}\left(-\frac{k}{2}-\frac{1}{2}+2 s\right)$.
Define

$$
\begin{aligned}
& \mathcal{H}\left(z,-r+\frac{1}{2}\right):=\lim _{s \rightarrow 0} \zeta(1+2 r-4 s)\left[i^{2 r-1} F\left(z,-r+\frac{1}{2}, s\right)\right. \\
& \left.+2^{r-\frac{1}{2}}\left(1+i^{2 r-1}\right) E\left(z,-r+\frac{1}{2}, s\right)\right] .
\end{aligned}
$$

Harmonic Maass eigenforms

Proof sketch
Note that

$$
\xi_{-2 k}(G(z,-2 k)) \doteq E_{2 k+2}(z)
$$

Harmonic Maass eigenforms

Proof sketch
Note that

$$
\xi_{-2 k}(G(z,-2 k)) \doteq E_{2 k+2}(z)
$$

and

$$
\xi_{-r+\frac{1}{2}}\left(\mathcal{H}\left(z,-r+\frac{1}{2}\right)\right) \doteq H_{r+\frac{3}{2}}(z)
$$

Harmonic Maass eigenforms

Proof sketch

Note that

$$
\xi_{-2 k}(G(z,-2 k)) \doteq E_{2 k+2}(z),
$$

and

$$
\xi_{-r+\frac{1}{2}}\left(\mathcal{H}\left(z,-r+\frac{1}{2}\right)\right) \doteq H_{r+\frac{3}{2}}(z) .
$$

It is well known that

$$
E_{2 k+2}(z) \mid T(p)=\left(1+p^{2 k+1}\right) E_{2 k+2}(z),
$$

and

$$
H_{r+\frac{3}{2}}(z) \left\lvert\, T\left(p^{2}\right)=\left(1+p^{2 r+1}\right) H_{r+\frac{3}{2}}(z) .\right.
$$

Harmonic Maass eigenforms

Proof sketch

We find

$$
G(z,-2 k) \left\lvert\, T(p)-\left(1+\frac{1}{p^{2 k+1}}\right) G(z,-2 k)\right.,
$$

and

$$
\mathcal{H}\left(z,-r+\frac{1}{2}\right) \left\lvert\, T\left(p^{2}\right)-\left(1+\frac{1}{p^{2 r+1}}\right) \mathcal{H}\left(z,-r+\frac{1}{2}\right)\right.
$$

both vanish.

Generalized Bernoulli numbers

Definition

The generalized Bernoulli numbers $B(n, \chi)$ are defined by the generating function

$$
\sum_{n=0}^{\infty} B(n, \chi) \frac{t^{n}}{n!}=\sum_{a=1}^{m-1} \frac{\chi(a) t e^{a t}}{e^{m t}-1}
$$

Where χ is a Dirichlet character modulo m.

Generalized Bernoulli numbers

Definition

The generalized Bernoulli numbers $B(n, \chi)$ are defined by the generating function

$$
\sum_{n=0}^{\infty} B(n, \chi) \frac{t^{n}}{n!}=\sum_{a=1}^{m-1} \frac{\chi(a) t e^{a t}}{e^{m t}-1}
$$

Where χ is a Dirichlet character modulo m.

Proposition

If k is a positive integer and χ is a Dirichlet character, then

$$
L(1-k, \chi)=-\frac{B(k, \chi)}{k}
$$

Kummer's congruences

Proposition

For $n \geq 1$ we have that

$$
L_{p}(1-n, \chi)=-\left(1-\chi \cdot \omega^{-n}(p) p^{n-1}\right) \frac{B\left(n, \chi \cdot \omega^{-n}\right)}{n},
$$

where ω is the Teichmüller character.

Kummer's congruences

Proposition

For $n \geq 1$ we have that

$$
L_{p}(1-n, \chi)=-\left(1-\chi \cdot \omega^{-n}(p) p^{n-1}\right) \frac{B\left(n, \chi \cdot \omega^{-n}\right)}{n}
$$

where ω is the Teichmüller character.

Remark

If $n \equiv m\left(\bmod (p-1) p^{a}\right)$ and $(p-1) \nmid n, m$ for an odd prime p, then $\left(1-p^{n-1}\right) \frac{B_{n}}{n} \equiv\left(1-p^{m-1}\right) \frac{B_{m}}{m}\left(\bmod p^{a+1}\right)$,
where a is a nonnegative integer.

Kummer's congruences

Proposition

For $n \geq 1$ we have that

$$
L_{p}(1-n, \chi)=-\left(1-\chi \cdot \omega^{-n}(p) p^{n-1}\right) \frac{B\left(n, \chi \cdot \omega^{-n}\right)}{n}
$$

where ω is the Teichmüller character.

Remark

If $n \equiv m\left(\bmod (p-1) p^{a}\right)$ and $(p-1) \nmid n, m$ for an odd prime p, then $\left(1-p^{n-1}\right) \frac{B_{n}}{n} \equiv\left(1-p^{m-1}\right) \frac{B_{m}}{m}\left(\bmod p^{a+1}\right)$, where a is a nonnegative integer.
If let $\chi \neq 1$ be a primitive Dirichlet character with conductor not divisible by p, then if $n \equiv m\left(\bmod p^{a}\right)$ we have

$$
\left(1-\chi \cdot \omega^{-n}(p) p^{n-1}\right) \frac{B\left(n, \chi \cdot \omega^{-n}\right)}{n} \equiv\left(1-\chi \cdot \omega^{-m}(p) p^{m-1}\right) \frac{B\left(m, \chi \cdot \omega^{-m}\right)}{m} .
$$

Congruences for p-adic harmonic Maass forms

Remark

The p-adic zeta function at positive integers does not behave as nicely as at negative integers. However, it is still expected that it satisfies similar congruences modulo some p-adic regulator.

Congruences for p-adic harmonic Maass forms

Remark

The p-adic zeta function at positive integers does not behave as nicely as at negative integers. However, it is still expected that it satisfies similar congruences modulo some p-adic regulator.

Example

We have

$$
\begin{aligned}
& G^{+,(5)}(z,-2) \\
& =-\frac{1}{2 \pi^{2}}\left(\zeta^{(5)}(3)+q+\frac{9}{8} q^{2}+\frac{28}{27} q^{3}+\frac{73}{64} q^{4}+\frac{1}{75} q^{5}+\cdots\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& G^{+,(5)}(z,-6) \\
& =-\frac{45}{4 \pi^{6}}\left(\zeta^{(5)}(7)+q+\frac{129}{128} q^{2}+\frac{2188}{2187} q^{3}+\frac{16513}{16384} q^{4}+\frac{1}{78125} q^{5}+\cdots\right)
\end{aligned}
$$

Summary

Theorem (W)

We have constructed two infinite families of harmonic Maass forms, one integer weight and one half-integral weight. Furthermore, these forms are eigenforms for the Hecke operators $T(p)$ and $T\left(p^{2}\right)$.

Summary

Theorem (W)

We have constructed two infinite families of harmonic Maass forms, one integer weight and one half-integral weight. Furthermore, these forms are eigenforms for the Hecke operators $T(p)$ and $T\left(p^{2}\right)$.

Theorem (W)

We construct two infinite families of p-adic harmonic Maass forms in the sense of Serre. These constructions provide a partial answer to Mazur's question about the existence of an eigencurve for harmonic Maass forms.

