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The Geometrization Conjecture (W. Thurston 1976, Perelman 2003) prompted
the study of manifolds from a new perspective: using geometry.

Geometric structure on a 1-manifold

The simplest example: the action of Z on R by trans-
lations. Each integer n corresponds to the translation
x → x + n. The quotient space is the circle S1. The
circle inherits a metric from the standard metric on
the line.

Geometric structure on a 2-manifold
A torus is S1 × S1. Euclidean plane
is R × R. We obtain the torus by
the action of the product Z × Z on
the plane by translations. This corre-
sponds to a tiling of the plane by par-
allelograms, whose sides are identified
to obtain the torus.

Anastasiia Tsvietkova (OIST, Japan / Rutgers University, Newark, USA)Representations of Knot Groups 2 / 17



The Geometrization Conjecture (W. Thurston 1976, Perelman 2003) prompted
the study of manifolds from a new perspective: using geometry.

Geometric structure on a 1-manifold

The simplest example: the action of Z on R by trans-
lations. Each integer n corresponds to the translation
x → x + n. The quotient space is the circle S1. The
circle inherits a metric from the standard metric on
the line.

Geometric structure on a 2-manifold
A torus is S1 × S1. Euclidean plane
is R × R. We obtain the torus by
the action of the product Z × Z on
the plane by translations. This corre-
sponds to a tiling of the plane by par-
allelograms, whose sides are identified
to obtain the torus.

Anastasiia Tsvietkova (OIST, Japan / Rutgers University, Newark, USA)Representations of Knot Groups 2 / 17



The Geometrization Conjecture (W. Thurston 1976, Perelman 2003) prompted
the study of manifolds from a new perspective: using geometry.

Geometric structure on a 1-manifold

The simplest example: the action of Z on R by trans-
lations. Each integer n corresponds to the translation
x → x + n. The quotient space is the circle S1. The
circle inherits a metric from the standard metric on
the line.

Geometric structure on a 2-manifold
A torus is S1 × S1. Euclidean plane
is R × R. We obtain the torus by
the action of the product Z × Z on
the plane by translations. This corre-
sponds to a tiling of the plane by par-
allelograms, whose sides are identified
to obtain the torus.

Anastasiia Tsvietkova (OIST, Japan / Rutgers University, Newark, USA)Representations of Knot Groups 2 / 17



Geometric structures on 2-manifolds

Such a parallelogram is a fundamen-
tal region for the group action. Here
are two different actions of Z × Z on
the Euclidean plane by translations.
Each one provides a Euclidean geo-
metric structure on the torus.

A fundamental region does not have to be flat, i.e. Euclidean. Tessellate a
hyperbolic plane with octagons. A genus-2 surface (doughnut with two holes) is
obtained by gluing edges of a hyperbolic octagon in pairs. The surface is a
quotient of H2.
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Hyperbolic structures on 3-manifolds
Similarly, factor out H3 by a suitable group of isometries Γ. This leads to a tiling
of H3 by hyperbolic polyhedra. The quotient manifold is obtained from a single
tile by identifying pairs of faces. The manifold inherits a hyperbolic metric from
H3.

We are interested in manifolds whose volume is finite (e.g. hyperbolic knot
complements in 3-sphere). Mostow-Prasad Rigidity Th.: for such a manifold the
hyperbolic metric is unique as long as it is complete.

A hyperbolic knot/link is such that its complement in a 3-sphere is a hyperbolic
manifold.
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How many knots are hyperbolic?

A knot/link is prime if it cannot be written as a connected sum of 2 knots/links.
Every knot or a (non-split) link can be uniquely decomposed as a knot sum of
prime knots/links (Schubert, Hashizume).

Hoste-Thistlethwaite-Weeks:
Of the 14 prime alternating knots up to 7 crossings, only 3 are non-hyperbolic.
Of the 1,701,935 prime knots up to 16 crossings, 32 are non-hyperbolic.
Of the 8,053,378 prime knots with 17 crossings, 30 are non-hyperbolic.
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Geometric structures and representations
Let M be a hyperbolic 3-manifold. The set of all representations of π1(M) into
(P)SL(2, C) is the (P)SL(2, C)-representation variety R(Γ) of the 3-manifold.
Conjugate representations correspond to the same geometric structure. So a
character variety X (Γ) = {χρ : ρ ∈ R(Γ)} is useful, where the character function
χρ : Γ→ C is χρ(γ) = trace(ρ(γ)).

The unique complete hyperbolic structure of M corresponds to the discrete
faithful representation. A component of X (Γ) that contains such a representation
is a canonical component. If M is a hyperbolic knot in S3, this component is a
complex curve.
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Computing representations: prior work
SnapPea: the first method for computing the hyperbolic structure of 3–manifolds
(Thurston, Weeks). It decomposes the manifold into tetrahedra with vertices in
the boundary of H3. Delete these vertices, leaving cross-sectional triangles
instead. The cross-sectional triangles form the torus boundary of the link. This
was generalized to compute geometric representations
(Garoufalidis-Goerner-Zickert).

Two other methods for computing parabolic representations:
Thislethwaite-T.(2012) and Kim-Kim-Yoon(2018). Computations of varieties for
some families of knots that admit nice representations: Macasieb-Peterson-Luijk,
Chen, Tran.
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An alternative method giving equations for the variety

The study of varieties of knots has a long history (e.g. Riley’s work). There
are many open questions about the connections between the topology of
the character variety and the topology/geometry of the respective
manifold. E.g. Culler-Shalen showed that ideal points of the character
variety of a 3-manifold M "detect" essential surfaces embedded in M.

Once there is a simpler method producing equations for the variety based
solely on a knot diagram, the above questions might be easier to tackle.
We will describe such a method (Petersen-T.). It gives equations for the
canonical component of the character variety of a knot. It generalizes
earlier work on parabolic representations (Thistlethwaite-T.).
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Equations for representations (Thistlethwaite-T., T.-Petersen)

Take a link diagram that satisfies a few mild restrictions.
Consider its region bounded by red arcs from an overpass
to an underpass, and green arcs on the boundary torus.
Assign a complex label to every arc. The labels contain
geometric information. We use hyperbolic isometries ro-
tating a preimage of a region in H3 to write the equations
for the labels.

Anastasiia Tsvietkova (OIST, Japan / Rutgers University, Newark, USA)Representations of Knot Groups 9 / 17



Parabolic representations: a meridian and crossing arcs
A simple closed curve traveling once around the boundary torus of a link is a
meridian. Its preimage in H3 lies on a horosphere. Parameterize Euclidean
translations on each horosphere by complex numbers so that the meridional
translation corresponds to 1.

A crossing arc from an overpass to an underpass if a knot diagram is homotopic
to a unique geodesic in knot complement. This geodesic is a red arc α on the
picture. It has γ as the preimage in H3. The modulus of the crossing label
determines the hyperbolic cusp-to-cusp distance along the arc γ, and the
argument of the label is the angle between the meridianal translations on
horospheres.
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Parabolic representations: edges

Consider a preimage of a green arc. Its preimage in H3 is the arc β on the
corresponding horosphere. The arc β travels between the points where the
preimages of the neighboring crossings arcs pierce the horosphere. The edge label
is the Euclidean translation along β. Its orientation is inherited from the
orientation of the link.

Color the regions of the link diagram in black and white as a checkerboard. Each
edge gives rise to two arcs: on the boundary of the black region, and on the
boundary of the white one. Traveling along one arc and returning along another
corresponds to a meridian, which is 1. Hence, ui − uj is 1, -1 or 0. This provides
the first set of equations.
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A region of a link diagram corresponds to the cyclic sequence of horospheres in
H3. There is an isometry of H3 which maps three consecutive centers
Pi−1,Pi ,Pi+1 to Pi ,Pi+1,Pi+2. The isometry is ρi : z → −ξi

z−1 , where

ξi = |Pi−1Pi ||Pi+1Pi+2|
|Pi−1Pi+1||PiPi+2| is the cross-ratio of distances between 4 points, called a

shape parameter. One can write the parameter ξi in terms of the edge and
crossing labels as ξi = ±wi

uiui+1
, where the sign depends on the link orientation.

Since the polygon closes up, the composite ρk ◦ ... ◦ ρ1 = 1. If we represent the
Möbius transformations by 2× 2 matrices, we see that the product(

0 −ξk
1 −1

)
...

(
0 −ξ1
1 −1

)
is a scalar multiple of the identity matrix.
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From the matrix entries we read off three independent polynomial relations for
every region in the complex labels. One can write a general formula for the
relations that depends only on the number of sides in a region. E.g., for a 3–sided
region, each of the three shape parameters ξi = ± wi

uiui+1
= 1.

Parabolic representations: example. For the Borromean Rings,

w1
u2
1
= w1

u2
2
= w1

−(u1+1)(u2+1) =
w2

(u1+1)2 = w1
(u1+1)2 = −w2

u1u3
= 1 . Hence,

u1 = u2 = u3 = 1
2 (−1 + i) , w1 = − i

2 = −w2 .
The solutions give parabolic representations including the discrete faithful one.
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Connection to the Wirtinger generators of the link group

The character variety is often obtained by using Wirtinger generators and relations
for a knot group. Wirtinger generators are the loops going from a basepoint
around every overpass of the link diagram.

Up to conjugation/normalization, the
above is equivalent to associating to an edge label u, the crossing label w , and

the meridian the matrices
(

1 u
0 1

)
,
(

0 −w
1 0

)
, and

(
1 1
0 1

)
.

Imagine a playground consisting of knotted tubes, and ladders joining underpasses
with overpasses. By traveling from the basepoint to one of the crossings along a
loop (and composing the respective matrices on the way), we obtain
(P)SL(2,C )-matrices for the Wirtinger generators.
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Character variety: generalizing beyond parabolic representations
Lemma. Consider two consecutive crossing arcs in a region of a link diagram.
Their preimages in H3 share an ideal point. I.e. the situation on the right occurs.
The situation on the left does not occur.

Alternatively, we obtain an analog of a shape parameter written in terms of the
entries of edge, crossing and meridian matrices. For a k-sided region of a link

diagram, one can then multiply k matrices
(

0 −ξk
1 −1

)
...

(
0 −ξ1
1 −1

)
, and set

this equal to an identity matrix, as in parabolic case. This also yields simple
equations for the variety of the canonical curve.
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Example: character variety of an infinite family of braids (σ1(σ2)−1)n, n > 2

Region I: W1U2W2U
−1
3 W2U4 = ±k1I .

Region II: (W1U
−1
1 )n = ±k2I .

Region III: (W2M
−1U3)n = ±k3I .

Region IV: W1M
−1U1W1(M−1U4)−1W2(M−1U2)−1 = ±k4I .

Here I is the identity matrix and kj , j = 1, 2, 3, 4, is a scalar multiple.

Note that we are using the symmetry of the link diagram. As a result, we obtain
formulas for equations in terms of matrix entries for an arbitrary n. These are
equations for the character variety of the canonical component.
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Number-theoretic invariants of 3-manifolds

Two hyperbolic 3-manifolds are commensurable if there exists a common
finite-sheeted cover. One of the ideas motivating a study of hyperbolic
3-manifolds from the number-theoretical point of view is to classify manifolds up
to commensurability. For this, the invariant trace field is often used, which is a
number field over Q generated by the squares of the traces of the discrete faithful
representation. It is a topological and commensurability invariant of the manifold
(A. Reid).

Theorem (Neumann-T.). The complex labels associated to a link diagram or a
handlebody decomposition generate the invariant trace field of the hyperbolic
3-manifold.

Corollary: there are several geodesic arcs (often, just one arc) in the manifold,
and the angle and distance along these arcs/arc generate the field. The approach
described above allows to compute the invariant trace field from a link diagram,
and in many cases exactly (i.e. obtain a polynomial). Previously, a program Snap
has been sued for this, which involved an intelligent guess of the respective
algebraic number.
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