THE JENSEN-PÓLYA PROGRAM FOR THE RIEMANN HYPOTHESIS AND RELATED PROBLEMS

Ken Ono (Emory U and U of Virginia)

Joint with Michael Griffin, Larry Rolen, and Don Zagier

RIEMANN'S ZETA-FUNCTION

DEFINITION (RIEMANN)

For Re(s) > 1, define the **zeta-function** by

$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

RIEMANN'S ZETA-FUNCTION

DEFINITION (RIEMANN)

For Re(s) > 1, define the **zeta-function** by

$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

THEOREM (FUNDAMENTAL THEOREM)

• The function $\zeta(s)$ has an analytic continuation to \mathbb{C} (apart from a simple pole at s=1 with residue 1).

RIEMANN'S ZETA-FUNCTION

DEFINITION (RIEMANN)

For Re(s) > 1, define the **zeta-function** by

$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

THEOREM (FUNDAMENTAL THEOREM)

- The function $\zeta(s)$ has an analytic continuation to \mathbb{C} (apart from a simple pole at s=1 with residue 1).
- 2 We have the functional equation

$$\zeta(s) = 2^s \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(1-s) \cdot \zeta(1-s).$$

HILBERT'S 8TH PROBLEM

CONJECTURE (RIEMANN HYPOTHESIS)

Apart from negative evens, the zeros of $\zeta(s)$ satisfy $\text{Re}(s) = \frac{1}{2}$.

HILBERT'S 8TH PROBLEM

CONJECTURE (RIEMANN HYPOTHESIS)

Apart from negative evens, the zeros of $\zeta(s)$ satisfy $\text{Re}(s) = \frac{1}{2}$.

"Without doubt, it would be desirable to have a rigorous proof of this proposition; however, I have left this research...because it appears to be unnecessary for the immediate goal of my study...."

Bernhard Riemann (1859)

HUGE UNDERSTATEMENT

A proof of RH would clarify our understanding of primes.

HUGE UNDERSTATEMENT

A proof of RH would clarify our understanding of primes.

WHAT IS KNOWN?

HUGE UNDERSTATEMENT

A proof of RH would clarify our understanding of primes.

WHAT IS KNOWN?

• The first "gazillion" zeros satisfy RH (van de Lune, Odlyzko).

HUGE UNDERSTATEMENT

A proof of RH would clarify our understanding of primes.

WHAT IS KNOWN?

- The first "gazillion" zeros satisfy RH (van de Lune, Odlyzko).

Jensen-Pólya Program

J. W. L. Jensen (1859–1925)

George Pólya (1887–1985)

JENSEN-PÓLYA PROGRAM

DEFINITION

The Riemann Xi-function is the entire order 1 function

$$\Xi(z) := \frac{1}{2} \left(-z^2 - \frac{1}{4} \right) \pi^{\frac{iz}{2} - \frac{1}{4}} \Gamma\left(-\frac{iz}{2} + \frac{1}{4} \right) \zeta\left(-iz + \frac{1}{2} \right).$$

JENSEN-PÓLYA PROGRAM

DEFINITION

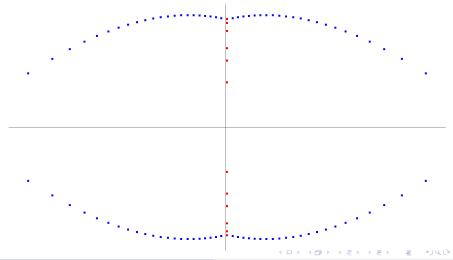
The Riemann Xi-function is the entire order 1 function

$$\Xi(z) := \frac{1}{2} \left(-z^2 - \frac{1}{4} \right) \pi^{\frac{iz}{2} - \frac{1}{4}} \Gamma\left(-\frac{iz}{2} + \frac{1}{4} \right) \zeta\left(-iz + \frac{1}{2} \right).$$

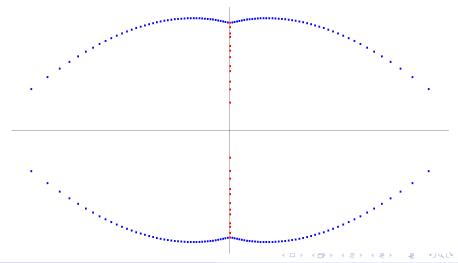
Remark

RH is true \iff all of the zeros of $\Xi(z)$ are purely real.

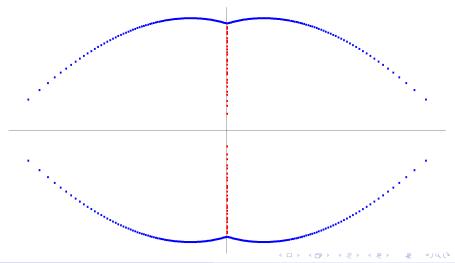
Roots of Deg 100 Taylor Poly for $\Xi(\frac{1}{2}+z)$



Roots of Deg 200 Taylor Poly for $\Xi(\frac{1}{2}+z)$



Roots of Deg 400 Taylor Poly for $\Xi(\frac{1}{2}+z)$



• Red points are good approximations of zeros of $\Xi(\frac{1}{2}+z)$.

- Red points are good approximations of zeros of $\Xi(\frac{1}{2}+z)$.
- The "spurious" blue points are annoying.

- Red points are good approximations of zeros of $\Xi(\frac{1}{2}+z)$.
- The "spurious" blue points are annoying.
- As $d \to +\infty$ the spurious points become more prevalent.

- Red points are good approximations of zeros of $\Xi(\frac{1}{2}+z)$.
- The "spurious" blue points are annoying.
- As $d \to +\infty$ the spurious points become more prevalent.

QUESTION

How are the red points distributed as $d \to +\infty$?

JENSEN POLYNOMIALS

DEFINITION (JENSEN)

The degree d and shift n Jensen polynomial for an arithmetic function $a : \mathbb{N} \to \mathbb{R}$ is

$$J_a^{d,n}(X) := \sum_{j=0}^d \frac{a(n+j)}{j} \binom{d}{j} X^j$$

= $\frac{a(n+d)}{k} X^d + \frac{a(n+d-1)}{k} dX^{d-1} + \dots + \frac{a(n)}{k}$.

JENSEN POLYNOMIALS

DEFINITION (JENSEN)

The degree d and shift n Jensen polynomial for an arithmetic function $a : \mathbb{N} \to \mathbb{R}$ is

$$J_a^{d,n}(X) := \sum_{j=0}^d \frac{a(n+j)}{j} \binom{d}{j} X^j$$

= $\frac{a(n+d)X^d + a(n+d-1)dX^{d-1} + \dots + a(n)}{n}$.

DEFINITION

A polynomial $f \in \mathbb{R}[X]$ is **hyperbolic** if all of its roots are real.

If
$$\Lambda(s) := \pi^{-s/2} \Gamma(s/2) \zeta(s) = \Lambda(1-s)$$
,

THEOREM (JENSEN-PÓLYA (1927))

If
$$\Lambda(s) := \pi^{-s/2}\Gamma(s/2)\zeta(s) = \Lambda(1-s)$$
, then define $\gamma(n)$ by

$$(-1+4z^2) \Lambda\left(\frac{1}{2}+z\right) = \sum_{n=0}^{\infty} \frac{\gamma(n)}{n!} \cdot z^{2n}.$$

THEOREM (JENSEN-PÓLYA (1927))

If
$$\Lambda(s) := \pi^{-s/2}\Gamma(s/2)\zeta(s) = \Lambda(1-s)$$
, then define $\gamma(n)$ by

$$(-1+4z^2) \Lambda\left(\frac{1}{2}+z\right) = \sum_{n=0}^{\infty} \frac{\gamma(n)}{n!} \cdot z^{2n}.$$

RH is equivalent to the hyperbolicity of all of the $J_{\gamma}^{\mathbf{d},n}(X)$.

THEOREM (JENSEN-PÓLYA (1927))

If
$$\Lambda(s) := \pi^{-s/2}\Gamma(s/2)\zeta(s) = \Lambda(1-s)$$
, then define $\gamma(n)$ by

$$(-1+4z^2) \Lambda\left(\frac{1}{2}+z\right) = \sum_{n=0}^{\infty} \frac{\gamma(n)}{n!} \cdot z^{2n}.$$

RH is equivalent to the hyperbolicity of all of the $J_{\gamma}^{d,n}(X)$.

WHAT WAS KNOWN?

• Chasse proved hyperbolicity for $d \le 2 \cdot 10^{17}$ and n = 0.

THEOREM (JENSEN-PÓLYA (1927))

If
$$\Lambda(s) := \pi^{-s/2}\Gamma(s/2)\zeta(s) = \Lambda(1-s)$$
, then define $\gamma(n)$ by

$$(-1+4z^2) \Lambda\left(\frac{1}{2}+z\right) = \sum_{n=0}^{\infty} \frac{\gamma(n)}{n!} \cdot z^{2n}.$$

RH is equivalent to the hyperbolicity of all of the $J_{\gamma}^{d,n}(X)$.

What was known?

- Chasse proved hyperbolicity for $d \le 2 \cdot 10^{17}$ and n = 0.
- ② The hyperbolicity is known for $d \leq 3$ by work of Csordas, Norfolk and Varga, and Dimitrov and Lucas.

THEOREM (JENSEN-PÓLYA (1927))

If
$$\Lambda(s) := \pi^{-s/2}\Gamma(s/2)\zeta(s) = \Lambda(1-s)$$
, then define $\gamma(n)$ by

$$(-1+4z^2) \Lambda\left(\frac{1}{2}+z\right) = \sum_{n=0}^{\infty} \frac{\gamma(n)}{n!} \cdot z^{2n}.$$

RH is equivalent to the hyperbolicity of all of the $J_{\gamma}^{d,n}(X)$.

What was known?

- Chasse proved hyperbolicity for $d \le 2 \cdot 10^{17}$ and n = 0.
- ② The hyperbolicity is known for $d \leq 3$ by work of Csordas, Norfolk and Varga, and Dimitrov and Lucas.
- **3** Nothing for $d \geq 4$.

NEW THEOREM

"Theorem 1" (Griffin, O, Rolen, Zagier)

For each d at most finitely many $J_{\gamma}^{d,n}(X)$ are not hyperbolic.

NEW THEOREM

"Theorem 1" (Griffin, O, Rolen, Zagier)

For each d at most finitely many $J_{\gamma}^{d,\mathbf{n}}(X)$ are not hyperbolic.

THEOREM (GRIFFIN, O, THORNER)

If $1 \le d \le 10^{20}$, then $J_{\gamma}^{d,n}(X)$ is hyperbolic for all n.

SOME REMARKS

Remarks

• Offers new evidence for RH.

SOME REMARKS

Remarks

- Offers new evidence for RH.
- **2** We "locate" the real zeros of the $J_{\gamma}^{d,n}(X)$.

SOME REMARKS

Remarks

- Offers new evidence for RH.
- **2** We "locate" the real zeros of the $J^{d,n}_{\gamma}(X)$.
- **3** Wagner is generalizing to general L-functions.

HERMITE POLYNOMIALS

DEFINITION

The (modified) **Hermite polynomials**

$$\{H_d(X) : d \ge 0\}$$

are the orthogonal polynomials with respect to $\mu(X) := e^{-\frac{X^2}{4}}$.

HERMITE POLYNOMIALS

DEFINITION

The (modified) Hermite polynomials

$$\{H_d(X) : d \ge 0\}$$

are the orthogonal polynomials with respect to $\mu(X) := e^{-\frac{X^2}{4}}$.

Example (The first few Hermite Polynomials)

$$H_0(X) = 1$$

 $H_1(X) = X$
 $H_2(X) = X^2 - 2$
 $H_3(X) = X^3 - 6X$

LEMMA

The Hermite polynomials satisfy:

LEMMA

The Hermite polynomials satisfy:

• Each $H_d(X)$ is hyperbolic with d distinct roots.

LEMMA

The Hermite polynomials satisfy:

- **1** Each $H_d(X)$ is hyperbolic with d distinct roots.
- 2 The zeros of $H_d(X)$ interlace.

LEMMA

The Hermite polynomials satisfy:

- Each $H_d(X)$ is hyperbolic with d distinct roots.
- 2 The zeros of $H_d(X)$ interlace.
- lacksquare If S_d denotes the "suitably normalized" zeros of $H_d(X)$, then

 $S_d \longrightarrow \text{Wigner's Semicircle Law}.$

RH CRITERION AND HERMITE POLYNOMIALS

THEOREM 1 (GRIFFIN, O, ROLEN, ZAGIER)

The renormalized Jensen polynomials $\widehat{J}_{\gamma}^{d,n}(X)$ satisfy

$$\lim_{\substack{n \to +\infty}} \widehat{J}_{\gamma}^{d,n}(X) = H_d(X).$$

RH CRITERION AND HERMITE POLYNOMIALS

THEOREM 1 (GRIFFIN, O, ROLEN, ZAGIER)

The renormalized Jensen polynomials $\widehat{J}_{\gamma}^{d,n}(X)$ satisfy

$$\lim_{\substack{n \to +\infty}} \widehat{J}_{\gamma}^{d,n}(X) = H_d(X).$$

For each d at most finitely many $J_{\gamma}^{d,\mathbf{n}}(X)$ are not hyperbolic.

DEGREE 3 NORMALIZED JENSEN POLYNOMIALS

n	$\widehat{J_{\gamma}}^{3,n}(X)$			
100	$\approx 0.9769X^3 + 0.7570X^2 - 5.8690X - 1.2661$			
200	$\approx 0.9872X^3 + 0.5625X^2 - 5.9153X - 0.9159$			
300	$\approx 0.9911X^3 + 0.4705X^2 - 5.9374X - 0.7580$			
400	$\approx 0.9931X^3 + 0.4136X^2 - 5.9501X - 0.6623$			
:	÷ :			
10^{8}	$\approx 0.9999X^3 + 0.0009X^2 - 5.9999X - 0.0014$			
:	:			
∞	$H_3(X) = X^3 - 6X$			

RANDOM MATRIX MODEL PREDICTIONS

Freeman Dyson

Hugh Montgomery

Andrew Odlyzko

RANDOM MATRIX MODEL PREDICTIONS

Freeman Dyson

Hugh Montgomery

Andrew Odlyzko

GAUSSIAN UNITARY ENSEMBLE (GUE) (1970s)

The nontrivial zeros of $\zeta(s)$ appear to be "distributed like" the eigenvalues of random Hermitian matrices.

THEOREM (GRIFFIN, O, ROLEN, ZAGIER)

GUE holds for Riemann's $\zeta(s)$ in derivative aspect.

THEOREM (GRIFFIN, O, ROLEN, ZAGIER)

GUE holds for Riemann's $\zeta(s)$ in derivative aspect.

SKETCH OF PROOF

• The $J_{\gamma}^{d,n}(X)$ model the zeros of the nth derivative $\Xi^{(n)}(X)$.

THEOREM (GRIFFIN, O, ROLEN, ZAGIER)

GUE holds for Riemann's $\zeta(s)$ in derivative aspect.

Sketch of Proof

- The $J_{\gamma}^{d,n}(X)$ model the zeros of the nth derivative $\Xi^{(n)}(X)$.
- 2 Since the Laguerre-Pólya class is closed under differentiation, the derivatives are predicted to satisfy GUE.

THEOREM (GRIFFIN, O, ROLEN, ZAGIER)

GUE holds for Riemann's $\zeta(s)$ in derivative aspect.

SKETCH OF PROOF

- The $J_{\gamma}^{d,n}(X)$ model the zeros of the nth derivative $\Xi^{(n)}(X)$.
- 2 Since the Laguerre-Pólya class is closed under differentiation, the derivatives are predicted to satisfy GUE.
- **6** For fixed d, we proved that

$$\lim_{n \to +\infty} \widehat{J}_{\gamma}^{d,n}(X) = H_d(X).$$

THEOREM (GRIFFIN, O, ROLEN, ZAGIER)

GUE holds for Riemann's $\zeta(s)$ in derivative aspect.

SKETCH OF PROOF

- The $J_{\gamma}^{d,n}(X)$ model the zeros of the nth derivative $\Xi^{(n)}(X)$.
- Since the Laguerre-Pólya class is closed under differentiation, the derivatives are predicted to satisfy GUE.
- 3 For fixed d, we proved that

$$\lim_{\substack{n \to +\infty}} \widehat{J}_{\gamma}^{d,n}(X) = H_d(X).$$

• The zeros of the $\{H_d(X)\}$ and the eigenvalues in GUE both satisfy Wigner's Semicircle Distribution.

Computing derivatives Is not Easy

THEOREM (PUSTYLNIKOV (2001), COFFEY (2009))

As $n \to +\infty$, we have

$$\begin{split} \xi^{(2n)}(1/2) &= \frac{(2n)(2n-1)(2n-2)^{\frac{-1}{4}}}{2^{2n-2}\ln(2n-2)^{\frac{1}{4}}} \bigg[\ln \bigg(\frac{2n-2}{\pi} \bigg) - \ln \ln \bigg(\frac{2n-2}{\pi} \bigg) + o(1) \bigg]^{2n-\frac{3}{2}} \\ &\times \exp \bigg(-\frac{2n-2}{\ln(2n-2)} \bigg). \end{split}$$

Computing derivatives Is not Easy

Theorem (Pustylnikov (2001), Coffey (2009))

As $n \to +\infty$, we have

$$\begin{split} \xi^{(2n)}(1/2) &= \frac{(2n)(2n-1)(2n-2)^{\frac{-1}{4}}}{2^{2n-2}\ln(2n-2)^{\frac{1}{4}}} \bigg[\ln\left(\frac{2n-2}{\pi}\right) - \ln\ln\left(\frac{2n-2}{\pi}\right) + o(1) \bigg]^{2n-\frac{3}{2}} \\ &\times \exp\bigg(-\frac{2n-2}{\ln(2n-2)}\bigg). \end{split}$$

Remarks

• Derivatives essentially drop to 0 for "small" n before exhibiting exponential growth.

Computing derivatives Is not Easy

THEOREM (PUSTYLNIKOV (2001), COFFEY (2009))

As $n \to +\infty$, we have

$$\begin{split} \xi^{(2n)}(1/2) &= \frac{(2n)(2n-1)(2n-2)^{\frac{-1}{4}}}{2^{2n-2}\ln(2n-2)^{\frac{1}{4}}} \left[\ln\left(\frac{2n-2}{\pi}\right) - \ln\ln\left(\frac{2n-2}{\pi}\right) + o(1) \right]^{2n-\frac{3}{2}} \\ &\times \exp\left(-\frac{2n-2}{\ln(2n-2)}\right). \end{split}$$

Remarks

- Derivatives essentially drop to 0 for "small" n before exhibiting exponential growth.
- **2** This is insufficient for approximating $J_{\gamma}^{d,n}(X)$.

First 10 Taylor coefficients of $\Xi(x)$

m	\hat{b}_m
0	6.214 009 727 353 926 (-2)
1	7.178 732 598 482 949 (-4)
2	2.314 725 338 818 463 (-5)
3	1.170 499 895 698 397 (-6)
4	7.859 696 022 958 770 (-8)
5	6.474 442 660 924 152 (-9)
6	6.248 509 280 628 118 (-10)
7	6.857 113 566 031 334 (-11)
8	8.379 562 856 498 463 (-12)
9	1.122 895 900 525 652 (-12)
10	1.630 766 572 462 173 (-13)

ARBITRARY PRECISION ASYMPTOTICS FOR $\Xi^{(2n)}(0)$

NOTATION

1 We let $\theta_0(t) := \sum_{k=1}^{\infty} e^{-\pi k^2 t}$,

Arbitrary precision asymptotics for $\Xi^{(2n)}(0)$

NOTATION

• We let $\theta_0(t) := \sum_{k=1}^{\infty} e^{-\pi k^2 t}$, and define

$$F(n) := \int_{1}^{\infty} (\log t)^{n} t^{-3/4} \theta_{0}(t) dt.$$

Arbitrary precision asymptotics for $\Xi^{(2n)}(0)$

NOTATION

• We let $\theta_0(t) := \sum_{k=1}^{\infty} e^{-\pi k^2 t}$, and define

$$F(n) := \int_{1}^{\infty} (\log t)^{n} t^{-3/4} \theta_{0}(t) dt.$$

2 Following Riemann, we have

$$\Xi^{(n)}(0) = (-1)^{n/2} \cdot \frac{32\binom{n}{2}F(n-2) - F(n)}{2^{n+2}}$$

Arbitrary precision asymptotics for $\Xi^{(2n)}(0)$

NOTATION

• We let $\theta_0(t) := \sum_{k=1}^{\infty} e^{-\pi k^2 t}$, and define

$$F(n) := \int_{1}^{\infty} (\log t)^{n} t^{-3/4} \theta_{0}(t) dt.$$

2 Following Riemann, we have

$$\Xi^{(n)}(0) = (-1)^{n/2} \cdot \frac{32\binom{n}{2}F(n-2) - F(n)}{2^{n+2}}$$

3 Let $L = L(n) \approx \log(\frac{n}{\log n})$ be the unique positive solution of the equation $n = L \cdot (\pi e^L + \frac{3}{4})$.

ARBITRARY PRECISION ASYMPTOTICS

THEOREM (GRIFFIN, O, ROLEN, ZAGIER)

To all orders, as $n \to +\infty$, there are $b_k \in \mathbb{Q}(L)$ such that

$$F(n) \sim \sqrt{2\pi} \frac{L^{n+1}}{\sqrt{(1+L)n-\frac{3}{4}L^2}} e^{L/4-n/L+3/4} \left(1+\frac{b_1}{n}+\frac{b_2}{n^2}+\cdots\right),$$

where
$$b_1 = \frac{2L^4 + 9L^3 + 16L^2 + 6L + 2}{24(L+1)^3}$$
.

ARBITRARY PRECISION ASYMPTOTICS

THEOREM (GRIFFIN, O, ROLEN, ZAGIER)

To all orders, as $n \to +\infty$, there are $b_k \in \mathbb{Q}(L)$ such that

$$F(n) \sim \sqrt{2\pi} \frac{L^{n+1}}{\sqrt{(1+L)n-\frac{3}{4}L^2}} e^{L/4-n/L+3/4} \left(1+\frac{b_1}{n}+\frac{b_2}{n^2}+\cdots\right),$$

where
$$b_1 = \frac{2L^4 + 9L^3 + 16L^2 + 6L + 2}{24(L+1)^3}$$
.

REMARKS

• Using two terms (i.e. b_1) suffices for our RH application.

ARBITRARY PRECISION ASYMPTOTICS

THEOREM (GRIFFIN, O, ROLEN, ZAGIER)

To all orders, as $n \to +\infty$, there are $b_k \in \mathbb{Q}(L)$ such that

$$F(n) \sim \sqrt{2\pi} \frac{L^{n+1}}{\sqrt{(1+L)n-\frac{3}{4}L^2}} e^{L/4-n/L+3/4} \left(1+\frac{b_1}{n}+\frac{b_2}{n^2}+\cdots\right),$$

where
$$b_1 = \frac{2L^4 + 9L^3 + 16L^2 + 6L + 2}{24(L+1)^3}$$
.

REMARKS

- Using two terms (i.e. b_1) suffices for our RH application.
- **2** Analysis + Computer \implies hyperbolicity for $d \le 10^{20}$.

Example: $\widehat{\gamma}(n) := \text{TWO-TERM APPROXIMATION}$

n	$\widehat{\gamma}(n)$		$\widehat{\gamma}(n)$ $\gamma(n)$		$\gamma(n)/\widehat{\gamma}(n)$	
10	\approx	$1.6313374394\times10^{-17}$	\approx	$1.6323380490\times 10^{-17}$	\approx	1.000613367
100	\approx	$6.5776471904 \times 10^{-205}$	\approx	$6.5777263785 \times 10^{-205}$	\approx	1.000012038
1000		$3.8760333086 \times 10^{-2567}$	\approx	$3.8760340890 \times 10^{-2567}$	\approx	1.000000201
10000		$3.5219798669 \times 10^{-32265}$	\approx	$3.5219798773 \times 10^{-32265}$	\approx	1.000000002
100000	\approx	$6.3953905598 \times 10^{-397097}$	\approx	$6.3953905601 \times 10^{-397097}$	\approx	1.000000000

HOW DO THESE ASYMPTOTICS IMPLY THEOREM 1?

How do these asymptotics imply Theorem 1?

Theorem 1 is an example of a **general phenomenon**!

HYPERBOLIC POLYNOMIALS IN MATHEMATICS

Remark

Hyperbolicity of "generating polynomials" is studied in enumerative combinatorics in connection with log-concavity

$$a(n)^2 \ge a(n-1)a(n+1).$$

HYPERBOLIC POLYNOMIALS IN MATHEMATICS

Remark

Hyperbolicity of "generating polynomials" is studied in enumerative combinatorics in connection with log-concavity

$$a(n)^2 \ge a(n-1)a(n+1).$$

- Group theory (lattice subgroup enumeration)
- Graph theory
- Symmetric functions
- Additive number theory (partitions)
- ...

DEFINITION

A real sequence a(n) has appropriate growth if

DEFINITION

A real sequence a(n) has appropriate growth if

$$a(n+j) \sim a(n) e^{A(n) j - \delta(n)^2 j^2} \qquad (n \to +\infty)$$

for each j for real sequences $\{A(n)\}\$ and $\{\delta(n)\}\$ $\to 0$.

DEFINITION

A real sequence a(n) has appropriate growth if

$$a(n+j) \sim a(n) e^{A(n) j - \delta(n)^2 j^2} \qquad (n \to +\infty)$$

for each j for real sequences $\{A(n)\}\$ and $\{\delta(n)\}\$ $\to 0$.

WHAT DO WE MEAN?

DEFINITION

A real sequence a(n) has appropriate growth if

$$a(n+j) \sim a(n) e^{A(n) j - \delta(n)^2 j^2} \qquad (n \to +\infty)$$

for each j for real sequences $\{A(n)\}\$ and $\{\delta(n)\}\ \to 0$.

What do we mean?

For fixed d and $0 \le j \le d$, as $n \to +\infty$ we have

$$\log\left(\frac{a(n+j)}{a(n)}\right)$$

$$= A(n)j - \delta(n)^2j^2 + \sum_{i=0}^d o_{i,d}(\delta(n)^i)j^i + O_d\left(\delta(n)^{d+1}\right).$$

GENERAL THEOREM

DEFINITION

If a(n) has appropriate growth, then the **renormalized Jensen** polynomials are defined by

$$\widehat{J}_a^{d,n}(X) := \frac{1}{a(n) \cdot \delta(n)^d} \cdot J_a^{d,n} \left(\frac{\delta(n)X - 1}{\exp(A(n))} \right).$$

GENERAL THEOREM

DEFINITION

If a(n) has appropriate growth, then the **renormalized Jensen** polynomials are defined by

$$\widehat{J}_a^{d,n}(X) := \frac{1}{a(n) \cdot \delta(n)^d} \cdot J_a^{d,n} \left(\frac{\delta(n)X - 1}{\exp(A(n))} \right).$$

GENERAL THEOREM (GRIFFIN, O, ROLEN, ZAGIER)

Suppose that a(n) has appropriate growth.

GENERAL THEOREM

DEFINITION

If a(n) has appropriate growth, then the **renormalized Jensen** polynomials are defined by

$$\widehat{J}_a^{d,n}(X) := \frac{1}{a(n) \cdot \delta(n)^d} \cdot J_a^{d,n} \left(\frac{\delta(n)X - 1}{\exp(A(n))} \right).$$

GENERAL THEOREM (GRIFFIN, O, ROLEN, ZAGIER)

Suppose that a(n) has appropriate growth. For each degree $d \ge 1$ we have

$$\lim_{n \to +\infty} \widehat{J}_a^{d,n}(X) = H_d(X).$$

GENERAL THEOREM

DEFINITION

If a(n) has appropriate growth, then the **renormalized Jensen** polynomials are defined by

$$\widehat{J}_a^{d,n}(X) := \frac{1}{a(n) \cdot \delta(n)^d} \cdot J_a^{d,n} \left(\frac{\delta(n)X - 1}{\exp(A(n))} \right).$$

GENERAL THEOREM (GRIFFIN, O, ROLEN, ZAGIER)

Suppose that a(n) has appropriate growth.

For each degree $d \ge 1$ we have

$$\lim_{n \to +\infty} \widehat{J}_a^{d,n}(X) = H_d(X).$$

For each d at most finitely many $J_a^{d,n}(X)$ are not hyperbolic.

MOTIVATION FOR OUR WORK

MOTIVATION FOR OUR WORK

DEFINITION

A **partition** is any nonincreasing sequence of integers.

$$p(n) := \#$$
partitions of size n .

MOTIVATION FOR OUR WORK

DEFINITION

A **partition** is any nonincreasing sequence of integers.

$$p(n) := \#$$
partitions of size n .

EXAMPLE

We have that p(4) = 5 because the partitions of 4 are

$$4, 3+1, 2+2, 2+1+1, 1+1+1+1.$$

Log concavity of p(n)

EXAMPLE

The roots of the quadratic $J_p^{2,n}(X)$ are

$$\frac{-p(n+1) \pm \sqrt{p(n+1)^2 - p(n)p(n+2)}}{p(n+2)}.$$

It is **hyperbolic** if and only if $p(n+1)^2 > p(n)p(n+2)$.

Log concavity of p(n)

EXAMPLE

The roots of the quadratic $J_p^{2,n}(X)$ are

$$\frac{-p(n+1) \pm \sqrt{p(n+1)^2 - p(n)p(n+2)}}{p(n+2)}.$$

It is **hyperbolic** if and only if $p(n+1)^2 > p(n)p(n+2)$.

Theorem (Nicolas (1978), DeSalvo and Pak (2013))

If $n \geq 25$, then $J_p^{2,n}(X)$ is hyperbolic.

CHEN'S CONJECTURE

THEOREM (CHEN, JIA, WANG (2017))

If $n \geq 94$, then $J_p^{3,n}(X)$ is hyperbolic.

CHEN'S CONJECTURE

THEOREM (CHEN, JIA, WANG (2017))

If $n \geq 94$, then $J_p^{3,n}(X)$ is hyperbolic.

CONJECTURE (CHEN)

There is an N(d) where $J_p^{\mathbf{d},n}(X)$ is hyperbolic for all $n \geq N(\mathbf{d})$.

CHEN'S CONJECTURE

THEOREM (CHEN, JIA, WANG (2017))

If $n \geq 94$, then $J_p^{3,n}(X)$ is hyperbolic.

CONJECTURE (CHEN)

There is an N(d) where $J_p^{\mathbf{d},n}(X)$ is hyperbolic for all $n \geq N(\mathbf{d})$.

Table 1. Conjectured minimal values of N(d)

d	1	2	3	4	5	6	7	8	9
N(d)	1	25	94	206	381	610	908	1269	1701

OUR RESULT

THEOREM 2 (GRIFFIN, O, ROLEN, ZAGIER)

Chen's Conjecture is true.

OUR RESULT

Theorem 2 (Griffin, O, Rolen, Zagier)

Chen's Conjecture is true.

Remarks

• The proof can be refined case-by-case to prove the minimality of the claimed N(d) (Larson, Wagner).

OUR RESULT

THEOREM 2 (GRIFFIN, O, ROLEN, ZAGIER)

Chen's Conjecture is true.

Remarks

- The proof can be refined case-by-case to prove the minimality of the claimed N(d) (Larson, Wagner).
- 2) This is a consequence of the General Theorem.

DEFINITION

A weight k weakly holomorphic modular form is a function f on \mathbb{H} satisfying:

DEFINITION

A weight k weakly holomorphic modular form is a function f on $\mathbb H$ satisfying:

① For all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$ we have

$$f\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^k f(\tau).$$

DEFINITION

A weight k weakly holomorphic modular form is a function f on $\mathbb H$ satisfying:

• For all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$ we have

$$f\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^k f(\tau).$$

2 The poles of f (if any) are at the cusp ∞ .

DEFINITION

A weight k weakly holomorphic modular form is a function f on $\mathbb H$ satisfying:

1 For all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$ we have

$$f\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^k f(\tau).$$

2 The poles of f (if any) are at the cusp ∞ .

EXAMPLE (PARTITION GENERATING FUNCTION)

We have the weight -1/2 modular form

$$f(\tau) = \sum_{n=0}^{\infty} p(n)e^{2\pi i \tau(n-\frac{1}{24})}.$$

JENSEN POLYNOMIALS FOR MODULAR FORMS

THEOREM 3 (GRIFFIN, O, ROLEN, ZAGIER)

Let f be a weakly holomorphic modular form on $\mathrm{SL}_2(\mathbb{Z})$ with real coefficients and a pole at $i\infty$. Then for each degree $d\geq 1$

$$\lim_{n \to +\infty} \widehat{J}_{a_f}^{d,n}(X) = H_d(X).$$

For each d at most finitely many $J_{a_f}^{d,\mathbf{n}}(X)$ are not hyperbolic.

JENSEN POLYNOMIALS FOR MODULAR FORMS

THEOREM 3 (GRIFFIN, O, ROLEN, ZAGIER)

Let f be a weakly holomorphic modular form on $\mathrm{SL}_2(\mathbb{Z})$ with real coefficients and a pole at $i\infty$. Then for each degree $d \geq 1$

$$\lim_{n \to +\infty} \widehat{J}_{a_f}^{d,n}(X) = H_d(X).$$

For each d at most finitely many $J_{a_f}^{d,\mathbf{n}}(X)$ are not hyperbolic.

REMARK (PARTITION NUMBER EXAMPLE)

Thm 3 separates the roots despite the fact for large n we have

$$J_p^{d,n}(X) \approx p(n+j) \cdot (X+1)^d$$
.

NATURAL QUESTIONS

NATURAL QUESTIONS

QUESTION

What is special about the Hermite polynomials?

NATURAL QUESTIONS

QUESTION

What is special about the Hermite polynomials?

QUESTION

Is there an even more general theorem?

HERMITE POLYNOMIAL GENERATING FUNCTION

LEMMA (GENERATING FUNCTION)

We have that

$$e^{-t^2+Xt} =: \sum_{d=0}^{\infty} H_d(X) \cdot \frac{t^d}{d!} = 1 + X \cdot t + (X^2 - 2) \cdot \frac{t^2}{2} + \dots$$

HERMITE POLYNOMIAL GENERATING FUNCTION

LEMMA (GENERATING FUNCTION)

We have that

$$e^{-t^2+Xt} =: \sum_{d=0}^{\infty} H_d(X) \cdot \frac{t^d}{d!} = 1 + X \cdot t + (X^2 - 2) \cdot \frac{t^2}{2} + \dots$$

Remark

The rough idea of the proof is to show for large fixed n that

$$\sum_{l=0}^{\infty} \widehat{J}_a^{d,n}(X) \cdot \frac{t^d}{d!} \approx e^{-t^2 + Xt} = e^{-t^2} \cdot e^{Xt}.$$

DEFINITION

A real sequence a(n) has appropriate growth for a formal power series $F(t) := \sum_{i=0}^{\infty} c_i t^i$ if

DEFINITION

A real sequence a(n) has appropriate growth for a formal power series $F(t) := \sum_{i=0}^{\infty} c_i t^i$ if

$$a(n+j) \sim a(n) E(n)^j F(\delta(n)j) \qquad (n \to +\infty)$$

MORE GENERAL THEOREM

DEFINITION

A real sequence a(n) has appropriate growth for a formal power series $F(t) := \sum_{i=0}^{\infty} c_i t^i$ if

$$a(n+j) \sim a(n) E(n)^{j} F(\delta(n)j) \quad (n \to +\infty)$$

for each j with positive sequences $\{E(n)\}\$ and $\{\delta(n)\}\to 0$.

DEFINITION

A real sequence a(n) has appropriate growth for a formal power series $F(t) := \sum_{i=0}^{\infty} c_i t^i$ if

$$a(n+j) \sim a(n) E(n)^j F(\delta(n)j) \qquad (n \to +\infty)$$

for each j with positive sequences $\{E(n)\}\$ and $\{\delta(n)\}\to 0$.

QUESTION

In the Hermite case we have

$$E(n) := e^{A(n)}$$
 and $F(t) := e^{-t^2}$.

1 4 7 1 1 7 1 2 7 1 2 7 2 9

MORE GENERAL THEOREM

DEFINITION

A real sequence a(n) has appropriate growth for a formal power series $F(t) := \sum_{i=0}^{\infty} c_i t^i$ if

$$a(n+j) \sim a(n) E(n)^j F(\delta(n)j) \qquad (n \to +\infty)$$

for each j with positive sequences $\{E(n)\}\$ and $\{\delta(n)\}\to 0$.

QUESTION

In the Hermite case we have

$$E(n) := e^{A(n)}$$
 and $F(t) := e^{-t^2}$.

How does the **shape** of F(t) impact "limiting polynomials"?

Most General Theorem (Griffin, O, Rolen, Zagier)

If a(n) has appropriate growth for the power series

$$F(t) = \sum_{i=0}^{\infty} \frac{c_i}{t^i},$$

Most General Theorem (Griffin, O, Rolen, Zagier)

If a(n) has appropriate growth for the power series

$$F(t) = \sum_{i=0}^{\infty} \frac{\mathbf{c_i}}{\mathbf{t}^i},$$

then for each degree $d \ge 1$ we have

$$\lim_{n \to +\infty} \frac{1}{a(n) \cdot \delta(n)^d} \cdot J_a^{d,n} \left(\frac{\delta(n) X - 1}{E(n)} \right) = d! \sum_{k=0}^d (-1)^{d-k} \frac{X^k}{k!}.$$

SKETCH OF THE PROOF

• By definition, we have that

$$\frac{1}{a(n) \cdot \delta(n)^d} \cdot J_{\alpha}^{d,n} \left(\frac{\delta(n) X - 1}{E(n)} \right) \\
= \sum_{k=0}^d \binom{d}{k} \left[\delta(n)^{k-d} \sum_{j=k}^d (-1)^{j-k} \binom{d-k}{j-k} \frac{a(n+j)}{a(n)E(n)^j} \right] X^k.$$

SKETCH OF THE PROOF

• By definition, we have that

$$\frac{1}{a(n) \cdot \delta(n)^d} \cdot J_{\alpha}^{d,n} \left(\frac{\delta(n) X - 1}{E(n)} \right) \\
= \sum_{k=0}^d \binom{d}{k} \left[\delta(n)^{k-d} \sum_{j=k}^d (-1)^{j-k} \binom{d-k}{j-k} \frac{a(n+j)}{a(n)E(n)^j} \right] X^k.$$

• By hypothesis, as $n \to +\infty$ we have

$$\frac{a(n+j)}{a(n)} E(n)^{-j} = \sum_{i=0}^{d} (c_i + o_{i,d}(1)) j^i \delta(n)^i + O_d(\delta(n)^{d+1})$$

Sketch of the Proof continued

• Therefore, as $n \to +\infty$ the bracketed expression satisfies

$$\sum_{i=0}^{d} (c_i + o(1)) \delta(n)^{k-d+i} \sum_{j=k}^{d} (-1)^{j-k} {d-k \choose j-k} j^i + O(\delta(n)^{k+1})$$

$$= (-1)^{d-k} (d-k)! c_{d-k} + o(1).$$

SKETCH OF THE PROOF CONTINUED

• Therefore, as $n \to +\infty$ the bracketed expression satisfies

$$\sum_{i=0}^{d} (c_i + o(1)) \delta(n)^{k-d+i} \sum_{j=k}^{d} (-1)^{j-k} {d-k \choose j-k} j^i + O(\delta(n)^{k+1})$$

$$= (-1)^{d-k} (d-k)! c_{d-k} + o(1).$$

• Substituting in for the bracketed expression gives

$$\lim_{n \to +\infty} \frac{1}{a(n) \cdot \delta(n)^d} \cdot J_a^{d,n} \left(\frac{\delta(n) X - 1}{E(n)} \right) = d! \sum_{k=0}^d (-1)^{d-k} c_{d-k} \cdot \frac{X^k}{k!}. \quad \Box$$

SOME REMARKS

REMARK (LIMIT POLYNOMIALS)

If $a : \mathbb{N} \to \mathbb{R}$ is appropriate for F(t), then

$$F(-t) \cdot e^{Xt} = \sum_{d=0}^{\infty} \widehat{H}_d(X) \cdot \frac{t^d}{d!}.$$

REMARK (LIMIT POLYNOMIALS)

If $a : \mathbb{N} \to \mathbb{R}$ is appropriate for F(t), then

$$F(-t) \cdot e^{Xt} = \sum_{d=0}^{\infty} \widehat{H}_d(X) \cdot \frac{t^d}{d!}.$$

EXAMPLES (SPECIAL EXAMPLES)

REMARK (LIMIT POLYNOMIALS)

If $a : \mathbb{N} \to \mathbb{R}$ is appropriate for F(t), then

$$F(-t) \cdot e^{Xt} = \sum_{d=0}^{\infty} \widehat{H}_d(X) \cdot \frac{t^d}{d!}.$$

Examples (Special Examples)

(1)
$$F(t) = \frac{-t}{e^{-t}-1} \Longrightarrow \widehat{H}_d(X) = B_d(X)$$
 Bernoulli poly.

REMARK (LIMIT POLYNOMIALS)

If $a : \mathbb{N} \to \mathbb{R}$ is appropriate for F(t), then

$$F(-t) \cdot e^{Xt} = \sum_{d=0}^{\infty} \widehat{H}_d(X) \cdot \frac{t^d}{d!}.$$

Examples (Special Examples)

(1)
$$F(t) = \frac{-t}{e^{-t}-1} \Longrightarrow \widehat{H}_d(X) = B_d(X)$$
 Bernoulli poly.

(2)
$$F(t) = \frac{2}{e^{-t}+1} \Longrightarrow \widehat{H}_d(X) = E_d(X)$$
 Euler poly.

REMARK (LIMIT POLYNOMIALS)

If $a : \mathbb{N} \to \mathbb{R}$ is appropriate for F(t), then

$$F(-t) \cdot e^{Xt} = \sum_{d=0}^{\infty} \widehat{H}_d(X) \cdot \frac{t^d}{d!}.$$

EXAMPLES (SPECIAL EXAMPLES)

(1)
$$F(t) = \frac{-t}{e^{-t}-1} \Longrightarrow \widehat{H}_d(X) = B_d(X)$$
 Bernoulli poly.

(2)
$$F(t) = \frac{2}{e^{-t}+1} \Longrightarrow \widehat{H}_d(X) = E_d(X)$$
 Euler poly.

(3)
$$F(t) = e^{-t^2} \implies \widehat{H}_d(X) = H_d(X)$$
 Hermite poly.

DEFINITION

A sequence with appropriate growth for $F(t) = e^{-t^2}$ has type $Z: \mathbb{N} \to \mathbb{R}^+$ if $J_a^{d,n}(X)$ is hyperbolic for $n \geq Z(d)$.

DEFINITION

A sequence with appropriate growth for $F(t) = e^{-t^2}$ has type $Z: \mathbb{N} \to \mathbb{R}^+$ if $J_a^{d,n}(X)$ is hyperbolic for $n \geq Z(d)$.

Remarks

• RH is equivalent to $\gamma(n)$ having type Z=0.

DEFINITION

A sequence with appropriate growth for $F(t) = e^{-t^2}$ has type $Z: \mathbb{N} \to \mathbb{R}^+$ if $J_a^{d,n}(X)$ is hyperbolic for $n \geq Z(d)$.

REMARKS

- RH is equivalent to $\gamma(n)$ having type Z=0.
- **2** RH essentially follows from $\gamma(n)$ having type Z = O(1).

DEFINITION

A sequence with appropriate growth for $F(t) = e^{-t^2}$ has type $Z: \mathbb{N} \to \mathbb{R}^+$ if $J_a^{d,n}(X)$ is hyperbolic for $n \geq Z(d)$.

REMARKS

- RH is equivalent to $\gamma(n)$ having type Z=0.
- **2** RH essentially follows from $\gamma(n)$ having type Z = O(1).
- **3** Have heuristics for Z(d) for modular form coefficients.

SPECULATION (GRIFFIN, O, ROLEN, ZAGIER)

If $n \leq 32$, then we have $Z(d) \sim 10d^2 \log d$.

SPECULATION (GRIFFIN, O, ROLEN, ZAGIER)

If $n \leq 32$, then we have $Z(d) \sim 10d^2 \log d$. Does this continue for larger n?

SPECULATION (GRIFFIN, O, ROLEN, ZAGIER)

If $n \le 32$, then we have $Z(d) \sim 10d^2 \log d$. Does this continue for larger n?

EVIDENCE

If we let $\widehat{Z}(d) := 10d^2 \log d$, then we have

d	N(d)	$\widehat{Z}(d)$	$N(d)/\widehat{Z}(d)$
1	1	≈ 1	≈ 1.00
2	25	≈ 27.72	≈ 0.90
4	206	≈ 221.80	≈ 0.93
8	1269	≈ 1330.84	≈ 0.95
16	6917	≈ 7097.82	≈ 0.97
32	35627	≈ 35489.13	≈ 1.00

OUR RESULTS

GENERAL THEOREM (GRIFFIN, O, ROLEN, ZAGIER)

If a(n) has appropriate growth, then for $d \ge 1$ we have

$$\lim_{n \to +\infty} \widehat{J}_a^{d,n}(X) = H_d(X).$$

OUR RESULTS

GENERAL THEOREM (GRIFFIN, O, ROLEN, ZAGIER)

If a(n) has appropriate growth, then for $d \ge 1$ we have

$$\lim_{n \to +\infty} \widehat{J}_a^{d,n}(X) = H_d(X).$$

For each d at most finitely many $J_a^{d,n}(X)$ are not hyperbolic.

OUR RESULTS

GENERAL THEOREM (GRIFFIN, O, ROLEN, ZAGIER)

If a(n) has appropriate growth, then for $d \ge 1$ we have

$$\lim_{n \to +\infty} \widehat{J}_a^{d,n}(X) = H_d(X).$$

For each d at most finitely many $J_a^{d,n}(X)$ are not hyperbolic.

Most General Theorem (Griffin, O, Rolen, Zagier)

If a(n) has appropriate growth for $F(t) = \sum_{i=0}^{\infty} c_i t^i$, then for each degree $d \ge 1$ we have

$$\lim_{n\to +\infty}\frac{1}{a(n)\cdot \delta(n)^d}\cdot J_a^{d,n}\left(\frac{\delta(n)\,X-1}{E(n)}\right)=d!\sum_{k=0}^d (-1)^{d-k}\frac{X^k}{k!}.$$

APPLICATIONS

Hermite Distributions

- **1** Jensen-Pólya criterion for RH for $1 \le d \le 10^{20}$ and all n.
- ② Jensen-Pólya criterion for RH for any d for all large n.
- **3** The **derivative aspect** GUE model for Riemann's $\Xi(x)$.
- Coeffs of suitable modular forms are log concave and satisfy the higher Turán inequalities (e.g. Chen's Conjecture).

APPLICATIONS

Hermite Distributions

- **1** Jensen-Pólya criterion for RH for $1 \le d \le 10^{20}$ and all n.
- ② Jensen-Pólya criterion for RH for any d for all large n.
- **3** The **derivative aspect** GUE model for Riemann's $\Xi(x)$.
- Coeffs of suitable modular forms are log concave and satisfy the higher Turán inequalities (e.g. Chen's Conjecture).
- + general theory including Bernoulli and Eulerian distributions.