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Moonshine for finite groups
I. Introduction

History of Finite Simple Groups

(1832) Galois finds An (n ≥ 5) and PSL2(Fp) (p ≥ 5).

(1861-1873) Mathieu finds M11,M12,M22,M23 and M24.

(1893) Cole classifies all simple groups with order ≤ 660.

(1890s-1972)
Brauer, Burnside, Feit, Frobenius, Dickson, Hall, Thompson,.....

(1972-1983: Gorenstein Program: “The Classification”)
Aschbacher, Fischer, Glauberman, Gorenstein, Greiss, Tits,.....

Madeline Dawsey and Ken Ono (Emory University) Moonshine for finite groups



Moonshine for finite groups
I. Introduction

The Monster

Conjecture (Fischer and Griess (1973))

There is a huge simple group M with order

246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71.

Theorem (Griess (1982))

The Monster group M exists.
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I. Introduction

Classification of Finite Simple Groups

Theorem (“The Classification” (1983))

Finite simple groups live in natural infinite families, apart from
26 sporadic groups.
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Moonshine for finite groups
I. Introduction

Modular Curves

Facts
1 SL2(Z) acts on the upper-half complex plane H by

γ =
(
a b
c d

)
∈ SL2(Z) ←→ γτ 7→ aτ + b

cτ + d

2 For congruence subgroups Γ ⊂ SL2(Z), number theorists
are interested in the quotients

Y (Γ) := Γ\H.

3 These may be compactified by “adding cusps” to obtain
compact Riemann surfaces, the modular curves X(Γ).
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Moonshine for finite groups
I. Introduction

Example: Γ = SL2(Z)

The group Γ = SL2(Z) is generated by

Tτ 7→ τ + 1 and Sτ 7→ −1

τ
.

Therefore, Y (Γ) can be represented by:
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I. Introduction

Example: Γ = SL2(Z)

Important Fact
X0(1) has genus 0, which implies that its field of modular
functions is C(j(τ)) with a Hauptmodul j(τ).
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I. Introduction

Modular functions

Definition
A meromorphic function f : H 7→ C is a Γ-modular function if
for every γ ∈ Γ we have

f(γτ) = f(τ).

Example (Γ = SL2(Z))

The Hauptmodul is Klein’s j-function (q := e2πiτ )

J(τ) :=j(τ)− 744 =
∞∑

n=−1
c(n)qn

= q−1 + 196884q + 21493760q2 + 864299970q3 + . . .
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I. Introduction

Glimpse of Monstrous Moonshine

Theorem (Ogg (1974))

The modular curve X0(p)
+ has genus 0 if and only if p | #M.

Question
What does having genus 0 have to do with the Monster M?
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Moonshine for finite groups
I. Introduction

Glimpses of Monstrous Moonshine

John McKay observed that

196884 = 1 + 196883

John Thompson observed that

196884 = 1 + 196883

21493760 = 1 + 196883 + 21296876

864299970 = 1 + 1 + 196883 + 196883 + 21296876 + 842609326
864299970︸ ︷︷ ︸

Coefficients of j(τ)

1 + 1 + 196883 + 196883 + 21296876 + 842609326︸ ︷︷ ︸
Dimensions of irreducible representations of the Monster M
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I. Introduction

The Monster characters

The character table for M (ordered by size) gives dimensions:

χ1(e) = 1

χ2(e) = 196883

χ3(e) = 21296876

χ4(e) = 842609326

...
χ194(e) = 258823477531055064045234375.
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I. Introduction

Thompson’s Conjecture

Conjecture (Thompson)

There is a “nice” infinite-dimensional graded module
V \ =

⊕∞
n=−1 V

\
n for which dim(V \

n) = c(n).

Remark
1 Existence of such an infinite graded module is trivial.

2 We can use the trivial representation which has dimχ1 = 1.

3 Using too many trivial representations is not “nice”.
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I. Introduction

Web of Numerology?

Definition (Thompson)

Assuming the conjecture, if g ∈M, then define the
McKay–Thompson series

Tg(τ) :=
∞∑

n=−1
Tr(g|V \

n)qn.

Question

Is there a V \ for which all of the Tg(τ) are simultaneously nice?
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I. Introduction

Monstrous Moonshine Conjecture

Conjecture (Conway and Norton, 1979)

For each g ∈M there is an explicit genus 0 congruence subgroup
Γg ⊂ SL2(R) for which Tg(τ) is the Hauptmodul.

Theorem (Frenkel–Lepowsky–Meurman (1980s))

If it exists, then the moonshine module V \ =
⊕∞

n=−1 V
\
n is a

specific vertex operator algebra whose automorphism group is M.

Theorem (Borcherds (1998 Fields Medal))

The Monstrous Moonshine Conjecture is true.
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I. Introduction

Aftermath

Inspired by string theory, further moonshines have been found:

Mathieu (Gannon)
Umbral (Cheng, Duncan, Harvey, and Duncan, O, Griffin)
Thompson (Griffin and Mertens)
Pariah (Duncan, O, Mertens)
to name a few...
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Witten’s Problem

Question (Black Hole States)

Consider the monstrous moonshine expressions

196884 = 1 + 196883

21493760 = 1 + 196883 + 21296876

864299970 = 1 + 1 + 196883 + 196883 + 21296876 + 842609326
...

c(n) =

194∑
i=1

mi(n)χi(e)

How many ‘1’s, ‘196883’s, etc. show up in these expressions?
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I. Introduction

Some Proportions

n δ (m1(n)) δ (m2(n)) · · · δ (m194(n))

1 1/2 1/2 · · · 0

...
...

...
...

...
40 4.011 . . .× 10−4 2.514 . . .× 10−3 · · · 0.00891. . .
60 2.699 . . .× 10−9 2.732 . . .× 10−8 · · · 0.04419. . .
80 4.809 . . .× 10−14 7.537 . . .× 10−13 · · · 0.04428. . .
100 4.427 . . .× 10−18 1.077 . . .× 10−16 · · · 0.04428. . .
120 1.377 . . .× 10−21 5.501 . . .× 10−20 · · · 0.04428. . .
140 1.156 . . .× 10−24 1.260 . . .× 10−22 · · · 0.04428. . .
160 2.621 . . .× 10−27 3.443 . . .× 10−23 · · · 0.04428. . .
180 1.877 . . .× 10−28 3.371 . . .× 10−23 · · · 0.04428. . .
200 1.715 . . .× 10−28 3.369 . . .× 10−23 · · · 0.04428. . .
220 1.711 . . .× 10−28 3.368 . . .× 10−23 · · · 0.04428. . .
240 1.711 . . .× 10−28 3.368 . . .× 10−23 · · · 0.04428. . .
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Moonshine for finite groups
I. Introduction

Distribution of Monstrous Moonshine

Theorem (Duncan, Griffin, O (2015))

If 1 ≤ i ≤ 194, then as n→ +∞ we have

mi(n) ∼ dim(χi)√
2|n|3/4|M|

· e4π
√
|n|

Corollary (Duncan, Griffin, O)

The Moonshine module is asymptotically regular.
In other words, we have

δ (mi) := lim
n→+∞

mi(n)∑194
i=1mi(n)

=
dim(χi)∑194
j=1 dim(χj)

.
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Moonshine for finite groups
II. All finite groups?

Natural Question

Question
How ubiquitous is moonshine if we relax some conditions?

Definition
A finite group G admits weak moonshine if there is an infinite
dimensional graded G-module

VG := ⊕nVG(n)

such that for all g ∈ G the McKay-Thompson series

Tg(τ) :=
∑
n

Tr(g|VG(n))qn

is a weakly holomorphic modular function.
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Moonshine for finite groups
II. All finite groups?

Finite groups enjoy weak moonshine

Theorem (Dehority, Gonzalez, Vafa, Van Peski (2017))

All finite groups admit asymptotically regular weak moonshine.

Variants
1 The Tg(τ) can be required to be weakly holomorphic modular

forms or mock modular forms.

2 We can require that each Tg(τ) is modular on Γ0(ordG(g)).

3 In very special cases there are analytic “group compatibility”
relations between Tg(τ) and Tgp(τ).
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II. All finite groups?

Example: Moonshine for D4 and Q8

• The MT series are Hauptmoduln JN (τ) for Γ0(N):

T (C1; τ) = J1(τ)

T (C2; τ) = T (C4; τ) = T (C5; τ) = J2(τ)

T (C3; τ) = J4(τ)
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II. All finite groups?

Example of D4 and Q8 continued

• If 1 ≤ i ≤ 5 and n ≥ −1, then let

mi(n) = #{mult. of ρi in VG(n)}.

• The multiplicity generating functions are:

Mi(τ) :=
∑
n

mi(n)qn.
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II. All finite groups?

Example of D4 and Q8 continued

This weak moonshine is asymptotically regular.

To illustrate this, for 1 ≤ i ≤ 5 we let

δi(n) :=
mi(n)

m1(n) +m2(n) +m3(n) +m4(n) +m5(n)
.
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Moonshine for finite groups
II. All finite groups?

Natural Problem

Fact
(1) As the D4 and Q8 example illustrates, nonisomorphic groups
with identical character tables have the same weak moonshine.

(2) There are infinitely many Brauer pairs, non-isomorphic
groups with isomorphic character tables with common power
maps on conjugacy classes (Tg(τ) on Γ0(ordG(g)) structure).

Problems
(1) Can weak moonshine be refined to distinguish groups?
(2) If so, does this procedure have “uniformly bounded” length?
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Moonshine for finite groups
III. Our work

Main Takeaways

Theorem 1 (D-O)

If G is a finite group and s ∈ Z+, then weak moonshine for G
extends to width s weak moonshine.

Moreover, G admits
asymptotically regular width s weak moonshine.

Corollary (D-O)

If s ≥ 3, then complete width s weak moonshine determines
finite groups up to isomorphism.
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Moonshine for finite groups
III. Our work

Notation

G is a finite group

Let ρ1, ρ2, . . . , ρt be the irreducible representations

ρi : G→ GLdi(C).

Let χ1, χ2, . . . , χt be the corresponding characters, and so

χi(e) = di.

Let VG = ⊕nVG(n) be a weak moonshine module for G.

Goal
Extend VG to “width s weak moonshine”.
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Moonshine for finite groups
III. Our work

Frobenius r-characters

Definition (Frobenius, 1896)

Let χ be a character of G, and for positive integers r we let

G(r) := G× · · · ×G (r copies).

The Frobenius r-character χ(r) : G(r) → C is defined by:
(1) If r = 1, then χ(1)(g) := χ(g).

(2) If r = 2, then χ(2)(g1, g2) := χ(g1)χ(g2)− χ(g1g2).

(3) If r ≥ 3, then χ(r)(g1, g2, . . . , gr) is defined by

χ(r)
(
g1, . . . , gr

)
:= χ (g1)χ

(r−1) (g2, . . . , gr)

− χ(r−1) (g1g2, . . . , gr)− · · · − χ(r−1) (g2, . . . , g1gr) .
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Basic Facts about r-characters

Facts (Vanishing)

(1) If dim(χ) = 1, then χ(2)(g1, g2) = χ(g1)χ(g2)− χ(g1g2) = 0.

(2) More generally, if r > dimχ, then for all g ∈ G(r) we have

χ(r)(g) = 0.

Fact (Expansion as 1-characters)

If r ≥ 2, then χ(r)(g1, . . . , gr) is a signed sum over Sr action on

χ(g1), χ(g2), . . . , χ(gr).
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Deep Theorem about r-characters

Theorem (Hoehnke and Johnson, 1992, 1998)

A finite group is determined (up to isomorphism) by its 1, 2 and
3-characters.

Remarks
(1) Group theorists were surprised by this bound.
(2) Previous research focused on the entire “group determinant”.
(3) Infinitely many nonisomorphic groups share 1 and
2-character tables.
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Width s Weak Moonshine

Definition
G has width s ≥ 1 weak moonshine if the following hold:

1 G satisfies weak moonshine with

VG :=
⊕

n�−∞
VG(n).

2 If 1 ≤ r ≤ s and g ∈ G(r), then the McKay-Thompson series

T
(
r, g; τ

)
:=

∑
n�−∞

Frobr
(
g;n
)
qn

is a weakly holomorphic modular function.
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Computing Frobr(g;n)

Lemma
If the mi(n) are the multiplicities of ρi in VG(n), then

Frobr
(
g;n
)

= Tr
(
g|V (r)

G (n)
)

:=
∑
1≤i≤t

mi(n)χ
(r)
i

(
g
)
.
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Width s Moonshine

Theorem 1 (D-O)
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Proof of Theorem 1

• Start with weak moonshine for VG = ⊕nVG(n).
• The McKay-Thompson series T (1, g; τ) are modular functions.
• The Schur orthogonality relations assert that∑

g∈G
χi(g)χj(g) = |G|δij .

• This implies that

Mi(τ) :=
∑

n�−∞
mi(n)qn =

1

|G|
∑
g∈G

χi(g)T (1, g; τ).

• EachMi(τ) is a weakly holomorphic modular function.
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Proof of Theorem 1 continued

• For each r ≥ 2, we have that

T
(
r, g; τ

)
=

∑
n�−∞

Frobr
(
g;n
)
qn =

∑
n�−∞

∑
1≤i≤t

mi(n)χ
(r)
i

(
g
)
qn.

• But then we have

T
(
r, g; τ

)
=
∑
1≤i≤t

χ
(r)
i

(
g
)
Mi(τ).

• The higher dimensional McKay-Thompson series are modular
functions because theMi(τ) are.
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Higher Dimensional MT Series

Question
What information do the higher dimensional MT series{

T (r, g; τ) : g ∈ G(r)
}

encode about structure of the “seed” module VG?

Answer
The r-dimensional MT series know the part of VG assembled
from the characters with dimχi ≥ r.
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Higher Dimensional MT Series

Theorem 2 (D-O)

If width s weak moonshine holds for G, 1 ≤ r ≤ s and
dimχi ≥ r, then the χi multiplicity generating function satisfies

Mi(τ) :=
∑

n�−∞
mi(n)qn

=
(dimχi)

r−1

r!|G|r (dimχi − 1) · · · (dimχi − (r − 1))

∑
g∈G(r)

χ
(r)
i

(
g
)
T
(
r, g; τ

)
.

Remark
Theorem 2 follows from new orthogonality relations for
Frobenius r-characters.
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Orthogonality of Frobenius r-characters

Theorem (Frobenius, Johnson, D-O)

We have that∑
g∈G(r)

χ
(r)
i

(
g
)
χ
(r)
j

(
g
)

=
r!|G|rδij

(dimχi)
r−1 (dimχi − 1) · · · (dimχi − (r − 1)) .

Remarks
(1) The r = 1 case is due to Schur.
(2) The i 6= j case is due to Frobenius and Johnson.
(3) Our contribution is the i = j case which gives the “norms” of
Frobenius r-characters.
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Schur’s Lemma

Lemma (Schur’s Lemma)

Let G be a finite group, and let ρV and ρW be irreducible repns

ρV : G→ GL(V ),

ρW : G→ GL(W ).

If f : V →W is a G-linear map, then f is a scalar multiple of
the identity map if V ∼= W and f = 0 if V 6∼= W .
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Key consequences

Corollary
If h1, h2 ∈ G, then the following are true:

1 We have that∑
g∈G

χi
(
gh1g

−1h−12

)
=
χi (h1)χi (h2)|G|

dimχi
.

2 If χj is an irreducible character of G, then we have that

∑
g∈G

χi (h1g)χj (gh2) =
χi
(
h1h

−1
2

)
|G|δij

dimχi
.
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Proof of the r-character orthogonality

• Let n(σ) denote the number of disjoint cycles of σ ∈ Sr.

• As disjoint cycles, we let

• The cycles have order kσ1 , kσ2 , . . . , kσn(σ) and as sets
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Proof of orthogonality continued

• We abuse notation and use a for ga, and note that

• We must evaluate
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Proof of orthogonality continued

• By reordering we can rewrite as:

• Apply the previous corollary to Schur’s Lemma to the red sum
and repeat.
• Keep careful track of the steps.
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Example of D4 and Q8 revisited

• The MT series for
(
r3s, rs

)
∈ D(2)

4 and (−k, k) ∈ Q(2)
8 are

T
(
2,
(
r3s, rs

)
; τ
)

=
∑

1≤i≤5
χ
(2)
i

(
r3s, rs

)
Mi(τ) = χ

(2)
5

(
r3s, rs

)
M5(τ)

= 98304q + 10747904q2 + 432144384q3 +O
(
q4
)
.

T (2, (−k, k); τ) =
∑

1≤i≤5
χ
(2)
i (−k, k)Mi(τ) = χ

(2)
5 (−k, k)M5(τ)

= −98304q − 10747904q2 − 432144384q3 +O
(
q4
)
.

• That they are unequal distinguishes D4 from Q8.
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Summary

Theorem 1 (D-O)

If G is a finite group and s ∈ Z+, then weak moonshine for G
extends to width s weak moonshine.

Moreover, G admits
asymptotically regular width s weak moonshine.

Corollary (D-O)

For s ≥ 3, width s weak moonshine determines groups.

Theorem 2 (D-O)

If dimχi ≥ r, then the multiplicity generating functions satisfy

Mi(τ) :=
∑

n�−∞
mi(n)qn = ∗

∑
g∈G(r)

χ
(r)
i

(
g
)
T
(
r, g; τ

)
.
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