
A classification and invariants of CR maps between certain
models of real hypersurfaces

Duong Ngoc Son

Phenikaa University, Hanoi, Viet Nam

(based on joint works with Lamel and Reiter)

Osaka Workshop on Conformal and CR Geometry

February 17–21, 2025
Nambu Yoichiro Hall (Feb. 17–20) / School of Science, Bldg. F (Feb. 21)

Osaka University, Toyonaka Campus
Toyonaka, Osaka, Japan



Motivations

▶ Poincaré observed that there are nontrivial biholomorphic invariants of real
hypersurfaces (ca. 1907).

▶ CR maps from the 3-sphere

S3 := {(z ,w) ∈ C2 | |z |2 + |w |2 = 1}

into itself are restrictions of automorphisms the unit ball (Cartan, Tanaka,
Chern-Moser).

▶ The same is true for higher dimensional spheres: The CR automorphism group
Aut(S2n+1) of a sphere is completely and explicitly classified.



▶ The classification for CR maps from S2n+1 into S2n′+1, n′ > n depends on how
large n′ compared to n.

▶ “Spherically equivalent classes”: Two maps H and H̃ are equivalent if there are
ψ ∈ Aut(S2n′+1) and γ ∈ Aut(S2n+1) such that

H̃ = ψ−1 ◦ H ◦ γ.

▶ If n ≤ n′ ≤ 2n − 1 then all CR maps from S2n+1 into S2n′+1 is equivalent to the
linear map z 7→ (z , 0) (“rigidity”, J. J. Faran 1980s, Webster (n′ = n + 1 ≥ 4)).

▶ This rigidity fails when n′ ≥ 2n.



▶ For n′ = 2n, n ≥ 3, there are exactly two classes, represented by the linear map
and the Whitney map (Huang–Ji 2001)

W(z1, . . . , zn) = (z1, . . . , zn−1, z1zn, z2zn, . . . , z
2
n ).

▶ For n′ = 2n + 1, n ≥ 3, every rational sphere map is equivalent to one in the
D’Angelo’s family (Hamada 2005).

Fθ = (z1, . . . , zn, cos(θ)zn+1, sin(θ)z1zn+1, . . . , sin(θ)zn+1zn+1)



▶ For n′ > 2n + 1, there are further studies (Huang, Ji, Yin, Xu, Lebl, Ebenfelt,
Minor, and others) and the “HJY gap conjecture,” which is related to the “SOS
conjecture” about the rank of Hermitian sums of squares. The collection of maps
becomes “bigger” when the target dimension increases.

▶ CR maps from S3 into S5 are classified into four equivalent classes (Faran 1982)

(z1, z2) 7→
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=⇒ The case of CR maps from S3 exhibits different behaviors.
Monomial maps are better understood (D’Angelo 1980s).



▶ CR maps from S3 into S7 have not been classified. There are 14 “discrete” and
two parametric families of inequivalent monomial maps (D’Angelo 1988).

▶ Degree two rational maps from S3 into Sm are classified (Lebl, Ji et al).

▶ We cannot hope for a full classification of rational maps from S3 into Sm for
m ≥ 7. There are a lot of maps.

▶ For “highly degenerate maps” from S3, there is a recent result of della
Sala–Lamel–Reiter–S. (2024).

Similar considerations for hyperquadric maps (Baoundi, D’Angelo, Huang, Ebenfelt,
Zaitsev, Lebl, Xiao, Gao–Ng, . . . ).
The study of CR maps between more general real hypersurfaces has been done by
many mathematicians that are too numerous to mention in this talk.



The tube over the future light cone

Smooth boundary part of the classical domain of type IV is locally equivalent to the
tube over the future light cone. In C3, the tube is given by

T : (ℜZ1)
2 + (ℜZ2)

2 − (ℜZ3)
3 = 0, ℜZ3 > 0.

T is uniformly Levi-degenerate and 2-nondegenerate. Homogeneous Levi-degenerate
CR manifolds of five dimensional are completely classified (Fels–Kaup 2008). The tube
is the one with the “largest” stability group.
The tube T is locally equivalent to

X =

{
(z , ζ,w) ∈ C3 | ℑw =

|z |2 + ℜ(z̄2ζ)
1− |ζ|2

}
, |ζ| < 1.



CR maps from H3 into X
Related to proper holomorphic maps between classical domains, which have been
studied by Tsai, Tu, Mok, Xiao–Yuan, Kim–Mok–Seo, and others.
From their defining functions, we can easily construct simple CR maps from the
Heisenberg hypersurface H3 into X :

X : ℑw =
|z |2 + ℜ(z̄2ζ)

1− |ζ|2
.

▶ The map (z ,w) 7→ (0, ζ, 0) sends H3 into X (non CR transversally).

▶ ℓ : (z ,w) 7→ (z , 0,w) (the “linear” map).

▶ Consider V = {wζ + iz2 = 0}. On V , ℜ(z̄2ζ) = −|ζ|2ℑw . Plugging this into
defining function for X , we obtain ℑw = |z |2. The map (z ,w) 7→ (z ,−iz2/w ,w),
singular along w = 0, sends an open set of H3 into X .

These (transversal) maps can be constructed from proper algebraic maps from ball into
the classical domains of type IV (Mok, Xiao–Yuan, Kim–Mok–Seo, . . . ).



Equivalences

Let M and M ′ be CR manifolds and let H : (M, p) → (M ′, p′) a germ of smooth CR
maps. The product group

G := Aut(M, p)×Aut(M ′, p′)

acts on the space of map germs.

Definition
We say that H and H̃ are equivalent if there exist germs of local CR diffeomorphisms
γ : (M, p) → (M, p̃) and ψ : (M ′, H̃(p̃)) → (M ′,H(p)), such that

H = ψ ◦ H̃ ◦ γ−1.

This definition is similar to these for sphere and hyperquadric maps.



A classification

Theorem (Reiter–S. (2022))

Let U ⊂ H3 be an open H : U → X a smooth CR map.

(a) If H is CR transversal at some point p ∈ U, then H is CR transversal on U, the
germs (H, q), q ∈ U, are mutually equivalent and are equivalent to exactly one of
the following four pairwise inequivalent germs at the origin:

(i) ℓ(z ,w) = (z , 0,w),

(ii) r1(z ,w) =

(
z(1 + iw)

1− w2
,

2z2

1− w2
,

w

1− w2

)
,

(iii) r−1(z ,w) =

(
z(1− iw)

1− w2
,
−2z2

1− w2
,

w

1− w2

)
,

(iv) ι(z ,w) = (2z , 2w , 2w)
/(

1 +
√
1− 4w2 − 4iz2

)
.

(b) If H is nowhere transversal, then for each q, the germ (H, q) is equivalent to the
germ at the origin of a map tq : (z ,w) 7→ (0, ϕq(z ,w), 0) for a local CR
function ϕq.



Higher dimension

▶ CR maps from Sn into Dm
IV , with 4 ≤ n ≤ m − 1 ≤ 2n − 4 are rigid (Xiao–Yuan

2020).

▶ Local model for the case m = 4:

X =

{
(z , ζ,w) | C3 | ℑw =

zz̄ t + ℜ
(
zz tζ

)
1− |ζ|2

}

Here z = (z1, z2) and z t is its transpose.

▶ The Heisenberg hypersurface in H5 ⊂ C3:

H5 =
{
(z ,w) ∈ C3 | ℑw = zz̄ t

}
.



Theorem (Reiter–S., 2024)

Let U ⊂ H5 and H : U → X ⊂ C4 a C 2-smooth CR map.

(a) If H is CR transversal at a point, then it is transversal on U. The germs (H, q),
q ∈ U, are mutually equivalent and are equivalent to the exactly one of the germs
at the origin of the following maps:

(i) ℓ(z ,w) = (z , 0,w),

(ii) r(z ,w) =

(
z(I + iwA)

1− w2
,

2zAz t

1− w2
,

w

1− w2

)
, with A =

(
1 0
0 −1

)
, and

I =

(
1 0
0 1

)
is the identity matrix,

(iii) ι(z ,w) =
2

1 +
√
1− 4w2 − 4izz t

(z , w , w).

Here z = (z1, z2) ∈ C2.

(b) H is nowhere transversal.



Sketch of the proof

Suppose H = (f , ϕ, g) be a map sending the Heisenberg hypersurface into the rational
model X . We determine the map via the following steps.

▶ Partial normalizing the map. Get an equivalent map H̃ with a simple 2-jet, namely,

f̃ (z ,w) = z +
i

2
αzw + νw2 + O(3),

ϕ̃(z ,w) = λw + αz2 + µzw + σw2 + O(3), (1)

g̃(z ,w) = w + O(3),

Then, α and λ are two important invariants of the maps which characterize the
isometry and the rationality, respectively. The fact that α appears in two places is
a kind of Gauss–Codazzi equation, well-known in the case of sphere maps.



Sketch of the proof

▶ Determining µ, ν, and σ (must be zero). Determine higher order jets (up to
4-jets). General “finite jet determination” results (of Chern–Moser (2-jets),
Baouendi, Ebenfelt, Rothschild, Zaitsev, Mir, Lamel, . . . ) imply that 4-jets is
enough. This is also clear from our calculation.

▶ Determining H, Hw and Hww along the first Segre set Σ = {w = 0}.
For example, we determine

f (z , 0) =
2z

1 +
√

1− 4i λ̄z2
, g(z , 0) = 0,

and an explicit formula for ϕ(z , 0). We divide into two cases depending whether
λ ̸= 0 which eventually lead to rational and irrational maps.



Sketch of the proof

▶ Propagating along second Segre sets (z , z̄) 7→ (z , 2iz z̄) which covers an open set.
We obtain holomorphic functional relation for f , g , ϕ. For example, if λ = 0, then
σ = 0 and

4z3g − 4z2wf + w2zϕ− w2Υ(z ,w) (w(µ+ 4iν)− αz) = 0,

where Υ := gϕ+ if 2.

▶ Propagating Hw and Hww along the second Segre set. Obtain two more
holomorphic functional relations.

▶ Solving for f , g , ϕ from this nonlinear system. The implicit function theorem
cannot applied at the origin. But one can solve at generic point.

▶ Solutions are generally meromorphic. Identifying genuine solution by analyzing
further jets lead to several cases.



Cartan’s classical symmetric domains

There are 4 types (excluding 2 special types of complex dimension 16 and 27) of
domains arising from the classification of Hermitian symmetric spaces, denoted by

Dp,q
I , Dp

II , Dp
III , Dm

IV .

For examples, the type I is

Dp,q
I = {Z ∈ Mat(p, q;C) : Ip×q − ZZ ∗ > 0}

and the type IV, also call the Lie ball, is

Dm
IV =

{
Z ∈ Cm : 1− 2ZZ ∗ + |ZZ t | > 0,ZZ ∗ < 1

}
Smooth boundary part of these classical domains are interesting models for CR
geometry. E.g., boundary of Dm

IV ↔ tube over the future light cone.



Cartan’s classical symmetric domains

▶ Automorphisms of these domains are explicitly known.

▶ Moreover, their Bergman kernels are explicit and give rise to Kähler–Einstein
metrics.

▶ For type IV domain Dm
IV , the Bergman kernel is

K (Z ,Z ) = CDm
IV

(
1− 2ZZ ∗ + |ZZ t |2

)−m
.

▶ An interesting fact for us: K (Z ,Z )−1/m is a local defining function for smooth
point of the boundary.

▶ Biholomorphisms are isometries of the Bergman metric which extend to relevant
CR diffeomorphisms of the smooth boundary part.



Holomorphic maps of classical domains

Theorem (Tsai 1993)

Let f : Ω → Ω′ be a proper holomorphic map between two bounded symmetric domains
such that Ω is irreducible and of rank ≥ 2, and such that rank(Ω′) ≤ rank(Ω). Then,
rank(Ω′) = rank(Ω), and f is a totally geodesic embedding.

Theorem (Mok)

Assume m ≥ 2.

(i) If F : Bn → D IV
m is a holomorphic isometry, then n ≤ m − 1.

(ii) There exists a non-totally geodesic holomorphic isometric embedding
G : Bm−1 → D IV

m with G ∗ωD IV
m

= λωBm−1 for some λ > 0.



Theorem (Xiao–Yuan 2020)

Assume n ≥ 4, n + 1 ≤ m ≤ 2n − 3.

1. (Local version) Let F be a holomorphic map from a connected open set U in Cn

containing p ∈ ∂Bn to Cm. Assume that F (∂Bn ∩ U) ⊂ ∂D IV
m and F (U) ̸⊂ ∂D IV

m .
Then F extends to a holomorphic isometric embedding from Bn into D IV

m with
F ∗(ωD IV

m
) = m

n+1ωBn .

2. (Global version) Any algebraic proper holomorphic map F from Bn to D IV
m is an

isometric embedding with F ∗(ωD IV
m
) = m

n+1ωBn .



Theorem (Xiao–Yuan 2020)

Let n ≥ 4 and F be a C 2-smooth CR transversal CR map from an open piece of ∂Bn

to an open smooth piece of ∂D IV
n+1. Then F extends to a holomorphic isometry from

Bn to D IV
n+1. Furthermore, F is equivalent to either(

z1, · · · , zn−1,
1
2

∑n−1
i=1 z2i − z2n + zn√
2(1− zn)

,
√
−1

1
2

∑n−1
i=1 z2i + z2n − zn√
2(1− zn)

)
; (2)

or z1, · · · , zn−1, zn, 1−

√√√√1−
n∑

j=1

z2j

 . (3)

What about the case n ≤ 3? These two maps, when n = 2, can be transferred to maps
from H3 into X .



The case of B2 → D3
IV

Corollary (Reiter–S. (2022))

Let H : B2 → D3
IV be a proper holomorphic map which extends smoothly to some

boundary point p ∈ ∂B2. Then H is equivalent to exactly one of the following four
pairwise inequivalent maps:

(i) R0(z ,w) =

(
z√
2
,
2w2 + 2w − z2

4(w + 1)
,
i
(
2w2 + 2w + z2

)
4(w + 1)

)
,

(ii) P1(z ,w) =

(
zw ,

z2 − w2

2
,
i(z2 + w2)

2

)
,

(iii) P−1(z ,w) =

(
z ,

w2

2
,
iw2

2

)
,

(iv) I (z ,w) =
(
z ,w , 1−

√
1− z2 − w2

)/√
2.



The case of B3 → D4
IV

Corollary (Reiter–S., 2024)

Let H : B3 → DIV
4 be a proper holomorphic map which extends smoothly to some

boundary point p ∈ ∂B3. Then H is equivalent to one of the following pairwise
inequivalent maps:

(i)

R0(z ,w) =

(
z√
2
,
2w2 + 2w − zz t

4(w + 1)
,
i
(
2w2 + 2w + zz t

)
4(w + 1)

)
, (4)

(ii)

I (z ,w) =
(
z , w , 1−

√
1− zz t − w2

)/√
2, (5)

(iii)

P(z1, z2,w) =

(
z1, z2w ,

w2 − z22
2

,
i(w2 + z22 )

2

)
, (6)

where z = (z1, z2).



Geometric rank of sphere/hyperquadric maps

For each point p, there are CR automorphisms ψ and γ such that γ(0) = p and
H̃ := ψ−1 ◦ H ◦ γ has the following form: H̃ = (F k) : H2n+1

ℓ → H2N+1
ℓ , where

F k =


zα + i

2aα(z)w + Owt(4) k = α ∈ {1, 2, . . . , n}
ϕ
(2)
l (z) + Owt(3), k = l ∈ {n + 1, . . . ,N}

w + Owt(5) k = N + 1

(7)

with
⟨z̄ , a(z)⟩ℓ∥z∥2ℓ = ∥ϕ(2)(z)∥2τ .

Here τ = ℓ′ − ℓ ≥ 0 is the signature difference. (In the case τ < 0, we should consider
side reversing maps, which is similar.) Moreover, a(z) = zA(p) for some Hermitian
matrix A. The rank of A is then an invariant of the spherically equivalent class of the
map, which is called the geometric rank of H at p (Huang 1999,
Huang–Lu–Tang–Xiao 2000).



Theorem (Huang 1999)

A CR sphere map of vanishing geometric rank is equivalent to a linear map.

Thus,
Rkp(F ) = 0, ∀p ≈ 0 ⇒ F ∼ (z , 0,w).

Semi-linearity of maps of low rank (Huang 2003).
Hyperquadrics in Cn+1:

ℑ(zn+1)−
n∑

k=1

ϵk |zk |2 = 0, ϵk ∈ {−1, 1}.

Theorem (Huang–Lu–Tang–Xiao 2020)

A CR hyperquadric map of vanishing geometric rank is the restriction of an isometry
between canonical (indefinite) Kähler metric of the generalized balls.

Sphere maps with lower geometric ranks have been studied in a lot of works.



CR Ahlfors derivative

Let M and N be Levi-nondegenerate real hypersurfaces. We choose two
pseudohermitian structures θ and η on M and N, respectively. Associated to each
transversal CR map F : M → N is a tensor A(F ), called the CR Ahlfors derivative of F
(Lamel–S. 2021). This tensor has interesting property that are similar to those of the
Ahlfors derivative of maps from curves. For a chain of CR immersions

(M, θ)
F−−→ (N, η)

G−−→ (P, ζ), it holds that

A(G ◦ F ) = A(F ) + F ∗A(G ). (8)

In particular, if A(G ) = 0, then A(G ◦ F ) = A(F ). This is an invariant property, which
holds if G is a CR automorphisms of a sphere or a hyperquadrics. Thus, the CR
Ahlfors derivative gives rise to an invariant of spherically equivalent classes of CR maps
between spheres/hyperquadrics.



▶ For u smooth on M:

Hθ(u) = Sym∇∇u − ∂bu ⊗ ∂bu − ∂̄bu ⊗ ∂̄bu +
1

2
|∂̄bu|2Lθ. (9)

▶ For CR submanifold N ⊂ M, define

ν(X ,Y ) = 2 ⟨Sym II(X ,Y ), µ⟩ − ⟨X ,Y ⟩|µ|2, (10)

where µ is “(1, 0)-mean curvature”, Sym II(X ,Y ) is the symmetrized
pseudo-Hermitian second fundamental form.



Definition (Lamel–S. 2021)

Let (M2n+1, θ) and (N2d+1, η) be strictly pseudoconvex pseudohermitian manifolds
and let F : M → N be a CR immersion. Let u be the smooth function on M such that
F ∗η = euθ. We define the CR Ahlfors derivative (or CR Ahlfors tensor) of F to be

A(F ) := Hθ(u) + F ∗
(
νNF (M)

)
+

1

2
F ∗(JΘLΘ)−

1

2
JθLθ. (11)

where Jθ = Rθ/(n(n + 1)) and JΘ = RΘ/(d(d + 1)) are the normalized Webster scalar
curvatures on M and N, respectively, and LΘ and Lθ are the corresponding Levi forms.

For conformal immersion, the Ahlfors tensor was constructed by Stowe in 2015.



A chain rule for the CR Ahlfors tensor:

Theorem (Lamel–S. 2021)

For CR immersions F : (M, θ) → (N, η) and G : (N, η) → (P, ζ), we have

A(G ◦ F ) = A(F ) + F ∗A(G ). (12)

This is a CR counterpart of Denis Stowe’s result in 2015 for conformal immersions. CR
case is simpler.



Corollary (Lamel-S. 2021)

Let (M, θ) be a strictly pseudoconvex pseudohermitian manifold.

(i) Suppose that F : M → S2N+1 is a CR immersion and ϕ : S2N+1 → S2N′+1

(N ′ ≥ N) is a totally geodesic embedding, then

A(F ) = A(ϕ ◦ F ). (13)

In particular, if F and G are left spherical equivalent CR maps from M into
S2N+1, then

A(F ) = A(G ). (14)

(ii) Suppose that G : (S2n+1,Θ) → (M, θ) is a CR immersion and γ : N → S2n+1 is a
totally geodesic embedding, then

γ∗A(G ) = A(G ◦ γ). (15)



Theorem (Lamel–S. 2021)

Let F : (M, θ) → (S2d+1,Θ) be a CR immersion. If A(F ) = 0, then M is CR spherical
and F is spherically equivalent to the linear mapping.

Vanishing of CR Ahlfors tensor ⇒ vanishing of second fundamental form (similar to
Riemannian case but not true for “positive signature” case).



Geometric rank vs. CR Ahlfors tensor:

Rk(F )p = Rk(Aαβ̄|p)

Why? Explicit formula for the CR Ahlfors tensor.

Theorem (Lamel–S. 2021)

Aαβ̄(F ) = Dρ

αβ̄
logQ − 1

2

(
Pρ̃ log J(ρ̃)− Pρ log J(ρ)

)
hαβ̄. (16)

Dρ

αβ̄
and P are second order differential operator:

Dρ

αβ̄
u = (i∂∂̄u)(Zα,Zβ̄).

Related to holomorphic isometries and extendable to other situations.



An example

A generalization of a hypersurface in C3 of Levi signature ℓ′ = 1, first appears in
Winkelmann classification of homogeneous complex manifolds: Winkelmann
hypersurfaces:

ρW2n′+3
ℓ′

:= ℑ(w + z̄n′ζ)− |zn′ |4 −
n′−1∑
k=1

ϵ′k |zk |2 = 0, n′ ≥ 1, (17)

where (z1, . . . , zn′ , ζ,w) are holomorphic coordinates in Cn′+2 and ϵ′k = −1 for
1 ≤ k ≤ ℓ′ − 1 (there is no such k if ℓ′ = 1) and ϵ′k = 1 for k = ℓ′, . . . n′ − 1, has
exactly (n′ + 1)2 + 4 independent symmetries.
This model plays an important role in the study of homogeneous real hypersurfaces
(Doubrov–Medvedev–The 2021, Kruglikov 2016, . . . ).



Embeddability into the hyperquadric:

Φ(z1, . . . , zn′ , ζ,w) =

(
z1, . . . , zn′−1, z

2
n ,

zn′ + iζ

2
,
zn′ − iζ

2
,w

)
,

sends W into H. This map is of vanishing geometric rank.



Example

The map

I (z1, z2, . . . ,w) =
(
z1, . . . , zn−1,

√
1 + zn − 1, 4i

(√
1 + zn − 1− zn

)
w
)
, (18)

send a hyperquadric into the Winkelmann hypersurface which is of vanishing geometric
rank.



Example

For ϵ ∈ {−1, 1}, the quadratic map R : Cn+1 → Cn+2 defined by

R(z1, z2, . . . , zn,w)

= ((1 + ϵzn)z1, . . . , (1 + ϵzn)zn−1, zn,w(ϵ+ zn)− izn(1 + 2ϵzn),w(1 + ϵzn)) (19)

sends H2n+1
ℓ into W2n+3

ℓ+1 . Along H2n+1
ℓ , it is CR transversal precisely when

zn ̸= −ϵ. Furthermore, it has full rank precisely when zn ̸= −ϵ. Moreover, since

ρW2n+3
ℓ+1

◦ R = |ϵ+ zn|2ρH2n+1
ℓ

,

we see that R is a local isometric embedding of Un+1 \ {zn = −ϵ} into Ω+. Clearly,

A(R)αβ̄ = ⟨i∂∂̄ log |ϵ+ zn|2,Zα ∧ Zβ̄⟩ = 0,

i.e., R has vanishing geometric rank.



Based on Huang–Lu–Tang–Xiao’s result in 2020:

Theorem (Reiter–S. 2024)

Let U ⊂ H2n+1
ℓ be an open subset and H : U → W2n′+3

ℓ′ . Let Aαβ̄(H) be the
Hermitian part of the CR Ahlfors tensor of H with respect to “standard”
pseudo-Hermitian structures of the source and target. Then Aαβ̄(H) = 0 on U if and
only if H extends to a local isometric embedding of the indefinite Kähler metrics.



Geometric rank of CR maps into the tube over the light cone

CR maps from the Heisenberg model into the X model can be normalized:

f̃ (z ,w) = z +
i

2
αzw + νw2 + O(3),

ϕ̃(z ,w) = λw + αz2 + µzw + σw2 + O(3), (20)

g̃(z ,w) = w + O(3),

Similarly to Huang’s definition: The coefficient α give the geometric rank of H at the
origin:

α = 0 ⇒ rank(H) = 0,

otherwise
α ̸= 0 ⇒ rank(H) = 1,



Let U be an open neighborhood of a point p in C3, p ∈ H5, and let H : U → C4 be a
holomorphic map such that H(U ∩H5) ⊂ X . Then there exist automorphisms ϕ and ψ
of H5 and X , respectively, which satisfy ψ(p) = 0, γ(H(p)) = 0, and

γ ◦ H ◦ ψ−1 = (f , ϕ, g),

where f , ϕ, and g take the following form
f = z + i

2w(zAα,β) + w2ν + O(3),

ϕ = λw + zAα,βz
t + wzµt + σw2 + O(3),

g = w + O(3),

(21)

where

Aα,β =

(
α β
β −α

)
∈ Mat(2× 2;R), ν = (ν1, ν2) ∈ C2, µ = (µ1, µ2) ∈ C2.

Moreover, the rank of Aα,β does not depend on the pair (γ, ψ) satisfying the
conditions above.



Geometric rank via normalization.

Definition (Reiter–S. 2024)

The rank of the matrix A is called the geometric rank of H at p, and denoted by
rank(H)(p).

Definition (Reiter–S. 2024)

Let M and M ′ be real hypersurfaces in Cn+1 and CN+1, defined by ρ and ρ′,
respectively. Suppose that H : U → CN+1 is a holomorphic map such that
H(U ∩M) ⊂ M ′. Assume that V ⊂ U is an open subset with V ∩M ̸= ∅ and
Q : V → R is a positive real-valued function satisfying

ρ′(H(z),H(z)) = Q(z , z̄) ρ(z , z̄), z ∈ V ⊂ U. (22)

Then we define a tensor A′(H) associated to H on V ∩M as follows:

A′(H)(Z ,W ) = (i∂∂̄ logQ)(Z ,W ), Z ,W ∈ T (1,0)M. (23)



Let U be an open neighborhood of a point p in C3, p ∈ H5, and let H : U → C4 be a
holomorphic map such that H(U ∩H5) ⊂ X . Then rank(H)(p) = rankA′(H)(p).
Similarly for the ball and type IV models: Applying Huang–Lu–Tang–Xiao’s result
mentioned earlier.

Theorem (Reiter–S. 2024)

Let U be an open neigborhood of a point p ∈ S2n+1 and H a holomorphic map from U
into Cm. Assume that U ∩ Bn+1 is connected, H(U ∩ Bn+1) ⊂ DIV

m , and
H(U ∩ S2n+1) ⊂ R = ∂DIV

m . Then the following are equivalent:

1. H is transversal at p and A(H) = 0 on an open neigborhood of p in S2n+1.

2. H is an isometric embedding from U ∩ Bn+1 into DIV
m .

This was used to prove the classification of CR maps from the sphere into the tube
over the future light cone.



Thank you!


