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An asymptotically hyperbolic (AH) space is a compact manifold Mn+1

with boundary Σn equipped with a metric g+ on the interior M̊ such that

for each defining function φ of Σ in M, φ2g+ extends to a smooth
metric on M = M; and

|dφ|φ2g+ = 1 along Σ.

The conformal infinity of M is the conformal class [φ2g+|TΣ] on Σ.
We say g+ is Einstein if Ric(g+) = −ng+.
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Lemma

Let (M, g+) be an AH space with conformal infinity (Σn, [h]). Let h ∈ [h].
Then for ε > 0 small, there is a unique diffeomorphism
ψ : [0, ε)r × Σ ↪→ M onto a collar neighborhood of Σ such that

ψ∗g+ = dr2+gr
r2

, where gr is a one-parameter family of metrics on Σ and
g0 = h.
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If g+ is Einstein, then one has the asymptotics

gr = h + r2g (2) + r4g (4) + (even) + rn log(r)A+ rng (n) + . . .

Here, A = 0 if n is odd.The tracefree part of g (n) is formally
undetermined. The trace is determined, and vanishes if n is odd.
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Among the most important global invariants of an AH Einstein space
(Mn+1, g+) is its renormalized volume.

Let r be a geodesic defining function. One has

volg+({r > ε}) = c0ε
−n + c1ε

1−n + · · ·+ cn−1ε
−1 + E log

(
1

ε

)
+V + o(1)

Theorem (Henningson and Skenderis 1998, Graham 1999)

For odd j, cj = 0.
If n is even, then E is a conformal invariant.
If n is odd, then E = 0 and V is a conformal invariant.

dVg+ = r−(1+n)(1 + r2v2 + r4v4 + . . . )dVhdr .
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Suppose g s
+ is a one-parameter family of PE metrics on X , with conformal

infinity [hs ].

Let ḣs =
d
ds

∣∣
s=0

hs .

Theorem (Anderson 2004, Graham-Hirachi 2004, Albin 2005)

If n is even, then

d

ds
E(g s

+)

∣∣∣∣
s=0

= cn

∫
Σ
⟨ḣs ,A⟩dVh.

If n is odd, then

d

ds
V(g s

+)

∣∣∣∣
s=0

= cn

∫
Σ
⟨ḣs , g (n)⟩dVh.
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d
ds

∣∣
s=0

hs .

Theorem (Anderson 2004, Graham-Hirachi 2004, Albin 2005)

If n is even, then

d

ds
E(g s

+)

∣∣∣∣
s=0

= cn

∫
Σ
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Suppose now (M, ḡ) is a compact Riemannian manifold with boundary
Σ = ∂M.

There exists unique u ≥ 0 so that

1 Σ = u−1({0}).
2 g = u−2ḡ satisfies Rg = −n(n + 1).

Note that g is AH.
Let r(x) = distḡ (·,Σ).
Mazzeo (1991) proved polyhomogeneity:

u(x) = r+r2u(2)+r3u(3)+· · ·+rn+1u(n+1)+rn+2 log(r)A+rn+2u(n+2)+. . . .
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2 g = u−2ḡ satisfies Rg = −n(n + 1).

Note that g is AH.

Let r(x) = distḡ (·,Σ).
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Consider

volg ({r > ε}) = c0ε
−n + c1ε

1−n + · · ·+ cn−1ε
−1 + E log

(
1

ε

)
+ V + o(1)

Theorem (Graham 2017; Gover and Waldron, 2017)

The energy E is a conformal invariant.
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Suppose F : (−ε, ε)×Σ ↪→ M, and X = d
dsF(s, ·)

∣∣
s=0

∈ Γ(Σ,NΣ). Let µ
be the inward-pointing unit normal.

Theorem

d

ds
E
∣∣∣∣
s=0

= cn

∫
Σ
⟨X , µ⟩AdVh,

where h = ḡ |TΣ.
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Suppose now (Mn+k , ḡ) is closed,

Σn ⊂ M is closed and embedded,and
1 < k < n + 2.
There exists u ≥ 0 so that

1 Σ = u−1({0}).
2 g = u−2ḡ satisfies Rg = −(n + 2− k)(n + k − 1).

Let t(x) = distḡ (x ,Σ).
By Mazzeo (1991), u is polyhomogeneous in t and tp(log t)q, with
coefficients smooth functions on the sphere normal bundle.
Recall, near Σ, we may decompose M

M ≈ [0, δ)t × SNΣ

≈ [0, δ)t × Σ× Sk−1 (locally).
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Then u has an expansion

u = t + t2u(2) + t3u(3) + · · ·+ tn+1u(n+1) + tn+1+δu(n+1+δ)

+ tn+2 log(t)A+ tn+2u(n+2) + o(tn+2),

where

1 0 < δ < 1;

2 u(n+1+δ) and u(n+2) are globally determined;

3 A is locally determined and linear.
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Consider the expansion

volg ({t > ε}) = c0ε
−n + c1ε

1−n + · · ·+ cn−1ε
−1 + E log

(
1

ε

)
+ V + o(1)

Theorem (Kushtagi-M. 2024)

For odd j, cj = 0.
If n is even, then E is a conformal invariant.
If n is odd, then E = 0 and V is a conformal invariant.
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1

ε

)
+ V + o(1)
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Basic idea:

Consider f : Rk → R smooth.Let r = |x |. Expand

f = f0 + rf1 + r2f2 + . . . ,

where fj : S
k−1 → R.

Then for each j , fj has the same parity as j .In particular, the integral of fj
over Sk−1 vanishes for odd k .

Lemma (Kushtagi-M. 2024)

The function u
t is smooth up through order tn. Moreover, if n is odd, then

A = 0.
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Notes:

1 n = 1.

2 k = 1.

3 k ≥ n + 2.
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Suppose F : (−δ, δ)× Σ ↪→ M is a variation of Σ, and
X = d

ds

∣∣
s=0

F(s, ·) ∈ Γ(Σ,NΣ).

Theorem (Kushtagi-M., 2024)

If n is even, then
d

ds
E
∣∣∣∣
s=0

= cn,k

∫
Σ
A(X )dVh.

If n is odd, then

d

ds
V

∣∣∣∣
s=0

= cn,k

∫
Σ
u(n+2)(X )dVh.
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From now, let k be arbitrary. We will let u be a formal solution to the
singular Yamabe equation.

We define a set E of pairs of integers by whether solutions exist to a
certain infinite family of Diophantine equations with n, k as parameters.

Theorem (Kushtagi-M. 2025)

Let Σn be embedded in (Mn+k , ḡ). For 0 ≤ j ≤ n
2 (if n is even or

(n, k) ∈ E) or for j ≥ 0 (if n is odd and (n, k) /∈ E), there exists a natural,
extrinsically defined differential operator Pj : C

∞(Σ) → C∞(Σ) of order

2j , with the same principal part as ∆j
Σ, and under conformal change

g̃ = e2ωg satisfying

P̃j = e(−n/2−j)ωPje
(n/2−j)ω.

This Pj is formally self-adjoint.

(Compare GJMS operators, Gover-Waldron, . . . ).
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Idea of proof:

Consider v a solution of ∆gv + s(n − s)v = 0, where
s = n

2 + j .
This has an expansion

v = tn−sF + ts log(t)G + . . .

Impose F |Σ = f . Define Pj f = G |Σ. Note that one could now consider
other expansions and get higher-rank operators.
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Let Es [f ] := ∆g f + s(n − s)f .

Define the indicial operator Is,σψ = t−σEs [t
σψ]|t=0.Then

Is,σ = ∆Sk−1 + (s(n − s)− σ(n − σ)).
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Now let n be even. We follow Fefferman-Graham to define an extrinsic
Q-curvature on Σ.

Proposition (Kushtagi-M. 2025)

The equation
∆gU = −n + O(tn+1 log t)

has a solution of the form

U = log t + A+ Btn log t + O(tn),

with A|Σ = 0; and U is unique mod O(tn).

We define Qn,k = cn,kB|Σ.
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Theorem (Kushtagi-M. 2025)

1 Suppose g̃ = e2ωg. Then

enωQ̃n,k = Qn,k + Pnω.

2

E = an,k

∫
Σ
QdVh
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Happy Birthday, Kengo!


