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Holomorphic geometric structures

» Because of the motivation from yesterday’s lecture, we will
work in the holomorphic category: all manifolds are
complex manifolds and all maps/bundles etc. are
holomorphic. But all arguments work in the C* or
real-analytic categories as well.

» The theory of geometric structures we discuss today is
essentially local: it is concerned with what is happening in
a neighborhood of a point on a manifold. In the
holomorphic setting, however, any local result
automatically has global consequences.

» We will restrict our discussion to a special type of
geometric structures, called G-structures. They include
most of the interesting examples and their structure theory
is well developed.
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» Fix a vector space V of dimension n.
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Frame bundle and G-structure

» Fix a vector space V of dimension n.

» For a complex manifold M of dimension n and a point
x € M, alinear isomorphism h: V — TyM is called a frame
at x. If we fix a basis of V, a frame determines a basis of
M.

» Let FxM :=Isom(V, TyM) be the set of all frames at x. The
GL(V)-principal bundle

FM = U FyM
xeM
over M is called the frame bundle of M.

» For a complex Lie subgroup G C GL(V), a G-principal
subbundle G C FM is called a G-structure with the
structure group G on M.
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Example: Riemannian structure

» Fix a nondegenerate symmetric form o on V.

» A holomorphic section g of Sym? T*M is called a
(holomorphic) Riemannian metric on M, if g, is a
nondegenerate symmetric form on T,M for each x € M.

» Aframe h € Isom(V, TyM) is orthonormal if

9,(h(u), h(v)) =o(u,v)foru,v e V.

» The subbundle G C FM consisting of orthonormal frames
is a G-structure with the structure group O(V, o) C GL(V),
the orthogonal group with respect to o.

» Conversely, a G-structure on M with the structure group
O(V,o0) C GL(V) determines a Riemannian metric on M.
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Example: Conformal structure

» A holomorphic section g of (Sym? T*M) ® L for a line
bundle L on M is called a (holomorphic) conformal
structure on M, if g, is a Ly-valued nondegenerate
symmetric form on T,M for each x € M.

» Aframe h € Isom(V, TyM) is conformal if
9x(h(u), h(v)) = o(u, v)tn
forsome ¢, € Lyandallu,v e V.
» The subbundle G C FM consisting of conformal frames is a
G-structure with the structure group
CO(V,o) =C*1dy -O(V,o) C GL(V).
» Conversely, a G-structure on M with the structure group
CO(V, o) C GL(V) determines a conformal structure on M.
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Example: Distribution

» Fix a subspace D C V of dimension k < nand let
Gp C GL(V) be the subgroup

Gp:={g€GL(V)|g-D=D}.
» A distribution (= vector subbundle) D ¢ TM of rank k

determines a G-structure G € FM with the structure group
Gp such that the fiber at x € M is given by

Gx = {h € Isom(V, TyM) | h(D) = Dy C TM}.

» Conversely, a G-structure on M with the structure group
Gp C GL(V) determines a distribution D C TM of rank k.
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dmU=k,dmW=/andUNnW =0
and let Gy w C GL(V) be the subgroup
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Example: Pseudo-product structure (para-CR
structure)
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Example: Pseudo-product structure (para-CR
structure)

» Fix subspaces U, W c V with
dmU=k,dmW=/andUNnW =0
and let Gy w C GL(V) be the subgroup
Guw:={9€eGL(V)|g-U=U, g-W=W}
» A pair of distributions (= vector subbundles) &/, W c TM of

rank k and ¢ with &/ "' W = 0 determine a G-structure
G C FM with the structure group Gy,w C GL(V).

» Such a G-structure is called a pseudo-product structure on
M if the two distributions ¢/ and W are integrable. In other
words, it is a pair of transversally intersecting foliations on
M.
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Example: Absolute parallelism

» When G = {e} c GL(V) is the identity subgroup, a
G-structure G C FM with the structure group G = {e} is a
holomorphic section of the frame bundle FM — M.

» Such a G-structure is also called

» an {e}-structure on M
» a moving frame on M
» a flat affine connection on M
» an absolute parallelism on M.

» By fixing a basis of V, an absolute parallelism can be
represented as a collection of vector fields vy, ..., vV, on M
which gives a basis of T,M at every x € M.
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Fundamental problem: local equivalence of
G-structures

» We say that two G-structures G ¢ FM and G C FM with the
same structure group G C GL(V) are equivalent if there
exists a biholomorphic map ¢ : M — M such that the
induced map ¢, : FM — FM sends G to G.
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Fundamental problem: local equivalence of
G-structures

» We say that two G-structures G ¢ FM and G C FM with the
same structure group G C GL(V) are equivalent if there
exists a biholomorphic map ¢ : M — M such that the
induced map ¢, : FM — FM sends G to G.

> We say that they are locally equivalent if there are open
subsets O ¢ M and O C M such that the G-structures
obtained by restrictions

Glo cFO and 5]5 c FO

are equivalent.

» Basic Problem Develop methods to check local
equivalences of G-structures.
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» Two Riemannian structures (M, g) and (M, g) are
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Examples of equivalence of G-structures

» Two Riemannian structures (M, g) and (M, g) are
equivalent iff there exists a biholomorphic isometry
o: M= M.

» Two pseudo-product structures ¢/, W C TM and
UwcTM are equivalent iff there exists a biholomorphic
map ¢ : M — M such that dp(i) = U and d(p(W) W.

> Two absolute parallelisms V4, ..., V,on Mand vy, ... Vn on
M are equivalent iff there exists a biholomorphic map
¢ : M — M such that

d<p(\7,-):§,-fori:1,...,n.
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Local equivalence of absolute parallelisms

» An absolute parallelism ?1 ,...,Vy,on M determines
holomorphic functions ¢ (x) on M defined by
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Local equivalence of absolute parallelisms

» An absolute parallelism }71 ,...,Vy,on M determines
holomorphic functions ¢ (x) on M defined by

[‘_/}'7‘7/(] Z/ 1 /k( )VI for 1 <j7k<n
Invariantly, it is a Hom(A?V, V)-valued function on M called
the torsion function of the absolute parallelism.

» The local equivalence problem for absolute
parallelisms can be effectively handled by torsion
functions. For example,

> ka = 0 for all /,, k iff there exist local coordinates

1 v _
z',...,z” such that v; = 8z,,/ 1,
> cjfk = constant for all i, j, k iff vy,..., Vv, are IocaIIy equivalent

to a basis of left-invariant fields ( Maurer-Cartan absolute
parallelism) on an n-dimensional Lie group.
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Cartan’s method to solve local equivalence problems
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groups of finite type, such that the local equivalence
problem for G-structures with the structure group of finite
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the local equivalence problem for absolute parallelisms.
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Cartan’s method to solve local equivalence problems

» There is a large class of subgroups G c GL(V), called
groups of finite type, such that the local equivalence
problem for G-structures with the structure group of finite
type (= G-structures of finite type) can be reduced to
the local equivalence problem for absolute parallelisms.

Theorem (Cartan (Guillemin, Sternberg, Kobayashi, ...))

Each G-structure G C FM of finite type canonically
determines a fiber bundle P — M and an absolute parallelism
6 on P such that

G C FM locally equivalentto G c FM
—
9 C FP locally equivalentto 6 C FP.
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The automorphism group of a G-structure of finite type is
bounded by the dimension of the fiber bundle P — M in
Cartan’s Theorem.
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» This is because the dimension of an absolute parallelism
on an n-dimensional manifold has dimension at most n.
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Corollary
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Some consequences of Cartan’s Theorem

Corollary

The automorphism group of a G-structure of finite type is
bounded by the dimension of the fiber bundle P — M in
Cartan’s Theorem.

» This is because the dimension of an absolute parallelism
on an n-dimensional manifold has dimension at most n.

Corollary

Any formal equivalence of G-structures of finite type is
convergent.

» This is because any formal equivalence of absolute
parallelisms is convergent.
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» The fiber bundle P — M in Cartan’s theorem is a
succession of principal bundles

P = g(k) — g(k71) e g(1) — g(O) — /\/]7
with k > 0 determined by the group G € GL(V) of finite
type.
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Cartan connections

» The fiber bundle P — M in Cartan’s theorem is a

succession of principal bundles

P=gW gk ... g0 g0 - M,
with k > 0 determined by the group G € GL(V) of finite
type.

» Sometimes (for example, when k = 0), the whole fiber
bundle P — M becomes a single principal bundle on M
and the absolute parallelism 6 on P behaves
equivariantly with respect to the action of the structure
group of P.

» If this happens, we call the pair (P, ) a Cartan connection
on M. In this case, the torsion function of § can be
regarded as a tensor field (= curvature tensor of the
G-structure) on M in a suitable sense.
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» In Cartan’s theorem, what is the succession of principal
bundles

'P:g(k)_)g(k_”_)_>g(1)_)g(0)_)M?
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» In Cartan’s theorem, what is the succession of principal
bundles

P=gk) 5 gk-1) ... sg(1) 5g0 s Mm?
» The first step GO — M is just the G-structure itself
GO =G c FM — M,
a principal bundle with the structure group G C GL(V).

» When trying to find a canonical absolute parallelism on
G = G, we find that the obstruction lies in a subspace

g c Hom(V, g(®)
determined by the Lie algebra g = g(® c gl(V) of the
group G C GL(V).
» If g(") = 0, we obtain a canonical absolute parallelism 6 on
P=¢0 =g M.
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» If g(1) £ 0, the first step fails.
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» The second step is to construct canonically a new principal
bundle G(") — g(© with the structure group G(*) whose Lie

algebra is g(1).
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> If g(1) £ 0, the first step fails.

» The second step is to construct canonically a new principal
bundle G(") — g(© with the structure group G(*) whose Lie
algebra is g(1).

» When trying to find a canonical absolute parallelism on
G, we find that the obstruction lies in a subspace

g ¢ Hom(V, gm)
determined by the Lie algebra g C gl(V).

» If g® = 0, we obtain a canonical absolute parallelism 6 on
P =6 5 M.
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> If g(® =£ 0, the second step fails.
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> If g@ £ 0, the second step fails.

» The third step is to construct canonically a new principal
bundle G® — g(") with the structure group G whose Lie
algebra is g(®, and so on.
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» The third step is to construct canonically a new principal
bundle G® — g(") with the structure group G whose Lie
algebra is g(®, and so on.
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> If g@ £ 0, the second step fails.

» The third step is to construct canonically a new principal
bundle G® — g(") with the structure group G whose Lie
algebra is g(®, and so on.

» In the m-th step, when trying to find a canonical absolute
parallelism on G(™=1), we find that the obstruction lies in
a subspace

g(™ c Hom(V, g(m")
determined by the Lie algebra g C gl(V).

» If g(™ = 0, we obtain a canonical absolute parallelism 6 on
P .=gm1 5 M.
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> If g@ £ 0, the second step fails.

» The third step is to construct canonically a new principal
bundle G® — g(") with the structure group G whose Lie
algebra is g(®, and so on.

» In the m-th step, when trying to find a canonical absolute
parallelism on G(™=1), we find that the obstruction lies in
a subspace

g™ C Hom(V,g(™ ")
determined by the Lie algebra g C gl(V).

» If g(™ = 0, we obtain a canonical absolute parallelism 6 on
P =gmN 5 M.

» The condition that G ¢ GL(V) is of finite type means
g = 0 for some positive integer k. Thus the above
procedure, called Cartan prolongations, terminates at the
k-th step.
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Attempt to find 0 in Step 1

» At each point h of the principal G-bundle G = M, the
vertical tangent space

Tl‘vlert = Ker(dmr), dpm : Thg — T M
is equipped with a natural isomorphism
gzcrt g E> Tf\;crt

with the Lie algebra g of G.
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Attempt to find 0 in Step 1

» At each point h of the principal G-bundle G = M, the
vertical tangent space
Tl‘vlert = Ker(dmr), dpm : Thg — T M
is equipped with a natural isomorphism
Oyt g = Tper
with the Lie algebra g of G.
» A subspace Hp C TpG is called horizontal if

ThG = Ty @ Hp. Any horizontal subspace is equipped
with a natural isomorphism

1
IRRVELNE VEC LT

» Thus if we can find a natural splitting 7G = T & H, we
obtain a natural absolute parallelism ¢ @ 6" on G by

Oyt a0 gp V — T @ Hpy = ThG.
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Torsion of a horizonal subspace

» A horizonal subspace #; C T,G is the tangent to a local
section of G — M. Namely, it is a 1-jet of some absolute

parallelism i, . .. V, on a neighborhood of a point
x =m(h) e M.
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is determined by the 1-jet of vy, ..., V, at x.



Torsion of a horizonal subspace

» A horizonal subspace #; C T,G is the tangent to a local
section of G — M. Namely, it is a 1-jet of some absolute
parallelism i, . .. V, on a neighborhood of a point
x =m(h) e M.

» The value at x € M of the torsion function

Vi, V] = 314 c/!'k\?,- for1 <j k<n
is determined by the 1-jet of vy, ..., V, at x.
» Thus we can define the torsion of a horizontal subspace:
a horizontal subspace H;, C T,G

\
its torsion ¢(#H,) € Hom(A2V, V).
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» Vary the horizonal subspace H, at h € G:

ThG = T,\;ert D Hh’g, Hh,o = Hhp.
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» Vary the horizonal subspace Hyathe G

ThG =Ty @ Hpe, Hno = Hn
They are parametrized by

6*n 6‘ vert
¢ € Hom(Hp, Tyem) O 227

Hom(V, g).
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Variation of horizonal subspaces

» Vary the horizonal subspace H at h € G:
ThG = Tp" ® Hpe, Hno = Hn.

They are parametrized by
H vcrt)

(6%h, 0}
e € Hom(Hp, T)*) == "Hom(V,g).
» How does the torsion ¢(#p ) depend on € € Hom(V, g)?
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» Vary the horizonal subspace H at h € G:
ThG = Tp" ® Hpe, Hno = Hn.
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H vcrt)
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describes the change:



Variation of horizonal subspaces

» Vary the horizonal subspace H at h € G:
ThG = Tp" ® Hpe, Hno = Hn.

They are parametrized by
H vcrt)

(6%h, 0}
e € Hom(Hp, T)*) == "Hom(V,g).
» How does the torsion ¢(#p ) depend on € € Hom(V, g)?
» Spencer map 0 : Hom(V,g) — Hom(A?V, V) defined by
of(u,v) :=f(u)-v—1~f(v)-u,
describes the change:

variation Hp. of Hp < € € Hom(V,g)

torsion | 10
c(Hne) — c(Hn) = 0e € Hom(A?V, V)
0 U

change in torsions ¢ Im(9)
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» For Hom(V, g) % Hom(A2V, V), fix a choice of W satisfying
Hom(A2V, V) =

Im(0) ® W
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» For Hom(V, g) % Hom(A2V, V), fix a choice of W satisfying
Hom(A2V, V) =
U

Im(0)
c(Hn)

o W.
U
c(Hn) — c(Hn,)
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The first prolongation g(') ¢ Hom(V, g)

> For Hom(V, g) % Hom(A2V, V), fix a choice of W satisfying

Hom(A2V,V) = Im(0) e W
U U
c(Hn) c(Hn) — c(Hnye)

Any H, can be varied to H, . with ¢(Hp,.) € W.
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» Define the first prolongation of g

g(") := Ker(9) ¢ Hom(V,g) LN Hom(A2V, V).
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> For Hom(V, g) % Hom(A2V, V), fix a choice of W satisfying

Hom(A2V,V) = Im(0) e W
U U
c(Hn) c(Hn) — c(Hnye)
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» Define the first prolongation of g
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> 1f g{") = 0, 5, satisfying c(Hp.) € W is unique.



The first prolongation g(¥) ¢ Hom(V, g)

> For Hom(V, g) % Hom(A2V, V), fix a choice of W satisfying

Hom(A2V,V) = Im(0) e W
U U
c(Hn) c(Hn) — c(Hnye)

Any H, can be varied to H, . with ¢(Hp,.) € W.
» Define the first prolongation of g
g(") := Ker(9) ¢ Hom(V,g) LN Hom(A2V, V).
> 1f g{") = 0, 5, satisfying c(Hp.) € W is unique.

» If g(") = 0, we have a canonical splitting TG = TV & H
with ¢(H) € W, which gives a canonical absolute
parallelism 6 on G.
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» 1f (V) £ 0, requiring c(#,) € W does not fix the choice of a
horizontal subspace.
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Going to the next step in Cartan prolongations

> 1f g(V) =£ 0, requiring c(H) € W does not fix the choice of a
horizontal subspace.
» In this case, consider G(Y) — G(9), the bundle of all choices
of horizontal subspaces
ThG = T} @ My satisfying c(Hp) € W.



Going to the next step in Cartan prolongations

> If g(") +£ 0, requiring ¢(#) € W does not fix the choice of a
horizontal subspace.
» In this case, consider G(Y) — G(9), the bundle of all choices
of horizontal subspaces
ThG = T} @ My satisfying c(Hp) € W.
» Then (") — GO is a principal bundle with the structure
group G(") whose Lie algebra is g(").
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group G(") whose Lie algebra is g(").

» Now we try to find a natural absolute parallelism on G(').
The obstruction is a subspace g(® < Hom(V, g(").



Going to the next step in Cartan prolongations

> If g(") +£ 0, requiring ¢(#) € W does not fix the choice of a
horizontal subspace.

» In this case, consider G(Y) — G(9), the bundle of all choices
of horizontal subspaces

ThG = T} @ My satisfying c(Hp) € W.

» Then (") — GO is a principal bundle with the structure
group G(") whose Lie algebra is g(").

» Now we try to find a natural absolute parallelism on G(').
The obstruction is a subspace g(® < Hom(V, g(").

> The successive definitions of g() ¢ Hom(V,g(~") and
G — GU=1) are similar, although more complicated.
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Which g C gl(V) is of finite type?

Theorem (Cartan, Kobayashi-Nagano)

If g C gl(V) is anirreducible representation, then it is of
finite type unless

g = ol(V), si(V), sp(V), esp(V).



Which g C gl(V) is of finite type?

Theorem (Cartan, Kobayashi-Nagano)

If g C gl(V) is anirreducible representation, then it is of
finite type unless

g = gl(V), sl(V), sp(V), csp(V).
» Example. The orthogonal group O(V, o) has g(") = 0. For

a Riemannian structure, the absolute parallelism 6 on
P = G is the Levi-Civita connection.



Which g C gl(V) is of finite type?

Theorem (Cartan, Kobayashi-Nagano)

If g C gl(V) is anirreducible representation, then it is of
finite type unless

g = ol(V), si(V), sp(V), esp(V).

» Example. The orthogonal group O(V, o) has g(") = 0. For
a Riemannian structure, the absolute parallelism 6 on
P = G is the Levi-Civita connection.

» Example. The conformal orthogonal group CO(V, o) has
g £ 0,93 = 0. A conformal structure has a natural
Cartan connection on G(V).
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» The structure group Gy of a distribution is not of finite type.
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Non-Examples of Cartan’s Theorem

» The structure group Gy of a distribution is not of finite type.

» More generally, any G-structure determined by conditions
on a distribution is not of finite type. For example, the
structure group Gy, w of a pseudo-product structure (=
para-CR structure) is not of finite type.



Non-Examples of Cartan’s Theorem

» The structure group Gy of a distribution is not of finite type.

» More generally, any G-structure determined by conditions
on a distribution is not of finite type. For example, the
structure group Gy, w of a pseudo-product structure (=
para-CR structure) is not of finite type.

» This means that there are many interesting examples of

geometric structures to which Cartan’s Theorem
cannot be applied.
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Tanaka’s refinement of Cartan prolongation

» For G-structure determined by conditions on a distribution,
Noboru Tanaka discovered that if the underlying
distribution is bracket-generating, namely, successive Lie
brackets of sections of the distributions span TM, then we
can refine Cartan’s method.
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distribution is bracket-generating, namely, successive Lie
brackets of sections of the distributions span TM, then we
can refine Cartan’s method.

» The key point is to replace the commutative vector
space V in our discussion of G-structures by a
noncommutative nilpotent Lie algebra arising from the
successive Lie brackets.



Tanaka’s refinement of Cartan prolongation

» For G-structure determined by conditions on a distribution,
Noboru Tanaka discovered that if the underlying
distribution is bracket-generating, namely, successive Lie
brackets of sections of the distributions span TM, then we
can refine Cartan’s method.

» The key point is to replace the commutative vector
space V in our discussion of G-structures by a
noncommutative nilpotent Lie algebra arising from the
successive Lie brackets.

» We need to change the definitions of g(/), incorporating the
nilpotent structure. Then many examples satisfy g(¥) =0
for some positive integer k in this new sense, even when g
is of infinite type in the previous sense.



