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Holomorphic geometric structures

I Because of the motivation from yesterday’s lecture, we will
work in the holomorphic category: all manifolds are
complex manifolds and all maps/bundles etc. are
holomorphic. But all arguments work in the C∞ or
real-analytic categories as well.

I The theory of geometric structures we discuss today is
essentially local: it is concerned with what is happening in
a neighborhood of a point on a manifold. In the
holomorphic setting, however, any local result
automatically has global consequences.

I We will restrict our discussion to a special type of
geometric structures, called G-structures. They include
most of the interesting examples and their structure theory
is well developed.
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Frame bundle and G-structure

I Fix a vector space V of dimension n.
I For a complex manifold M of dimension n and a point

x ∈ M, a linear isomorphism h : V → TxM is called a frame
at x . If we fix a basis of V , a frame determines a basis of
TxM.

I Let FxM := Isom(V ,TxM) be the set of all frames at x . The
GL(V )-principal bundle

FM :=
⋃

x∈M

FxM

over M is called the frame bundle of M.
I For a complex Lie subgroup G ⊂ GL(V ), a G-principal

subbundle G ⊂ FM is called a G-structure with the
structure group G on M.
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Example: Riemannian structure

I Fix a nondegenerate symmetric form σ on V .
I A holomorphic section g of Sym2T ∗M is called a

(holomorphic) Riemannian metric on M, if gx is a
nondegenerate symmetric form on TxM for each x ∈ M.

I A frame h ∈ Isom(V ,TxM) is orthonormal if
gx(h(u),h(v)) = σ(u, v) for u, v ∈ V .

I The subbundle G ⊂ FM consisting of orthonormal frames
is a G-structure with the structure group O(V , σ) ⊂ GL(V ),
the orthogonal group with respect to σ.

I Conversely, a G-structure on M with the structure group
O(V , σ) ⊂ GL(V ) determines a Riemannian metric on M.
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Example: Conformal structure

I A holomorphic section g of (Sym2T ∗M)⊗ L for a line
bundle L on M is called a (holomorphic) conformal
structure on M, if gx is a Lx -valued nondegenerate
symmetric form on TxM for each x ∈ M.

I A frame h ∈ Isom(V ,TxM) is conformal if
gx(h(u),h(v)) = σ(u, v)`h

for some `h ∈ Lx and all u, v ∈ V .
I The subbundle G ⊂ FM consisting of conformal frames is a

G-structure with the structure group
CO(V , σ) = C∗IdV · O(V , σ) ⊂ GL(V ).

I Conversely, a G-structure on M with the structure group
CO(V , σ) ⊂ GL(V ) determines a conformal structure on M.
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Example: Distribution

I Fix a subspace D ⊂ V of dimension k < n and let
GD ⊂ GL(V ) be the subgroup

GD := {g ∈ GL(V ) | g · D = D}.
I A distribution (= vector subbundle) D ⊂ TM of rank k

determines a G-structure G ⊂ FM with the structure group
GD such that the fiber at x ∈ M is given by

Gx := {h ∈ Isom(V ,TxM) | h(D) = Dx ⊂ TxM}.

I Conversely, a G-structure on M with the structure group
GD ⊂ GL(V ) determines a distribution D ⊂ TM of rank k .
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Example: Pseudo-product structure (para-CR
structure)

I Fix subspaces U,W ⊂ V with
dimU = k , dimW = ` and U ∩W = 0

and let GU,W ⊂ GL(V ) be the subgroup
GU,W := {g ∈ GL(V ) | g · U = U, g ·W = W}.

I A pair of distributions (= vector subbundles) U ,W ⊂ TM of
rank k and ` with U ∩W = 0 determine a G-structure
G ⊂ FM with the structure group GU,W ⊂ GL(V ).

I Such a G-structure is called a pseudo-product structure on
M if the two distributions U andW are integrable. In other
words, it is a pair of transversally intersecting foliations on
M.
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Example: Absolute parallelism

I When G = {e} ⊂ GL(V ) is the identity subgroup, a
G-structure G ⊂ FM with the structure group G = {e} is a
holomorphic section of the frame bundle FM → M.

I Such a G-structure is also called
I an {e}-structure on M
I a moving frame on M
I a flat affine connection on M
I an absolute parallelism on M.

I By fixing a basis of V , an absolute parallelism can be
represented as a collection of vector fields ~v1, . . . , ~vn on M
which gives a basis of TxM at every x ∈ M.
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Fundamental problem: local equivalence of
G-structures

I We say that two G-structures G ⊂ FM and G̃ ⊂ FM̃ with the
same structure group G ⊂ GL(V ) are equivalent if there
exists a biholomorphic map ϕ : M → M̃ such that the
induced map ϕ∗ : FM → FM̃ sends G to G̃.

I We say that they are locally equivalent if there are open
subsets O ⊂ M and Õ ⊂ M̃ such that the G-structures
obtained by restrictions

G|O ⊂ FO and G̃|Õ ⊂ FÕ

are equivalent.
I Basic Problem Develop methods to check local

equivalences of G-structures.
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Examples of equivalence of G-structures

I Two Riemannian structures (M,g) and (M̃, g̃) are
equivalent iff there exists a biholomorphic isometry
ϕ : M → M̃.

I Two pseudo-product structures U ,W ⊂ TM and
Ũ , W̃ ⊂ T M̃ are equivalent iff there exists a biholomorphic
map ϕ : M → M̃ such that dϕ(U) = Ũ and dϕ(W) = W̃.

I Two absolute parallelisms ~v1, . . . , ~vn on M and ~̃v1, . . . ~̃vn on
M̃ are equivalent iff there exists a biholomorphic map
ϕ : M → M̃ such that

dϕ(~vi) = ~̃v i for i = 1, . . . ,n.
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Local equivalence of absolute parallelisms

I An absolute parallelism ~v1, . . . , ~vn on M determines
holomorphic functions c i

jk (x) on M defined by

[~vj , ~vk ] =
∑n

i=1 c i
jk (x)~vi for 1 ≤ j , k ≤ n.

Invariantly, it is a Hom(∧2V ,V )-valued function on M called
the torsion function of the absolute parallelism.

I The local equivalence problem for absolute
parallelisms can be effectively handled by torsion
functions. For example,

I c i
jk ≡ 0 for all i , j , k iff there exist local coordinates

z1, . . . , zn such that ~vi =
∂
∂z i , i = 1, . . . ,n.

I c i
jk ≡ constant for all i , j , k iff ~v1, . . . , ~vn are locally equivalent

to a basis of left-invariant fields ( Maurer-Cartan absolute
parallelism) on an n-dimensional Lie group.
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Cartan’s method to solve local equivalence problems

I There is a large class of subgroups G ⊂ GL(V ), called
groups of finite type, such that the local equivalence
problem for G-structures with the structure group of finite
type (= G-structures of finite type) can be reduced to
the local equivalence problem for absolute parallelisms.

Theorem (Cartan (Guillemin, Sternberg, Kobayashi, ...))

Each G-structure G ⊂ FM of finite type canonically
determines a fiber bundle P → M and an absolute parallelism
θ on P such that

G ⊂ FM locally equivalent to G̃ ⊂ FM̃
⇐⇒

θ ⊂ FP locally equivalent to θ̃ ⊂ FP̃.
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Some consequences of Cartan’s Theorem

Corollary

The automorphism group of a G-structure of finite type is
bounded by the dimension of the fiber bundle P → M in
Cartan’s Theorem.

I This is because the dimension of an absolute parallelism
on an n-dimensional manifold has dimension at most n.

Corollary

Any formal equivalence of G-structures of finite type is
convergent.

I This is because any formal equivalence of absolute
parallelisms is convergent.
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Cartan connections

I The fiber bundle P → M in Cartan’s theorem is a
succession of principal bundles

P = G(k) → G(k−1) → · · · → G(1) → G(0) → M,

with k ≥ 0 determined by the group G ⊂ GL(V ) of finite
type.

I Sometimes (for example, when k = 0), the whole fiber
bundle P → M becomes a single principal bundle on M
and the absolute parallelism θ on P behaves
equivariantly with respect to the action of the structure
group of P.

I If this happens, we call the pair (P, θ) a Cartan connection
on M. In this case, the torsion function of θ can be
regarded as a tensor field (= curvature tensor of the
G-structure) on M in a suitable sense.
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Idea of constructing P → M and θ ⊂ FP: Step 1

I In Cartan’s theorem, what is the succession of principal
bundles

P = G(k) → G(k−1) → · · · → G(1) → G(0) → M ?
I The first step G(0) → M is just the G-structure itself

G(0) = G ⊂ FM → M,

a principal bundle with the structure group G ⊂ GL(V ).

I When trying to find a canonical absolute parallelism on
G = G(0), we find that the obstruction lies in a subspace

g(1) ⊂ Hom(V , g(0))
determined by the Lie algebra g = g(0) ⊂ gl(V ) of the
group G ⊂ GL(V ).

I If g(1) = 0, we obtain a canonical absolute parallelism θ on
P := G(0) = G → M.
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Idea of constructing P → M and θ ⊂ FP: Step 2

I If g(1) 6= 0, the first step fails.
I The second step is to construct canonically a new principal

bundle G(1) → G(0) with the structure group G(1) whose Lie
algebra is g(1).

I When trying to find a canonical absolute parallelism on
G(1), we find that the obstruction lies in a subspace

g(2) ⊂ Hom(V , g(1))
determined by the Lie algebra g ⊂ gl(V ).

I If g(2) = 0, we obtain a canonical absolute parallelism θ on
P := G(1) → M.
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Idea of constructing P → M and θ ⊂ FP: Step m > 0

I If g(2) 6= 0, the second step fails.
I The third step is to construct canonically a new principal

bundle G(2) → G(1) with the structure group G(2) whose Lie
algebra is g(2), and so on.

I In the m-th step, when trying to find a canonical absolute
parallelism on G(m−1), we find that the obstruction lies in
a subspace

g(m) ⊂ Hom(V , g(m−1))

determined by the Lie algebra g ⊂ gl(V ).

I If g(m) = 0, we obtain a canonical absolute parallelism θ on
P := G(m−1) → M.

I The condition that G ⊂ GL(V ) is of finite type means
g(k) = 0 for some positive integer k . Thus the above
procedure, called Cartan prolongations, terminates at the
k -th step.
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Attempt to find θ in Step 1

I At each point h of the principal G-bundle G π→ M, the
vertical tangent space

T vert
h = Ker(dhπ), dhπ : ThG → TxM

is equipped with a natural isomorphism
θvert

h : g
'→ T vert

h

with the Lie algebra g of G.
I A subspace Hh ⊂ ThG is called horizontal if

ThG = T vert
h ⊕Hh. Any horizontal subspace is equipped

with a natural isomorphism

θHh : V h−→ TxM
(dhπ)

−1

−→ Hα.
I Thus if we can find a natural splitting TG = T vert ⊕H, we

obtain a natural absolute parallelism θvert ⊕ θH on G by
θvert

h ⊕ θHh : g⊕ V → T vert
h ⊕Hh = ThG.
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Torsion of a horizonal subspace

I A horizonal subspace Hh ⊂ ThG is the tangent to a local
section of G → M. Namely, it is a 1-jet of some absolute
parallelism ~v1, . . . , ~vn on a neighborhood of a point
x = π(h) ∈ M.

I The value at x ∈ M of the torsion function
[~vj , ~vk ] =

∑n
i=1 c i

jk~vi for 1 ≤ j , k ≤ n

is determined by the 1-jet of ~v1, . . . , ~vn at x .
I Thus we can define the torsion of a horizontal subspace:

a horizontal subspace Hh ⊂ ThG
⇓

its torsion c(Hh) ∈ Hom(∧2V ,V ).
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Variation of horizonal subspaces

I Vary the horizonal subspace Hh at h ∈ G:
ThG = T vert

h ⊕Hh,ε, Hh,0 = Hh.

They are parametrized by

ε ∈ Hom(Hh,T vert
h )

(θHh ,θvert
h )

== Hom(V , g).
I How does the torsion c(Hh,ε) depend on ε ∈ Hom(V , g)?
I Spencer map ∂ : Hom(V , g)→ Hom(∧2V ,V ) defined by

∂f (u, v) := f (u) · v − f (v) · u,
describes the change:

variation Hh,ε of Hh ⇔ ε ∈ Hom(V , g)
torsion ↓ ↓ ∂

c(Hh,ε)− c(Hh) = ∂ε ∈ Hom(∧2V ,V )
⇑ ∪

change in torsions ∈ Im(∂)
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The first prolongation g(1) ⊂ Hom(V , g)

I For Hom(V , g) ∂→ Hom(∧2V ,V ), fix a choice of W satisfying

Hom(∧2V ,V ) = Im(∂) ⊕ W.
∪ ∪

c(Hh) c(Hh)− c(Hh,ε)

Any Hh can be varied to Hh,ε with c(Hh,ε) ∈W.
I Define the first prolongation of g

g(1) := Ker(∂) ⊂ Hom(V , g) ∂→ Hom(∧2V ,V ).

I If g(1) = 0, Hh,ε satisfying c(Hh,ε) ∈W is unique.
I If g(1) = 0, we have a canonical splitting TG = T vert ⊕H

with c(H) ∈W, which gives a canonical absolute
parallelism θ on G.



The first prolongation g(1) ⊂ Hom(V , g)

I For Hom(V , g) ∂→ Hom(∧2V ,V ), fix a choice of W satisfying

Hom(∧2V ,V ) = Im(∂) ⊕ W.

∪ ∪
c(Hh) c(Hh)− c(Hh,ε)

Any Hh can be varied to Hh,ε with c(Hh,ε) ∈W.
I Define the first prolongation of g

g(1) := Ker(∂) ⊂ Hom(V , g) ∂→ Hom(∧2V ,V ).

I If g(1) = 0, Hh,ε satisfying c(Hh,ε) ∈W is unique.
I If g(1) = 0, we have a canonical splitting TG = T vert ⊕H

with c(H) ∈W, which gives a canonical absolute
parallelism θ on G.



The first prolongation g(1) ⊂ Hom(V , g)

I For Hom(V , g) ∂→ Hom(∧2V ,V ), fix a choice of W satisfying

Hom(∧2V ,V ) = Im(∂) ⊕ W.
∪ ∪

c(Hh) c(Hh)− c(Hh,ε)

Any Hh can be varied to Hh,ε with c(Hh,ε) ∈W.
I Define the first prolongation of g

g(1) := Ker(∂) ⊂ Hom(V , g) ∂→ Hom(∧2V ,V ).

I If g(1) = 0, Hh,ε satisfying c(Hh,ε) ∈W is unique.
I If g(1) = 0, we have a canonical splitting TG = T vert ⊕H

with c(H) ∈W, which gives a canonical absolute
parallelism θ on G.



The first prolongation g(1) ⊂ Hom(V , g)

I For Hom(V , g) ∂→ Hom(∧2V ,V ), fix a choice of W satisfying

Hom(∧2V ,V ) = Im(∂) ⊕ W.
∪ ∪

c(Hh) c(Hh)− c(Hh,ε)

Any Hh can be varied to Hh,ε with c(Hh,ε) ∈W.

I Define the first prolongation of g

g(1) := Ker(∂) ⊂ Hom(V , g) ∂→ Hom(∧2V ,V ).

I If g(1) = 0, Hh,ε satisfying c(Hh,ε) ∈W is unique.
I If g(1) = 0, we have a canonical splitting TG = T vert ⊕H

with c(H) ∈W, which gives a canonical absolute
parallelism θ on G.



The first prolongation g(1) ⊂ Hom(V , g)

I For Hom(V , g) ∂→ Hom(∧2V ,V ), fix a choice of W satisfying

Hom(∧2V ,V ) = Im(∂) ⊕ W.
∪ ∪

c(Hh) c(Hh)− c(Hh,ε)

Any Hh can be varied to Hh,ε with c(Hh,ε) ∈W.
I Define the first prolongation of g

g(1) := Ker(∂) ⊂ Hom(V , g) ∂→ Hom(∧2V ,V ).

I If g(1) = 0, Hh,ε satisfying c(Hh,ε) ∈W is unique.
I If g(1) = 0, we have a canonical splitting TG = T vert ⊕H

with c(H) ∈W, which gives a canonical absolute
parallelism θ on G.



The first prolongation g(1) ⊂ Hom(V , g)

I For Hom(V , g) ∂→ Hom(∧2V ,V ), fix a choice of W satisfying

Hom(∧2V ,V ) = Im(∂) ⊕ W.
∪ ∪

c(Hh) c(Hh)− c(Hh,ε)

Any Hh can be varied to Hh,ε with c(Hh,ε) ∈W.
I Define the first prolongation of g

g(1) := Ker(∂) ⊂ Hom(V , g) ∂→ Hom(∧2V ,V ).

I If g(1) = 0, Hh,ε satisfying c(Hh,ε) ∈W is unique.

I If g(1) = 0, we have a canonical splitting TG = T vert ⊕H
with c(H) ∈W, which gives a canonical absolute
parallelism θ on G.



The first prolongation g(1) ⊂ Hom(V , g)

I For Hom(V , g) ∂→ Hom(∧2V ,V ), fix a choice of W satisfying

Hom(∧2V ,V ) = Im(∂) ⊕ W.
∪ ∪

c(Hh) c(Hh)− c(Hh,ε)

Any Hh can be varied to Hh,ε with c(Hh,ε) ∈W.
I Define the first prolongation of g

g(1) := Ker(∂) ⊂ Hom(V , g) ∂→ Hom(∧2V ,V ).

I If g(1) = 0, Hh,ε satisfying c(Hh,ε) ∈W is unique.
I If g(1) = 0, we have a canonical splitting TG = T vert ⊕H

with c(H) ∈W, which gives a canonical absolute
parallelism θ on G.



Going to the next step in Cartan prolongations

I If g(1) 6= 0, requiring c(Hh) ∈W does not fix the choice of a
horizontal subspace.

I In this case, consider G(1) → G(0), the bundle of all choices
of horizontal subspaces

ThG = T vert
h ⊕Hh satisfying c(Hh) ∈W.

I Then G(1) → G(0) is a principal bundle with the structure
group G(1) whose Lie algebra is g(1).

I Now we try to find a natural absolute parallelism on G(1).
The obstruction is a subspace g(2) ⊂ Hom(V , g(1)).

I The successive definitions of g(i) ⊂ Hom(V , g(i−1)) and
G(i) → G(i−1) are similar, although more complicated.
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Which g ⊂ gl(V ) is of finite type?

Theorem (Cartan, Kobayashi-Nagano)

If g ⊂ gl(V ) is an irreducible representation, then it is of
finite type unless

g = gl(V ), sl(V ), sp(V ), csp(V ).

I Example. The orthogonal group O(V , σ) has g(1) = 0. For
a Riemannian structure, the absolute parallelism θ on
P = G is the Levi-Civita connection.

I Example. The conformal orthogonal group CO(V , σ) has
g(1) 6= 0, g(2) = 0. A conformal structure has a natural
Cartan connection on G(1).
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Non-Examples of Cartan’s Theorem

I The structure group GU of a distribution is not of finite type.
I More generally, any G-structure determined by conditions

on a distribution is not of finite type. For example, the
structure group GU,W of a pseudo-product structure (=
para-CR structure) is not of finite type.

I This means that there are many interesting examples of
geometric structures to which Cartan’s Theorem
cannot be applied.
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Tanaka’s refinement of Cartan prolongation

I For G-structure determined by conditions on a distribution,
Noboru Tanaka discovered that if the underlying
distribution is bracket-generating, namely, successive Lie
brackets of sections of the distributions span TM, then we
can refine Cartan’s method.

I The key point is to replace the commutative vector
space V in our discussion of G-structures by a
noncommutative nilpotent Lie algebra arising from the
successive Lie brackets.

I We need to change the definitions of g(i), incorporating the
nilpotent structure. Then many examples satisfy g(k) = 0
for some positive integer k in this new sense, even when g
is of infinite type in the previous sense.
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