Canonical connections of geometric structures

Jun-Muk Hwang

IBS-CCG

February 2025, Osaka University

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

▲□▶▲圖▶▲圖▶▲圖▶ 圖 めんぐ

Because of the motivation from yesterday's lecture, we will work in the holomorphic category: all manifolds are complex manifolds and all maps/bundles etc. are holomorphic.

► Because of the motivation from yesterday's lecture, we will work in the holomorphic category: all manifolds are complex manifolds and all maps/bundles etc. are holomorphic. But all arguments work in the C[∞] or real-analytic categories as well.

- ► Because of the motivation from yesterday's lecture, we will work in the holomorphic category: all manifolds are complex manifolds and all maps/bundles etc. are holomorphic. But all arguments work in the C[∞] or real-analytic categories as well.
- The theory of geometric structures we discuss today is essentially local: it is concerned with what is happening in a neighborhood of a point on a manifold.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ► Because of the motivation from yesterday's lecture, we will work in the holomorphic category: all manifolds are complex manifolds and all maps/bundles etc. are holomorphic. But all arguments work in the C[∞] or real-analytic categories as well.
- The theory of geometric structures we discuss today is essentially local: it is concerned with what is happening in a neighborhood of a point on a manifold. In the holomorphic setting, however, any local result automatically has global consequences.

- ► Because of the motivation from yesterday's lecture, we will work in the holomorphic category: all manifolds are complex manifolds and all maps/bundles etc. are holomorphic. But all arguments work in the C[∞] or real-analytic categories as well.
- The theory of geometric structures we discuss today is essentially local: it is concerned with what is happening in a neighborhood of a point on a manifold. In the holomorphic setting, however, any local result automatically has global consequences.
- We will restrict our discussion to a special type of geometric structures, called G-structures. They include most of the interesting examples and their structure theory is well developed.

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへの

Fix a vector space V of dimension n.

- Fix a vector space V of dimension n.
- For a complex manifold *M* of dimension *n* and a point *x* ∈ *M*, a linear isomorphism *h* : *V* → *T_xM* is called a frame at *x*.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

- ► Fix a vector space *V* of dimension *n*.
- For a complex manifold M of dimension n and a point $x \in M$, a linear isomorphism $h: V \to T_x M$ is called a frame at x. If we fix a basis of V, a frame determines a basis of $T_x M$.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

- ► Fix a vector space *V* of dimension *n*.
- For a complex manifold M of dimension n and a point $x \in M$, a linear isomorphism $h: V \to T_x M$ is called a frame at x. If we fix a basis of V, a frame determines a basis of $T_x M$.
- ► Let F_xM := Isom(V, T_xM) be the set of all frames at x. The GL(V)-principal bundle

$$\mathbb{F}M:=\bigcup_{x\in M}\mathbb{F}_xM$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

over *M* is called the frame bundle of *M*.

- ► Fix a vector space *V* of dimension *n*.
- For a complex manifold M of dimension n and a point $x \in M$, a linear isomorphism $h: V \to T_x M$ is called a frame at x. If we fix a basis of V, a frame determines a basis of $T_x M$.
- ► Let F_xM := Isom(V, T_xM) be the set of all frames at x. The GL(V)-principal bundle

$$\mathbb{F}M:=\bigcup_{x\in M}\mathbb{F}_xM$$

over *M* is called the frame bundle of *M*.

For a complex Lie subgroup G ⊂ GL(V), a G-principal subbundle G ⊂ FM is called a G-structure with the structure group G on M.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 めんぐ

Fix a nondegenerate symmetric form σ on V.

- Fix a nondegenerate symmetric form σ on V.
- A holomorphic section g of Sym²T^{*}M is called a (holomorphic) Riemannian metric on M, if g_x is a nondegenerate symmetric form on T_xM for each x ∈ M.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Fix a nondegenerate symmetric form σ on V.
- A holomorphic section g of Sym²T^{*}M is called a (holomorphic) Riemannian metric on M, if g_x is a nondegenerate symmetric form on T_xM for each x ∈ M.
- ▶ A frame $h \in \text{Isom}(V, T_x M)$ is orthonormal if

 $g_x(h(u), h(v)) = \sigma(u, v)$ for $u, v \in V$.

うして 山田 マイボット ボット シックション

- Fix a nondegenerate symmetric form σ on V.
- A holomorphic section g of Sym² T^{*}M is called a (holomorphic) Riemannian metric on M, if g_x is a nondegenerate symmetric form on T_xM for each x ∈ M.
- A frame $h \in \text{Isom}(V, T_x M)$ is orthonormal if

$$g_x(h(u), h(v)) = \sigma(u, v)$$
 for $u, v \in V$.

うして 山田 マイボット ボット シックション

The subbundle G ⊂ FM consisting of orthonormal frames is a G-structure with the structure group O(V, σ) ⊂ GL(V), the orthogonal group with respect to σ.

- Fix a nondegenerate symmetric form σ on V.
- A holomorphic section g of Sym² T^{*}M is called a (holomorphic) Riemannian metric on M, if g_x is a nondegenerate symmetric form on T_xM for each x ∈ M.
- A frame $h \in \text{Isom}(V, T_x M)$ is orthonormal if

$$g_x(h(u), h(v)) = \sigma(u, v)$$
 for $u, v \in V$.

- The subbundle G ⊂ FM consisting of orthonormal frames is a G-structure with the structure group O(V, σ) ⊂ GL(V), the orthogonal group with respect to σ.
- Conversely, a G-structure on M with the structure group $O(V, \sigma) \subset GL(V)$ determines a Riemannian metric on M.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 めんぐ

A holomorphic section g of (Sym²T*M) ⊗ L for a line bundle L on M is called a (holomorphic) conformal structure on M, if g_x is a L_x-valued nondegenerate symmetric form on T_xM for each x ∈ M.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A holomorphic section g of (Sym²T*M) ⊗ L for a line bundle L on M is called a (holomorphic) conformal structure on M, if g_x is a L_x-valued nondegenerate symmetric form on T_xM for each x ∈ M.

• A frame $h \in \text{Isom}(V, T_x M)$ is conformal if

 $g_x(h(u),h(v)) = \sigma(u,v)\ell_h$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

for some $\ell_h \in L_x$ and all $u, v \in V$.

- A holomorphic section g of (Sym²T*M) ⊗ L for a line bundle L on M is called a (holomorphic) conformal structure on M, if g_x is a L_x-valued nondegenerate symmetric form on T_xM for each x ∈ M.
- A frame $h \in \text{Isom}(V, T_X M)$ is conformal if

 $g_x(h(u),h(v)) = \sigma(u,v)\ell_h$

for some $\ell_h \in L_x$ and all $u, v \in V$.

The subbundle *G* ⊂ 𝔽*M* consisting of conformal frames is a G-structure with the structure group

 $\operatorname{CO}(V, \sigma) = \mathbb{C}^* \operatorname{Id}_V \cdot \operatorname{O}(V, \sigma) \subset \operatorname{GL}(V).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- A holomorphic section g of (Sym²T*M) ⊗ L for a line bundle L on M is called a (holomorphic) conformal structure on M, if g_x is a L_x-valued nondegenerate symmetric form on T_xM for each x ∈ M.
- A frame $h \in \text{Isom}(V, T_X M)$ is conformal if

 $g_x(h(u),h(v)) = \sigma(u,v)\ell_h$

for some $\ell_h \in L_x$ and all $u, v \in V$.

The subbundle *G* ⊂ 𝔽*M* consisting of conformal frames is a G-structure with the structure group

 $\operatorname{CO}(V, \sigma) = \mathbb{C}^* \operatorname{Id}_V \cdot \operatorname{O}(V, \sigma) \subset \operatorname{GL}(V).$

• Conversely, a G-structure on M with the structure group $CO(V, \sigma) \subset GL(V)$ determines a conformal structure on M.

Example: Distribution

▲□▶▲□▶▲□▶▲□▶ □ のへで

Example: Distribution

▶ Fix a subspace $D \subset V$ of dimension k < n and let $G_D \subset GL(V)$ be the subgroup $G_D := \{g \in GL(V) \mid g \cdot D = D\}.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Fix a subspace D ⊂ V of dimension k < n and let G_D ⊂ GL(V) be the subgroup

$$G_D := \{g \in \operatorname{GL}(V) \mid g \cdot D = D\}.$$

A distribution (= vector subbundle) D ⊂ TM of rank k determines a G-structure G ⊂ FM with the structure group G_D such that the fiber at x ∈ M is given by

$$\mathcal{G}_{x} := \{h \in \operatorname{Isom}(V, T_{x}M) \mid h(D) = \mathcal{D}_{x} \subset T_{x}M\}.$$

Fix a subspace D ⊂ V of dimension k < n and let G_D ⊂ GL(V) be the subgroup

$$G_D := \{g \in \operatorname{GL}(V) \mid g \cdot D = D\}.$$

A distribution (= vector subbundle) D ⊂ TM of rank k determines a G-structure G ⊂ FM with the structure group G_D such that the fiber at x ∈ M is given by

$$\mathcal{G}_{\mathsf{X}} := \{ h \in \operatorname{Isom}(\mathsf{V}, \mathsf{T}_{\mathsf{X}}\mathsf{M}) \mid h(\mathsf{D}) = \mathcal{D}_{\mathsf{X}} \subset \mathsf{T}_{\mathsf{X}}\mathsf{M} \}.$$

• Conversely, a G-structure on M with the structure group $G_D \subset \operatorname{GL}(V)$ determines a distribution $\mathcal{D} \subset TM$ of rank k.

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへの

Fix subspaces U, W ⊂ V with dim U = k, dim W = l and U ∩ W = 0 and let G_{U,W} ⊂ GL(V) be the subgroup G_{U,W} := {g ∈ GL(V) | g ⋅ U = U, g ⋅ W = W}.

Fix subspaces U, W ⊂ V with dim U = k, dim W = l and U ∩ W = 0 and let G_{U,W} ⊂ GL(V) be the subgroup G_{U,W} := {g ∈ GL(V) | g ⋅ U = U, g ⋅ W = W}.
A pair of distributions (= vector subbundles) U, W ⊂ TM of rank k and l with U ∩ W = 0 determine a G-structure G ⊂ FM with the structure group G_{U,W} ⊂ GL(V).

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Fix subspaces $U, W \subset V$ with

dim U = k, dim $W = \ell$ and $U \cap W = 0$

and let $G_{U,W} \subset \operatorname{GL}(V)$ be the subgroup

 $G_{U,W} := \{g \in \operatorname{GL}(V) \mid g \cdot U = U, g \cdot W = W\}.$

- A pair of distributions (= vector subbundles) U, W ⊂ TM of rank k and ℓ with U ∩ W = 0 determine a G-structure G ⊂ FM with the structure group G_{U,W} ⊂ GL(V).
- Such a G-structure is called a pseudo-product structure on *M* if the two distributions *U* and *W* are integrable. In other words, it is a pair of transversally intersecting foliations on *M*.

Example: Absolute parallelism

▲□▶▲圖▶▲圖▶▲圖▶ 圖 めぬぐ

When G = {e} ⊂ GL(V) is the identity subgroup, a G-structure G ⊂ FM with the structure group G = {e} is a holomorphic section of the frame bundle FM → M. When G = {e} ⊂ GL(V) is the identity subgroup, a G-structure G ⊂ FM with the structure group G = {e} is a holomorphic section of the frame bundle FM → M.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Such a G-structure is also called
 - an {e}-structure on M

When G = {e} ⊂ GL(V) is the identity subgroup, a G-structure G ⊂ FM with the structure group G = {e} is a holomorphic section of the frame bundle FM → M.

- Such a G-structure is also called
 - ▶ an {*e*}-structure on *M*
 - a moving frame on M
When G = {e} ⊂ GL(V) is the identity subgroup, a G-structure G ⊂ FM with the structure group G = {e} is a holomorphic section of the frame bundle FM → M.

- Such a G-structure is also called
 - ▶ an {e}-structure on M
 - a moving frame on M
 - a flat affine connection on M

When G = {e} ⊂ GL(V) is the identity subgroup, a G-structure G ⊂ FM with the structure group G = {e} is a holomorphic section of the frame bundle FM → M.

うして 山田 マイボット ボット シックション

- Such a G-structure is also called
 - ▶ an {e}-structure on M
 - a moving frame on M
 - a flat affine connection on M
 - ► an absolute parallelism on *M*.

- When G = {e} ⊂ GL(V) is the identity subgroup, a G-structure G ⊂ FM with the structure group G = {e} is a holomorphic section of the frame bundle FM → M.
- Such a G-structure is also called
 - an {e}-structure on M
 - a moving frame on M
 - a flat affine connection on M
 - an absolute parallelism on M.
- ▶ By fixing a basis of *V*, an absolute parallelism can be represented as a collection of vector fields $\vec{v}_1, \ldots, \vec{v}_n$ on *M* which gives a basis of $T_x M$ at every $x \in M$.

うして 山田 マイボット ボット シックション

▲□▶▲□▶▲□▶▲□▶ □ つへで

We say that two G-structures G ⊂ FM and G̃ ⊂ F̃M with the same structure group G ⊂ GL(V) are equivalent if there exists a biholomorphic map φ : M → M̃ such that the induced map φ_{*} : FM → F̃M sends G to G̃.

うして 山田 マイボット ボット シックション

- We say that two G-structures G ⊂ FM and G̃ ⊂ F̃M with the same structure group G ⊂ GL(V) are equivalent if there exists a biholomorphic map φ : M → M̃ such that the induced map φ_{*} : FM → F̃M sends G to G̃.
- We say that they are locally equivalent if there are open subsets O ⊂ M and O ⊂ M such that the G-structures obtained by restrictions

$$\mathcal{G}|_{\mathcal{O}} \subset \mathbb{F}\mathcal{O} \text{ and } \widetilde{\mathcal{G}}|_{\widetilde{\mathcal{O}}} \subset \mathbb{F}\widetilde{\mathcal{O}}$$

うして 山田 マイボット ボット シックション

are equivalent.

- We say that two G-structures G ⊂ FM and G̃ ⊂ F̃M̃ with the same structure group G ⊂ GL(V) are equivalent if there exists a biholomorphic map φ : M → M̃ such that the induced map φ_{*} : FM → F̃M̃ sends G to G̃.
- We say that they are locally equivalent if there are open subsets O ⊂ M and Õ ⊂ M̃ such that the G-structures obtained by restrictions

$$\mathcal{G}|_{\mathcal{O}} \subset \mathbb{F}\mathcal{O} \text{ and } \widetilde{\mathcal{G}}|_{\widetilde{\mathcal{O}}} \subset \mathbb{F}\widetilde{\mathcal{O}}$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

are equivalent.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 めんぐ

Two Riemannian structures (M,g) and (M̃, g̃) are equivalent iff there exists a biholomorphic isometry φ : M → M̃.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Two Riemannian structures (M,g) and (M̃, g̃) are equivalent iff there exists a biholomorphic isometry φ : M → M̃.

うして 山田 マイボット ボット シックション

- Two Riemannian structures (M,g) and (M̃, g̃) are equivalent iff there exists a biholomorphic isometry φ : M → M̃.
- Two absolute parallelisms $\vec{v}_1, \ldots, \vec{v}_n$ on M and $\tilde{\vec{v}}_1, \ldots, \tilde{\vec{v}}_n$ on \tilde{M} are equivalent iff there exists a biholomorphic map $\varphi: M \to \tilde{M}$ such that

$$\mathrm{d}\varphi(\vec{v}_i) = \tilde{\vec{v}}_i \text{ for } i = 1, \ldots, n.$$

(日) (日) (日) (日) (日) (日) (日)

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• An absolute parallelism $\vec{v}_1, \ldots, \vec{v}_n$ on *M* determines holomorphic functions $c_{jk}^i(x)$ on *M* defined by

$$[\vec{v}_{j}, \vec{v}_{k}] = \sum_{i=1}^{n} c^{i}_{jk}(x) \vec{v}_{i}$$
 for $1 \le j, k \le n$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

► An absolute parallelism $\vec{v}_1, ..., \vec{v}_n$ on *M* determines holomorphic functions $c_{ik}^i(x)$ on *M* defined by

$$[\vec{v}_{j}, \vec{v}_{k}] = \sum_{i=1}^{n} c_{jk}^{i}(x) \vec{v}_{i}$$
 for $1 \le j, k \le n$.

Invariantly, it is a Hom($\wedge^2 V$, V)-valued function on M called the torsion function of the absolute parallelism.

うしん 山田 ・山田・山田・山田・

► An absolute parallelism $\vec{v}_1, \ldots, \vec{v}_n$ on *M* determines holomorphic functions $c_{ik}^i(x)$ on *M* defined by

$$[\vec{v}_{j}, \vec{v}_{k}] = \sum_{i=1}^{n} c_{jk}^{i}(x) \vec{v}_{i}$$
 for $1 \le j, k \le n$.

Invariantly, it is a Hom($\wedge^2 V$, V)-valued function on M called the torsion function of the absolute parallelism.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The local equivalence problem for absolute parallelisms can be effectively handled by torsion functions. For example,

► An absolute parallelism $\vec{v}_1, \ldots, \vec{v}_n$ on *M* determines holomorphic functions $c_{ik}^i(x)$ on *M* defined by

$$[\vec{v}_{j}, \vec{v}_{k}] = \sum_{i=1}^{n} c_{jk}^{i}(x) \vec{v}_{i}$$
 for $1 \le j, k \le n$.

Invariantly, it is a Hom($\wedge^2 V$, V)-valued function on M called the torsion function of the absolute parallelism.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The local equivalence problem for absolute parallelisms can be effectively handled by torsion functions. For example,

•
$$c_{jk}^i \equiv 0$$
 for all i, j, k iff there exist local coordinates z^1, \ldots, z^n such that $\vec{v}_i = \frac{\partial}{\partial z^i}, i = 1, \ldots, n$.

► An absolute parallelism $\vec{v}_1, \ldots, \vec{v}_n$ on *M* determines holomorphic functions $c_{ik}^i(x)$ on *M* defined by

$$[\vec{v}_{j}, \vec{v}_{k}] = \sum_{i=1}^{n} c_{jk}^{i}(x) \vec{v}_{i}$$
 for $1 \le j, k \le n$.

Invariantly, it is a Hom($\wedge^2 V$, V)-valued function on M called the torsion function of the absolute parallelism.

- The local equivalence problem for absolute parallelisms can be effectively handled by torsion functions. For example,
- $c_{jk}^i \equiv 0$ for all i, j, k iff there exist local coordinates z^1, \ldots, z^n such that $\vec{v}_i = \frac{\partial}{\partial z^i}, i = 1, \ldots, n$.
- ► $c_{jk}^i \equiv \text{constant for all } i, j, k \text{ iff } \vec{v}_1, \dots, \vec{v}_n \text{ are locally equivalent to a basis of left-invariant fields (Maurer-Cartan absolute parallelism) on an$ *n*-dimensional Lie group.

<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□>
<□></p

There is a large class of subgroups G ⊂ GL(V), called groups of finite type, such that the local equivalence problem for G-structures with the structure group of finite type (= G-structures of finite type) can be reduced to the local equivalence problem for absolute parallelisms.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

There is a large class of subgroups G ⊂ GL(V), called groups of finite type, such that the local equivalence problem for G-structures with the structure group of finite type (= G-structures of finite type) can be reduced to the local equivalence problem for absolute parallelisms.

Theorem (Cartan (Guillemin, Sternberg, Kobayashi, ...))

うして 山田 マイボット ボット シックション

There is a large class of subgroups G ⊂ GL(V), called groups of finite type, such that the local equivalence problem for G-structures with the structure group of finite type (= G-structures of finite type) can be reduced to the local equivalence problem for absolute parallelisms.

Theorem (Cartan (Guillemin, Sternberg, Kobayashi, ...))

Each G-structure $\mathcal{G} \subset \mathbb{F}M$ of finite type **canonically** determines a fiber bundle $\mathcal{P} \to M$ and an absolute parallelism θ on \mathcal{P}

There is a large class of subgroups G ⊂ GL(V), called groups of finite type, such that the local equivalence problem for G-structures with the structure group of finite type (= G-structures of finite type) can be reduced to the local equivalence problem for absolute parallelisms.

Theorem (Cartan (Guillemin, Sternberg, Kobayashi, ...))

Each G-structure $\mathcal{G} \subset \mathbb{F}M$ of finite type **canonically** determines a fiber bundle $\mathcal{P} \to M$ and an absolute parallelism θ on \mathcal{P} such that

 $\mathcal{G} \subset \mathbb{F}M$ locally equivalent to $\widetilde{\mathcal{G}} \subset \mathbb{F}\widetilde{M}$

 $\theta \subset \mathbb{F}\mathcal{P}$ locally equivalent to $\widetilde{\theta} \subset \mathbb{F}\widetilde{\mathcal{P}}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Some consequences of Cartan's Theorem

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The automorphism group of a G-structure of finite type is bounded by the dimension of the fiber bundle $\mathcal{P} \to M$ in Cartan's Theorem.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

The automorphism group of a G-structure of finite type is bounded by the dimension of the fiber bundle $\mathcal{P} \to M$ in Cartan's Theorem.

► This is because the dimension of an absolute parallelism on an *n*-dimensional manifold has dimension at most *n*.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

The automorphism group of a G-structure of finite type is bounded by the dimension of the fiber bundle $\mathcal{P} \to M$ in Cartan's Theorem.

► This is because the dimension of an absolute parallelism on an *n*-dimensional manifold has dimension at most *n*.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Corollary

Any formal equivalence of G-structures of finite type is convergent.

The automorphism group of a G-structure of finite type is bounded by the dimension of the fiber bundle $\mathcal{P} \to M$ in Cartan's Theorem.

► This is because the dimension of an absolute parallelism on an *n*-dimensional manifold has dimension at most *n*.

Corollary

Any formal equivalence of G-structures of finite type is convergent.

 This is because any formal equivalence of absolute parallelisms is convergent.

<ロ> < 団> < 団> < 豆> < 豆> < 豆> < 豆</p>

► The fiber bundle $\mathcal{P} \rightarrow M$ in Cartan's theorem is a succession of principal bundles

$$\mathcal{P} = \mathcal{G}^{(k)} \to \mathcal{G}^{(k-1)} \to \cdots \to \mathcal{G}^{(1)} \to \mathcal{G}^{(0)} \to M,$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

with $k \ge 0$ determined by the group $G \subset GL(V)$ of finite type.

► The fiber bundle $\mathcal{P} \rightarrow M$ in Cartan's theorem is a succession of principal bundles

 $\mathcal{P} = \mathcal{G}^{(k)} \to \mathcal{G}^{(k-1)} \to \cdots \to \mathcal{G}^{(1)} \to \mathcal{G}^{(0)} \to M,$

with $k \ge 0$ determined by the group $G \subset GL(V)$ of finite type.

Sometimes (for example, when k = 0), the whole fiber bundle P → M becomes a single principal bundle on M and the absolute parallelism θ on P behaves equivariantly with respect to the action of the structure group of P.

► The fiber bundle P → M in Cartan's theorem is a succession of principal bundles

 $\mathcal{P} = \mathcal{G}^{(k)} \to \mathcal{G}^{(k-1)} \to \cdots \to \mathcal{G}^{(1)} \to \mathcal{G}^{(0)} \to M,$

with $k \ge 0$ determined by the group $G \subset GL(V)$ of finite type.

- Sometimes (for example, when k = 0), the whole fiber bundle P → M becomes a single principal bundle on M and the absolute parallelism θ on P behaves equivariantly with respect to the action of the structure group of P.
- ► If this happens, we call the pair (\mathcal{P}, θ) a Cartan connection on *M*.

► The fiber bundle P → M in Cartan's theorem is a succession of principal bundles

 $\mathcal{P} = \mathcal{G}^{(k)} \to \mathcal{G}^{(k-1)} \to \cdots \to \mathcal{G}^{(1)} \to \mathcal{G}^{(0)} \to M,$

with $k \ge 0$ determined by the group $G \subset GL(V)$ of finite type.

- Sometimes (for example, when k = 0), the whole fiber bundle P → M becomes a single principal bundle on M and the absolute parallelism θ on P behaves equivariantly with respect to the action of the structure group of P.
- If this happens, we call the pair (P, θ) a Cartan connection on M. In this case, the torsion function of θ can be regarded as a tensor field (= curvature tensor of the G-structure) on M in a suitable sense.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 めんぐ

 In Cartan's theorem, what is the succession of principal bundles

$$\mathcal{P} = \mathcal{G}^{(k)} \to \mathcal{G}^{(k-1)} \to \cdots \to \mathcal{G}^{(1)} \to \mathcal{G}^{(0)} \to M$$
?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

 In Cartan's theorem, what is the succession of principal bundles

 $\mathcal{P} = \mathcal{G}^{(k)} \to \mathcal{G}^{(k-1)} \to \cdots \to \mathcal{G}^{(1)} \to \mathcal{G}^{(0)} \to M$?

► The first step $\mathcal{G}^{(0)} \to M$ is just the G-structure itself $\mathcal{G}^{(0)} = \mathcal{G} \subset \mathbb{F}M \to M$,

a principal bundle with the structure group $G \subset GL(V)$.

 In Cartan's theorem, what is the succession of principal bundles

 $\mathcal{P} = \mathcal{G}^{(k)} \to \mathcal{G}^{(k-1)} \to \cdots \to \mathcal{G}^{(1)} \to \mathcal{G}^{(0)} \to M$?

► The first step $\mathcal{G}^{(0)} \to M$ is just the G-structure itself $\mathcal{G}^{(0)} = \mathcal{G} \subset \mathbb{F}M \to M,$

a principal bundle with the structure group $G \subset GL(V)$.

▶ When trying to find a canonical absolute parallelism on $\mathcal{G} = \mathcal{G}^{(0)}$, we find that the **obstruction lies in** a subspace

 $\mathfrak{g}^{(1)} \subset \operatorname{Hom}(V, \mathfrak{g}^{(0)})$

うしん 山田 ・山田・山田・山田・

determined by the Lie algebra $\mathfrak{g} = \mathfrak{g}^{(0)} \subset \mathfrak{gl}(V)$ of the group $G \subset \operatorname{GL}(V)$.
In Cartan's theorem, what is the succession of principal bundles

 $\mathcal{P} = \mathcal{G}^{(k)} \to \mathcal{G}^{(k-1)} \to \cdots \to \mathcal{G}^{(1)} \to \mathcal{G}^{(0)} \to M$?

► The first step $\mathcal{G}^{(0)} \to M$ is just the G-structure itself $\mathcal{G}^{(0)} = \mathcal{G} \subset \mathbb{F}M \to M,$

a principal bundle with the structure group $G \subset GL(V)$.

▶ When trying to find a canonical absolute parallelism on $\mathcal{G} = \mathcal{G}^{(0)}$, we find that the **obstruction lies in** a subspace

 $\mathfrak{g}^{(1)} \subset \operatorname{Hom}(V, \mathfrak{g}^{(0)})$

determined by the Lie algebra $\mathfrak{g} = \mathfrak{g}^{(0)} \subset \mathfrak{gl}(V)$ of the group $G \subset \operatorname{GL}(V)$.

• If $\mathfrak{g}^{(1)} = 0$, we obtain a canonical absolute parallelism θ on $\mathcal{P} := \mathcal{G}^{(0)} = \mathcal{G} \to M$.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 めぬぐ

• If $\mathfrak{g}^{(1)} \neq 0$, the first step fails.

- If $\mathfrak{g}^{(1)} \neq 0$, the first step fails.
- The second step is to construct canonically a new principal bundle G⁽¹⁾ → G⁽⁰⁾ with the structure group G⁽¹⁾ whose Lie algebra is g⁽¹⁾.

うして 山田 マイボット ボット シックション

- If $\mathfrak{g}^{(1)} \neq 0$, the first step fails.
- The second step is to construct canonically a new principal bundle G⁽¹⁾ → G⁽⁰⁾ with the structure group G⁽¹⁾ whose Lie algebra is g⁽¹⁾.
- When trying to find a canonical absolute parallelism on $\mathcal{G}^{(1)}$, we find that the **obstruction lies in** a subspace

 $\mathfrak{g}^{(2)} \subset \operatorname{Hom}(V,\mathfrak{g}^{(1)})$

うして 山田 マイボット ボット シックション

determined by the Lie algebra $\mathfrak{g} \subset \mathfrak{gl}(V)$.

- If $\mathfrak{g}^{(1)} \neq 0$, the first step fails.
- The second step is to construct canonically a new principal bundle G⁽¹⁾ → G⁽⁰⁾ with the structure group G⁽¹⁾ whose Lie algebra is g⁽¹⁾.
- When trying to find a canonical absolute parallelism on $\mathcal{G}^{(1)}$, we find that the **obstruction lies in** a subspace

 $\mathfrak{g}^{(2)} \subset \operatorname{Hom}(V, \mathfrak{g}^{(1)})$

うして 山田 マイボット ボット シックション

determined by the Lie algebra $\mathfrak{g} \subset \mathfrak{gl}(V)$.

• If $\mathfrak{g}^{(2)} = 0$, we obtain a canonical absolute parallelism θ on $\mathcal{P} := \mathcal{G}^{(1)} \to M$.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

• If $\mathfrak{g}^{(2)} \neq 0$, the second step fails.

- If $\mathfrak{g}^{(2)} \neq 0$, the second step fails.
- ► The third step is to construct canonically a new principal bundle G⁽²⁾ → G⁽¹⁾ with the structure group G⁽²⁾ whose Lie algebra is g⁽²⁾, and so on.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- If $\mathfrak{g}^{(2)} \neq 0$, the second step fails.
- ► The third step is to construct canonically a new principal bundle G⁽²⁾ → G⁽¹⁾ with the structure group G⁽²⁾ whose Lie algebra is g⁽²⁾, and so on.
- In the *m*-th step, when trying to find a canonical absolute parallelism on *G*^(*m*−1), we find that the **obstruction lies in** a subspace

 $\mathfrak{g}^{(m)} \subset \operatorname{Hom}(V, \mathfrak{g}^{(m-1)})$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

determined by the Lie algebra $\mathfrak{g} \subset \mathfrak{gl}(V)$.

- If $\mathfrak{g}^{(2)} \neq 0$, the second step fails.
- ► The third step is to construct canonically a new principal bundle G⁽²⁾ → G⁽¹⁾ with the structure group G⁽²⁾ whose Lie algebra is g⁽²⁾, and so on.
- In the *m*-th step, when trying to find a canonical absolute parallelism on *G*^(*m*−1), we find that the **obstruction lies in** a subspace

 $\mathfrak{g}^{(m)} \subset \operatorname{Hom}(V, \mathfrak{g}^{(m-1)})$

determined by the Lie algebra $\mathfrak{g} \subset \mathfrak{gl}(V)$.

• If $\mathfrak{g}^{(m)} = 0$, we obtain a canonical absolute parallelism θ on $\mathcal{P} := \mathcal{G}^{(m-1)} \to M$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- If $\mathfrak{g}^{(2)} \neq 0$, the second step fails.
- ► The third step is to construct canonically a new principal bundle G⁽²⁾ → G⁽¹⁾ with the structure group G⁽²⁾ whose Lie algebra is g⁽²⁾, and so on.
- In the *m*-th step, when trying to find a canonical absolute parallelism on *G*^(*m*−1), we find that the **obstruction lies in** a subspace

 $\mathfrak{g}^{(m)} \subset \operatorname{Hom}(V, \mathfrak{g}^{(m-1)})$

determined by the Lie algebra $\mathfrak{g} \subset \mathfrak{gl}(V)$.

- If $\mathfrak{g}^{(m)} = 0$, we obtain a canonical absolute parallelism θ on $\mathcal{P} := \mathcal{G}^{(m-1)} \to M$.
- The condition that G ⊂ GL(V) is of finite type means g^(k) = 0 for some positive integer k. Thus the above procedure, called Cartan prolongations, terminates at the k-th step.

▲□▶▲□▶▲目▶▲目▶ 目 のへの

► At each point *h* of the principal *G*-bundle $\mathcal{G} \xrightarrow{\pi} M$, the vertical tangent space

$$T_h^{\text{vert}} = \text{Ker}(\mathbf{d}_h \pi), \ \mathbf{d}_h \pi : T_h \mathcal{G} \to T_X M$$

is equipped with a natural isomorphism

$$\theta_h^{\text{vert}}:\mathfrak{g}\stackrel{\simeq}{\to} T_h^{\text{vert}}$$

with the Lie algebra \mathfrak{g} of G.

► At each point *h* of the principal *G*-bundle $\mathcal{G} \xrightarrow{\pi} M$, the vertical tangent space

$$T_h^{\text{vert}} = \text{Ker}(\mathbf{d}_h \pi), \ \mathbf{d}_h \pi : T_h \mathcal{G} \to T_x M$$

is equipped with a natural isomorphism

$$\theta_h^{\mathrm{vert}}:\mathfrak{g}\stackrel{\simeq}{\to} T_h^{\mathrm{vert}}$$

with the Lie algebra g of G.

A subspace *H_h* ⊂ *T_hG* is called **horizontal** if *T_hG* = *T_h^{vert}* ⊕ *H_h*. Any horizontal subspace is equipped with a natural isomorphism

$$\theta^{\mathcal{H}_h}: V \stackrel{h}{\longrightarrow} T_X M \stackrel{(\mathrm{d}_h \pi)^{-1}}{\longrightarrow} \mathcal{H}_{\alpha}$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

► At each point *h* of the principal *G*-bundle $\mathcal{G} \xrightarrow{\pi} M$, the vertical tangent space

$$T_h^{\text{vert}} = \text{Ker}(\mathbf{d}_h \pi), \ \mathbf{d}_h \pi : T_h \mathcal{G} \to T_x M$$

is equipped with a natural isomorphism

$$\theta_h^{\mathrm{vert}}:\mathfrak{g} \stackrel{\simeq}{\to} T_h^{\mathrm{vert}}$$

with the Lie algebra \mathfrak{g} of G.

A subspace *H_h* ⊂ *T_hG* is called **horizontal** if *T_hG* = *T^{vert}_h* ⊕ *H_h*. Any horizontal subspace is equipped with a natural isomorphism

$$\theta^{\mathcal{H}_h}: V \stackrel{h}{\longrightarrow} T_X M \stackrel{(\mathrm{d}_h \pi)^{-1}}{\longrightarrow} \mathcal{H}_{\alpha}$$

► Thus if we can find a natural splitting $T\mathcal{G} = T^{\text{vert}} \oplus \mathcal{H}$, we obtain a natural absolute parallelism $\theta^{\text{vert}} \oplus \theta^{\mathcal{H}}$ on \mathcal{G} by

$$\theta_h^{\text{vert}} \oplus \theta^{\mathcal{H}_h} : \mathfrak{g} \oplus V \to T_h^{\text{vert}} \oplus \mathcal{H}_h = T_h \mathcal{G}_h$$

Torsion of a horizonal subspace

▲ロト ▲園 ▶ ▲ 国 ▶ ▲ 国 ▶ ● のへで

A horizonal subspace H_h ⊂ T_hG is the tangent to a local section of G → M. Namely, it is a 1-jet of some absolute parallelism v
₁,..., v
_n on a neighborhood of a point x = π(h) ∈ M.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

A horizonal subspace H_h ⊂ T_hG is the tangent to a local section of G → M. Namely, it is a 1-jet of some absolute parallelism v
₁,..., v
_n on a neighborhood of a point x = π(h) ∈ M.

• The value at $x \in M$ of the torsion function

$$[\vec{v}_j, \vec{v}_k] = \sum_{i=1}^n c_{jk}^i \vec{v}_i$$
 for $1 \le j, k \le n$

is determined by the 1-jet of $\vec{v}_1, \ldots, \vec{v}_n$ at *x*.

- A horizonal subspace H_h ⊂ T_hG is the tangent to a local section of G → M. Namely, it is a 1-jet of some absolute parallelism v
 ₁,..., v
 _n on a neighborhood of a point x = π(h) ∈ M.
- The value at $x \in M$ of the torsion function

$$[\vec{v}_j, \vec{v}_k] = \sum_{i=1}^n c_{jk}^i \vec{v}_i$$
 for $1 \le j, k \le n$

is determined by the 1-jet of $\vec{v}_1, \ldots, \vec{v}_n$ at *x*.

Thus we can define the torsion of a horizontal subspace:

a horizontal subspace
$$\mathcal{H}_h \subset T_h \mathcal{G}$$

 $\downarrow \downarrow$
its torsion $c(\mathcal{H}_h) \in \operatorname{Hom}(\wedge^2 V, V)$.

うして 山田 マイボット ボット シックション

▲□▶▲圖▶▲圖▶▲圖▶ 圖 めんぐ

• Vary the horizonal subspace \mathcal{H}_h at $h \in \mathcal{G}$:

 $T_h \mathcal{G} = T_h^{\text{vert}} \oplus \mathcal{H}_{h,\varepsilon}, \ \mathcal{H}_{h,0} = \mathcal{H}_h.$

Vary the horizonal subspace *H_h* at *h* ∈ *G*:
 T_hG = *T_h^{vert}* ⊕ *H_{h,ε}*, *H_{h,0}* = *H_h*.
 They are parametrized by

$$\varepsilon \in \operatorname{Hom}(\mathcal{H}_h, T_h^{\operatorname{vert}}) \stackrel{(\theta^{\mathcal{H}_h, \theta_h^{\operatorname{vert}}})}{==} \operatorname{Hom}(V, \mathfrak{g}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

- Vary the horizonal subspace H_h at h ∈ G: T_hG = T^{vert}_h ⊕ H_{h,ε}, H_{h,0} = H_h. They are parametrized by ε ∈ Hom(H_h, T^{vert}_h) ^(θ^Hh,θ^{vert})₌₌ Hom(V,g).
- ▶ How does the torsion $c(\mathcal{H}_{h,\varepsilon})$ depend on $\varepsilon \in \text{Hom}(V, \mathfrak{g})$?

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

► Vary the horizonal subspace \mathcal{H}_h at $h \in \mathcal{G}$: $T_h \mathcal{G} = T_h^{\text{vert}} \oplus \mathcal{H}_{h,\varepsilon}, \ \mathcal{H}_{h,0} = \mathcal{H}_h.$ They are parametrized by

$$\varepsilon \in \operatorname{Hom}(\mathcal{H}_h, T_h^{\operatorname{vert}}) \stackrel{(\theta^{\mathcal{H}_h, \theta_h^{\operatorname{vert}}})}{==} \operatorname{Hom}(V, \mathfrak{g}).$$

- ▶ How does the torsion $c(\mathcal{H}_{h,\varepsilon})$ depend on $\varepsilon \in \operatorname{Hom}(V, \mathfrak{g})$?
- ► Spencer map ∂ : Hom(V, \mathfrak{g}) \rightarrow Hom($\wedge^2 V, V$) defined by $\partial f(u, v) := f(u) \cdot v - f(v) \cdot u$,

describes the change:

► Vary the horizonal subspace \mathcal{H}_h at $h \in \mathcal{G}$: $T_h \mathcal{G} = T_h^{\text{vert}} \oplus \mathcal{H}_{h,\varepsilon}, \ \mathcal{H}_{h,0} = \mathcal{H}_h.$ They are parametrized by

$$\varepsilon \in \operatorname{Hom}(\mathcal{H}_h, T_h^{\operatorname{vert}}) \stackrel{(\theta^{\mathcal{H}_h, \theta_h^{\operatorname{vert}}})}{==} \operatorname{Hom}(\mathcal{V}, \mathfrak{g}).$$

- ▶ How does the torsion $c(H_{h,\varepsilon})$ depend on $\varepsilon \in \text{Hom}(V, \mathfrak{g})$?
- ► Spencer map ∂ : Hom(V, \mathfrak{g}) \rightarrow Hom($\wedge^2 V, V$) defined by $\partial f(u, v) := f(u) \cdot v - f(v) \cdot u$,

describes the change:

$$\begin{array}{rcl} \text{variation } \mathcal{H}_{h,\varepsilon} \text{ of } \mathcal{H}_h & \Leftrightarrow & \varepsilon \in \operatorname{Hom}(V, \mathfrak{g}) \\ & & \text{torsion } \downarrow & & \downarrow \partial \\ \mathcal{C}(\mathcal{H}_{h,\varepsilon}) - \mathcal{C}(\mathcal{H}_h) & = & \partial \varepsilon \in \operatorname{Hom}(\wedge^2 V, V) \\ & & \uparrow & & \cup \\ \text{change in torsions} & \in & \operatorname{Im}(\partial) \end{array}$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

► For Hom(V, \mathfrak{g}) $\xrightarrow{\partial}$ Hom($\wedge^2 V, V$), fix a choice of **W** satisfying Hom($\wedge^2 V, V$) = Im(∂) \oplus **W**.

► For Hom(V, \mathfrak{g}) $\xrightarrow{\partial}$ Hom($\wedge^2 V, V$), fix a choice of **W** satisfying Hom($\wedge^2 V, V$) = Im(∂) ⊕ **W**. \cup $c(\mathcal{H}_h)$ $c(\mathcal{H}_h) - c(\mathcal{H}_{h,\varepsilon})$

► For Hom(V, \mathfrak{g}) $\xrightarrow{\partial}$ Hom($\wedge^2 V, V$), fix a choice of **W** satisfying Hom($\wedge^2 V, V$) = Im(∂) ⊕ **W**. \cup $c(\mathcal{H}_h)$ $c(\mathcal{H}_h) - c(\mathcal{H}_{h,\varepsilon})$

・ロト・日本・モン・モン・ ヨー のへぐ

Any \mathcal{H}_h can be varied to $\mathcal{H}_{h,\varepsilon}$ with $c(\mathcal{H}_{h,\varepsilon}) \in \mathbf{W}$.

► For $\operatorname{Hom}(V, \mathfrak{g}) \xrightarrow{\partial} \operatorname{Hom}(\wedge^2 V, V)$, fix a choice of **W** satisfying

$$\begin{array}{rcl} \operatorname{Hom}(\wedge^2 V, V) &= & \operatorname{Im}(\partial) & \oplus & \mathbf{W}. \\ & & & \cup \\ c(\mathcal{H}_h) & & c(\mathcal{H}_h) - c(\mathcal{H}_{h,\varepsilon}) \end{array}$$

Any \mathcal{H}_h can be varied to $\mathcal{H}_{h,\varepsilon}$ with $c(\mathcal{H}_{h,\varepsilon}) \in \mathbf{W}$.

Define the first prolongation of g

$$\mathfrak{g}^{(1)} := \operatorname{Ker}(\partial) \subset \operatorname{Hom}(V, \mathfrak{g}) \xrightarrow{\partial} \operatorname{Hom}(\wedge^2 V, V).$$

► For Hom(V, \mathfrak{g}) $\xrightarrow{\partial}$ Hom($\wedge^2 V, V$), fix a choice of **W** satisfying

$$\begin{array}{rcl} \operatorname{Hom}(\wedge^2 V, V) &= & \operatorname{Im}(\partial) & \oplus & \mathbf{W}. \\ & & & \cup \\ c(\mathcal{H}_h) & & c(\mathcal{H}_h) - c(\mathcal{H}_{h,\varepsilon}) \end{array}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Any \mathcal{H}_h can be varied to $\mathcal{H}_{h,\varepsilon}$ with $c(\mathcal{H}_{h,\varepsilon}) \in \mathbf{W}$.

- ► Define the first prolongation of \mathfrak{g} $\mathfrak{g}^{(1)} := \operatorname{Ker}(\partial) \subset \operatorname{Hom}(V, \mathfrak{g}) \xrightarrow{\partial} \operatorname{Hom}(\wedge^2 V, V).$
- ▶ If $\mathfrak{g}^{(1)} = 0$, $\mathcal{H}_{h,\varepsilon}$ satisfying $c(\mathcal{H}_{h,\varepsilon}) \in \mathbf{W}$ is unique.

▶ For Hom(V, \mathfrak{g}) $\xrightarrow{\partial}$ Hom($\wedge^2 V, V$), fix a choice of **W** satisfying

Any \mathcal{H}_h can be varied to $\mathcal{H}_{h,\varepsilon}$ with $c(\mathcal{H}_{h,\varepsilon}) \in \mathbf{W}$.

Define the first prolongation of g

 $\mathfrak{g}^{(1)} := \operatorname{Ker}(\partial) \subset \operatorname{Hom}(V,\mathfrak{g}) \xrightarrow{\partial} \operatorname{Hom}(\wedge^2 V, V).$

▶ If $\mathfrak{g}^{(1)} = 0$, $\mathcal{H}_{h,\varepsilon}$ satisfying $c(\mathcal{H}_{h,\varepsilon}) \in \mathbf{W}$ is unique.

If g⁽¹⁾ = 0, we have a canonical splitting *TG* = *T*^{vert} ⊕ *H* with *c*(*H*) ∈ **W**, which gives a canonical absolute parallelism *θ* on *G*.

Going to the next step in Cartan prolongations

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Going to the next step in Cartan prolongations

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Going to the next step in Cartan prolongations

If g⁽¹⁾ ≠ 0, requiring c(H_h) ∈ W does not fix the choice of a horizontal subspace.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ
- If g⁽¹⁾ ≠ 0, requiring c(H_h) ∈ W does not fix the choice of a horizontal subspace.
- In this case, consider G⁽¹⁾ → G⁽⁰⁾, the bundle of all choices of horizontal subspaces

 $T_h \mathcal{G} = T_h^{\text{vert}} \oplus \mathcal{H}_h$ satisfying $c(\mathcal{H}_h) \in \mathbf{W}$.

- If g⁽¹⁾ ≠ 0, requiring c(H_h) ∈ W does not fix the choice of a horizontal subspace.
- In this case, consider G⁽¹⁾ → G⁽⁰⁾, the bundle of all choices of horizontal subspaces

 $T_h \mathcal{G} = T_h^{\text{vert}} \oplus \mathcal{H}_h$ satisfying $c(\mathcal{H}_h) \in \mathbf{W}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

► Then $\mathcal{G}^{(1)} \to \mathcal{G}^{(0)}$ is a principal bundle with the structure group $G^{(1)}$ whose Lie algebra is $\mathfrak{g}^{(1)}$.

- If g⁽¹⁾ ≠ 0, requiring c(H_h) ∈ W does not fix the choice of a horizontal subspace.
- In this case, consider G⁽¹⁾ → G⁽⁰⁾, the bundle of all choices of horizontal subspaces

 $T_h \mathcal{G} = T_h^{\text{vert}} \oplus \mathcal{H}_h$ satisfying $c(\mathcal{H}_h) \in \mathbf{W}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- ▶ Then $\mathcal{G}^{(1)} \to \mathcal{G}^{(0)}$ is a principal bundle with the structure group $G^{(1)}$ whose Lie algebra is $\mathfrak{g}^{(1)}$.
- Now we try to find a natural absolute parallelism on G⁽¹⁾. The obstruction is a subspace g⁽²⁾ ⊂ Hom(V, g⁽¹⁾).

- If g⁽¹⁾ ≠ 0, requiring c(H_h) ∈ W does not fix the choice of a horizontal subspace.
- In this case, consider G⁽¹⁾ → G⁽⁰⁾, the bundle of all choices of horizontal subspaces

 $T_h \mathcal{G} = T_h^{\text{vert}} \oplus \mathcal{H}_h$ satisfying $c(\mathcal{H}_h) \in \mathbf{W}$.

- ▶ Then $\mathcal{G}^{(1)} \to \mathcal{G}^{(0)}$ is a principal bundle with the structure group $G^{(1)}$ whose Lie algebra is $\mathfrak{g}^{(1)}$.
- Now we try to find a natural absolute parallelism on G⁽¹⁾. The obstruction is a subspace g⁽²⁾ ⊂ Hom(V, g⁽¹⁾).
- ▶ The successive definitions of $\mathfrak{g}^{(i)} \subset \operatorname{Hom}(V, \mathfrak{g}^{(i-1)})$ and $\mathcal{G}^{(i)} \to \mathcal{G}^{(i-1)}$ are similar, although more complicated.

Which $\mathfrak{g} \subset \mathfrak{gl}(V)$ is of finite type?

▲□▶▲□▶▲□▶▲□▶ □ りへぐ

Theorem (Cartan, Kobayashi-Nagano)

If $\mathfrak{g} \subset \mathfrak{gl}(V)$ is an irreducible representation, then it is of finite type unless

 $\mathfrak{g} = \mathfrak{gl}(V), \mathfrak{sl}(V), \mathfrak{sp}(V), \mathfrak{csp}(V).$

Theorem (Cartan, Kobayashi-Nagano)

If $\mathfrak{g} \subset \mathfrak{gl}(V)$ is an irreducible representation, then it is of finite type *unless*

$$\mathfrak{g} = \mathfrak{gl}(V), \mathfrak{sl}(V), \mathfrak{sp}(V), \mathfrak{csp}(V).$$

Example. The orthogonal group O(V, σ) has g⁽¹⁾ = 0. For a Riemannian structure, the absolute parallelism θ on P = G is the Levi-Civita connection.

うして 山田 マイボット ボット シックション

Theorem (Cartan, Kobayashi-Nagano)

If $\mathfrak{g} \subset \mathfrak{gl}(V)$ is an irreducible representation, then it is of finite type *unless*

 $\mathfrak{g} = \mathfrak{gl}(V), \mathfrak{sl}(V), \mathfrak{sp}(V), \mathfrak{csp}(V).$

- Example. The orthogonal group O(V, σ) has g⁽¹⁾ = 0. For a Riemannian structure, the absolute parallelism θ on P = G is the Levi-Civita connection.
- Example. The conformal orthogonal group CO(V, σ) has g⁽¹⁾ ≠ 0, g⁽²⁾ = 0. A conformal structure has a natural Cartan connection on G⁽¹⁾.

Non-Examples of Cartan's Theorem

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへの

• The structure group G_U of a distribution is not of finite type.

- The structure group G_U of a distribution is not of finite type.
- More generally, any G-structure determined by conditions on a distribution is not of finite type. For example, the structure group G_{U,W} of a pseudo-product structure (= para-CR structure) is not of finite type.

- The structure group G_U of a distribution is not of finite type.
- More generally, any G-structure determined by conditions on a distribution is not of finite type. For example, the structure group G_{U,W} of a pseudo-product structure (= para-CR structure) is not of finite type.
- This means that there are many interesting examples of geometric structures to which Cartan's Theorem cannot be applied.

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

► For G-structure determined by conditions on a distribution, Noboru Tanaka discovered that if the underlying distribution is bracket-generating, namely, successive Lie brackets of sections of the distributions span *TM*, then we can refine Cartan's method.

- ► For G-structure determined by conditions on a distribution, Noboru Tanaka discovered that if the underlying distribution is bracket-generating, namely, successive Lie brackets of sections of the distributions span *TM*, then we can refine Cartan's method.
- The key point is to replace the commutative vector space V in our discussion of G-structures by a noncommutative nilpotent Lie algebra arising from the successive Lie brackets.

- ► For G-structure determined by conditions on a distribution, Noboru Tanaka discovered that if the underlying distribution is bracket-generating, namely, successive Lie brackets of sections of the distributions span *TM*, then we can refine Cartan's method.
- The key point is to replace the commutative vector space V in our discussion of G-structures by a noncommutative nilpotent Lie algebra arising from the successive Lie brackets.
- We need to change the definitions of g⁽ⁱ⁾, incorporating the nilpotent structure. Then many examples satisfy g^(k) = 0 for some positive integer k in this new sense, even when g is of infinite type in the previous sense.