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§1. Conformal fill ins by Einstein manifolds

Given a compact manifold pMn, hq, when is it the boundary of a
conformally compact (Poincaré) Einstein manifold pX n`1, g`q with
ρ2g`|M “ h, where ρ is a defining function on X? This problem of
finding “conformal fill in” is motivated by:

‚ The AdS/CFT correspondence in quantum gravity (proposed
by Maldacena also Witten, around 1998)

‚ Geometric considerations to study the structure of
non-compact asymptotically hyperbolic manifolds.



§1. Conformally compact Einstein manifolds, Definition

‚ On a manifold X with boundary M, we call ρ a defining
function on X , if ρ ą 0 on X , ρ “ 0 on M and dρ ‰ 0 on M.

‚ pX n`1, g`q is conformally compact if pX̄ n`1, ρ2g`q is compact.
Denote h “ ρ2g`|M , we call pMn, rhsq the conformal infinity of
pX n`1, g`q, where rhs denotes the conformal class of metrics of h,
i.e. the collection of metrics ϕ2h for some function ϕ on M.

‚ If Ricrg`s “ ´n g`, we call pX n`1,Mn, g`q a conformally
compact (Poincaré) Einstein (CCE) manifold.

‚ We remark on a CCE manifold, special ρ (called the geodesic
defining function) can be chosen, with |∇pr2g`qr | ” 1 in an nbhd

of M ˆ p0, ϵq for some ϵ ą 0, so that r2g` is with totally geodesic
boundary. We remark as a consequence, all other compactified
metrics of g` are umbilic.



§1. Examples of CCE manifold

‚ Example 1.

On pRn`1
` ,Rn, gHq, where gH “

dx2`dy2

y2 , x P Rn , y ą 0. Choose

r “ y , then pRn`1
` , dx2 ` dy2q is not compact, but conformal to

gH, with conformal infinity pRn, rdx2sq.
‚ Example 2.
On pBn`1, Sn, gHq, where pBn`1, gH “ p 2

1´|x |2
q2|dx |2qq. Choose

r :“ 2
1 ´ |x |

1 ` |x |
,

gH “ g` “ r´2

˜

dr2 ` p1 ´
r2

4
q

2

gc

¸

.

with pSn, rgc sq as conformal infinity.
We remark that r “ e´2d , where dpxq “ distg`p0, xq.



§1. Examples of CCE manifold

‚ Example 3.
On S1pλq ˆ S2 with the product metric, when 0 ă λ ă 1?

3
, there

are at least 3 different ”conformal fill ins”.

(a) One is when X is (S1pλq ˆ B3q with the fill in the hyperbolic
metric g` “ f pxqdt2 ` gH3pxq.

(b) The other two: X is the AdS-Schwarzchild space
pR2 ˆ S2, g`

m q, where

g`
m “ Vdt2 ` V´1dr2 ` r2gc ,

V “ 1 ` r2 ´
2m

r
.

It turns out for λ ă 1?
3
, there are two different choices of m. This

is the famous ”non-unique fill in” example of Hawking-Page ’83.



§1. Examples of CCE manifold

Some recent work of C., Paul Yang and Ruobing Zhang
Theorem
Given n ě 3 and λ ą 0, let pX n`1, g`q be a complete
Poincaré-Einstein manifold with conformal infinity
pS1pλq ˆ Sn´1, rhλsq such that Ricg` “ ´ng`. If secg` ď 0, then
X n`1 is diffeomorphic to S1 ˆ Bn and g has constant sectional
curvature ´1.
Theorem
Given n ě 3, there exists a positive number λ0pnq ąą 1 such that
the following property holds. Let pX n`1, g`q be a complete
Poincaré-Einstein manifold whose conformal infinity is given by
pS1pλq ˆ Sn´1, rhλsq. If the normalized product metric hλ satisfies
λ ě λ0, then X n`1 is diffeomorphic to S1 ˆ Bn and g is isometric
to a hyperbolic metric with constant sectional curvature ´1.



§1. Some earlier existence and non-existence results

‚ “Ambient Metric” of Fefferman-Graham ’85. On any compact
manifold pMn, hq, h real analytic, there is a CCE metric on some
Mn ˆ p0, ϵq of M. Gursky-Székelyhidi ’17, extend to smooth h .

‚ Graham-Lee ’91: Any h in some small C p2, αq neighborhood of
hc on Sn. We remark that the fill in metrics constructed by
Graham-Lee g` for h all exist in a small nbhd of the Hyperbolic
metric, it turns out they are ”unique” by a later result of
C-Ge-Qing, ’21.

‚ Gursky-Han ’17 and Gursky-Han-Stolz ’18 constructed many
examples of boundary conformal classes that do not allow
Poincaré-Einstein extensions on specified manifolds X 4k for k ě 2.
Theorem (J, Lee ’95). On CCE manifolds, if Rphq ą 0, then

λ1p´∆g`q ě n2

4 .
Corollary (J.Qing ’03) On CCE manifolds, if Rphq ą 0, then there
exists a compactified metric g with g |M “ h and Rpgq ą 0.



§2. Compactness of CCE manifolds – the set-up

‚ An open question: Does the entire class of metrics pS3, hq with
positive scalar curvature allow CCE filling in B4?
The class is path-connected by a result of F. Marques ’12.
The index argument for non-existence of Gursky-Han,
Gursky-Han-Stolz does not apply.

‚ We propose to study the “compactness” problem, which
hopefully will lead to some degree theory argument for the positive
answer to the question above. More precisely, we ask the question:

Given a sequence of pMn, rhi sq metrics with positive Yamabe
constants, which are conformal infinity of CCE pXn`1, g`

i q, where
d “ n ` 1, when would

trhi su forms a compact family on Mn

ùñ trgi su forms a compact family on X n`1?

where gi is some compactification of tg`
i u with gi |M “ hi .



§2. Compactness of CCE manifolds – the set up-

The difficulty of the problem lies in the existence of an“non-local”
term.
We will illustrate the case on pX 4,M3, g`q CCE manifold with
pM3, hq conformal infinity, recall the asymptotic behavior

g :“ ρ2g` “ dρ2 ` h ` g p2qρ2 ` g p3qρ3 ` g p4qρ4 ` ¨ ¨ ¨¨,

where g p2q “ ´1
2pRich ´ 1

4Rhhq determined by h (a local terms),

Trhg
p3q “ 0, while

Sα,β :“: ´
3

2
g

p3q

α,β “ ´
B

Bn
pPpgqqα,β

is a non-local term not determined by h.

We remark that h together with g p3q determines the asymptotic
behavior of g . Fefferman-Graham ’07, Biquard ’08).



§3. Conformal invariants
Yamabe constant
‚ On pMn, hq, compact closed manifold,

Y pM, rhsq “ inf h̃Prhs

ş

M Rrh̃sdvolrh̃s

VolpM,h̃q
pn´2q

n

. We remark Y pM, rhsq

corresponds to the ”isoperimetric constant” of the Sobolev

embedding of W 1,2 into L
2n
n´2 .

‚ On compact manifold with boundary, there are two such
constants. pX n`1,Mn, ḡq

YapX ,M, rḡ sq “ inf
g̃Prḡs

ş

X Rrg̃ sdvolrg̃ s ` cn
ş

M Hrg̃ |M sdσrg̃ |M s

VolpX , g̃q
pn´1q

pn`1q

YbpX ,M, rḡ sq “ inf
g̃Prḡs

ş

X Rrg̃ sdvolrg̃ s ` cn
ş

M Hrg̃ |M sdσrg̃ |M s

VolpM, g̃ |Mq
pn´1q

n

.

Ya and Yb each corresponds to the (isoperimetric) constants in the
Sobolev and Sobolev trace embeddings.



§3. Conformal invariants

‚ As we have mentioned before, it follows from result of J. Lee ’95,
and the observation by J. Qing, that on CCE setting,
Y pM, rhsq ą 0 implies that YapX ,M, rg sq ě 0.

‚ Combining works of Gursky-Han ’17, X. Chen- M. Lai and F.
Wang ’18, Chang-Ge ’21 we established that, there exists some
constant Cn, such that

YapX ,M, rg sq ě CnY pM, rhsq
n

n`1 .

Recall X. Chen-M. Lai and F. Wang

YbpX ,M, rg sq ě CnY pM, rhsq
1
2



§3. Conformal invariants

‚ Another conformally invariant quantity is Weyl curvature W.

|W |rg̃ s “ ρ´2|W |rg s, if g̃ “ ρ2g . Thus
ş

X |W |
n`1
2 rg sdvg is a

conformal invariant.
‚ On compact 4-manifold X with boundary M, consider the
functional

g ´ ´ ą

ż

X
|W |2rg sdvg ` 8

ż

M
WnαnβL

αβ

Critical metric of (interior variation) is Bachflat, i.e. the Bach
tensor Bij “ ∇l∇kWkilj ` 1

2Ric
klWkilj vanishes. Critical metric for

(boundary variation) gives rise to S tensor vanishes. Both Bach
tensor and S tensor are pointwise conformal invariants. Einstein
metrics are Bach flat, hence so are all metrics in the same
conformal class of Einstein metric. Thus in a CCE setting
pX ,M, g`q, all compactified metrics of rg`s are Bach flat.



§3. Conformal invariants

‚ Bach flat metrics on compact metric are well studied in
Tian-Viaclovsky ’01-’03. In particular, they pointed out Bach flat
can be viewed a 4th order system of PDE of elliptic type,

∆Rij “ c∇i∇jR ` Rm ˚ Ric ,

which plays an important role in our estimates of the compactified
metrics later. We also remark that for this PDE, the non-local
tensor S “ ´3

2g
p3q “ BP

Bn |M is a natural matching boundary
condition, where P is the Schouten tensor when the scalar
curvature is a constant.



§4. Adapted metrics
‚ For convenience, we choose h “ hY P rhs, the Yamabe metric on
M. But what is a good choice of the compactified metric g P rg`s?
A first attempt is to choose g “ gY , a Yamabe metric among
compactified metrics of g`. The difficulty of this choice is we do
not know how to control the behavior of gY |M in terms of hY .
‚ Instead, following the work of J. Lee, Graham-Zworski, ’03 we
will make a choice of a special representative metric , which we call
scalar flat Adapted metrics on X obtained by solving the Poisson
equation p˚qs the boundary metric h with Rphq ą 0 on M.

p˚qs ´ ∆g`v ´ spn ´ sqv “ 0, X n`1,

with Dirichlet data f ” 1. Choose ρ “ v
1

n´s and denote the
adapted metric g˚ “ ρ2g`.
‚ Properties of p˚qs has been studied in Fefferman-Graham ’02,
Chang-Gonzalez ’11, Case-Chang ’16, F. Wang ’21-’22 and S. Lee
’23 and others, Lee’s metric is the adapted metric when
s “ n ` 1. In the statement of the theorems below, we choose
s “ n

2 ` 1, call it the scalar flat adapted metric.



§4. Properties of the scalar flat adapted metric

On pX ,M, g`q CCE, for a given metric we have the adapted
metric g˚, g˚|M “ h, with the key properties:
(1) Rrg˚s “ 0 on X.
(2) Rrhs ą 0 on M implies the mean curvature H ą 0 on M.
(3) Denote g˚ “ ρ2g`, |∇g˚ρ| ď 1.
(4) Gauss Bonnet formula

8π2χ “

ż

X
p
1

4
|W |2`

1

24
R2´

1

2
|E |2q `

¿

M

p
4

3
RrhsH´

2

27
H3q.

Hence Hence under the assumption Rrhs ą 0,

ż

X
|E |

2
`

¿

M

H3 ď C p

ż

X
|W |2 `

¿

M

pRrhsq3, q

where E denote the traceless Ricci.



Main result, a compactness theorem

Compactness Theorem (C and Yuxin Ge)

Let tX ,M “ BX , g`
i u be a family of 4-dimensional CCE manifolds.

gi is a sequence of adapted metrics. Denote hi “ gi |M . Assume

1. The boundary metric pM, hi q is compact in C k,α norm with
k ě 6; and there exists some positive constant C1 ą 0

Y pM, rhi sq ě C1;

2. There exists some positive constant C2 ą 0 such that

ż

X 4

|W rgi s|
2 ď C2

3. H2pX ,Zq “ H2pX ,Zq “ 0.

Then, the sequence gi is compact in C k,α1

norm for any α1 P p0, αq

up to a diffeomorphism fixing the boundary.



§4. Some ideas in the proof of the compactness theorem

In the case of boundary blow up, for suitably rescaled metrics
ḡi “ ρ̄2i gi

` with bounded curvature in C 1 norm.
Recall in the main theorem, we have only assumed that the Weyl
curvature is bounded in L2.
‚ ḡi converges to some complete metric g8 with the boundary in
pointed Gromov-Hausdorff sense and ρ̄i Ñ ρ8.
‚ g`

8 :“: ρ´2
8 g8 is Einstein, thus g8 is conformal to Einstein and

has flat boundary R3.
‚ Decay of Ricci curvature:

|Ricrg8spxq| “ op
1

dpx , pq2
q

for some fixed p P X .



§4. A Liouville type rigidity result

Proposition (Chang-Ge)

Let pX8,R3 “ BX8, g`
8q be AH and g8 “ ρ28g`

8 be a complete
metric with boundary and positive injectivity radius. Assume

§ the conformal infinity of g`
8 is the Euclidean space R3;

§ Rrg8s “ 0 and |∇ρ8|g8 ď 1

§ there δ ą 0 s.t. |Ricrg8spxq| “ op 1
dpx ,pqδ

q

Then g`
8 is the hyperbolic space and g8 is the half euclidean space.



§5. An Existence Result
Recall Graham-Lee ’91: Any h in a small smooth neighborhood of
hc on S3 allows a CCE fill in, which are in a small nbhd of the
hyperbolic metric on B4, thus has the small L2 norm of its Weyl
tensor.
On the other hand, we also know the following result;

Lemma: When n “ 3, on a CCE manifold pX 4,M3, g`q if
Y pM, rhsq ą 0, and

p˚q

ż

X
|W |2g`dvg` ď cY 2

a

for some c ď 1
122

, then any metric in some small nbhd of h allows
a (unique) CCE fill in.

The natural question we then ask is can one impose conditions on
the boundary metric h which will ensure p˚q to happen? As an
application of our compactness result, we partially answer the
question above.



§5. Statement of an existence result

Theorem: (Existence Result)
Let pB4,S3q and h be a metric on S3 with the positive scalar
curvature. Assume that h is in C 6 and denote hc the canonical
metric on S3. Then there exists some (explicit) positive constants
a such that

}h ´ hc}C2 ` }|h ´ hc}W 4,3{2 ď a (1)

then we can find a CCE filling-in metric with the conformal infinity
rhs which satisfies the (*) condition. Moreover, such solution with
the above bound is unique.
Remarks: 1. The size of the constant a is around 45

883π2 .
2. Condition (1) can be replaced by

||h||C4 ||E phq||2 ď a1 (2)

for some other constant a1.



§6. Outline of proof of the existence theorem
The strategy of proof is as follows: Denote g “ g˚, and S “ g p3q

the non-local term, under assumptions of the theorem, apply the
Bach equation, we have

p
Ya

2
´

?
3}W }2´

2
?
3

}E}2qp}E}24`}W }24q ď ´12

¿

xÊ ,Sy`
1

Yb
}∇̂R̂}2L3{2pMq

.

Step 2: Under the assumption

p˚˚q p 5
18Ya ´ c0p||W ||2 ` ||E ||2q ą 0q, we have

YbpX ,M, rg sq}S}3 ď 10}∇̂Ĉ} 3
2
.

(This is the hard step, which we will supplement later.)

Combine step (1) and (2) we have if

p
120

Ya
}Ê} 3

2
}∇̂Ĉ} 3

2
`

1

Ya
}∇̂R̂}2

L
3
2 pMq

qpvolphqq2{3 ď
43Y 3

a

5 ˆ p88q3
(3)

then under p˚˚q , we have c0p||W ||2 ` ||E ||2q ď 1
4Ya.



§6. Outline of proof of the existence theorem

Step 3
Denote θ “ h ´ hc and ht “ p1 ´ tqhc ` th “ 1 ` tθ, under the
assumption on the size of θ ď a, one check inequality (3) holds..
We now run a continuity argument connecting h to hc in S3. Note
for metrics close to hc , the fill in metric always exists and
||W ||2 ` ||E ||2 tends to zero so p˚˚q condition is always satisfied.
Combining the three steps, along this path, under the assumptions
of the Existence theorem, (**) is automatic and we reached the
estimate in Step 2 and finished the proof of the theorem.



§6. More outline of proof of Step 2 –estimate of S
‚ Step 2

Estimate of S-tensor: Recall S “ B
Bng

Ricg . To estimate S , we first
recall a fact which was used in the work of S. Bando, A. Kasue, H.
Nakajima [BKN]’89 to derive ALE decay of sequence of Einstein
metrics. In the special case of 4-manifold, if g` is an Einstein
metric, denote W` the Weyl tensor of g`, then there is a Kato
inequality

|∇g`W`|2 ě
5

3
|∇g` |W`||2

From these, one can derive

´ △g` |W`|1{3 `
1

6
Rg` |W`|1{3 ď c |W`|4{3. (4)

In work of [BKN], when scalar curvature Rg` “ 0, on a region
ş

A |W`|2g`dvg` is small, [BKN] derive the decay estimate

|W`|1{3pxq À
1

|x |2
´ when x P A and |x | Ñ 8

Our Lemma is an application of (4) in conformal Einstein setting.



§6. More outline of proof of Step 2

Lemma 1 Let g` be CCE, g “ ρ2g` be a compactification, define

U “ Ug :“
´

|W |g
ρ

¯1{3
, then

´ △gU `
1

6
RgU ď c |W |gU (5)

Lemma 2 Denote r̃pxq “ distg px ,Mq, x P X , g “ g˚, then
|W |2g “ e2r̃

2 ` e3r̃
3 ` Opr̃4q, where

e2 “ 8|S |2 ` 4|Ĉ |2, Ĉ is the Cotton tensor on M3,
e3 “ ´4Sαβp∇̂γĈαβγ ` ∇̂γĈβαγq ` 4H|S |2` some other lower
order terms.



§5. More outline of proof of Step 2

Lemma 3

U6
g “

|W |2g

ρ2g
“

|W |2g

r2
r2

ρ2g

where

ρg “ r ´
H

18
r2 ` Opr3q (6)

U6
g |BX “ e2 (7)

BU6
g

Br
“

1

9
He2 ` e3 (8)



§5. More outline of proof of Step 2
We then use the estimates

Ya

ˆ
ż

X
U12

˙1{2

ď

ż

X
|∇U3|2 (9)

Yb

¨

˝

¿

BX

U9

˛

‚

1{3

ď

ż

X
|∇U3|2 (10)

while

5

9

ż

X
|∇U3|2dvg “ ´

ż

X
p△gUqU5 `

1

6

¿

BX

BU6

Br

ď c

ż

X
|W |gU

6 `
1

6

¿

BX

BU6

Br

ď c

ˆ
ż

X
|W |2g

˙1{2 ˆ
ż

X
U12

˙1{2

`
1

6

¿

BX

BU6

Br



§6. More outline of proof of Step 2

Combine (9) and (10) and estimate in (7) and (8) of U6
g and

BU6
g

Br
on BX , we get

ˆ

5

18
Ya ´ c}W }2

˙ ˆ
ż

X
U12

˙1{2

` Yb}S}23 À

ż

X

ˇ

ˇ

ˇ
S∇̂Ĉ

ˇ

ˇ

ˇ

Thus under the assumption

p˚˚q
5

18
Ya ´ c}W }2 ą 0

we get
||S ||3 ď C}∇̂Ĉ} 3

2



Open questions

(1). An open question is on pX 4,M3, g`q CCE setting, assuming
Y pM3, rhsq ě c ą 0, would that imply a L2 bound of the W rg`s ?

(2). In a joint work of C.-Ge-Jin and Qing ’23, On pX n`1,Mn, g`q

CCE when n ą 3, when n is odd, one can replace the role played of
Bach tensor by the Obstruction Tensor of Hirachi-Graham ’05 and
obtained a perturbation compactness theorem when Y pMn, rhsq is
close to that of Y pSn, hcq. In the case when n is even, one needs
to use other more complicated method to obtain the same result.

For general pX n`1,Mn, g`q CCE manifolds when n ą 3, C-Ge ’24 ,
under the assumption Y pM, hi q ą c ą 0, hi a compact family, one
can verify for the scalar flat adapted metrics gi will not have
boundary blow up without the additional assumption that

|W |gi P L
n`1
2 being uniformly bounded. But so far we have not

figured out some topological assumptions to prevent the possible
interior blow up.



Congratulations! Kengo, for your fantastic achievement!
May you have many more productive years to come!!

Thank you all for your attention !!


