6 L^2 空間と微分作用素の閉拡張 (2)

はじめに、引用の便宜のため、第3回で触れたことを明確に命題として書きとめておく.

命題 6.1. V を Hilbert 空間,W をその閉部分空間とする.そのとき $V = W \oplus W^{\perp}$ (直交直和分解)が成り立つ.ただし $W^{\perp} = \{u \in V \mid \text{任意の } v \in W \text{ に対し } (u,v) = 0\}.$

したがって $W^{\perp \perp} = W$ であることにも注意しておこう.必ずしも閉でない部分空間 W に対しては $W^{\perp \perp} = \overline{W}$ である.

◆ 稠密な定義域をもつ作用素の共役作用素

Hilbert 空間 V_1 から V_2 への(線形)作用素 T について,その「共役作用素」 T^* を定めたい. $u \in V_2$ に対し T^*u と書くべき V_1 の元 v には,どんな性質を要請すべきか――それは

任意の
$$w \in \text{dom}(T)$$
 に対して $(u, Tw) = (v, w)$ (6.1)

という条件をみたすことである.

定義. T が稠密な定義域をもつ($\overline{\mathrm{dom}(T)} = V_1$ である)と仮定する. そのとき T の共役作用素 とよばれる V_2 から V_1 への作用素 T^* を,

 $dom(T^*) = \{u \in V_1 \mid \text{条件 (6.1) } をみたすような v が存在する \}$

とし、 $u \in \text{dom}(T^*)$ に対し $T^*u = (条件 (6.1) をみたす v) と定めることで定義する.$

T が稠密な定義域をもつ(「densely defined である」ということが多い)としたのは、そうすれば v は存在すれば一意的となるからである.定義からただちに、 T^* は閉作用素である.

例 6.2. $d: \Omega_c^k(M) \to \Omega_c^{k+1}(M)$ は $L^2_{(k)}(M)$ から $L^2_{(k+1)}(M)$ への作用素として稠密な定義域をもつ(命題 5.1)ので,共役作用素 d^* が定義される。 d^* は形式的共役作用素 $\delta: \Omega_c^{k+1}(M) \to \Omega_c^k(M)$ の拡張になっている。実際,任意の $\omega \in \Omega_c^{k+1}(M)$ に対して $\delta \omega$ は「任意の $\alpha \in \Omega_c^k(M)$ に対して $(\omega, d\alpha) = (\delta \omega, \alpha)$ 」をみたすからである。同様に δ^* も定義されて d の拡張になっているし, Δ^* も定義されて Δ 自身の拡張になっている。

注 6.3. 最小閉拡張 \overline{d} , $\overline{\delta}$, $\overline{\Delta}$ の共役作用素は d^* , δ^* , Δ^* と一致する. 一般に, 稠密な定義域をもつ可閉な作用素 T について $(\overline{T})^* = T^*$ が成り立つ(問題 6.1).

次の定理でみるように、「稠密な定義域をもつ閉作用素」は(有界作用素に次いで)性質のよい作用素のクラスである。作用素はできるだけここに属するようにしておくのがよい。その観点からは、d、 δ 、 Δ は原則としていつも最小閉拡張をとり \overline{d} 、 $\overline{\delta}$ 、 $\overline{\Delta}$ とした上で運用すべきである。共役作用素 d^* 、 δ^* 、 Δ^* も、これらは $(\overline{d})^*$ 、 $(\overline{\delta})^*$ 、 $(\overline{\Delta})^*$ のことなのだと普段は思うのがよい*.

 $^{^*}d$, δ , Δ の最小閉拡張を上線をつけずに同じ記号 d, δ , Δ で表すことも多いが、この講義では控えておく.

定理 6.4 (von Neumann). 稠密な定義域をもつ閉作用素 T に対して、次が成り立つ.

- (1) T^* も稠密な定義域をもつ閉作用素である.
- (2) $T^{**} = T \ \mathcal{C} \ \mathcal{S} \ \mathcal{S}$.
- (3) $(\ker T)^{\perp} = \overline{\operatorname{im} T^*}, (\operatorname{im} T)^{\perp} = \ker T^*$ である.

注 6.5. 証明は知らなくてもいいが、小さい字で書いておく、T を V_1 から V_2 への作用素とする.

- $(1) \overline{\mathrm{dom}(T^*)} = V_2 \, を示す. \ u \in \mathrm{dom}(T^*)^\perp \Rightarrow u = 0 \, を確かめよう. \ T^* \, のグラフ \{(T^*w,w) \mid w \in \mathrm{dom}(T^*)\}$ は,(6.1) によれば -T のグラフ $\{(v,-Tv) \mid v \in \mathrm{dom}(T)\}$ の $V_1 \oplus V_2$ における直交補空間に外ならない. よって任意の $u \in V_2$ に対し (0,u) は (v,-Tv) と (T^*w,w) の和として表される. $u = TT^*w + w$ で,w との内積をとり $(u,w) = ||w||^2 + ||T^*w||^2$. $u \in \mathrm{dom}(T^*)^\perp$ を仮定すれば,左辺は 0 だから w = 0 で,ゆえに u = 0.
 - (2) T^{**} のグラフは $-T^{*}$ のグラフの直交補空間に等しく,それは T のグラフに等しい.
 - $(3) \ker T^* = (\operatorname{im} T)^{\perp}$ は明らか. T を T^* に置き換えて $\ker T = (\operatorname{im} T^*)^{\perp}$. 両辺の直交補空間をとる.

 V_1 から V_2 への稠密な定義域をもつ閉作用素 T が与えられれば,定理 6.4 (3) と命題 6.1 から $V_1 = \ker T \oplus \overline{\operatorname{im} T^*}$ という直交直和分解がえられる(閉作用素の核はつねに閉部分空間である ことに注意する). $T = \overline{\Delta}$ に対するこの分解が実質的に定理 3.3 の Hodge-de Rham-小平分解なのだが,そのことをみるための第一歩として, Δ^* が何なのか知る必要がある.

どんな Riemann 多様体についても, d^* は例 6.2 で指摘したとおり δ の拡張である. d^* は閉作用素なので,最小閉拡張の定義から d^* は $\overline{\delta}$ の拡張でもある.同様に, δ^* は \overline{d} の拡張であり, Δ^* は $\overline{\Delta}$ の拡張である.

次の事実を紹介しよう. 「完備 Riemann 多様体」の定義は後から行うので待ってほしい.

定理 6.6. 完備 Riemann 多様体において $d^* = \overline{\delta}$, $\delta^* = \overline{d}$, $\Delta^* = \overline{\Delta}$ である.

 δ^* は \overline{d} の拡張だから, $\operatorname{dom}(\delta^*) \subset \operatorname{dom}(\overline{d})$ を示せば $\delta^* = \overline{d}$ がいえる.つまり $\omega \in \operatorname{dom}(\delta^*)$ に対し, $\omega_j \to \omega$ かつ $d\omega_j \to \delta^* \omega$ となるような $\Omega^k_c(M)$ の元の列 $\{\omega_j\}$ の存在を確かめればよい. $\delta^* = \overline{d}$ が証明されれば,定理 6.4 から $d^* = \overline{\delta}$ が従う. $\Delta^* = \overline{\Delta}$ については $\delta^* = \overline{d}$ と同様の議論を用いることが考えられる.こうして,定理 6.6 の証明は次の命題 6.7 に帰着される.

命題 6.7. 完備 Riemann 多様体において次が成立する.

- (1) 任意の $\omega \in \text{dom}(\delta^*)$ に対し、 $\omega_i \to \omega$ 、 $d\omega_i \to \delta^* \omega$ をみたす $\Omega_c^k(M)$ の元の列 $\{\omega_i\}$ がある.
- (2) 任意の $\omega \in \text{dom}(\Delta^*)$ に対し、 $\omega_i \to \omega$ 、 $\Delta \omega_i \to \Delta^* \omega$ をみたす $\Omega_c^k(M)$ の元の列 $\{\omega_i\}$ がある.

ここでいったん、閉多様体に関する(1)の主張に話を限定する.

補題 6.8. 任意の Riemann 多様体 (M,g) について、 $\psi \in C^{\infty}(M)$ であって、有界で、かつ $|d\psi|$ も有界であるようなものが与えられたとする.そのとき $\omega \in \text{dom}(\delta^*)$ ならば $\psi\omega \in \text{dom}(\delta^*)$ で

 $\delta^*(\psi\omega) = \psi \, \delta^*\omega + d\psi \wedge \omega.$

補題 6.8 の証明は問題とする(問題 6.2). これを用いて,閉多様体について命題 6.7 の (1) を示す.近似列 ω_i の構成は,命題 5.1 で言及した Friedrichs の軟化子による議論だけでできる.

[閉 Riemann 多様体に関する命題 6.7 (1) の証明の概略] δ^* は線形なので,1 の分割を使い, ω の台はあるチャート $(U; x^1, x^2, ..., x^n)$ に含まれると仮定してよい(補題 6.8 により, $\psi \in C^{\infty}(M)$ を $\omega \in \text{dom}(\delta^*)$ に掛けたものは $\text{dom}(\delta^*)$ に属するから). \mathbb{R}^n 上の関数 $\psi = \psi(x)$ を

$$\psi(x) = \begin{cases} I^{-1}e^{-\frac{1}{1-|x|^2}} & (|x| < 1), \\ 0 & (|x| \ge 1), \end{cases}$$

$$\text{ if } I = \int_{|x| \le 1} e^{-\frac{1}{1-|x|^2}} dx^1 dx^2 \cdots dx^n$$

によって定義し (Friedrichs の軟化子の一例), $\varepsilon > 0$ に対し $\psi_{\varepsilon}(x) = \varepsilon^{-n}\psi(x/\varepsilon)$ とおく.

$$\omega^{\varepsilon}(x) = \int_{\mathbb{D}^n} \psi_{\varepsilon}(y) \omega(x - y) \, dy = \int_{\mathbb{D}^n} \psi_{\varepsilon}(x - y) \omega(y) \, dy$$

閉多様体についての上記の議論は、任意の $\operatorname{dom}(\delta^*)$ の元を、 $\operatorname{supp}\omega$ がひとつのチャート U に含まれるような $\omega \in \operatorname{dom}(\delta^*)$ の有限和として表せることに基づいている.

M が閉多様体でないときも,任意に与えられた $\operatorname{dom}(\delta^*)$ の元を,まずコンパクト台をもつ $\omega \in \operatorname{dom}(\delta^*)$ で近似するという下処理ができるならば,残りの議論は上と同じでよい.そのような下処理に必要なのは,よい性質をもつ皆既関数 $\psi: M \to \mathbb{R}$ である.

定義. (1) $f \in C^{\infty}(M)$ が**皆既関数**(exhaustion function)であるとは、どんな $c \in \mathbb{R}$ に対しても、あるコンパクト集合 $K \subset M$ が存在して、補集合 $M \setminus K$ では f > c となることをいう.

(2) Riemann 多様体 (M,g) について,|df| が有界であるような皆既関数 f が存在するとき,(M,g) は**完備**であるという.

注 6.9. 閉 Riemann 多様体は完備である.また Euclid 空間 (\mathbb{R}^n , g_{std}) も, $f(x) = \log(1 + |x|^2)$ をとれば完備であることがわかる.

われわれの定義 (2) は標準的でない. 標準的な定義との同値性については, たとえば J.-P. Demailly のレクチャーノート *Complex Analytic and Differential Geometry* 第 VIII 章の (2.4) Lemma をみよ*.

[完備 Riemann 多様体に関する命題 6.7 (1) の証明の概略]完備性の定義にある皆既関数 f をとる。また $\chi: \mathbb{R} \to \mathbb{R}$ を, $t \leq 0$ で $\chi(t) \equiv 0$, $t \geq 1$ で $\chi(t) \equiv 1$ で,開区間 (0,1) では $0 \leq \chi(t) \leq 1$ であるような C^∞ 級関数とする。 χ を平行移動して $\chi_j(t) = \chi(t-j)$ と定める。与えられた $\omega \in \text{dom}(\delta^*)$ に対し $\omega_j = (\chi_j \circ f)\omega$ とおけば, $\sup \omega_j$ はコンパクトで補題 6.8 より $\omega_j \in \text{dom}(\delta^*)$,また $\omega_j \to \omega$ 、 $\delta^*\omega_j \to \delta^*\omega$ となっている。あとは閉多様体の場合と同じ.

^{*}https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf から入手できる. なお, このレクチャーノートのかなりの部分は, フランス数学会から 1996 年に出版された講義録 J. Bertin, J.-P. Demailly, L. Illusie, C. Peters, *Introduction à la théorie de Hodge* に基づいているように思われる. Demailly さんは 2022 年に亡くなった.

命題 6.7 の (2) の証明には後で扱う知識が必要となる. たとえば,(1) と同じやり方をしようとすると, $\omega \in \text{dom}(\Delta^*)$ に 1 の分割を構成する関数 ψ_{λ} を掛けた $\psi_{\lambda}\omega$ が $\text{dom}(\Delta^*)$ に属するかどうか現時点ではわからないという難点がある(実際には属する).

ともあれ、定理 6.6 を認めるならば、以下の結論が得られたことになる.

系 **6.10.** (M,g) が完備 Riemann 多様体ならば, $L^2_{(k)}(M) = \ker \overline{\Delta} \oplus \overline{\operatorname{im} \overline{\Delta}}$ (直交直和分解).

◆ 今後の証明の方針

閉多様体の場合、以下のことがらが証明されて定理 3.3 の証明が完結する.

- (1) $\ker \overline{\Delta} = \mathcal{H}^k \ \mathcal{C}$ δ 3.
- (2) $\operatorname{im} \overline{\Delta}$ は閉である ($\overline{\Delta}$ は closed range をもつ」という). すなわち $\operatorname{im} \overline{\Delta} = \operatorname{im} \overline{\Delta}$.
- (3) $\operatorname{im} \overline{\Delta} \cap \Omega^k(M) = \operatorname{im} \Delta \operatorname{\mathfrak{C}\mathfrak{B}\mathfrak{S}}.$
- (1) と (3) を得るには、次が示されればよい($\overline{\Delta} = \Delta^*$ に注意せよ). これは Hodge ラプラシアンに関する**正則性定理**とよばれる(**楕円型正則性定理**の特別な場合).

定理 6.11. $\omega \in \text{dom } \Delta^*$ について, $\Delta^*\omega = \eta$ が C^∞ 級微分形式ならば ω も C^∞ 級微分形式. したがって,そのときまた $\Delta\omega = \eta$ である.

(2) は、次の命題によって不等式の証明に帰着される.

命題 6.12. Hilbert 空間 V_1 から V_2 への閉作用素 T について、ある定数 C > 0 が存在して

$$||u|| \le C||Tu||$$
 (任意の $u \in \text{dom } T \cap (\ker T)^{\perp}$ に対して) (6.2)

であるとする. そのとき T は closed range をもつ.

[証明] $v_j \in \operatorname{im} T, \ v_j \to v$ とすると, $Tu_j = v_j$ となる $u_j \in \operatorname{dom} T$ が存在する.直交直和分解 $V_1 = \ker T \oplus (\ker T)^{\perp}$ の第 2 成分へと射影することで $u_j \in (\ker T)^{\perp}$ としてよい. v_j は Cauchy 列なので,仮定 (6.2) より u_j も Cauchy 列.極限 $u \in V_1$ が存在する.T は閉作用素だから $u \in \operatorname{dom} T$ で Tu = v. ゆえに $v \in \operatorname{im} T$ である.

われわれはさらに、 Δ^* の "近似的な逆作用素" であるパラメトリクスを構成することによって定理 6.11 の証明と Δ^* に対する (6.2) の導出を行いたい. そのために Sobolev 空間を導入する.

問題

問題 6.1.稠密な定義域をもつ可閉な作用素 T について $(\overline{T})^* = T^*$ であることを証明せよ.

問題 6.2. 補題 6.8 を証明せよ. まず $\omega_j \to \omega$ となる $\Omega_c^k(M)$ の元の列 ω_j をとる(命題 5.1 による). 任意 の $\alpha \in \Omega_c^k(M)$ に対し $(\psi\omega_j, \delta\alpha) = (\omega_j, \delta(\psi\alpha)) + (d\psi \wedge \omega_j, \alpha)$ を示し,これを利用するとよい.