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Let M be a manifold. A smooth (or C*) differential 0-form on M is just the same thing as a
smooth function M — R. We will define smooth differential k-forms for k = 1 below.

For any p € M, we write /\k T,M for the set of alternating multilinear k-forms on the
tangent space T,M at p. A differential k-form (which is not necessarily smooth) is a mapping

w: M- [[T;M
PEM

such that w(p), which is more often written as w,, is an element of T,M for each p € M.

p b
The smoothness of a differential k-form w is defined as follows. Given a chart (U; x1, ..., x™)

of M, we can uniquely express w on U in the following form using the local coordinates:

wly =D, fii,dx" A Adx,

i <<y
We say that w is smooth if all the functions f; .., are smooth on U for any chart (U; x', ..., x")
of M.
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According to our definition of exterior differentiation, it suffices to show that d(d(w|;)) = 0
for any chart (U; x1, ..., x™).

Let w be a differential k-form on a manifold M (we are implicitly assuming that w is a
smooth k-form), and (U; x!, ..., x") an arbitrarily fixed chart of M. Then w can be locally
expressed as

w|ly = Z Fii AXA oo A dx™.

i<+ <

By computation, we have

Aol =Y, % Tk el p e ndxt

J=lig <<y

and hence

2
d(d(w|y)) = ZZ > fla = dx! Adx Adxit A - A dic, (%)

I=1 j=1ij<---<ip

Since dx? A dxP = 0, the terms with [ = j on the right-hand side of equality () vanishes.
The rest of the terms can be classified into two groups based on whether ! < jorl > j. We
set (1, j) = (p, q) for the terms with | < j, and (I, j) = (q, p) for those with [ > j. Then (x)

can be rewritten as

0% fi .. . .
dd@|) =), D, % dxP A dx? Adxh A - Adx
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azfil..‘ik . , . .
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and since dx9 A dx? = —dxP A dx4?, we can conclude that
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Now note that our assumption that w is smooth implies that the functions f; .., are smooth
(i.e., of class C*), because of which we can interchange the order of differentiations of f byt

Consequently, the right-hand side of () equals 0, which is what we wanted to prove.
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We claim that U = R? \ {0} is such a domain in R?, where 0 denotes the origin.

Let
_ —ydx+xdy

x2+y2

which is a differential 1-form on U. A straightforward computation shows that w is closed.
On the other hand, w is not exact, or equivalently, w cannot be expressed in the form w = d f
with some function f on U. Suppose to the contrary that w = df. Then its integral along the

path y(t) = (cost,sint), 0 £ t £ 27 must be zero because

of dy, | 9f dr,
fw—/df f—dx+—dy> l (dx T +6y dt)dt
_ / d(f @)

g =70 @m) - f() =0

where y;(t) denotes the i-th component of y(t). However, we obtain by a direct computation
that

d d 2
fco-f - 2x+x 4 f ((—sint) - (cost) +cost - (sint)) dt
X2+ y? b

27 2
=f (cos2t+sin2t)dt=f dt =27 #0,
0 0

which is a contradiction. Therefore, w is not an exact 1-form, and hence [w] is a non-zero
element of H} (V).
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