4 多様体上の微分形式 (2)

- 19. n 次元実ベクトル空間 V 上の双線形形式 $\mu \in \bigotimes^2 V^{\vee}$ を考える. V の基底を任意に選んで v_1, v_2, \dots, v_n とし, $\mu(v_i, v_j)$ を第 (i, j) 成分とする $n \times n$ 行列を A とする.
 - (1) 「 μ が交代形式 \iff A が交代行列」を示せ.
 - (2) μ が**非退化** (nondegenerate) であるとは、任意の $v \in V \setminus \{0\}$ に対し、 $\mu(v,\cdot)$ が V 上の線形形式として 0 でないことをいう. 「 μ が非退化 \iff A が正則行列」を示せ、また、n が奇数のとき V 上に非退化な交代双線形形式は存在しないことを示せ、
- 20. V を 4 次元の実ベクトル空間とする. V の基底 v_1 , v_2 , v_3 , v_4 をとり,それに対応する V^{\vee} の双対基底を α^1 , α^2 , α^3 , α^4 とする. V 上の交代双線形形式

$$\mu = \alpha^1 \wedge \alpha^2 + \alpha^3 \wedge \alpha^4$$

に対し、 $\mu = \beta \wedge \beta'$ となるような β , $\beta' \in V^{\vee}$ が存在するかどうか判定せよ.

21. 多様体 M のチャート $(U; x^1, ..., x^n)$ で関数 $f^1,, f^k$ が与えられているとき

$$df^{1} \wedge \cdots \wedge df^{k} = \sum_{i_{1} < \cdots < i_{k}} \frac{\partial (f^{1}, \dots, f^{k})}{\partial (x^{i_{1}}, \dots, x^{i_{k}})} dx^{i_{1}} \wedge \cdots \wedge dx^{i_{k}}$$

を示せ (左辺の各 df^j は問題 15 で定義したもので,局所座標表示は問題 4 にあるのと同じ式で与えられる.右辺は $i_1 < \cdots < i_k$ をみたすようなすべての $(i_1, \ldots, i_k) \in \{1, \ldots, n\}^k$ に関する和である).

これを用いて講義の命題 3.1 を微分 k 形式に一般化しよう.多様体 M の 2 つのチャート $(U; x^1, ..., x^n)$, $(\tilde{U}; \tilde{x}^1, ..., \tilde{x}^n)$ を考える.前問の結論によると, $U \cap \tilde{U}$ 上で $dx^{i_1} \wedge \cdots \wedge dx^{i_k}$ たちと $d\tilde{x}^{i_1} \wedge \cdots \wedge d\tilde{x}^{i_k}$ たちのあいだには

$$dx^{i_1} \wedge \dots \wedge dx^{i_k} = \sum_{j_1 < \dots < j_k} \frac{\partial (x^{i_1}, \dots, x^{i_k})}{\partial (\tilde{x}^{j_1}, \dots, \tilde{x}^{j_k})} d\tilde{x}^{j_1} \wedge \dots \wedge d\tilde{x}^{j_k} \tag{*}$$

という関係がある. したがって、微分 k 形式 ω が各々のチャートで

$$\omega|_{U} = \sum_{i_{1} < \dots < i_{k}} f_{i_{1} \cdots i_{k}} dx^{i_{1}} \wedge \dots \wedge dx^{i_{k}}, \qquad \omega|_{\tilde{U}} = \sum_{i_{1} < \dots < i_{k}} \tilde{f}_{i_{1} \cdots i_{k}} d\tilde{x}^{i_{1}} \wedge \dots \wedge d\tilde{x}^{i_{k}}$$

と局所座標表示されるとき、 $U \cap \tilde{U}$ において係数関数のあいだには

$$\tilde{f}_{i_1\cdots i_k} = \sum_{j_1<\dots< j_k} \frac{\partial(x^{j_1},\dots,x^{j_k})}{\partial(\tilde{x}^{i_1},\dots,\tilde{x}^{i_k})} f_{j_1\cdots j_k} \tag{\star}$$

という関係がある.(さらに以下のとおり命題 3.2 も一般化される:多様体 M のアトラス S に属する各々のチャート U_λ で微分 k 形式 ω_λ が与えられており,どの 2 つのチャート U_λ , U_μ のあいだにおいても ω_λ , ω_μ の係数関数同士に $(\star\star)$ に示された関係があるとき,すべての λ について $\omega|_{U_\lambda}=\omega_\lambda$ となるような $\omega\in\Omega^k(M)$ が唯一存在する.)

ただし,変換則 (\star) や $(\star\star)$ は主として理論的なものというべきかもしれない.実際の計算では,なるべく微分 1 形式の変換則だけを使うよう心がけるのがよいと思う.つまり $dx^{i_1} \wedge \cdots \wedge dx^{i_k}$ を見たら

$$dx^{i_1} = \sum_{j_1=1}^n \frac{\partial x^{i_1}}{\partial \tilde{x}^{j_1}} d\tilde{x}^{j_1}, \qquad ..., \qquad dx^{i_k} = \sum_{j_k=1}^n \frac{\partial x^{i_k}}{\partial \tilde{x}^{j_k}} d\tilde{x}^{j_k}$$

を代入して整理し直せばいいということである.

22. \mathbb{R}^3 の単位球面 $S^2 = \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$ を考える. $U = S^2 \setminus \{(0,0,1)\}$, $\tilde{U} = S^2 \setminus \{(0,0,-1)\}$ とおいて,U 上の局所座標系 (u,v), \tilde{U} 上の局所座標系 (\tilde{u},\tilde{v}) を

$$u = \frac{x}{1-z},$$
 $v = \frac{y}{1-z};$ $\tilde{u} = \frac{x}{1+z},$ $\tilde{v} = \frac{y}{1+z}$

により定義する(北極 (0,0,1),南極 (0,0,-1) に関する立体射影). チャート (U;u,v)上で定義された微分 2 形式

$$\omega = \frac{du \wedge dv}{(1 + u^2 + v^2)^2}$$

を, $U \cap \tilde{U}$ において (\tilde{u}, \tilde{v}) を用いて局所座標表示せよ.

23. \mathbb{R}^3 において微分 2 形式 $\omega = x\,dy \wedge dz + y\,dz \wedge dx + z\,dx \wedge dy$ を考える. 半空間 $U = \{(x,y,z) \in \mathbb{R}^3 \mid x > 0\}$ に

$$r = \sqrt{x^2 + y^2 + z^2},$$
 $\theta = \arctan \frac{y}{x},$ $\varphi = \arccos \frac{z}{\sqrt{x^2 + y^2 + z^2}}$

によって局所座標系 (r,θ,φ) を導入する (θ,φ) の値はそれぞれ $(-\pi/2,\pi/2)$, $(0,\pi)$ の 範囲にとるものと約束しておく). ω を U において (r,θ,φ) を用いて局所座標表示せよ.

微分 k 形式の局所座標表示をする際に、 $i_1 < \cdots < i_k$ をみたす添字の組だけではなく、 $\{1,\ldots,n\}^k$ に属するすべての添字の組を使う方法もあり、場合によっては便利である。k=2 の場合を以下で考えよう.通常の局所座標表示に現れる $dx^i \wedge dx^j$ (i < j) を $\frac{1}{2}(dx^i \wedge dx^j - dx^j \wedge dx^i)$ で置き換えると、微分 2 形式 ω は

$$\omega|_{U} = \frac{1}{2} \sum_{i_{1}, i_{2}} g_{i_{1}i_{2}} dx^{i_{1}} \wedge dx^{i_{2}}, \qquad \text{$\not{\tau}$} \text{$\not{\tau}$} \cup g_{i_{2}i_{1}} = -g_{i_{1}i_{2}} \tag{\dagger}$$

という形に表すことができる. また逆に, $\omega|_{II}$ を (†) のように表す仕方は一意的である.

24. 多様体 M の 2 つのチャート $(U; x^1, ..., x^n)$, $(\tilde{U}; \tilde{x}^1, ..., \tilde{x}^n)$ に対し、微分 2 形式 ω が 各々のチャートで

$$\omega|_{U} = \frac{1}{2} \sum_{i_1,i_2} g_{i_1 i_2} dx^{i_1} \wedge dx^{i_2}, \quad \omega|_{\tilde{U}} = \frac{1}{2} \sum_{i_1,i_2} \tilde{g}_{i_1 i_2} d\tilde{x}^{i_1} \wedge d\tilde{x}^{i_2}, \quad g_{i_2 i_1} = -g_{i_1 i_2}, \ \tilde{g}_{i_2 i_1} = -\tilde{g}_{i_1 i_2}$$

と局所座標表示されるとする. そのとき係数関数のあいだには

$$\tilde{g}_{i_1 i_2} = \sum_{j_1, j_2} \frac{\partial x^{j_1}}{\partial \tilde{x}^{i_1}} \frac{\partial x^{j_2}}{\partial \tilde{x}^{i_2}} g_{j_1 j_2}$$

という関係があることを示せ.