10 1の分割

- 53. 関数 $\chi: \mathbb{R} \to \mathbb{R}$ を、t>0 では $\chi(t)=e^{-1/t}$ とし、 $t\leq 0$ では $\chi(t)=0$ とすることにより定義する. χ が \mathbb{R} 上の C^∞ 級関数であることを示せ.
- 54. \mathbb{R}^n の任意の開集合は σ コンパクトである. そのことを示せ.

 \mathbb{R}^n は開球 B(0,i) たちの可算和として $\mathbb{R}^n = \bigcup_{i=1}^{\infty} B(0,i)$ と表せるが、次の問題でみるように、一般の σ コンパクト多様体についても同じような表し方ができる.

- 55. M を σ コンパクトな多様体とする.
 - (1) M のコンパクト部分集合の増大列 $\{K_i\}_{i=1}^\infty$ で $\bigcup_{i=1}^\infty K_i = M$ をみたすものが存在することを示せ.
 - (2) 次の3条件をみたすMの開集合の増大列 $\{B_i\}_{i=1}^{\infty}$ が存在することを示せ.
 - (i) 各 $i=1, 2, 3, \dots$ について、 $B_i \cap M$ における閉包 \overline{B}_i はコンパクト.
 - (ii) 各 $i=1, 2, 3, \cdots$ について, $\overline{B}_i \subset B_{i+1}$.
 - (iii) $\bigcup_{i=1} B_i = M.$

関連してパラコンパクト性の概念を紹介しておく. 1 の分割の存在定理は、本来はパラコンパクト多様体について述べてもよいのだが、話をむやみに難しくしないために σ コンパクト多様体の場合に限った. 気になる人は yamyamtopo 氏による「パラコンパクト性をめぐって」をみよ*.

56. σ コンパクトな多様体 M は**パラコンパクト**であることを示せ、すなわち、M の任意 の開被覆 $\mathcal{U} = \{U_{\alpha}\}_{\alpha \in A}$ について、その細分になっている † ような M の局所有限な開被 覆 $\mathcal{V} = \{V_{\beta}\}_{\beta \in B}$ が存在することを示せ、

[ヒント:前問 (2) の $\{B_i\}_{i=1}^{\infty}$ をとる。各 \overline{B}_i はコンパクトだから有限部分集合 $A_i \subset A$ が存在して $\overline{B}_i \subset \bigcup_{\alpha \in A_i} U_\alpha$ である。各 $\alpha \in A_i$ に対し $V_{i,\alpha} = U_\alpha \cap (M \setminus \overline{B}_{i-1})$ と定める (ただし $\overline{B}_0 = \emptyset$ としておく)。 $V_{i,\alpha}$ たちをすべての α , i について集めて $\mathcal V$ とする。]

^{*}https://yamyamtopo.wordpress.com/2015/12/19/パラコンパクト性-pdf/

[†]各 $\beta \in B$ について、ある $\alpha \in A$ が存在して $V_{\beta} \subset U_{\alpha}$ であるということ.

問題 57. 問題 58 で講義の定理 10.1 の証明を与える.

それに先立ち,次のような準備をしておこう. σ コンパクト多様体 M について,問題 55 (2) で存在を証明した $\{B_i\}_{i=1}^\infty$ をとる. $S_i = \overline{B_i} \setminus B_{i-1}$ とおく(ただし $B_0 = \emptyset$ と定めておく)*.各 S_i はコンパクトで $\bigcup_{i=1}^\infty S_i = M$ である.また各 S_i の開近傍として $\tilde{S}_i = B_{i+1} \setminus \overline{B}_{i-2}$ をとる($B_{-1} = \emptyset$ と定める). $\{\tilde{S}_i\}_{i=1}^\infty$ は M の局所有限な開被覆である(なぜか?).

- 57. M を σ コンパクトな多様体とし、 $\mathcal{U} = \{U_{\alpha}\}_{\alpha \in A}$ を M の開被覆とする.そのとき,さらに M の 2 つの開被覆 $\mathcal{V} = \{V_{\beta}\}_{\beta \in B}$, $\mathcal{W} = \{W_{\beta}\}_{\beta \in B}$ を,次の 3 条件が成り立つようにとれることを示せ.(以下で上線は M における閉包を示す.)
 - (i) $\beta \beta \in B$ について、 $\overline{W}_{\beta} \subset V_{\beta}$ で、さらにある $\alpha \in A$ が存在して $\overline{V}_{\beta} \subset U_{\alpha}$.
 - (ii) 各 $\beta \in B$ について、 \overline{V}_{β} はコンパクト (したがって \overline{W}_{β} もコンパクト).
 - (iii) V は局所有限(したがって W も局所有限).

[ヒント:問題の直前で用意した状況設定を用いる.各 S_i について,開集合 $V_{i,j}$, $W_{i,j}$ ($j=1,\ 2,\ \cdots$, N_i) を次がみたされるようにとれ.

- (a) $\overline{W}_{i,j} \subset V_{i,j}$ かつ $\overline{V}_{i,j}$ はコンパクト.
- (b) $\overline{V}_{i,j} \subset \tilde{S}_i$ である. さらに, $\overline{V}_{i,j}$ はいずれかの U_{α} に含まれる.
- (c) $\{W_{i,j}\}_{i=1}^{N_i}$ は S_i を被覆している.

それができたら、 $V_{i,j}$ たちを全部集めたものを V とし、また $W_{i,j}$ たちを全部集めたものを W とすればよい.]

U を多様体 M の開集合,K をコンパクトな U の部分集合とするとき,M 全体で $h \ge 0$ をみたす関数 $h \in C^{\infty}(M)$ であって,K 上では h > 0,かつ $\operatorname{supp} h \subset U$ であるようなものが存在する.これは問題 53 の関数 χ を用いて構成されるのだが[†],ここではそのような関数の存在を認めてしまって次に進み,1 の分割の存在証明を完結させよう.

- 58. M を σ コンパクトな多様体とし、 $\mathcal{U} = \{U_{\alpha}\}_{\alpha \in A}$ を M の開被覆とする.
 - (1) $M \perp 0$ 1 の分割 $\{\rho_{\beta}\}_{\beta \in B}$ であって,各 $\sup \rho_{\beta}$ はコンパクトで,さらに各 $\beta \in B$ についてある $\alpha \in A$ が存在して $\sup \rho_{\beta} \subset U_{\alpha}$ をみたすようなものが存在することを示せ.[ヒント:問題 57 の結果を用いる.]
 - (2) \mathbb{U} に従属する 1 の分割が存在することを示せ. $[ヒント:写像 s: B \to A$ を各 $\beta \in B$ に対し $\sup \rho_{\beta} \subset U_{s(\beta)}$ となるように定める(選択公理).各 $\alpha \in A$ に対し, $\sum_{\beta \in s^{-1}(\alpha)} \rho_{\beta}$ をあらためて ρ_{α} と書く.]

なお,問題 58(1) の $\{\rho_{\beta}\}_{\beta \in B}$ のようなものも「 $\mathbb U$ に従属する1 の分割」とよぶ場合もある.われわれはそのような言葉遣いを採用しなかった.

^{*}S は shell の頭文字のつもり.

[†]松本幸夫『多様体の基礎』(東京大学出版会)補題 14.2.