1. Introduction

1.1. Overview. We first introduce two integrable systems, the KdV hierarchy and the Mumford system.

The KdV hierarchy is an infinite dimensional system given by a family of partial differential equations for the function $f = f(a_1, a_2, \ldots)$ on \mathbb{C}^∞. (See [8] for example.) Here a_1 denotes a space coordinate, and others correspond to time coordinates. The first two equations are as follows:

\[
\begin{align*}
\frac{\partial}{\partial a_2} f &= \frac{1}{4} \frac{\partial^3}{\partial a_1^3} f + \frac{3}{2} f \cdot \frac{\partial}{\partial a_1} f, \\
\frac{\partial}{\partial a_3} f &= \frac{1}{16} \frac{\partial^5}{\partial a_1^5} f + \frac{5}{8} f \cdot \frac{\partial^3}{\partial a_1^3} f + \frac{5}{4} \frac{\partial}{\partial a_1} f \cdot \frac{\partial^2}{\partial a_1^2} f + \frac{15}{8} f^2 \cdot \frac{\partial}{\partial a_1} f,
\end{align*}
\]

where the first one is nothing but the Korteweg-de Vries (KdV) equation. The KdV hierarchy is known to have three important classes of solutions: soliton solutions, quasi-periodic solutions, and rational solutions. (See [8], [9, 5] and [3, 1, 2] respectively, and references therein.)

On the other hand, the Mumford system is a finite dimensional classical integrable system invented by Jacobi, which is studied in detail by Mumford [10]. For a fixed $g \in \mathbb{Z}_{>0}$, the phase space M_g of the Mumford system is given by

\[
M_g = \left\{ \ell(x) = \begin{pmatrix} v(x) \\ u(x) \\ w(x) \end{pmatrix} \bigg| \begin{array}{c}
u(x) = x^g + u_{g-1}x^{g-1} + \cdots + u_0, \\
u(x) = v_{g-1}x^{g-1} + \cdots + v_0, \\
u(x) = w_x^g + w_{g-1}x^{g-1} + \cdots + w_0 \end{array} \right\} \simeq \mathbb{C}^{3g+1},
\]

equipped with a Poisson structure $\{ \, , \}$, where we regard the coefficients u_i, v_i, w_i as the coordinates of M_g. We have the momentum map

\[
\Phi_g : M_g \to H_g; \quad \ell(x) \mapsto \det(\ell(x)),
\]

where

\[
H_g = \{ h(x) = x^{2g+1} + h_{2g}x^{2g} + h_{2g-1}x^{2g-1} + \cdots + h_0 \mid h_0, \ldots, h_{2g} \in \mathbb{C} \} \simeq \mathbb{C}^{2g+1}.
\]

1E-mail: reiiy@suzuka-u.ac.jp
Through the momentum map (1.2), \(h_i \)'s becomes independent functions on \(M_g \). The \(g + 1 \) functions \(h_g, \ldots, h_{2g} \) are Casimirs, and other functions \(h_0, \ldots, h_{g-1} \) define commuting Hamiltonian vector fields \(\partial_1, \ldots, \partial_g \) on \(M_g \). Thus the system \((M_g, \{ \cdot, \cdot \}, \Phi_g)\) is integrable in Liouville’ sense. In this article we call this system the \(g \)-Mumford system. For \(h(x) \in H_g \), we have two objects of algebraic geometry:

- the algebraic curve \(C_g(h) \) given by \(y^2 = h(x) \),
- the fiber \(M_g(h) := \Phi_g^{-1}(h(x)) \).

When \(h(x) \) is generic (no multiple root), \(C_g(h) \) is the hyperelliptic curve of genus \(g \). It is shown that \(M_g(h) \) is isomorphic to the affine part of the Jacobian \(J_g(h) \) of \(C_g(h) \), and that the vector fields become the \(g \)-dimensional translation invariant vector field on \(J_g(h) \).

We remark that in [10], the explicit relation between the KdV hierarchy and the Mumford system is unveiled. By using this relation, when \(h(x) \) is generic, the quasi-periodic solutions to the KdV hierarchy is reformulated via the generic fiber \(M_g(h) \) of the Mumford system. Further, when \(C_g(h) \) has \(g \) ordinary double points, the generalized Jacobian of \(C_g(h) \) is isomorphic to \((\mathbb{C}^\times)^g\), and we obtain the \(g \)-soliton solution to the KdV hierarchy.

In this manuscript, we explain the detailed structure of the fiber for the \(g \)-Mumford system over the singular curve \(C_g = C_g(x^{2g+1}) \). The difference with the generic case is that the vector fields are degenerated on the fiber \(M_g(x^{2g+1}) \), and \(M_g(x^{2g+1}) \) is stratified into \(g + 1 \) integral manifolds of the vector fields. The biggest integral manifold is isomorphic to the affine part of the generalized Jacobian \(J_g \) of \(C_g \). Since \(J_g \) is isomorphic to \(\mathbb{C}^g \), we obtain the rational solution to the system. As a byproduct, we get an algebraic-geometrical interpretation to the rational solutions to the KdV hierarchy.

1.2. **Rational solutions to KdV hierarchy.** For the later use, we summarize the rational solutions to the KdV hierarchy [1, 2]. For a fixed \(g \in \mathbb{Z}_{>0} \), the rational solution is given by

\[
 f = \frac{\partial^2}{\partial^2 a_1} \log \tau_g(\vec{a}) \in \mathbb{C}[a_1, \ldots, a_g, \frac{1}{\tau_g(\vec{a})}], \tag{1.4}
\]

where

\[
 \tau_g(\vec{a}) = \det X_g(\vec{a}),
\]

\[
 X_g(\vec{a}) = \begin{pmatrix}
 \chi_1 & \chi_0 & 0 & \cdots \\
 \chi_3 & \chi_2 & \chi_1 & 0 & \cdots \\
 \vdots & & \ddots & \ddots & \ddots \\
 \chi_{2g-3} & \chi_{2g-4} & \cdots & \cdots & \chi_{g-2} \\
 \chi_{2g-1} & \chi_{2g-2} & \cdots & \cdots & \chi_g
 \end{pmatrix} \in M_g(\mathbb{C}[a_1, \ldots, a_g]). \tag{1.5}
\]
Here \(\chi_n \in \mathbb{C}[a_1, \ldots, a_g] \) is given by
\[
\exp(\sum_{i=1}^{g} a_i t^{2i-1}) = \sum_{n=0}^{\infty} \chi_n t^n \quad \text{in } \mathbb{C}[[t]].
\]

From now on we call (1.4) the \(g \)-rational solution. This solution depends only on \(a_1, \ldots, a_g \), and gives the non-trivial solution to the first \(g - 1 \) equations of the hierarchy.

Acknowledgement. I thank organizers of the workshop “Geometry of Singularities and Manifolds – Kusatsu 2008 ” for offering me an opportunity to give a talk. I enjoyed the workshop very much. This manuscript is based on a joint work with Pol Vanhaecke (Poitiers University) and Takao Yamazaki (Tohoku University).

2. Generic Fiber of the Mumford System

2.1. Hamiltonian structure. We briefly explain the Hamiltonian structure of the Mumford system. The phase space \(M_g \) (1.1) is equipped with the Poisson structure defined by
\[
\{u(x), u(z)\} = \{v(x), v(z)\} = 0,
\]
\[
\{u(x), v(z)\} = \frac{u(x) - u(z)}{x - z},
\]
\[
\{u(x), w(z)\} = -2\frac{v(x) - v(z)}{x - z},
\]
\[
\{v(x), w(z)\} = \frac{w(x) - w(z)}{x - z} - u(x),
\]
\[
\{w(x), w(z)\} = 2\left(v(x) - v(z)\right).
\]

The functions \(h_0, \ldots, h_{2g} \) (1.3) on \(M_g \) are pairwise in involution with respect to this Poisson structure, where \(h_g, \ldots, h_{2g} \) are the Casimirs. The Hamiltonian vector fields \(\partial_1, \cdots, \partial_g \) on \(M_g \) are generated by \(h_0, \cdots, h_{g-1} \) by \(\partial_i := \{\cdot, h_{g-i}\} \). Introducing \(D(z) := \sum_{i=0}^{g-1} z^i \partial_{g-i} \), these vector fields can be simultaneously written as
\[
D(z)u(x) = 2\frac{u(x)v(z) - v(x)u(z)}{x - z},
\]
\[
D(z)v(x) = \frac{w(x)u(z) - u(x)w(z)}{x - z} - u(x)u(z),
\]
\[
D(z)w(x) = 2\left(\frac{v(x)w(z) - w(x)v(z)}{x - z} + v(x)u(z)\right).
\]

It is easy to see that the functions \(h_i \)’s are preserved by the vector fields \(\partial_i \)’s, i. e. \(\partial_j h_i = 0 \) for all \(i, j \), and that the \(g \) vector fields \(\partial_i \)’s are tangent to \(M_g(h) = \Phi_g^{-1}(h(x)) \). Thus we
call \(M_g(h) \) the isolevel set. We define the integral manifold \(M_g(h)_0 \) of the vector fields \(\partial_1, \ldots, \partial_g \) by
\[
M_g(h)_0 = \{ l(x) \in M_g(h) \mid \text{rank}_{l(x)}(\partial_1, \ldots, \partial_g) = g \}.
\]

2.2. Generic fiber. When \(h(x) \) has no multiple root, \(C_g(h) \) is a hyperelliptic curve of genus \(g \) with one smooth point at infinity \(\infty \in C_g(h) \). We write \(J_g(h) \) for the Jacobian variety of \(C_g(h) \), and \(\Theta_g(h) \) for the theta divisor. The vector fields do not degenerate on \(M_g(h) \), thus we have \(M_g(h) = M_g(h)_0 \).

Theorem 2.1. [10]

(i) There is an isomorphism \(\phi : M_g(h) \rightarrow J_g(h) \setminus \Theta_g(h) \).

(ii) The isomorphism \(\phi \) induces the \(g \)-dimensional translation invariant vector field on \(J_g(h) \) from the vector fields \(\partial_1, \ldots, \partial_g \).

(iii) Riemann’s theta function gives the solution of the Mumford system.

(iv) The vector fields \(\partial_1, \ldots, \partial_g \) correspond to the partial differentials with respect to the first \(g \) coordinates \(a_1, \ldots, a_g \) of the KdV hierarchy. Moreover, Riemann’s theta function gives the quasi-periodic solution to the KdV hierarchy.

Remark 2.2. The map \(\phi \) is called the eigenvector map, and \(\phi(l(x)) \) corresponds to the line bundle over \(C_g(h) \) determined by the eigenvector of \(l(x) \). This is given by a composition of two maps:

\[
l(x) = \begin{pmatrix}
v(x) & w(x) \\
u(x) & -v(x)
\end{pmatrix}
\begin{array}{c}
\rightarrow \\
\nu
\end{array}
\begin{array}{c}
\text{Div}_\text{eff}^g(C_g(h)) \\
\rightarrow \\
\sum_{i=1}^g P_i \\
\rightarrow \\
O_{C_g(h)}(\sum_{i=1}^g P_i - g \cdot \infty).
\end{array}
\]

Here \(P_i = (x_i, v(x_i)) \in C_g(h) \) is determined by the zeros of \(u(x) = \prod_{i=1}^g (x - x_i) \). One sees that the image of \(\nu \) is
\[
\nu(M_g(h)) = \left\{ \sum_{i=1}^g P_i \mid P_i \neq \infty \text{ for all } i, \text{ and } \iota(P_i) \neq P_j \text{ for all } i \neq j \right\} \subset \text{Div}_\text{eff}^g(C_g(h)),
\]
where \(\iota \) is the hyperelliptic involution on \(C_g(h) \) given by \(\iota : (x, y) \mapsto (x, -y) \).

3. Degenerated Fiber and Generalized Jacobian

3.1. Integral manifold and generalized Jacobian. When \(h(x) = x^{2g+1} \), we write \(C_g = C_g(x^{2g+1}) \) and \(M_g(0) = M_g(x^{2g+1}) \) for simplicity. The curve \(C_g \) has a unique singular point at the origin. We write \(\pi \) for the normalization map
\[
\pi : \mathbb{P}^1 \rightarrow C_g(0); \ t \mapsto (t^2, t^{2g+1}).
\]
The generalized Jacobian J_g of C_g and the theta divisor Θ_g are defined by:

$$J_g := \{ L \mid \text{local free } O_{C_g}\text{-module of rank}(L) = 1 \text{ and } \deg(L) = 0 \},$$

$$\Theta_g := \{ L \in J_g \mid \dim H^0(L \otimes O_{C_g}((g - 1) \cdot \infty)) \neq 0 \}.$$

The following properties are important:

Proposition 3.1. We have the following isomorphisms:

$$J_g \simeq \mathbb{C}^g \simeq \mathbb{C}[t]^{\times} / \mathbb{C}[t^2, t^{2g+1}]^{\times},$$

$$\Theta_g \simeq \{ \vec{a} = (a_1, \ldots, a_g) \in \mathbb{C}^g \mid \tau_g(\vec{a}) = 0 \},$$

where $\tau_g(\vec{a})$ is given by (1.5).

It is natural to have the function $\tau_g(\vec{a})$ here, which is related to the rational analogue of the hyperelliptic functions [4]. Note that J_g is not compact any more. Now the vector fields degenerate on $M_g(0)$, i.e. $M_g(0) \neq M_g(0)$, and $M_g(0)$ is stratified as follows:

Proposition 3.2. (i) We have $M_g(0) \setminus M_g(0)_{0} \simeq M_{g-1}(0)$, where $M_{g-1}(0)$ is the isolevel set of the $(g-1)$-Mumford system, $M_{g-1}(0) = \Phi_{g-1}^{-1}(x^{2g-1})$.

(ii) The embedding map $\iota_g : M_{g-1}(0) \to M_g(0)$ is given by $\iota_g(l(x)) = xl(x)$.

(iii) On $M_g(0) \setminus M_g(0)_{0}$, we have $\partial_1 = 0$.

In the following we write $xM_{g-1}(0)$ for $\iota_g(M_{g-1}(0))$. We find that the integral manifold $M_g(0)_0$ is an essential object to be related to the curve C_g:

Theorem 3.3. [7]

(i) There is an isomorphism $\phi : M_g(0)_{0} \sim J_g \setminus \Theta_g$.

(ii) The isomorphism ϕ induces the g-dimensional translation invariant vector field on J_g from the vector fields $\partial_1, \ldots, \partial_g$.

(iii) The function $\tau_g(\vec{a})$ gives the rational solution to the Mumford system.

Remark 3.4. (i) For a generic element $l(x)$ in $M_g(0)$, the map ϕ is given by $\phi(l(x)) = \vec{a} = (a_1, \ldots, a_g) \in \mathbb{C}^g$ where \vec{a} is determined by

$$\prod_{i=1}^{g}(1 - \frac{x_i^g}{v(x_i)})^{\tau_g(\vec{a})} \equiv \exp\left(\sum_{i=1}^{g} a_it^{2i-1}\right) \mod \mathbb{C}[t^2, t^{2g+1}]^{\times}.$$

Here x_i’s are the zeros of $u(x)$.

(ii) The inverse map ϕ^{-1},

$$\phi^{-1} : \vec{a} = (a_1, \ldots, a_g) \mapsto l(x) = \begin{pmatrix} v(x) & u(x) \\ w(x) & -v(x) \end{pmatrix},$$
is constructed as follows: We set \(\rho_g(\vec{a}) = \frac{\partial^2}{\partial a_1^2} \log \tau_g(\vec{a}) \), and \(\rho_g(\vec{a})^{(k)} = \frac{\partial^k}{\partial a_1^k} \rho_g(\vec{a}) \). Then we recursively determine the coefficients of \(u(x), v(x), w(x) \) starting by

\[
u_{g-1} = \rho_g(\vec{a}), \quad \nu_{g-1} = \frac{1}{2} \rho_g(\vec{a})^{(1)}, \quad \nu_g = -\rho_g(\vec{a}),
\]

using a relation \(v(x)^2 + u(x)w(x) = x^{2g+1} \) and the action of \(\partial_1 = \frac{\partial}{\partial a_1} \). Actually the coefficients are obtained in \(\mathbb{C}[\rho_g, \rho_g^{(1)}, \ldots, \rho_g^{(2g)}] \).

(iii) The function \(\rho_g(\vec{a}) \) is nothing but the \(g \)-rational solution (1.4) to the KdV hierarchy.

Example 3.5. (i) \(g = 2 \) case:

\[
\tau_2(\vec{a}) = \frac{a_1^3}{3} - a_2, \quad \rho_2(\vec{a}) = \frac{-3a_1(a_1^3 + 6a_2)}{(a_1^3 - 3a_2)^2}.
\]

(ii) \(g = 3 \) case:

\[
\tau_3(\vec{a}) = \frac{a_1^6}{45} - \frac{a_1^4a_2}{3} - a_2^3 + a_1a_3,
\]

\[
\rho_3(\vec{a}) = \frac{-3(24a_1^{10} + 675a_1^4a_2^2 - 1350a_1a_3^2 - 270a_1^2a_3 + 675a_3^2)}{(a_1^6 - 15a_1^4a_2 - 45a_2^2 + 45a_1a_3)^2}.
\]

3.2. Degenerated loci and compactification of \(J_g \).

As seen in Proposition 3.2 and Theorem 3.3, \(M_g(0) \) is stratified into \(g + 1 \) integral manifolds:

\[M_g(0) = M_g(0)_0 \sqcup xM_{g-1}(0)_0 \sqcup x^2M_{g-2}(0)_0 \sqcup \cdots \sqcup x^{g-1}M_1(0) \sqcup x^gM_0(0),\]

where \(x^kM_{g-k}(0)_0 \simeq J_{g-k} \setminus \Theta_{g-k} \) for \(k = 0, \ldots, g - 1 \) and \(x^gM_0(0) \simeq \{ \text{pt.} \} \). We have \(\partial_1 = \cdots = \partial_k = 0 \) on \(x^kM_{g-k} \).

Let \(\mathcal{J}_g \) be the compactification of \(J_g \) and \(\overline{\Theta}_g \) be the theta divisor [6, 11]:

\[
\mathcal{J}_g := \{ \mathcal{L} \mid \mathcal{L} : \text{torsion free } O_{C_g} \text{-module of rank}(\mathcal{L}) = 1 \text{ and deg}(\mathcal{L}) = 0 \} \supset J_g,
\]

\[
\overline{\Theta}_g := \{ \mathcal{L} \in \mathcal{J}_g \mid \dim H^0(\mathcal{L} \otimes O_{C_g}((g - 1) \cdot \infty)) \neq 0 \} \supset \Theta_g.
\]

Using these, we finally discribe the total space \(M_g(0) \) as follows:

Theorem 3.6. [7]

(i) The isolevel set \(M_g(0) \) is isomorphic to \(\mathcal{J}_g \setminus \overline{\Theta}_g \).

(ii) Via the isomorphism of (i), the vector fields \(\partial_1 \)'s on \(M_g(0) \) becomes those on \(\mathcal{J}_g \) induced by the action of \(J_g \) to \(\mathcal{J}_g \).

References

