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Abstract

We denote by δg (resp. δ+
g ), the minimal dilatation for pseudo-Anosovs (resp. pseudo-Anosovs with

orientable invariant foliations) on a closed surface of genus g. This paper concerns the pseudo-Anosovs
which occur as monodromies of fibrations on manifolds obtained from the Whitehead sister link exterior
W by Dehn filling two cusps, where the fillings are on the boundary slopes of fibers of W . We give upper
bounds of δg for g ≡ 0, 1, 5, 6, 7, 9 (mod 10), δ+

g for g ≡ 1, 5, 7, 9 (mod 10). Our bounds improve the
previous one given by Hironaka. We note that the monodromies of fibrations on W were also studied by
Aaber and Dunfield independently.

1 Introduction

Let Mod(Σ) be the mapping class group on an orientable surface Σ. An element φ ∈ Mod(Σ) which contains
a pseudo-Anosov homeomorphism Φ : Σ → Σ as a representative is called a pseudo-Anosov mapping class.
There are two numerical invariants for pseudo-Anosov mapping classes. One is the dilatation λ(φ) > 1
(or the entropy ent(φ) = log λ(φ)) which is defined to be the dilatation λ(Φ) of Φ, and the other is the
hyperbolic volume vol(φ) = vol(T(φ)) of the mapping torus T(Φ). It is natural to ask whether there is a
relation between ent(φ) and vol(φ). Computer experiments in [13] tell us that if we fix a surface Σ, then
pseudo-Anosovs with small dilatation have small volume. This is true in a sense. In fact it is proved in [6]
that pseudo-Anosovs on any surfaces with small dilatation have bounded volume, see Theorem 1.4.

We denote by δg, the minimal dilatation for pseudo-Anosov elements φ ∈ Mod(Σg) on a closed surface
Σg of genus g. A natural question is: what is the value δg? To discuss the minimal dilatations, we introduce
the polynomial

f(k,`)(t) = t2k − tk+` − tk − tk−` + 1 for k > 0, −k < ` < k.

This polynomial has the largest real root λ(k,`) which is greater than 1 (Theorem 3.2 and Lemma 4.4). For
any fixed ` > 0, it follows that k log λ(k,`) converges to log( 3+

√
5

2 ) if k goes to ∞ (Lemma 4.16). It is easy
to show that δ1 = λ(1,0) = 3+

√
5

2 . It was proved by Cho-Ham that δ2 = λ(2,1) ≈ 1.72208 [4]. It is open to
determine the values δg for g ≥ 3. Questions on properties of δg were posed by McMullen and Farb:

Question 1.1 ([23] for (1), [5] for (2)). (1) Does lim
g→∞

g log δg exist? What is its value?

(2) Is the sequence {δg}g≥2 (strictly) monotone decreasing?

Related questions are ones for orientable pseudo-Anosovs. A pseudo-Anosov mapping class φ is said to be
orientable if the invariant (un)stable foliation of a pseudo-Anosov homeomorphism Φ ∈ φ is orientable. We
denote by δ+

g , the minimal dilatation for orientable pseudo-Anosov elements of Mod(Σg). The minima δ+
g

were determined for g = 2 by Zhirov [31], for 3 ≤ g ≤ 5 by Lanneau-Thiffeault [17], and for g = 8 by Lanneau-
Thiffeault and Hironaka [17, 9]. Those values are given by δ+

2 = λ(2,1), δ+
3 = λ(3,1) = λ(4,3) ≈ 1.40127,

δ+
4 = λ(4,1) ≈ 1.28064, δ+

5 = λ(6,1) = λ(7,4) ≈ 1.17628 and δ+
8 = λ(8,1) ≈ 1.12876.
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Figure 1: (left) 3 chain link C3. (center) (−2, 3, 8)-pretzel link or Whitehead sister link. (right) link 62
2.

Lanneau-Thiffeault obtained the inequality δ+
5 ≤ δ+

6 ([17]) which implies that {δ+
g }g≥2 is not strictly

monotone decreasing. This leads us to ask an alternative question related to Question 1.1(2): is the sequence
{δ+

g }g≥2 monotone decreasing? Also, one can ask: which g does the inequality δg < δ+
g hold? It is easy to

see that δ1 = δ+
1 . The equality δg = δ+

g holds for g = 2 [4, 31]. We do not know whether δ3 = δ+
3 holds or

not. By work of Lanneau-Thiffeault and Hironaka, it follows that δg < δ+
g for g = 4, 6, 8 [17, 9].

To discuss Question 1.1(1), we recall the previous upper bound of δg given by Hironaka.

Theorem 1.2 ([9]). (1) δg ≤ λ(g+1,3) if g ≡ 0, 1, 3, 4 (mod 6) and g ≥ 3.

(2) δg ≤ λ(g+1,1) if g ≡ 2, 5 (mod 6) and g ≥ 5.

By using Lemma 4.16 and Theorem 1.2, the following asymptotic inequality holds.

Theorem 1.3 ([9]). lim
g→∞

sup g log δg ≤ log( 3+
√

5
2 ).

This improves the upper bound g log δg ≤ g log δ+
g ≤ log(2 +

√
3) for any g ≥ 2 by Minakawa [22] and

Hironaka-Kin [10]. Since log δg tends to 0 as g tends to ∞, Theorem 1.3 implies that

lim
g→∞

sup |χ(Σg)| log δg ≤ 2 log( 3+
√

5
2 ),

where χ(Σ) is the Euler characteristic of a surface Σ.
Let N be the magic manifold, which is the exterior of the 3 chain link C3 illustrated in Figure 1(left). This

manifold has the smallest known volume among orientable hyperbolic 3-manifolds having 3 cusps. Many
manifolds having at most 2 cusps with small volume are obtained from N by Dehn fillings, see [20]. In
this paper, we study the small dilatation pseudo-Anosov homeomorphisms which occur as monodromies of
fibrations on manifolds obtained from N by Dehn filling all three cusps. In [6], Farb, Leininger and Margalit
introduced small dilatation pseudo-Anosov homeomorphisms which we recall below.

For any number P > 1, define the set of pseudo-Anosov homeomorphisms

ΨP = {pseudo-Anosov Φ : Σ → Σ | χ(Σ) < 0, |χ(Σ)| log λ(Φ) ≤ log P}.

They call elements Φ ∈ ΨP small dilatation pseudo-Anosov homeomorphisms. Theorem 1.3 says that if one
takes P sufficiently large, then ΨP contains a pseudo-Anosov homeomorphism Φg : Σg → Σg for each g ≥ 2.
By a result by Hironaka-Kin [10], ΨP also contains a pseudo-Anosov homeomorphism Φn : Dn → Dn on an
n-punctured disk Dn for each n ≥ 3. Let Σ◦ ⊂ Σ be the surface obtained by removing the singularities of
the (un)stable foliation for Φ and Φ|Σ◦ : Σ◦ → Σ◦ denotes the restriction. Observe that λ(Φ) = λ(Φ|Σ◦).
The set

Ψ◦
P = {Φ|Σ◦ : Σ◦ → Σ◦ | (Φ : Σ → Σ) ∈ ΨP }

is infinite. Let T (Ψ◦
P ) be the set of homeomorphism classes of mapping tori by elements of Ψ◦

P .

Theorem 1.4 ([6]). The set T (Ψ◦
P ) is finite. Namely, for each P > 1, there exist finite many complete, non

compact hyperbolic 3-manifolds M1, M2, · · · ,Mr fibering over S1 so that the following holds. Any pseudo-
Anosov Φ ∈ ΨP occurs as the monodromy of a Dehn filling of one of the Mk. In particular, there exists a
constant V = V (P ) such that vol(Φ) ≤ V holds for any Φ ∈ ΨP .
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Agol also proved Theorem 1.4 by using periodic splitting sequences of pseudo-Anosov mapping tori [3]. By
Theorem 1.4, one sees that the following sets U , U+ and V are finite.

U = {T(Φ|Σ◦) | g ≥ 2, Φ is a pseudo-Anosov homeomorphism on Σ = Σg such that λ(Φ) = δg},
U+ = {T(Φ|Σ◦) | g ≥ 2, Φ is an orientable pseudo-Anosov homeomorphism

on Σ = Σg such that λ(Φ) = δ+
g },

V = {T(Φ|Σ◦) | n ≥ 3, Φ is a pseudo-Anosov homeomorphism on Σ = Dn such that λ(Φ) = δ(Dn)},

where δ(Dn) denotes the minimal dilatation for pseudo-Anosov elements of Mod(Dn) on an n-punctured
disk Dn.

The previous study [15] by the authors implies that N ∈ V. In fact, the mapping class φ ∈ Mod(D4)
represented by the 4-braid σ1σ2σ

−1
3 has the minimal dilatation δ(D4) [16]. For the pseudo-Anosov rep-

resentative Φ of this mapping class φ, the mapping torus T(Φ|Σ◦) is homeomorphic to N [15]. Moreover
for each n ≥ 6 (resp. n = 3, 4, 5), a pseudo-Anosov homeomorphism Φn : Dn → Dn having the smallest
known dilatation (resp. smallest dilatation) occurs as the monodromy on a particular fibration on a manifold
obtained from N by Dehn filling [15]. See also work of Venzke [29].

Hironaka obtained Theorems 1.2 and 1.3 by viewing the monodromies of fibrations on manifolds obtained
from the 62

2 link exterior S3 \ 62
2 by Dehn filling two cusps. (For the link 62

2, see Figure 1(right) or Rolfsen’s
table [24, Appendix C].) There exists an orientable monodromy : Σ2 → Σ2, with dilatation δ2 = δ+

2 of a
fibration on a manifold obtained from S3 \ 62

2 by Dehn filling two cusps. This implies that S3 \ 62
2 ∈ U ∩ U+

(Lemma 4.24 or [9]). We see that S3 \ 62
2 is homeomorphic to N(−1

2 ) (see [20, Table A.1] for example),
where N(r) is the manifold obtained from N by Dehn filling one cusp along the slope r. As mentioned,
computer experiments say that the pseudo-Anosovs with small dilatation have small volume, and N is the
candidate having the smallest volume among orientable 3-manifolds with 3 cusps. These results led us to
see monodromies of fibrations on manifold obtained from N by Dehn filling.

In this paper, we investigate the fibrations on manifolds obtained from the three 2-cusped manifolds
N(−1

2 ), N(−3
2 ) and N(2) by Dehn filling 2 cusps. The second one N(−3

2 ) is homeomorphic to N(−4) and
this is the Whitehead sister link exterior, i.e, the (−2, 3, 8)-pretzel link exterior (see [20, Table A.1]), see
Figure 1(center). The manifold N(−3

2 ) and the Whitehead link exterior have the smallest volume among
orientable 2-cusped hyperbolic 3-manifolds [2]. We shall see that N(−3

2 ) and N(2) are elements of U+

(Lemmas 4.21, 4.36). Our main result is that N(−3
2 ) (resp. N(2)) also admits Dehn fillings giving a

sequence of fibers over the circle, with closed fibers Σg of genus g for each g ≥ 3 such that the monodromies
associated to the fibrations satisfy the same asymptotic inequality as Theorem 1.3. More precisely, we shall
prove the following.

Theorem 1.5. Let r ∈ { 3
−2 , 1

−2 , 2}. For each g ≥ 3, there exist Σg-bundles over the circle obtained from
N(r) by Dehn filling all two cusps along the boundary slopes of fibers of N(r). Among them, there exist the
monodromies Φg(r) : Σg → Σg of the fibrations such that

(1) lim
g→∞

g log λ(Φg(r)) = log( 3+
√

5
2 ),

(2) lim
g→∞

vol(Φg(r)) = vol(N(r)).

Independently, Aaber and Dunfield have investigated Σg-bundles over the circle obtained from N(−3
2 ) by

Dehn filling two cusps, see [1] and Remark 4.33. They have obtained similar results on the dilatation to
those given in this paper. Theorem 1.5 in the case r = −3

2 was also established by [1].
By using monodromies on closed fibers coming from N(−3

2 ), we find an upper bound of δg.

Theorem 1.6. (1) δg ≤ λ(g+2,1) if g ≡ 0, 1, 5, 6 (mod 10) and g ≥ 5.

(2) δg ≤ λ(g+2,2) if g ≡ 7, 9 (mod 10) and g ≥ 7.

Theorem 1.7. Let g ≡ 2, 4 (mod 10). Suppose that g + 2 6≡ 0 (mod 4641(= 3 · 7 · 13 · 17)).

(1) δg ≤ λ(g+2,3) if gcd(g + 2, 3) = 1.
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(2) δg ≤ λ(g+2,7) if 3 divides g + 2 and gcd(g + 2, 7) = 1.

(3) δg ≤ λ(g+2,13) if 21(= 3 · 7) divides g + 2 and gcd(g + 2, 13) = 1.

(4) δg ≤ λ(g+2,17) if 273(= 3 · 7 · 13) divides g + 2 and gcd(g + 2, 17) = 1.

We will verify the bounds in Theorems 1.6, 1.7 are sharper than the ones in Theorem 1.2 (see Proposi-
tions 4.26(1),(2) and 4.28). Theorems 1.6, 1.7 do not include the case g ≡ 3, 8 (mod 10). This is because in
this case, N(−3

2 ) can not give rise to the monodromy on a closed fiber of genus g whose dilatation is strictly
smaller than the one obtained from N(−1

2 ), see Proposition 4.26(3),(4). However in the case g = 8, 13,
we find a sharper upper bound than the one in Theorem 1.2. Let λ(x,y,z) be the largest real root of the
polynomial

f(x,y,z)(t) = tx+y−z − tx − ty − tx−z − ty−z + 1.

Proposition 1.8. (1) δ8 ≤ λ(18,17,7)(≈ 1.10403) < λ(9,1)(≈ 1.11350).

(2) δ13 ≤ λ(27,21,8)(≈ 1.07169) < λ(14,3)(≈ 1.07266).

We turn to the study on δ+
g . We record results by Lanneau-Thiffeault.

Theorem 1.9 ([17]). The minimal dilatation δ+
g for g = 6, 7 is not less than the largest real root of the

following polynomial.

(1) f(6,1)(t) = t12 − t7 − t6 − t5 + 1 if g = 6. (δ+
6 ≥ λ(6,1) ≈ 1.17628.)

(2) f(9,2)(t) = (t4 − t3 + t2 − t +1)(t14 + t13 − t9 − t8 − t7 − t6 − t5 + t +1) if g = 7. (δ+
7 ≥ λ(9,2) ≈ 1.11548.)

Lanneau-Thiffeault asked the following.

Question 1.10 ([17]). For g even, is δ+
g equal to the largest real root of the polynomial

f(g,1)(t) = t2g − tg+1 − tg − tg−1 + 1?

Namely, is δ+
g equal to λ(g,1) for g even?

An upper bound of δ+
g given by Hironaka is as follows.

Theorem 1.11 ([9]). (1) δ+
g ≤ λ(g+1,3) if g ≡ 1, 3 (mod 6).

(2) δ+
g ≤ λ(g,1) if g ≡ 2, 4 (mod 6).

(3) δ+
g ≤ λ(g+1,1) if g ≡ 5 (mod 6).

We do not know whether there exists an orientable pseudo-Anosov homeomorphism of genus g having the
dilatation λ(g,1) (appeared in Question 1.10) or not for each g ≡ 0 (mod 6). (For the recent work on the
upper bound of δ+

g for g ≡ 0 (mod 6), see [14].) Under the assumption that Question 1.10 is true, the
inequality δ+

g ≤ δ+
g+1 holds whenever g ≡ 5 (mod 6) and δg < δ+

g holds for all even g, see [9].
We give an upper bound of δ+

g in the case g ≡ 1, 5, 7, 9 (mod 10) using orientable pseudo-Anosov mon-
odromies coming from N(−3

2 ).

Theorem 1.12. (1) δ+
g ≤ λ(g+2,2) if g ≡ 7, 9 (mod 10) and g ≥ 7.

(2) δ+
g ≤ λ(g+2,4) if g ≡ 1, 5 (mod 10) and g ≥ 5.

We shall see that the bound in Theorem 1.12 improves the one in Theorem 1.11 (see Proposition 4.34).
Theorem 1.12(1) together with Theorem 1.9(2) gives:

Corollary 1.13. δ+
7 = λ(9,2).

Independently, Corollary 1.13 was established by Aaber and Dunfiled [1].
The following tells us that the sequence {δ+

g }g≥2 is not monotone decreasing.
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Proposition 1.14. If Question 1.10 is true, then δ+
g < δ+

g+1 whenever g ≡ 1, 5, 7, 9 (mod 10) and g ≥ 7.
In particular the inequality δ+

7 < δ+
8 holds.

Our pseudo-Anosov homeomorphisms providing the upper bound of δg in Theorem 1.6(1) are not orientable
(Remark 4.27). This together with the inequality λ(7,1) < λ(6,1) = δ+

5 implies:

Corollary 1.15. δ5 < δ+
5 .

We have a question:

Question 1.16. Does the magic manifold N satisfy the following (1),(2) and (3)?

(1) There exist Dehn fillings of N giving an infinite sequence of fiberings over the circle, with closed fibers
Σgi of genus gi ≥ 2 with gi → ∞, and with monodromy Φi so that δgi = λ(Φi).

(2) There exist Dehn fillings of N giving an infinite sequence of fiberings over the circle, with closed fibers
Σgi of genus gi ≥ 2 with gi → ∞, and with monodromy Φi having the orientable (un)stable foliation
so that δ+

gi
= λ(Φi).

(3) There exist Dehn fillings of N giving an infinite sequence of fiberings over the circle, with fibers Dni

having ni punctures with ni → ∞, and with monodromy Φi so that δ(Dni) = λ(Φi).

The existence of the manifold satisfying each of (1),(2) and (3) is guaranteed from Theorem 1.4. Question 1.16
asks whether the magic manifold enjoys all (1),(2) and (3) or not.

The paper is organized as follows. We review basic facts in Section 2. The fibered faces and the entropy
function for N are described in Section 3. The (un)stable foliation for the monodromy of the fibration on N
is discussed in the section. We prove theorems in Section 4.

2 Notation and basic facts

2.1 Pseudo-Anosov

The mapping class group Mod(Σ) is the group of isotopy classes of orientation preserving homeomorphisms
of an orientable surface Σ, where the group operation is induced by composition of homeomorphisms. An
element of this group is called a mapping class.

A homeomorphism Φ : Σ → Σ is pseudo-Anosov if there exists a constant λ = λ(Φ) > 1 called the
dilatation of Φ and there exists a pair of transverse measured foliations Fs and Fu such that

Φ(Fs) = 1
λF

s and Φ(Fu) = λFu.

Measured foliations Fs and Fu are called the stable and unstable foliations or invariant foliations for Φ. In
this case the mapping class φ = [Φ] is called pseudo-Anosov. We define the dilatation of φ, denoted by λ(φ),
to be the dilatation of Φ.

The (topological) entropy ent(f) is a measure of the complexity of a continuous self-map f on a compact
manifold, see for instance [30]. The inequality

log sp(f∗) ≤ ent(f)

holds (see [19]), where sp(f∗) is the spectral radius of the induced map f∗ : H1(S; R) → H1(S; R) on the
first homology group. For any pseudo-Anosov homeomorphism Φ : Σ → Σ, the equality

ent(Φ) = log(λ(Φ))

holds and ent(Φ) attains the minimal entropy among all homeomorphisms which are isotopic to Φ, see [7,
Exposé 10]. We denote by ent(φ), this characteristic number. If Φ has orientable invariant foliations, then
the equality

log sp(Φ∗) = ent(Φ)

holds, see [25]. The converse is true:
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Theorem 2.1 ([17]). A pseudo-Anosov homeomorphism Φ is orientable if and only if sp(Φ∗) = λ(Φ).

If we fix a surface Σ and take a constant c > 1, then the set of dilatations λ(Φ) < c for pseudo-Anosov
homeomorphisms Φ : Σ → Σ is finite, see [11]. In particular the set

Dil(Σ) = {λ(φ) | pseudo-Anosov φ ∈ Mod(Σ)}

achieves a minimum δ(Σ).
Thurston’s hyperbolization theorem [27] asserts that φ is pseudo-Anosov if and only if its mapping torus

T(φ) = Σ × [0, 1]/ ∼,

where ∼ identifies (x, 1) with (f(x), 0) for a representative f ∈ φ, is hyperbolic. We denote the hyperbolic
volume of T(φ) by vol(φ).

Let us suppose that Σ is a compact orientable surface of genus g and we consider a pseudo-Anosov
homeomorphism Φ : Σ → Σ. The stable foliation for Φ is denote by F . Let x1, · · · , xm be all the singularities
for F in the interior int(Σ), and p(xi) ≥ 3 denotes the number of prongs of F at xi. Let y1, · · · , yn be all
the singularities for F on the boundary ∂Σ, and p(yj) ≥ 1 denotes the number of prongs of F at yj . The
following Euler-Poincaré formula holds:

m∑
i=1

(p(xi) − 2) +
n∑

j=1

(p(yj) − 2) = −2χ(Σg) = 4g − 4

(see [7, Exposé 5] for example). The pair of integers

(p(x1) − 2, p(x2) − 2, · · · , p(xm) − 2, p(y1) − 2, p(y2) − 2, · · · , p(yn) − 2)

is called the singularity data of Φ.

2.2 Thurston norm

Let M be an irreducible, atoroidal and oriented 3-manifold with boundary ∂M (possibly ∂M = ∅). We
recall the Thurston norm ‖ · ‖ : H2(M,∂M ; R) → R (see [26]). The norm ‖ · ‖ has the property that for any
integral class a ∈ H2(M,∂M ; R),

‖a‖ = min
F

{−χ(F )},

where the minimum is taken over all oriented surface F embedded in M , satisfying a = [F ], with no
components of non-negative Euler characteristic. The surface F which realizes this minimum is called a
minimal representative of a. For a rational class a ∈ H2(M,∂M ; R), take a rational number r so that ra is
an integral class. Then ‖a‖ is defined to be

‖a‖ = 1
|r|‖ra‖.

The function ‖ · ‖ defined on rational classes admits a unique continuous extension to H2(M,∂M ; R) which
is linear on the ray though the origin. The unit ball U = {a ∈ H2(M,∂M ; R) | ‖a‖ ≤ 1} is a compact,
convex polyhedron [26].

The following notations are needed to describe how fibrations of M are related to ‖ · ‖.

• A top dimensional face in the boundary ∂U is denoted by ∆, and its open face is denoted by int(∆).

• C∆ is the cone over ∆ with the origin and int(C∆) is its interior.

• The set of integral classes (resp. rational classes) of int(C∆) is denoted by int(C∆(Z)) (resp. int(C∆(Q))).

Theorem 2.2 ([26]). Suppose that M is a surface bundle over the circle and let F be a fiber. Then there
exists a top dimensional face ∆ satisfying the following.

(1) [F ] ∈ int(C∆(Z)).

(2) For any a ∈ int(C∆(Z)), a minimal representative of a is a fiber of fibrations on M .

The face ∆ in Theorem 2.2 is called a fibered face and an integral class a ∈ int(C∆) is called a fibered class.
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2.3 Entropy function

Let M be a hyperbolic surface bundle over the circle. We fix a fibered face ∆ for M . The entropy function
ent : int(C∆) → R introduced by Fried [8] is defined as follows. The minimal representative Fa for a
primitive fibered class a ∈ int(C∆) is connected and is a fiber of fibrations on M . Let Φa : Fa → Fa be the
monodromy. Since M is hyperbolic, φa = [Φa] is pseudo-Anosov. The entropy ent(a) and dilatation λ(a) are
defined to be the entropy and dilatation of φa. For r ∈ Q, the entropy ent(ra) is defined by 1

|r|ent(a). Fried
proved that 1

ent : int(C∆(Q)) → R is concave [8], and in particular it admits a unique continuous extension
ent : int(C∆) → R. Moreover, he proved that the restriction of ent to int(∆) is proper, that is ent(a) goes
to ∞ as a goes to a boundary point of ∂∆. Note that 1

ent : int(C∆) → R is linear along each ray through
the origin by definition and cannot be strictly concave for this direction. However Matsumoto and later
McMullen proved that it is strictly concave for other directions.

Theorem 2.3 ([21, 23]). 1
ent : int(∆) → R is strictly concave.

By definition of ent, Ent = ‖ · ‖ent : int(C∆) → R is constant on each ray in int(C∆) through the origin. We
call Ent(a) the normalized entropy of a ∈ int(C∆). By Theorem 2.3 together with the properness of ent by
Fried, Ent admits a unique minimum at a unique ray through the origin. In other words, if we regard Ent
as a function defined on int(∆), then it has the minimum at a unique point in int(∆).

The following question was posed by McMullen.

Question 2.4 ([23]). On which ray in int(C∆) does Ent attain the minimum? Is the minimum attained on
a rational class of int(∆)?

We consider Question 2.4 for N(−3
2 ), N(−1

2 ) and N(2), see Proposition 4.13.

3 Magic manifold

3.1 Fibered face and entropy function

The magic manifold N is a surface bundle over the circle ([15] for instance). In this section, we recall the
entropy function on a fibered face for N .

Let Kα, Kβ and Kγ be the components of the 3 chain link C3. They bound the oriented disks Fα, Fβ

and Fγ with 2 holes, see Figure 2(right). Let α = [Fα], β = [Fβ ], and γ = [Fγ ]. The Thurston unit ball U
for N is the parallelepiped with vertices ±α = (±1, 0, 0), ±β = (0,±1, 0), ±γ = (0, 0,±1), ±(α + β + γ),
see Figure 2(left). The set {α, β, γ} is a basis of H2(N, ∂N ; Z). The symmetry of C3 tells us that every top
dimensional face is a fibered face. We fix a face ∆ with vertices α = (1, 0, 0), α+β+γ = (1, 1, 1), β = (0, 1, 0)
and −γ = (0, 0,−1). Then

int(∆) = {xα + yβ + zγ | x + y − z = 1, x > 0, y > 0, x > z, y > z}.

Hence if xα + yβ + zγ ∈ int(C∆), then

‖xα + yβ + zγ‖ = x + y − z. (3.1)

Let N (L) be the regular neighborhood of a link L in S3. We denote the tori ∂N (Kα), ∂N (Kβ), ∂N (Kγ)
by Tα, Tβ , Tγ respectively. Let xα + yβ + zγ be a primitive fibered class in int(C∆). The minimal represen-
tative of this class is denoted by Fxα+yβ+zγ or F(x,y,z). Let us put ∂αF(x,y,z) = ∂F(x,y,z) ∩Tα which consists
of parallel simple closed curves on Tα. We define ∂βF(x,y,z), ∂γF(x,y,z) ⊂ ∂F(x,y,z) in the same manner.

Lemma 3.1. Let xα+yβ + zγ be a primitive fibered class in int(C∆). The number of boundary components
](∂F(x,y,z)) is equal to gcd(x, y + z) + gcd(y, z + x) + gcd(z, x + y), where gcd(0, w) is defined by |w|. More
precisely

(1) ](∂αF(x,y,z)) = gcd(x, y + z),

(2) ](∂βF(x,y,z)) = gcd(y, z + x),

7



Figure 2: (left) Thurston norm ball for N. (right) Fα, Fβ , Fγ . [arrows indicate the normal direction of
oriented surfaces.]

(3) ](∂γF(x,y,z)) = gcd(z, x + y).

Proof. We prove (1). The proof of (2),(3) is similar. We have the meridian and longitude bases {mα, `α}
for Tα, {mβ , `β} for Tβ and {mγ , `γ} for Tγ . We consider the long exact sequence of the homology groups
of the pair (N, ∂N). The boundary map is given by

∂∗ : H2(N, ∂N ; R) → H1(∂N ; R),
α 7→ `α − mβ − mγ ,

β 7→ `β − mγ − mα,

γ 7→ `γ − mα − mβ .

Hence
∂∗(xα + yβ + zγ) = x`α − (y + z)mα + y`β − (z + x)mβ + z`γ − (x + y)mγ . (3.2)

Since F(x,y,z) is the minimal representative, ∂αF(x,y,z) is a union of oriented parallel simple closed curves on
Tα whose homology class equals x`α − (y + z)mα ∈ H1(Tα; R), see (3.2). Thus the number of components
of ∂αF(x,y,z) equals gcd(x, y + z). This completes the proof. ¤
From the proof of Lemma 3.1, one sees that the boundary slope of each simple closed curve of ∂αF(x,y,z)

equals −(y+z)
x . Similarly the boundary slope of each component of ∂βF(x,y,z) (resp. ∂γF(x,y,z)) is given by

−(z+x)
y (resp. −(x+y)

z ). Let us define

slope(xα + yβ + zγ) = (−(y+z)
x , −(z+x)

y , −(x+y)
z ). (3.3)

This notation slope(·) is needed for the study of Dehn fillings of N in Section 4.
One can compute the entropy for any element of int(C∆(Z)) by using the next theorem.

Theorem 3.2 ([15]). The dilatation λ(x,y.z) of xα + yβ + zγ ∈ int(C∆(Z)) is the largest real root of the
polynomial

P (t1, t2, t3) = −t1 − t2 + t3 + t1t2 − t1t3 − t2t3.

Since P (tx, ty, tz) = tz(tx+y−z − tx − ty − tx−z − ty−z + 1), λ(x,y,z) is the largest real root of

f(x,y,z)(t) = tx+y−z − tx − ty − tx−z − ty−z + 1.

The minimum of Ent : int(C∆) → R is equals to 2 log(2 +
√

3) and it is attained by α + β [15]. Since the
Thurston norm ball of N has a symmetry, minEnt does not depend on fibered faces of N .

3.2 Invariant foliations

Let Φ(x,y,z) be the monodromy of the fibration of N associated to a primitive fibered class xα + yβ + zγ ∈
int(C∆) and let F(x,y,z) be its fiber. We denote the stable foliation for Φ(x,y,z) by F(x,y,z). We shall compute
the number of prongs at the singularities of F(x,y,z).
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Proposition 3.3. The singularity data of Φ(x,y,z) is given by

( x
gcd(x,y+z) − 2, · · · , x

gcd(x,y+z) − 2︸ ︷︷ ︸
gcd(x,y+z)

, y
gcd(y,x+z) − 2, · · · , y

gcd(y,x+z) − 2︸ ︷︷ ︸
gcd(y,x+z)

, x+y−2z
gcd(z,x+y) − 2, · · · , x+y−2z

gcd(z,x+y) − 2︸ ︷︷ ︸
gcd(z,x+y)

).

More precisely F(x,y,z) is

(1) x
gcd(x,y+z) -pronged at each component of ∂αF(x,y,z),

(2) y
gcd(y,x+z) -pronged at each component of ∂βF(x,y,z),

(3) x+y−2z
gcd(z,x+y) -pronged at each component of ∂γF(x,y,z), and

(4) F(x,y,z) has no singularities in the interior of F(x,y,z).

Here we recall the formula of the intersection number i([c], [c′]) between isotopy classes of essential simples
closed curves c, c′ on a torus T . Let p

q , r
s be rational numbers or 1

0 with irreducible forms and suppose that
p
q , r

s are slopes on T which represent isotopy classes [c], [c′] respectively. Then i([c], [c′]) = |ps − qr|.

Proof of Proposition 3.3. Observe that a fiber F = F(1,1,0) associated to the fibered class α + β is a sphere
with 4 boundary components. The monodromy Φ = Φ(1,1,0) : F → F of the fibration on N is represented by
the 3-braid b = σ2σ

−1
1 σ2. In particular S3\b is homeomorphic to S3\C3 = N , where b is a union of the closed

braid of b and the braid axis, see Figure 3(right). We define a homeomorphism H : S3\N (C3) → S3\N (b) as
follows. Notice that the link illustrated in Figure 3(center) is isotopic to C3. We cut the twice-punctured disk
Fα bounded by the component Kα. Let F ′

α and F ′′
α be the resulting twice-punctured disks after cutting Fα.

Reglue F ′
α and F ′′

α after twisting the neighborhood of F ′
α by 360 degrees in the clockwise direction. Then we

obtain the link b whose exterior S3 \ b is homeomorphic to S3 \ C3, see Figure 3. The inverse H−1 is denoted
by h. We set TH

α = H(Tα), TH
β = H(Tβ) and TH

γ = H(Tγ), see Figure 5. (Then ∂N (b) = TH
α ∪ TH

β ∪ TH
γ .)

K

K K
KK

K

Figure 3: (left, center) C3. (right) b. (this figure explains how to obtain H.)

The invariant train track τ which carries the stable lamination `s for Φ is illustrated in Figure 4(left).
The stable foliation F for Φ has 1 prong at each component of ∂F and it has no singularity in the interior
of F . We consider the suspension flow induced on the mapping torus N = F × [0, 1]/ ∼, where ∼ identifies
(x, 1) with (Φ(x), 0). One obtains the simple closed curve cα ⊂ TH

α which is the closed orbit of the singularity
of F on ∂F ∩TH

α . Similarly one has the closed orbits cβ ⊂ TH
β , cγ ⊂ TH

γ , see Figure 5(right). (One can draw
these closed orbits by using the orbit of each cusp of F \ τ .) Let Ls ⊂ N be the suspended stable lamination
constructed from `s × I ⊂ F × I by gluing `s ×{1} to `s ×{0} using Φ. By construction, Ls is carried by the
branched surface Bτ which is obtained from τ × I by gluing τ × {1} to τ × {0} using Φ. Notice that cα, cβ

and cγ correspond to the branched loci of Bτ . By work of Fried [8] (see also work of Long-Oertel [18]), we
may assume that the fiber F(x,y,z) is transverse to Ls. The stable lamination `s

(x,y,z) for Φ(x,y,z) is given by
the intersection Ls ∩F(x,y,z) and `s

(x,y,z) is carried by the train track Bτ ∩F(x,y,z). This implies that F(x,y,z)

has no singularity in the interior of F(x,y,z) and we finish the proof of (4).
We consider the number of prongs of F(x,y,z) at each component of ∂αF(x,y,z). The boundary slope of

each simple closed curve of ∂αF(x,y,z) is given by −(y+z)
x . The desired number is equal to the intersection

9



number
i([c−(y+z)/x], [h(cα)]) = i([H(c−(y+z)/x)], [cα]),

where cr is a simple closed curve with slope r ∈ Q ∪ { 1
0} on Tα. Observe that h(cα) has the slope 1

0 (see
Figure 5). Hence

i([c−(y+z)/x], [h(cα)]) = |1 · x
gcd(x,y+z) + 0 · y+z

gcd(x,y+z) | = x
gcd(x,y+z) .

This completes the proof of (1).
One verifies that h(cβ) and h(cγ) have slopes 1

0 and −2
1 respectively. By using a similar argument, one

can prove (2),(3). ¤

a boundary 
component

singularity

singular leaf

image 
 of

Figure 4: (left) invariant train track τ for Φ(1,1,0). (right) 1-pronged singularity.

c

c

c
h(c )

h(c )

h(c )

T

T T
HT

HT

TH

Figure 5: (left) h(cα), h(cβ), h(cγ). (right) cα, cβ , cγ .

We consider the orientability of F(x,y,z) using Theorem 2.1. Alexander polynomial of C3 is

A(t1, t2, t3) = t1t2 + t2t3 + t3t1 − t1 − t2 − t3.

The following is a consequence of Proposition 7.3.10 in [12] which tells us the relation between the Alexander
polynomial of links and the characteristic polynomial of Φ∗ : H1(Σ; R) → H1(Σ; R) on fibers Σ in the link
exteriors.
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Lemma 3.4. The spectral radius of (Φ(x,y,z))∗ is the largest absolute value among roots of

A(tx, ty, tz) = tx+y + ty+z + tz+x − tx − ty − tz.

Proposition 3.5. The pseudo-Anosov homeomorphism Φ(x,y,z) is orientable if and only if x and y are even
and z is odd.

Proof. (If part.) Suppose that x and y are even and z is odd. Then

P (tx, ty, tz) = A((−t)x, (−t)y, (−t)z).

This implies that λ(Φ(x,y,z)) = sp((Φ(x,y,z))∗). By Theorem 2.1 F(x,y,z) is orientable.

(Only if part.) Suppose that x or y is odd. We may assume that x is odd. The number of prongs of F(x,y,z)

at each component of ∂αF(x,y,z) equals x
gcd(x,y+z) which is odd. Thus F(x,y,z) can not be orientable. ¤

3.3 Non-hyperbolic Dehn fillings

Let M be a 3-manifold with boundary tori T0, · · · , Tj and let ri ∈ Q ∪ ∞ be a slope on Ti. Then
M(r0, r1, · · · , rj) denotes the manifold obtained from M by Dehn filling along the slope ri for each i, that
is M(r0, r1, · · · , rj) is the manifold attaching a solid torus T̃i to M along Ti in such a way that ri bounds a
disk in T̃i.

Martelli and Petronio classified all the non-hyperbolic fillings of the magic manifold [20, Theorems 1.1,
1.2, 1.3]. We denote by T0, T1, T2, the boundary tori of N = S3 \ N (C3).

Theorem 3.6 ([20]). (1) N(p
q ) is hyperbolic if and only if

p
q /∈ {∞,−3,−2,−1, 0}.

(2) N(p
q , r

s ) is hyperbolic if and only if

p
q , r

s /∈ {∞,−3,−2,−1, 0} and (p
q , r

s ) /∈ {(1, 1), (−4, −1
2 ), (−3

2 , −5
2 )}.

As a corollary of Theorem 3.6 one has:

Corollary 3.7. If N(p
q , r

s , t
u ) is hyperbolic, then

p
q , r

s /∈ {∞,−3,−2,−1, 0} and (p
q , r

s ) /∈ {(1, 1), (−4, −1
2 ), (−3

2 , −5
2 )}.

Let us consider the monodromy Φ(x,y,z) : F(x,y,z) → F(x,y,z) of the fibration on N associated to a primitive
fibered class xα + yβ + zγ ∈ int(C∆). Recall that slope(xα + yβ + zγ) = (−(y+z)

x , −(z+x)
y , −(x+y)

z ), see (3.3).
By capping each boundary component of F(x,y,z), Φ(x,y,z) extends to the monodromy Φ(x,y,z) with a closed
fiber F (x,y,z) of the fibration on N(−(y+z)

x , −(z+x)
y , −(x+y)

z ). If the stable foliation F(x,y,z) is not 1-pronged
at each component of ∂F(x,y,z), then Φ(x,y,z) is pseudo-Anosov and λ(Φ(x,y,z)) = λ(Φ(x,y,z)). If F(x,y,z) is
1-pronged at a component of ∂F(x,y,z), then Φ(x,y,z) may not be pseudo-Anosov.

4 Hyperbolic Dehn fillings N(−3
2 ), N(−1

2 ) and N(2)

4.1 Thurston norm balls of N(−3
2

), N(−1
2

) and N(2)

Let N(r) be the manifold obtained from N by Dehn filling the cusp specified by Tβ along the slope r ∈ Q.
Then there exists a natural injection ιβ : H2(N(r), ∂N(r)) → H2(N, ∂N) whose image equals

Sβ(r) = {(x, y, z) ∈ H2(N, ∂N) | − ry = z + x},
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see [14]. By Theorem 3.6(1), N(r) is hyperbolic if and only if r ∈ Q \ {−3,−2,−1, 0}. Choose r ∈
Q \ {−3,−2,−1, 0}, and assume that a ∈ Sβ(r) = Im ιβ is a fibered class of H2(N, ∂N). Then a = ι−1

β (a) ∈
H2(N(r), ∂N(r)) is also a fibered class of N(r).

Similarly, when N(r) is the manifold obtained from N by Dehn filling the cusp specified by Tα or Tγ

along the slope r, one has natural injections,

ια : H2(N(r), ∂N(r)) → H2(N, ∂N),
ιγ : H2(N(r), ∂N(r)) → H2(N, ∂N)

such that their images are

Sα(r) = {(x, y, z) ∈ H2(N, ∂N) | − rx = y + z},
Sγ(r) = {(x, y, z) ∈ H2(N, ∂N) | − rz = x + y}.

We set

a = 2α + 2β + γ, b = α + 2β + 2γ,

p = α + 2β, q = 2β + γ,

r = α + β − γ, s = α − β.

For k, ` ∈ Z, we have

slope(ka + `b) = (−3k−4`
2k+` , −3

2 , −4k−3`
k+2` ),

slope(kp + `q) = (−2k−3`
k , −1

2 , −3k−2`
` ),

slope(kr + `s) = ( `
k+` ,

−`
k−` , 2), and

(4.1)

ka + `b = (2k + `)α + (2k + 2`)β + (k + 2`)γ ∈ ιβ(H2(N(−3
2 ), ∂N(−3

2 ))),

kp + `q = kα + (2k + 2`)β + `γ ∈ ιβ(H2(N(−1
2 ), ∂N(−1

2 ))),
kr + `s = (k + `)α + (k − `)β − kγ ∈ ιγ(H2(N(2), ∂N(2))).

(4.2)

It is easy to check that {a, b}, {p, q} and {r, s} are bases of H2(N(−3
2 ), ∂N(−3

2 ); Z), H2(N(−1
2 ), ∂N(−1

2 ); Z)
and H2(N(2), ∂N(2); Z) respectively.

Note that gcd(k, `) = 1 if and only if ka + `b, kp + `q and kr + `s are primitive integral classes of
H2(N, ∂N ; R). All ka + `b, kp + `q, kr + `s are fibered classes in int(C∆) for k > 0 and −k < ` < k.

We first focus on the topological types of fibers for primitive fibered classes in int(C∆). Let Σg,p be a
compact orientable surface of genus g with p boundary components.

Lemma 4.1. Suppose that k > 0, −k < ` < k and gcd(k, `) = 1.

(1) Fka+`b = Σk−2,k+`+6 if gcd(2k + `, 5) = 5 or gcd(5, k + 2`) = 5. Otherwise Fka+`b = Σk,k+`+2.

(2) Fkp+`q = Σk−1,k+`+4 if gcd(k, 3) = 3 or gcd(3, `) = 3. Otherwise Fkp+`q = Σk,k+`+2.

(3) Fkr+`s = Σk,k+2.

Proof of (1). By Lemma 3.1,

](∂Fka+`b) = gcd(2k + `, 3k + 4`) + gcd(2k + 2`, 3k + 3`) + gcd(4k + 3`, k + 2`)
= gcd(2k + `, 5k) + k + ` + gcd(5`, k + 2`)
= gcd(2k + `, 5) + k + ` + gcd(5, k + 2`).

The last equality holds since gcd(k, `) = 1. The following 3 cases can occur.

(1) gcd(2k + `, 5) = 1 and gcd(5, k + 2`) = 1.

(2) gcd(2k + `, 5) = 5 and gcd(5, k + 2`) = 1.
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(3) gcd(2k + `, 5) = 1 and gcd(5, k + 2`) = 5.

In the case (1), the genus g of Fka+`b must satisfy

−(2 − 2g − k − ` − 2) = ‖ka + `b‖ = 3k + `

(see (3.1)). Thus g = k and Fka+`b = Σk,k+`+2. In the cases (2) and (3), Fka+`b = Σk−2,k+`+6.
The proof of claims (2), (3) of the lemma is similar. ¤

Lemma 4.2. Suppose that k > 0 and −k < ` < k.

(1) Fka+`b = F`a+kb and λ(ka + `b) = λ(`a + kb).

(2) Fkp+`q = F`p+kq and λ(kp + `q) = λ(`p + kq).

Proof. (1) By the symmetry of the Thurston norm ball of N , it is not hard to see that the topological type
of the minimal representative (resp. the dilatation) for `a + kb = (2` + k)α + (2` + 2k)β + (` + 2k)γ is the
same as the one for ka + `b = (2k + `)α + (2k + 2`)β + (k + 2`)γ.

The proof of (2) is similar. ¤
We make a remark that it is not true in general that Fkr+`s = F`r+ks and λ(kr + `s) = λ(`r + ks) for k > 0
and −k < ` < k. We do not use this remark in the rest of the paper.

Lemma 4.3. Suppose that 0 < ` < k and gcd(k, `) = 1.

(1) The genus of Fka+`b equals the one of Fka−`b.

(2) The genus of Fkp+`q equals the one of Fkp−`q.

(3) The genera of Fkr+`s and Fkr−`s equal k

Proof. (1) By Lemma 4.1(1), the genus of Fka±`b equals k − 2 if gcd(2k ± `, 5) = 5 or gcd(5, k ± 2`) = 5.
Otherwise its genus equals k. It is easy to check that

• gcd(2k + `, 5) = 5 if and only if gcd(5, k − 2`) = 5, and

• gcd(2k − `, 5) = 5 if and only if gcd(5, k + 2`) = 5.

This implies the desired claim (1).
By using a similar argument, one can prove (2). The claim (3) is obvious from Lemma 4.1(3). ¤

Lemma 4.4. Suppose that 0 < ` < k. Then

λ(ka ± `b) = λ(kp ± `q) = λ(kr ± `s) = λ(k,`).

Proof. We use Theorem 3.2. The dilatations of ka ± `b and kp ± `q are the largest real root of

f(2k±`,2k±2`,k±2`)(t) = f(k,2k±2`,±`)(t) = (tk±` + 1)(t2k − tk+` − tk − tk−` + 1).

The dilatation of kr ± `s is the largest real root of

f(k±`,k∓`,−k)(t) = (tk + 1)(t2k − tk+` − tk − tk−` + 1).

Since the absolute values of all roots of tk±` + 1 and tk + 1 are equal to 1, one finishes the proof. ¤
By Proposition 3.5 and (4.2), we immediately obtain the following.

Corollary 4.5. Suppose that k > 0, −k < ` < k and gcd(k, `) = 1.

(1) The monodromy of the fibration associated to ka + `b on N is orientable if and only if k is odd and ` is
even.

(2) The monodromy of the fibration associated to kp + `q on N is orientable if and only if k is even and `
is odd.
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(3) The monodromy of the fibration associated to kr + `s on N is orientable if and only if both k and ` are
odd.

The following can be obtained from Proposition 3.3

Corollary 4.6. Suppose that k > 0, −k < ` < k and gcd(k, `) = 1.

(1) The singularity data of the monodromy of the fibration associated to ka + `b on N is given by

( 2k+`
gcd(2k+`,5) − 2, · · · , 2k+`

gcd(2k+`,5) − 2︸ ︷︷ ︸
gcd(2k+`,5)

, 2k−`
gcd(5,k+2`) − 2, · · · , 2k−`

gcd(5,k+2`)︸ ︷︷ ︸
gcd(5,k+2`)

).

(2) The singularity data of the monodromy of the fibration associated to kp + `q on N is given by

( k
gcd(k,3) − 2, · · · , k

gcd(k,3) − 2︸ ︷︷ ︸
gcd(k,3)

, 3k
gcd(3,`) − 2, · · · , 3k

gcd(3,`) − 2︸ ︷︷ ︸
gcd(3,`)

).

(3) The singularity data of the monodromy of the fibration associated to kr + `s on N is given by

(k + ` − 2, k − ` − 2, 2, · · · , 2︸ ︷︷ ︸
k

).

Remark 4.7.

(1) The stable foliation for the monodromy of the fibration associated to ka+ `b (resp. kp+ `q) is 2-pronged
at each boundary component on Tβ. (Hence there is no singular leaf on ∂βFka+`b (resp. ∂βFkp+`q).)

(2) The stable foliation for the monodromy of the fibration associated to kr+`s is 4-pronged at each boundary
component on Tγ .

Lemma 4.8. Suppose that k > 0, −k < ` < k and gcd(k, `) = 1.

(1) The stable foliation for the monodromy of the fibration associated to ka + `b is 1-pronged at a boundary
component if and only if (k, `) ∈ {(2,±1), (3,±1), (4,±3)}.

(2) The stable foliation for the monodromy of the fibration associated to kp + `q is 1-pronged at a boundary
component if and only if (k, `) ∈ {(1, 0), (3,±1), (3,±2)}.

(3) The stable foliation for the monodromy of the fibration associated to kr + `s is 1-pronged at a boundary
component if and only if k + ` = 1 or k − ` = 1.

Proof. (1) By Corollary 4.6, the stable foliation of the monodromy for ka + `b is 1-pronged at a boundary
component if and only if 2k+`

gcd(2k+`,5) = 1 or 2k−`
gcd(5,k+2`) = 1.

Suppose that 2k+`
gcd(2k+`,5) = 1. Clearly gcd(2k + `, 5) = 1 or 5. If gcd(2k + `, 5) = 1, then 2k + ` = 1. Since

−k < ` < k, one has −k < −2k + 1 < k which implies that 1
3 < k < 1. This does not occur since k is an

integer. If gcd(2k + `, 5) = 5, then 2k + ` = 5. Since −k < ` < k, one has −k < 5 − 2k < k which implies
5
3 < k < 5. Hence (k, `) ∈ {(2, 1), (3,−1), (4,−3)}.

Suppose that 2k−`
gcd(5,k+2`) = 1. In this case one sees that (k, `) ∈ {(2,−1), (3, 1), (4, 3)}. This completes

the proof of (1).
By using the same argument one can prove (2),(3). ¤

Remark 4.9. Suppose that k > 0, −k < ` < k and gcd(k, `) = 1. By Lemma 4.8 and Corollary 3.7, we see
that:

(1) N(−3k−4`
2k+` , −3

2 , −4k−3`
k+2` ) is non-hyperbolic for (k, `) ∈ {(2,±1), (3,±1), (4,±3)}. Otherwise it is hyper-

bolic.
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Figure 6: (left) Thurston norm ball. (right) open cone int(C∆(r)) [shaded region].

(2) N(−2k−3`
k , −1

2 , −3k−2`
` ) is non-hyperbolic for (k, `) ∈ {(1, 0), (3,±1), (3,±2)}. Otherwise it is hyperbolic.

(3) Suppose that k + ` = 1 or k − ` = 1. Then we have the following. N( `
k+` ,

−`
k−` , 2) is non-hyperbolic

if (k, `) ∈ {(2,±1), (3,±2), (4,±3)} and it is hyperbolic if (k, `) /∈ {(2,±1), (3,±2), (4,±3)}. Suppose
that k + ` 6= 1 and k − ` 6= 1. Then N( `

k+` ,
−`
k−` , 2) is hyperbolic.

For each of N(−3
2 ), N(−1

2 ) and N(2), its Thurston norm ball of radius 2 is a rectangle with vertices
(k, `) = (±1,±1) illustrated in Figure 6. By using (3.1) we see that for k, ` ∈ R,

‖ka + `b‖ = ‖kp + `q‖ = ‖kr + `s‖ = max{2|k|, 2|`|}. (4.3)

The following lemma asserts that fibered faces for N(−3
2 ) and N(−1

2 ) has a symmetry. Thus, for the
study of monodromies on fibrations on N(−3

2 ) (resp. N(−1
2 )), it is enough to consider the open cone over

an arbitrary picked fibered face.

Lemma 4.10. Suppose that k > 0 and −k < ` < k.

(1) Fka+`b = F`a+kb and λ(ka + `b) = λ(`a + kb).

(2) Fkp+`q = F`p+kq and λ(kp + `q) = λ(`p + kq).

Proof. See Lemma 4.2 and Remark 4.7(1). ¤
Let us fix an open cones

int(C∆(−3/2)) = {ka + `b | k > 0, −k < ` < k} ⊂ H2(N(−3
2 ), ∂N(−3

2 ); R),

int(C∆(−1/2)) = {kp + `q | k > 0, −k < ` < k} ⊂ H2(N(−1
2 ), ∂N(−1

2 ); R),
int(C∆(2)) = {kr + `s | k > 0, −k < ` < k} ⊂ H2(N(2), ∂N(2); R).

Lemmas 4.11 and 4.12 tell us that it is enough to consider the fibered classes of int(C∆(r)) for 0 < ` < k.

Lemma 4.11. Suppose that 0 < ` < k and gcd(k, `) = 1.

(1) Fka±`b = Σk−2,6 if gcd(2k + `, 5) = 5 or gcd(5, k + 2`) = 5. Otherwise Fka+`b = Σk,2.

(2) Fkp±`q = Σk−1,4 if gcd(k, 3) = 3 or gcd(3, `) = 3. Otherwise Fkp+`q = Σk,2.

(3) Fkr±`s = Σk,2.

Proof. The number of components of ∂βFka+`b equals k + `. By Lemma 4.1(1), we have the desired claim
(1). One can prove (2),(3) by using Lemma 4.1(2),(3) respectively. ¤

Lemma 4.12. Suppose that 0 < ` < k. Then

λ(ka ± `b) = λ(kp ± `q) = λ(kr ± `s) = λ(k,`).
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Proof. See Lemma 4.4 and Remark 4.7. ¤

Proposition 4.13. Let r ∈ {−3
2 , −1

2 , 2}. The minimum of Ent : int(C∆(r)) → R equals 2 log λ(1,0) =
2 log

(
3+

√
5

2

)
. The minimizer is given by a if r = −3

2 , p if r = −1
2 and r if r = 2.

Proof. Recall that Ent is constant on each ray thorough the origin and it attains its minimum at a unique ray.
By Lemma 4.12 and (4.3), this ray must satisfy ` = 0. Using the representative (k, `) = (1, 0), Theorem 3.2
implies that minEnt = 2 log λ(1,0) = 2 log

(
3+

√
5

2

)
. ¤

Remark 4.14. The monodromies of the fibrations associated to a (resp. p) on N(−3
2 ) (resp. N(−1

2 )) are
intriguing examples.

(1) N(−3
2 ) admits a fiber of genus 1 with 2 boundary components corresponding to a. The stable foliation

of its monodromy Φ : Σ1,2 → Σ1,2 is 2-pronged at each boundary component. Thus Φ extends to the
monodromy Φ : Σ1,1 → Σ1,1 of the fibration on N(−3

2 , −3
2 ) (which is the figure-8 knot sister manifold,

see [20, Table A.2]) by capping the boundary component of Σ1,2 on Tα. It is well-known that Φ realizes
the minimal dilatation 3+

√
5

2 among pseudo-Anosovs on Σ1,1.

(2) N(−1
2 ) admits a fiber of genus 0 with 4 boundary components corresponding to p. The stable foliation

of its monodromy Φ fixes a boundary component, and hence it can be considered that Φ is a pseudo-
Anosov homeomorphism on a 3-punctured disk D3. This monodromy Φ realizes the minimal dilatation
δ(D3) = 3+

√
5

2 among pseudo-Anosovs on D3.

4.2 Property of algebraic integers λ(k,`)

Lemma 4.15. Suppose that 1 < ` + 1 < k and gcd(k, `) = 1. Then λ(k+1,`) < λ(k,`) < λ(k,`+1).

Proof. The ray that attains the minimum of Ent : int(C∆(r)) → R satisfies ` = 0. Recall that the function
1

ent(·) : int(C∆(r)(Q)) → R is strictly concave. Thus one has

log λ
(k,

k`
k+1)

< log λ(k,`) < log λ(k,`+1).

The inequality log λ(k+1,`) < log λ(k,`) holds since

log λ(k+1,`) = ent((k + 1)a + `b) = k
k+1ent(ka + k`

k+1b) = k
k+1 log λ

(k,
k`

k+1)
< log λ

(k,
k`

k+1)
.

Hence log λ(k+1,`) < log λ(k,`) < log λ(k,`+1). ¤

Lemma 4.16. For any fixed ` > 0,

lim
k→∞

k log λ(k,`) = log λ(1,0) = log( 3+
√

5
2 ).

Proof. The ray through ka + `b from the origin goes to the ray through a if k goes to ∞. Hence

lim
k→∞

Ent(ka + `b) = lim
k→∞

2k log λ(k,`) = Ent(a) = 2 log λ(1,0).

This completes the proof. ¤

Proposition 4.17. If λ(k+1,`) < λ(k,1) for some k ≥ ` ≥ 2, then λ(k+2,`) < λ(k+1,1).

Proof. We denote the homology class ka + `b by (k, `). Since Ent is constant on each ray thorough the
origin, k ent(k, `) = ent(1, `

k ). One takes 4 points

p1 = (1, 1
k+1 ), p2 = (1, 1

k ), p3 = (1, `
k+2 ), p4 = (1, `

k+1 ),
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see Figure 7. We have 1
k+1 < 1

k < 2
k+2 ≤ `

k+2 < `
k+1 . Let us set t, t′ and c as follows.

0 < t =
|p3 − p2|
|p4 − p2|

=
(k + 1)(k` − k − 2)
(k + 2)(k` − k − 1)

< 1,

0 < t′ =
|p3 − p2|
|p3 − p1|

=
|p4 − p2|
|p3 − p1|

t =
(k + 2)(k` − k − 1)
k(k` − k + ` − 2)

t < 1,

1 < c =
(k + 2)(k` − k − 1)
k(k` − k + ` − 2)

.

(4.4)

(Hence t′ = ct.) Then

|p3 − p2| : |p4 − p3| = t : 1 − t,

|p3 − p2| : |p2 − p1| = ct : 1 − ct.

These ratios together with Theorem 2.3 imply that

1
(k + 2) ent(k + 2, `)

> (1 − t)
1

k ent(k, 1)
+ t

1
(k + 1) ent(k + 1, `)

, and (4.5)

1
k ent(k, 1)

> ct
1

(k + 1) ent(k + 1, 1)
+ (1 − ct)

1
(k + 2) ent(k + 2, `)

. (4.6)

By (4.5) and by the assumption ent(k, 1) > ent(k + 1, `),

1
(k + 2) ent(k + 2, `)

> (1 − t)
1

k ent(k, 1)
+ t

1
(k + 1) ent(k + 1, `)

> (1 − t)
1

k ent(k, 1)
+ t

1
(k + 1) ent(k, 1)

=
k + 1 − t

k + 1
1

k ent(k, 1)

>
k + 1 − t

k + 1

{
ct

1
(k + 1) ent(k + 1, 1)

+ (1 − ct)
1

(k + 2) ent(k + 2, `)

}
.

The last inequality is given by (4.6). Hence{ 1
k + 2

− (k + 1 − t)(1 − ct)
(k + 1)(k + 2)

} 1
ent(k + 2, `)

>
(k + 1 − t)ct

(k + 1)2
1

ent(k + 1, 1)
,

which gives, by calculation,

(k + 1 − t)c + 1
k + 2

1
ent(k + 2, `)

>
(k + 1 − t)c

k + 1
1

ent(k + 1, 1)
.

Thus

ent(k + 2, `) <
{ k + 1

(k + 1 − t)c

}{ (k + 1 − t)c + 1
k + 2

}
ent(k + 1, 1).

For the proof of the claim it is enough to verify the equality
{

k+1
(k+1−t)c

}{
(k+1−t)c+1

k+2

}
= 1. Clearly,{ k + 1

(k + 1 − t)c

}{ (k + 1 − t)c + 1
k + 2

}
= 1

⇔ (k + 1){(k + 1 − t)c + 1} = (k + 2)(k + 1 − t)c
⇔ (k + 1)(k + 1 − t)c + k + 1 = (k + 2)(k + 1 − t)c
⇔ k + 1 = (k + 1 − t)c

⇔ c =
k + 1

k + 1 − t
.

One can verify the last equality c = k+1
k+1−t by substituting the constants t and c given by (4.4). ¤
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1
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Figure 7: four boxes ¤ (from the bottom to the top) on the line k = 1 indicate p1, p2, p3 and p4.

4.3 Fibrations of manifolds obtained from N(−1
2

), N(−3
2

) and N(2) by Dehn filling
two cusps

As a consequence of Lemma 4.8, we see the following.

Remark 4.18. If (k, `) /∈ {(2,±1), (3,±1), (4,±3)}, then the monodromy Φka+`b : Fka+`b → Fka+`b of the
fibration associated to ka+ `b on N extends to the monodromy Φka+`b : F ka+`b → F ka+`b of the fibration on
N(−3k−4`

2k+` , −3
2 , −4k−3`

k+2` ) with the dilatation λ(k,`)(= λ(Φka+`b)). Similarly, if (k, `) /∈ {(1, 0), (3,±1), (3,±2)}
(resp. if k + ` 6= 1 and k − ` 6= 1), then the monodromy Φkp+`q (resp. Φkr+`s) of the fibration associated
to kp + `q (resp. kr + `s) on N extends to the monodromy Φkp+`q (resp. Φkr+`s) of the fibration on
N(−2k−3`

k , −1
2 , −3k−2`

` ) (resp. N( `
k+` ,

−`
k−` , 2)) with the dilatation λ(k,`).

Let φka+`b, φkp+`q and φkr+`s be elements of Mod(Σg) containing Φka+`b, Φkp+`q and Φkr+`s as a represen-
tative.

Proposition 4.19. For any fixed integer ` > 0, we have the following.

(1) lim
k→∞

gcd(k,`)=1

vol(φka+`b) = vol(N(−3
2 )) ≈ 3.66386.

(2) lim
k→∞

gcd(k,`)=1

vol(φkp+`q) = vol(N(−1
2 )) ≈ 4.05977.

(3) lim
k→∞

gcd(k,`)=1

vol(φkr+`s) = vol(N(2)) ≈ 4.41533.

Proof. We will prove the claim (1). The proof of claims (2),(3) is similar. The mapping torus T(φka+`b) is
homeomorphic to N(−3k−4`

2k+` , −3
2 , −4k−3`

k+2` ). Since gcd(−3k − 4`, 2k + `) (resp. gcd(−4k − 3`, k + 2`)) is either
1 or 5, the two points

( −3k−4`
gcd(−3k−4`,2k+`) ,

2k+`
gcd(−3k−4`,2k+`) ) ∈ R2, ( −4k−3`

gcd(−4k−3`,k+2`) ,
k+2`

gcd(−4k−3`,k+2`) ) ∈ R2

tend to ∞ as k tends to ∞. Thurston’s hyperbolic Dehn surgery theorem (see [28]) implies the volume of
N(−3k−4`

2k+` , −3
2 , −4k−3`

k+2` ) converges to vol(N(−3
2 )) as k tends to ∞. ¤

Proof of Theorem 1.5. (Case r = −3
2 .) For the proof of (1), first of all we find a pair (k(g), `(g)) =

(g + k̃(g), `(g)) for each g ≥ 3 satisfying the following: the both k̃(g) > 0, `(g) > 0 are bounded, and the
genus of Fk(g)a+`(g)b equals g. Next we check that the stable foliation of Φk(g)a+`(g)b has no 1 prong at each
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boundary component of Fk(g)a+`(g)b. Then one can extend Φk(g)a+`(g)b to the pseudo-Anosov homeomor-
phism Φk(g)a+`(g)b on a closed surface of genus g. This finishes the proof of (1). In fact, by Lemma 4.16

lim
g→∞

k(g) log λ(Φk(g)a+`(g)b) = lim
g→∞

k(g) log λ(k(g),`(g)) = log( 3+
√

5
2 ).

On the other hand
lim

g→∞
log λ(Φk(g)a+`(g)b) = lim

g→∞
1

g+k̃(g)
log( 3+

√
5

2 ) = 0.

Thus one obtains

log( 3+
√

5
2 ) = lim

g→∞
k(g) log λ(Φk(g)a+`(g)b) = lim

g→∞
(g + k̃(g)) log λ(Φk(g)a+`(g)b)

= lim
g→∞

g log λ(Φk(g)a+`(g)b) + lim
g→∞

k̃(g) log λ(Φk(g)a+`(g)b)

= lim
g→∞

g log λ(Φk(g)a+`(g)b) + 0,

which implies (1).
One sees that the genera of F3a+2b and F4a+b equal 3 and 4 respectively. If g 6≡ 0 (mod 5) and g ≥ 6,

the genus of Fga+5b equals g. In the case g ≡ 2 (mod 5) and g ≥ 7, the genus of Fga+b equals g − 2 ≡ 0
(mod 5). By Lemma 4.8, one has the desired equality (1).

The claim (2) on the volume holds by Proposition 4.19(1).

(Case r = −1
2 .) If g ≡ 0, 1 (mod 3) and g ≥ 3, the genus of F(g+1)p+3q equals g. If g ≡ 2 (mod 3) and g ≥ 3,

the genus of F(g+1)p+q equals g. By Lemma 4.8 and Proposition 4.19(2), one obtains the claims (1),(2).

(Case r = 2.) The genus of Fgr+s equals g. By Lemma 4.8 and Proposition 4.19(3), one obtains the claims
(1),(2). ¤

Remark 4.20. For g ≥ 4 even, there exists a Σg-bundle over the circle with the dilatation λ(g,1), which
is obtained from the extension of the monodromy of the fibration associated to gr + s on N . However
the invariant foliation associated to this Σg-bundle over the circle is non-orientable, see Corollary 4.5 and
Question 1.10. (In the case g = 2, the monodromy of the fibration associated to 2r + s cannot extend to the
pseudo-Anosov monodromy on a closed fiber, see Remark 4.9(3).)

For r ∈ Q, Λg(r) (resp. Λ+
g (r)) is defined to be the set of dilatations of all Σg-bundles (resp. all

Σg-bundles with orientable invariant foliations) which are obtained from N(r) by Dehn filling two cusps
along the boundary slopes of the fibers of N(r). Recall that U and U+ are finite sets of fibered hyperbolic
3-manifolds defined in the introduction.

Lemma 4.21. N(2) ∈ U+.

Proof. One sees that the pseudo-Anosov φ3r+s ∈ Mod(Σ3) is orientable and has the dilatation λ(3,1)(= δ+
3 ).

Hence δ+
3 ∈ Λ+

3 (2). ¤

In the rest of this section, we mainly consider the sets Λ(+)
g (−1

2 ) and Λ(+)
g (−3

2 ). We first recall the number
minΛ(+)

g (−1
2 ).

Proposition 4.22 ([9]). Let g ≥ 3.

(1) λ(g+1,3) = minΛg(−1
2 ) if g ≡ 0, 1, 3, 4 (mod 6).

(2) λ(g+1,1) = minΛg(−1
2 ) if g ≡ 2, 5 (mod 6).

Proposition 4.23 ([9]). Let g ≥ 3.

(1) λ(g+1,3) = minΛ+
g (−1

2 ) if g ≡ 1, 3 (mod 6).

(2) λ(g,1) = minΛ+
g (−1

2 ) if g ≡ 2, 4 (mod 6).
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(3) λ(g+1,1) = minΛ+
g (−1

2 ) if g ≡ 5 (mod 6).

Lemma 4.24 ([9]). N(−1
2 ) ∈ U ∩ U+.

Proof. One sees that φ2p+q ∈ Mod(Σ2) is an orientable pseudo-Anosov mapping class having dilatation
λ(2,1)(= δ2 = δ+

2 ). Hence δ2 = δ+
2 ∈ Λ2(−1

2 ) ∩ Λ+
2 (−1

2 ). ¤

We turn to N(−3
2 ). By Lemma 4.1(1), if λ ∈ Λg(−3

2 ), then λ = λ(g+2,`) for some 1 ≤ ` < g + 2 or
λ = λ(g,`′) for some 1 ≤ `′ < g.

It is easy to verify the following by a direct computation.

Lemma 4.25. For integers k and `, gcd(2k + `, 5) = 5 or gcd(5, k +2`) = 5 if and only if k and ` are either
(1), (2), (3), (4) or (5) in the following table.∣∣∣∣∣∣∣∣∣∣∣∣

k (mod 5) ` (mod 5)
(1) 0 0
(2) 2, 3 1
(3) 1, 4 2
(4) 1, 4 3
(5) 2, 3 4

∣∣∣∣∣∣∣∣∣∣∣∣
We compute minΛg(−3

2 ) for g ≡ 0, 1, 3, 5, 6, 7, 8, 9 (mod 10).

Proposition 4.26. (1) λ(g+2,1) = minΛg(−3
2 ) < minΛg(−1

2 ) if g ≡ 0, 1, 5, 6 (mod 10) and g ≥ 5.

(2) λ(g+2,2) = minΛg(−3
2 ) < minΛg(−1

2 ) if g ≡ 7, 9 (mod 10) and g ≥ 7.

(3) λ(g,2) = minΛg(−3
2 ) > min Λg(−1

2 ) if g ≡ 3 (mod 10) and g ≥ 3.

(4) Let g ≡ 8 (mod 10) and g ≥ 8.

(i) λ(g,3) = minΛg(−3
2 ) > minΛg(−1

2 ) if g ≡ 8, 28 (mod 30),

(ii) λ(g,5) = minΛg(−3
2 ) > minΛg(−1

2 ) if g ≡ 18 (mod 30).

Proof. (1) If k ≡ 2, 3 (mod 5), then gcd(2k+1, 5) = 5 or gcd(5, k+2) = 5. We set k = g+2. (Hence g ≡ 0, 1
(mod 5) or equivalently g ≡ 0, 1, 5, 6 (mod 10).) The genus of F(g+2)a+b is equal to g by Lemma 4.1(1), and
hence λ(g+2,1) ∈ Λg(−3

2 ) by Remark 4.18. One can check that λ(g+2,1) attains minΛg(−3
2 ) by Lemma 4.15.

In fact for any g > 1, 1 ≤ `′ < g and 1 ≤ ` < g + 2, it follows that

λ(g+2,1) < λ(g+1,1) < λ(g,1) ≤ λ(g,`′) and λ(g+2,1) < λ(g+2,`).

Thus λ(g,1) = minΛg(−3
2 ).

By Proposition 4.22, the lower and upper bound of minΛg(−1
2 ) is given by

λ(g+1,1) ≤ minΛg(−1
2 ) ≤ λ(g+1,3) for any g. (4.7)

Since λ(g+2,1) < λ(g+1,1), one obtains the inequality minΛg(−3
2 ) < min Λg(−1

2 ).

(2) If k ≡ 1, 4 (mod 5), then gcd(2k + 2, 5) = 5 or gcd(5, k + 4) = 5. We set k = g + 2. (Hence g ≡ 2, 4
(mod 5).) Suppose that gcd(g + 2, 2) = 1. Then λ(g+2,2) ∈ Λg(−3

2 ) and g ≡ 7, 9 (mod 10) since g must be
odd. One sees that λ(g+2,1) /∈ Λg(−3

2 ) since gcd(2k + 1, 5) = 1 and gcd(5, k + 2) = 1. For any g > 1 and
1 ≤ ` < g, it follows that λ(g+1,1) < λ(g,1) ≤ λ(g,`). On the other hand

λ(5,2) ≈ 1.23039 < λ(4,1) ≈ 1.28064

and by Proposition 4.17, one has λ(g+2,2) < λ(g+1,1) holds for any g ≥ 3. Thus λ(g+2,2) attains minΛg(−3
2 ).

The inequality minΛg(−3
2 ) < min Λg(−1

2 ) holds by (4.7).

(3),(4) Suppose that g ≡ 3 (mod 5), that is g ≡ 3, 8 (mod 10). One observes that the genus of F(g+2)a+`b
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equals g + 2 whenever gcd(g + 2, `) = 1. Hence if λ ∈ Λg(−3
2 ), then λ = λ(g,`) for some 1 ≤ ` < g.

Suppose that g ≡ 3 (mod 10). By Lemmas 4.1(1) and 4.25, the genera of Fga+b and Fga+2b are g − 2 and g
respectively. Hence λ(g,2) = minΛg(−3

2 ).
One has

λ(3,2) ≈ 1.50614 > λ(3,1) = λ(4,3) ≈ 1.40127,

and hence minΛ3(−3
2 ) > minΛ3(−1

2 ). By Proposition 4.17 together with the inequality

λ(4,1) ≈ 1.28064 > λ(5,3) ≈ 1.26123,

one obtains λ(k,1) > λ(k+1,3) for any k ≥ 4. The inequality minΛg(−3
2 ) > minΛg(−1

2 ) holds for g ≡ 3
(mod 10) and g > 3 since

min Λg(−3
2 ) = λ(g,2) > λ(g,1) > λ(g+1,3) ≥ minΛg(−1

2 ).

One completes the proof of (3). Similarly one can prove (4). ¤

Remark 4.27. The pseudo-Anosov homeomorphism whose dilatation equals minΛg(−3
2 ) in the proof of

Proposition 4.26(1) (resp. (2)) is non-orientable (resp. orientable), see Corollary 4.5.

Proof of Theorem 1.6. See Proposition 4.26(1),(2). ¤
In the case g ≡ 2, 4 (mod 10), we compute minΛg(−3

2 ) under certain conditions of g.

Proposition 4.28. Let g ≡ 2, 4 (mod 10) and g ≥ 12. Suppose that g + 2 6≡ 0 (mod 4641(= 3 · 7 · 13 · 17)).

(1) λ(g+2,3) = minΛg(−3
2 ) < minΛg(−1

2 ) if gcd(g + 2, 3) = 1.

(2) λ(g+2,7) = minΛg(−3
2 ) < minΛg(−1

2 ) if 3 divides g + 2 and gcd(g + 2, 7) = 1.

(3) λ(g+2,13) = minΛg(−3
2 ) < minΛg(−1

2 ) if 21(= 3 · 7) divides g + 2 and gcd(g + 2, 13) = 1.

(4) λ(g+2,17) = minΛg(−3
2 ) < minΛg(−1

2 ) if 273(= 3 · 7 · 13) divides g + 2 and gcd(g + 2, 17) = 1.

The following will be used for proving Proposition 4.28. Its proof is similar to the one for Proposition 4.26(3).

Lemma 4.29.

(1) Let g ≡ 2 (mod 10) and g ≥ 12.

(i) Suppose that g ≡ 2, 22 (mod 30). If λ(g,`) ∈ Λg(−3
2 ), then ` ≥ 3.

(ii) Suppose that g ≡ 12 (mod 30). If λ(g,`) ∈ Λg(−3
2 ), then ` ≥ 5.

(2) Let g ≡ 4 (mod 10) and g ≥ 14. Then λ(g,1) ∈ Λg(−3
2 ).

Lemma 4.30. Suppose that g ≡ 2, 4 (mod 10) and g ≥ 12. If gcd(g + 2, `) = 1, ` ≡ 2, 3 (mod 5) and
0 < ` < g + 2, then λ(g+2,`) ∈ Λg(−3

2 ).

Proof. We use Lemma 4.1(1). We set k = g+2 (k ≡ 1, 4 (mod 5)). If ` ≡ 2, 3 (mod 5), then gcd(2k+`, 5) = 5
or gcd(5, k +2`) = 5. Thus if ` satisfies that gcd(k, `) = gcd(g +2, `) = 1 and 0 < ` < g +2, then one obtains
the desired claim λ(g+2,`) ∈ Λg(−3

2 ). ¤
One can check the following inequalities.

Lemma 4.31. (1) λ(9,7) ≈ 1.16873 < λ(8,1) ≈ 1.12876.

(2) λ(73,13) ≈ 1.013457447 < λ(72,1) ≈ 1.013457858.

(3) λ(125,17) ≈ 1.007791640 < λ(124,1) ≈ 1.007791898.
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Proof of Proposition 4.28. (1) By Lemma 4.30, λ(g+2,3) ∈ Λg(−3
2 ). We have shown that λ(k+1,3) < λ(k,1) for

any k ≥ 4 in the proof of Proposition 4.26(3),(4). Hence λ(g+2,3) < λ(g+1,1) for any g ≥ 3. By (4.7), we have
minΛg(−3

2 ) ≤ λ(g+2,3) < λ(g+1,1) ≤ minΛg(−1
2 ). We can prove that λ(g+2,3) attains minΛg(−3

2 ) by using
the foregoing argument together with Lemma 4.29(1).

The claims (2),(3),(4) can be verified by using Lemmas 4.29, 4.30 and 4.31. ¤
Proof of Theorem 1.7. See Proposition 4.28. ¤
Question 4.32. Is it true that δg ≤ minΛg(−3

2 ) < minΛg(−1
2 ) for all g ≡ 2, 4 (mod 10) and g ≥ 12?

Remark 4.33. Independently, Aaber and Dunfield identified the pair (k(g), `(g)) such that the pseudo-
Anosov homeomorphism Φk(g)a+`(g)b : Σg → Σg which attains min Λg(−3

2 ) for large g. They proved that
under a plausible assumption, the mapping class φk(g)a+`(g)b = [Φk(g)a+`(g)b] has the least volume among
pseudo-Anosov elements of Mod(Σg) for large g, see [1].

We turn to minΛ+
g (−3

2 ). By Corollary 4.5(1) and Lemma 4.11(1), one sees that if g is even, then there
exist no orientable pseudo-Anosov monodromies with a closed fiber of genus g of fibrations on N(−3

2 ). Hence
in this case Λ+

g (−3
2 ) = ∅. We compute minΛ+

g (−3
2 ) for g odd.

Proposition 4.34. Let g ≥ 5.

(1) λ(g+2,2) = minΛ+
g (−3

2 ) < minΛ+
g (−1

2 ) if g ≡ 7, 9 (mod 10).

(2) λ(g+2,4) = minΛ+
g (−3

2 ) ≤ minΛ+
g (−1

2 ) if g ≡ 1, 5 (mod 10). The equality holds if and only if g = 5.

(3) λ(g,2) = minΛ+
g (−3

2 ) > min Λ+
g (−1

2 ) if g ≡ 3 (mod 10).

Proof. We use Corollary 4.5 to see whether λ(k,`) ∈ Λg(−3
2 ) is an element of Λ+

g (−3
2 ) or not.

(1) We see that λ(g+2,2) ∈ Λ+
g (−3

2 ), see Remark 4.27. By Proposition 4.26(2), we have

λ(g+2,2) = minΛg(−3
2 ) = minΛ+

g (−3
2 ) < minΛg(−1

2 ) ≤ minΛ+
g (−1

2 ).

(2) It can be shown that λ(g+2,4) = minΛ+
g (−3

2 ). Since λ(7,4) = λ(6,1), the equality minΛ+
5 (−3

2 ) =
minΛ+

5 (−1
2 ) holds. Suppose that g 6= 5. By Proposition 4.17 together with

λ(8,4) ≈ 1.14555 < λ(7,1) ≈ 1.14879,

we obtain the inequality λ(k,4) < λ(k−1,1) for any k ≥ 8. Thus minΛ+
g (−3

2 ) < minΛ+
g (−1

2 ).
One can prove (3) by using a similar argument together with Proposition 4.26(3). ¤

Proof of Theorem 1.12. See Proposition 4.34(1),(2). ¤
Proof of Proposition 1.14. We have proved the inequality (λ(g+2,2) <)λ(g+2,4) < λ(g+1,1) for any g ≥ 6 in
the proof of Proposition 4.34(2). By Theorem 1.12 and by the assumption δ+

g+1 = λ(g+1,1), one has

δ+
g ≤ max{λ(g+2,2), λ(g+2,4)} ≤ λ(g+2,4) < λ(g+1,1) = δ+

g+1.

This completes the proof. ¤
Remark 4.35.

(1) The (−2, 3, 7)-pretzel knot complement is homeomorphic to N(−3
2 , −8

3 ), see [20, Table A.4]. On the
other hand, slope(7a + 4b) = (−37

18 , −3
2 , −8

3 ). The monodromy Φ7a+4b : Σ5,17 → Σ5,17 of the fibration
associated to 7a + 4b on N is orientable (see Corollary 4.5(1)) and its singularity data is given by
(16) (see Corollay 4.6(1)). Thus Φ7a+4b : Σ5,17 → Σ5,17 extends to the pseudo-Anosov monodromy
Φ7a+4b : Σ5,1 → Σ5,1 of the fibration on N(−3

2 , −8
3 ) (with the dilatation λ(7,4)) by capping all the

boundary components on Tβ ∪ Tγ .

(2) Φ7a+4b : Σ5,1 → Σ5,1 extends to the monodromy : Σ5 → Σ5 of the fibration on N(−37
18 , −3

2 , −8
3 ) with

dilatation δ+
5 = λ(7,4). Since this extended monodromy is orientable, we have δ+

5 ∈ Λ+
5 (−3

2 ).

By Remark 4.35(2), we have:

Lemma 4.36. N(−3
2 ) ∈ U+.
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4.4 Fibers of genera 8 and 13

By using the foregoing discussion one can prove the following which implies Proposition 1.8.

Proposition 4.37.

(1) N(−4
3 , −25

17 ,−5) is a Σ8-bundle over the circle with dilatation λ(18,17,7) ≈ 1.10403 and with singularity
data (1, · · · , 1︸ ︷︷ ︸

6

, 15, 1, · · · , 1︸ ︷︷ ︸
7

).

(2) N(−29
27 , −5

3 ,−6) is a Σ13-bundle over the circle with dilatation λ(27,21,8) ≈ 1.07169 and with singularity
data (25, 1, · · · , 1︸ ︷︷ ︸

7

, 2, · · · , 2︸ ︷︷ ︸
8

).
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