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Abstract. It is proved by Brooks that any closed orientable 3-manifold
with a Heegaard splitting of genus g admits a 2-fold branched cover
that is a hyperbolic 3-manifold and a genus g surface bundle over the
circle. This paper concerns entropy of pseudo-Anosov monodromies for
hyperbolic fibered 3-manifolds. We prove that there exist infinitely many
closed orientable 3-manifolds M such that the minimal entropy over all
hyperbolic, genus g surface bundles over the circle as 2-fold branched
covers of the 3-manifold M is comparable to 1/g.

1. Introduction

Let M be a closed orientable 3-manifold which admits a genus g Heegaard
splitting. Sakuma [Sak81] proved that there exists a 2-fold branched cover

M̃ of M such that M̃ is a genus g surface bundle over the circle S1. It is

proved by Brooks [Bro85] that the branched cover M̃ of M can be chosen
to be hyperbolic if g ≥ 2.

To state our results of this paper, let Σ = Σg,p be an orientable, connected
surface of genus g with p punctures, possibly p = 0. We set Σg = Σg,0 for a
closed orientable surface of genus g. The mapping class group MCG(Σ) is
the group of isotopy classes of orientation-preserving self-homeomorphisms
on Σ which preserve the punctures setwise.

By the Nielsen-Thurston classification [Thu88, FM12], an element in
MCG(Σ) is one of the following types: periodic, reducible, pseudo-Anosov.
If an element in MCG(Σ) is neither periodic nor reducible, then it is pseudo-
Anosov. For a mapping class ϕ = [f ] ∈ MCG(Σ), the mapping torus Tϕ of
ϕ is defined by

Tϕ = Σ× R/ ∼,
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where (x, t) ∼ (f(x), t + 1) for x ∈ Σ and t ∈ R. We call Σ the fiber of
Tϕ. The 3-manifold Tϕ is a Σ-bundle over S1 with the monodromy ϕ. By
Thurston [Thu98, Ota01], Tϕ admits a hyperbolic structure of finite volume
if and only if ϕ is pseudo-Anosov.

Thanks to the above result by Sakuma, one can define the non-empty
subset Dg(M) ⊂ MCG(Σg) consisting of elements ϕ ∈ MCG(Σg) such that
Tϕ is a 2-fold branched cover of M branched over a link, i.e.,

Dg(M) = {ϕ ∈ MCG(Σg) | Tϕ is a 2-fold branched cover of M}.

By the above result of Brooks, there exists a pseudo-Anosov element in
Dg(M) if g ≥ max(2, g(M)), where g(M) is the Heegaard genus of M .

To each pseudo-Anosov mapping class ϕ ∈ MCG(Σ) on the surface Σ =
Σg,p, there exists an associated dilatation (stretch factor) λ(ϕ) > 1 ([FM12]).
The logarithm log(λ(ϕ)) of the dilatation is called the entropy of ϕ. We call

(1.1) Ent(ϕ) = |χ(Σ)| log(λ(ϕ))

the normalized entropy of ϕ, where χ(Σ) is the Euler characteristic of Σ.
Consider the set

Spec(Σ) = {log(λ(ϕ)) | ϕ ∈ MCG(Σ) is pseudo-Anosov}.

For any subset of Spec(Σ), there exists a minimum. Then for any subset
G ⊂ MCG(Σ) containing a pseudo-Anosov element, we set

ℓ(G) = min{log(λ(ϕ)) | ϕ ∈ G is pseudo-Anosov},

that is the minimal entropy of pseudo-Anosov elements of G. Clearly we have
ℓ(G) ≥ ℓ(MCG(Σ)). Penner [Pen91] proved that ℓ(MCG(Σg)) is comparable
to 1/g. Here we say that for two real valued functions A and B of g, A
is comparable to B and write A � B if there exists a constant C > 0
independent of g so that B/C ≤ A ≤ CB.

Asymptotic behaviors of minimal entropies of various subgroups (subsets)
of mapping class groups have been studied by many authors ([FLM08, Tsa09,
Val12, ALM16, HK17, Yaz18, HIKK22]). For the hyperelliptic mapping
class group H(Σg) defined on Σg, the minimal entropy ℓ(H(Σg)) for H(Σg)
is also comparable to 1/g (Hironaka-Kin [HK06]). In contrast, the minimal
entropy ℓ(I(Σg)) for the Torelli group I(Σg) defined on Σg has a uniform
lower bound (Farb-Leininger-Margalit [FLM08]).

Given a 3-manifold M , we consider the subset Dg(M) ⊂ MCG(Σg) and
we write

ℓg(M) = ℓ(Dg(M)).

Then ℓg(M) ≥ ℓ(MCG(Σg)). The authors proved in [HK20b] that for the
3-sphere S3, it holds ℓg(S

3) � 1
g . In this paper, we prove that there exist

infinitely many closed 3-manifolds with the same property as S3. More
precisely, we prove the following result.
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Theorem 1.1. There exist infinitely many closed orientable non-hyperbolic

3-manifolds M such that ℓg(M) � 1

g
.

For a link L in S3, let ML → S3 be the 2-fold branched cover of S3

branched over a link L. Every link L can be expressed by the closure cl(b)
of some braid b. Along the way in the proof of Theorem 1.1, we prove in
Theorem 4.2 that if b is a homogeneous braid with certain conditions, then

we have ℓg(Mcl(b)) �
1

g
. The 3-manifolds Mcl(b) with this property include

the following examples.

• The lens space L(2m,1) of type (2m, 1) with m 6= 0 (Corollary 4.5).

• The connected sum ♯nS
2 × S1 of n copies of S2 × S1 for n ≥ 1

(Theorem 4.6).
• Dehn fillings of the minimally twisted 2k-chain link C2k for k ≥ 3.

Here a chain link is a link having the form of a circular chain. The minimally
twisted chain link C2k with 2k components is the chain link with every other
link component lying flat in the plane of projection, and alternate link com-
ponents to be perpendicular to the plane of projection. (See (3) of Figure
12 for C6.)

Since C2k is a hyperbolic link, all Dehn fillings (with a finite exceptions)
are hyperbolic. Moreover vol(S3 \ C2k) ≥ 2k v3, where v3 = 1.01494 . . . is
the volume of the ideal regular tetrahedron. Hence we have the following
result.

Theorem 1.2. For any R ≥ 0, there exists a closed orientable hyperbolic

3-manifold M with volume more than R such that ℓg(M) � 1

g
.

Theorems 1.1 and 1.2 imply that there exist infinitely many links L in S3

such that the minimal entropy ℓg(ML) is comparable to 1/g. Our conjecture
is that every link in S3 holds this property.

Conjecture 1.3. For any link L in S3, we have ℓg(ML) �
1

g
.

We ask the following question.

Question 1.4. Is there a closed orientable 3-manifold M such that the
minimal entropy ℓg(M) has a uniform lower bound?

This paper is organized as follows. In Section 2 we review basic facts on
braids groups, mapping class groups and pseudo-Anosov mapping classes.
In Section 3 we introduce the notion of braids that are increasing in the
middle. Then we combine some results in [HK20a, HK20b] into new claims
that can be used for the study of pseudo-Anosov elements in the set Dg(ML)
for each link L in S3. In Section 4 we prove Theorems 1.1 and 1.2 and give
some applications.
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Figure 1. (1) σi ∈ Bn. (2) The involution R : D2× [0, 1] →
D2 × [0, 1] with the fixed point set {(±ri, 12) | 0 ≤ r ≤ 1} ⊂
D2 × {1

2}. (3) The braid b̃ = skew(b) · b that is invariant
under the involution R.

=

Figure 2. A half twist ∆4 = skew(∆4) ∈ B4.
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2. Backgrounds and preliminaries

2.1. Homogeneous braids and skew-palindromic braids.

Let Bn be the (planar) braid group with n strands. Let a1, . . . , an be the
bottom end points of an n-braid b ∈ Bn. We call ai’s the base points of b.
We put indices 1, . . . , n to indicate the base points a1, . . . , an respectively.
Let σi (i = 1, . . . , n) denote the Artin generator of Bn as in Figure 1(1).

A braid word written by σ±1
i (i = 1, . . . , n− 1) is said to be homogeneous

if for each i ∈ {1, . . . , n− 1}, the exponents of all occurrences of σi have the
same sign. A braid b is said to be homogeneous if it can be represented by a
homogeneous word. For example, the braid σ1σ3σ

−1
2 σ2

3σ
−3
2 is homogeneous.
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Now, we define an involution

skew : Bn → Bn

σϵ1
n1
σϵ2
n2

. . . σϵk
nk

7→ σϵk
n−nk

. . . σϵ2
n−n2

σϵ1
n−n1

, ϵi = ±1.

The map skew is an anti-homomorphism. A braid b ∈ Bn is said to be
skew-palindromic if skew(b) = b ∈ Bn.

Note that skew : Bn → Bn is induced by the involution R on the cylinder
D2 × [0, 1]:

R : D2 × [0, 1] → D2 × [0, 1],

(reiθ, t) 7→ (rei(π−θ), 1− t)

see Figure 1(2). Here we identify the disk D2 with the unit disk centered at
the origin in the complex plane C.

Notice that the product skew(b) · b ∈ Bn is a skew-palindromic braid for
any b ∈ Bn. We put

b̃ := skew(b) · b,
and we say that b̃ is the skew-palindromization of b. See Figure 1(3).

Example 2.1. For a braid b = σ2
3σ

−2
4 ∈ B5, the skew-palindromization is

b̃ = skew(b) · b = σ−2
1 σ2

2σ
2
3σ

−2
4 ,

that is a homogeneous braid.

Let ∆ = ∆n ∈ Bn be a half twist defined by

∆ = (σ1 · · ·σn−1)(σ1 · · ·σn−2) · · · (σ1σ2)σ1
= σn−1(σn−2σn−1) · · · (σ2 · · ·σn−1)(σ1 · · ·σn−1).

See Figure 2. This means that ∆ = skew(∆), and hence ∆ ∈ Bn is skew-
palindromic for each n.

2.2. Dilatations and normalized entropies of braids. Let Dn be the
n-punctured disk. We consider the mapping class group MCG(Dn), the
group of isotopy classes of orientation preserving self-homeomorphisms on
Dn preserving the boundary ∂D of the disk setwise. There exists a surjective
homomorphism

Γ : Bn → MCG(Dn)

which sends each generator σi to the right-handed half twist hi between the
i-th and (i + 1)-th punctures. Since the kernel of Γ is isomorphic to the
center Z(Bn) = 〈∆2〉 generated by a full twist ∆2, we have

Bn/〈∆2〉 ' MCG(Dn).

Collapsing the boundary ∂D to a puncture in the sphere Σ0, we have a
homomorphism

c : MCG(Dn) → MCG(Σ0,n+1).

We say that b ∈ Bn is periodic (resp. reducible, pseudo-Anosov) if the
mapping class c(Γ(b)) is of the corresponding Nielsen-Thurston type.
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Figure 3. Case b = σ2
1σ

−1
2 ∈ B3: (1) cl(b). (2) br(b). (3)

Fb. (4) C(b′) = cl(b), where b′ = σ2
4σ

−1
5 ∈ B6.

b

(2)(1) (3)

n

b
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b

Figure 4. (1) C(b) for b ∈ B2n. (2) E3 = C(e6). (3)
C(∆4b) = C(b) = C(b∆4) for b ∈ B4.

When b ∈ Bn is pseudo-Anosov, we call λ(b) := λ(c(Γ(b))) the dilatation
of b, and call Ent(b) := Ent(c(Γ(b))) the normalized entropy of b, see (1.1).
By definition we have

Ent(b) = |χ(Σ0,n+1)| log(λ((c(Γ(b))))) = (n− 1) log(λ((c(Γ(b))))).

2.3. Closures, braided links, and circular plat closures of braids.

In this section we introduce three kinds of links in S3, closures, braided
links and circular plat closures obtained from planar braids. Given a link L
in a 3-manifold M , we denote by N (L), a regular neighborhood of L. We
denote by E(L), the exterior M \ int(N (L)).

The closure cl(b) of b is an oriented knot or link in S3 whose orientation
is induced by those of the strands of b, see Figure 3(1). The braided link

br(b) = A ∪ cl(b)

is a link in S3 obtained from cl(b) with the braid axis A, see Figure 3(2).
We think of br(b) as an oriented link in S3 choosing an orientation of A
arbitrarily. (In Section 2.7, we assign an orientation of A for i-increasing
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braids.) Let Tb denote the exterior of the link br(b):

Tb = E(br(b)) = S3 \ int(N (br(b))).

We define an (n+ 1)-holed sphere Fb ⊂ Tb by

Fb = DA \ int(N (cl(b))),

where DA is the disk bounded by the longitude of the regular neighborhood
N (A) of the braid axis A of b. See Figure 3(3). We give an orientation of Fb

which induces the orientation of A. The surface Fb is a fiber of the fibration
Tb → S1 and the braid b determines the monodromy ϕb : Fb → Fb (up to
conjugation).

The circular plat closure C(b) of b ∈ B2n with even strands is an unori-
ented knot or link in S3 as in Figure 4(1). For example, the n-component
trivial link En is of the form En = C(e2n), where e2n ∈ B2n is the identity
element, see Figure 4(2). It is not hard to see that the links C(∆b), C(b)
and C(b∆) are ambient isotopic to each other:

(2.1) C(∆b) = C(b) = C(b∆)

as links in S3. See Figure 4(3).

Remark 2.2. Any link L in S3 can be represented by the circular plat closure
C(b′) for some braid b′ with even strands. To see this, we recall the fact that
any link L can be expressed by the closure cl(b) for some b ∈ Bn (n ≥ 1).
The desired braid b′ with 2n strands can be obtained from the n-braid b by
adding n straight strands: b′ = en∪b ∈ B2n. Then we have C(b′) = cl(b) = L
as links in S3. See Figure 3(4).

2.4. A criterion to be pseudo-Anosov braids. In this section, we give
a criterion for deciding planar braids to be pseudo-Anosov.

Given an oriented link L = K1 ∪ · · · ∪Km with m components in S3, we
denote by lk(Ki,Kj), the linking number between the two components Ki

and Kj . See [Kaw96] for the definition of the linking number.
Let

π : Bn → Sn

be the surjective homomorphism from the n-braid group Bn to the permu-
tation group Sn of degree n which sends σj to the transposition (j, j + 1).
A braid b ∈ Bn is pure if π(b) is the identity element of Sn .

For example, a 3-braid β = σ4
1σ

−2
2 is pure. Let cl(β) = ℓ1 ∪ ℓ2 ∪ ℓ3 be

the closure of β, where ℓi denotes the closure cl(β(i)) of the i-th strand β(i)
with the base point ai for i = 1, 2, 3. Then lk(ℓ1, ℓ2) = 2, lk(ℓ2, ℓ3) = −1
and lk(ℓ3, ℓ1) = 0.

Proposition 2.3 (Kobayashi-Umeda [KU10]). Let β ∈ Bn be a pure braid
for n ≥ 3. Let cl(β) = ℓ1 ∪ · · · ∪ ℓn be the closure of β, where ℓi denotes the
closure cl(β(i)) of the i-th strand β(i) with the base point ai for i = 1, . . . , n.

(1) Suppose that β is periodic. Then there exists an integer n0 such that
lk(ℓi, ℓj) = n0 for all i, j with i 6= j.
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(2) Suppose that β is reducible. Let c be an inner most component
of the system of the reducing curves for the mapping class Γ(β) ∈
MCG(Dn), and let Dc be the disk bounded by c. Suppose that as and
at are distinct base points in Dc. Then for each base point aj 6∈ Dc,
the equality lk(ℓj , ℓs) = lk(ℓj , ℓt) holds.

The proof of the claim (1) (resp. the claim (2)) in Proposition 2.3 can
be found in [KU10, Proposition 1] (resp. [KU10, Proposition 2]). For the
definition of the system of the reducing curves in the claim (2), see [KU10],
[FM12, Chapter 13.2.2].

Lemma 2.4. Let β ∈ Bn be a pure braid for n ≥ 3. Let ℓi (i = 1, . . . , n) be
as in Proposition 2.3. Suppose that for any proper subset

I = {i1, . . . , ik} ( J := {1, 2, . . . , n}
consisting of k distinct elements with 2 ≤ k < n, there exist three elements
j ∈ J \ I and is, it ∈ I such that lk(ℓj , ℓis) 6= lk(ℓj , ℓit). Then β is pseudo-
Anosov.

Proof. By Proposition 2.3(1), the braid β with the assumption of Lemma
2.4 can not be periodic. Assume that β is reducible. Let c be an inner most
component of the system of reducing curves for the mapping class Γ(β) ∈
MCG(Dn), and let Dc be the disk bounded by c. Let ai1 , . . . , aik be the set
of all base points of β contained in Dc. Then {1, . . . , n}\{i1, . . . , ik} 6= ∅. By
the assumption of Lemma 2.4, there exist three elements j ∈ {1, 2, . . . , n} \
{i1, . . . , ik} and is, it ∈ {i1, . . . , ik} such that lk(ℓj , ℓis) 6= lk(ℓj , ℓit). By the
choice of j, we have aj 6∈ Dc for the base point aj of the strand β(j) and
ais , ait ∈ Dc. By Proposition 2.3(2), it must hold that lk(ℓj , ℓis) = lk(ℓj , ℓit).
This is a contradiction, and hence β is not reducible. Since β is neither
periodic nor reducible, we conclude that β is pseudo-Anosov. □
Lemma 2.5. Let b ∈ Bn be a pure braid for n ≥ 4 of the form

b = σ2m1
j1

σ2m2
j2

. . . σ2mk
jk

,

where m1, . . . ,mk are non-zero integers and j1, . . . , jk ∈ {1, . . . , n−1}. Sup-
pose that b is homogeneous, and each σi for i = 1, . . . , n− 1 appears in b at
least once, i.e., {j1, . . . , jk} = {1, . . . , n − 1}. Then b is pseudo-Anosov. In

particular, if b = σ2m1
1 σ2m2

2 . . . σ
2mn−1

n−1 ∈ Bn, then b is pseudo-Anosov.

Proof. Let ℓi = cl(b(i)) (i = 1, . . . , n) be the component of cl(b) as in Propo-
sition 2.3. The assumption of Lemma 2.5 implies that lk(ℓi, ℓj) 6= 0 if and
only if |i − j| = 1. It is sufficient to prove the following: For any proper
subset I = {i1, . . . , ik} ( J = {1, 2, . . . , n} with 2 ≤ k < n, there exist
three elements j ∈ J \ I and is, it ∈ I such that

(2.2) |j − is| = 1 and |j − it| > 1,

i.e., lk(ℓj , ℓis) 6= 0 and lk(ℓj , ℓit) = 0. Then lk(ℓj , ℓis) 6= lk(ℓj , ℓit), and
Lemma 2.4 tells us that b is pseudo-Anosov.
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2g+1 b

(3)(2)
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O'

b

S

(1)

g+1

Figure 5. (1) Simple closed curves labeled 1, . . . , 2g + 1 in
Σg. (2) A (g + 1)-bridge sphere S of C(b) and (3) the link
C(b) ∪W for b ∈ B2g+2, where W = O ∪O′.

Since I is a proper subset of J , there are iu ∈ I and h ∈ J \ I such that
|iu − h| = 1. Moreover we can take an element iv ∈ I such that iv 6= iu.
It is possible to take such iv ∈ I because |I| ≥ 2, where |S| denotes the
cardinality of the finite set S. In case where |iv −h| > 1, the three elements
j := h, is := iu and it := iv satisfy (2.2). In case where |iv − h| = 1, the
three elements iu, h, iv are consecutive integers. Without loss of generality,
we may assume that iu < h < iv. Since n ≥ 4, the following cases occur:
(1) 1 = iu < h < iv < n, (2) 1 < iu < h < iv < n, (3) 1 < iu < h < iv = n.
In cases (1) and (2), we have iv + 1 ∈ J . If iv + 1 ∈ I, then j := h, is := iu
and it := iv + 1 satisfy (2.2). If iv + 1 6∈ I, then j := iv + 1, is := iv and
it := iu satisfy (2.2). In case (3), we can choose three elements j, is and it
that satisfy (2.2) in the same way as above. This completes the proof. □

Example 2.6. By Lemma 2.5, the braid b̃ = σ−2
1 σ2

2σ
2
3σ

−2
4 ∈ B5 given in

Example 2.1 is pseudo-Anosov

2.5. Branched virtual fibering theorem.

We recall the branched virtual fibering theorem due to Sakuma [Sak81].
See also Koda-Sakuma [KS22, Theorem 9.1].

Theorem 2.7. Let M be a closed orientable 3-manifold. Suppose that M
admits a genus g Heegaard splitting. Then there exists a 2-fold branched

cover M̃ of M which is a Σg-bundle over the circle.

In [HK20b], the authors gave an alternative construction of surface bun-
dles over the circle in Sakuma’s result when closed 3-manifolds are 2-fold
branched covers of S3 branched over links. We recall our construction in
this section.

Let τi denote the right-handed Dehn twist about the simple closed curve
labeled i in Figure 5. We have the Birman-Hilden homomorphism t from
the braid group B2g+2 to the mapping class group MCG(Σg):

t : B2g+2 → MCG(Σg)
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which sends σi to τi for i = 1, . . . , 2g + 1. Notice that its image t(B2g+2)
is the hyperelliptic mapping class group H(Σg). This is the subgroup of
MCG(Σg) consisting of elements with representative homeomorphisms that
commute with some fixed hyperelliptic involution on Σg.

Let L be a link in S3. By Remark 2.2 we may suppose that L is of the
form L = C(b) for some b ∈ B2g+2. Let

q = qL : ML → S3

denote the 2-fold branched covering map of S3 branched over L. We have
a (g + 1)-bridge sphere S for L = C(b) as in Figure 5(2). The 3-manifold
ML admits a genus g Heegaard splitting with the Heegaard surface q−1(S).
Consider the trivial link W = O ∪ O′ with 2 components and the link
C(b)∪W in S3 as shown in Figure 5(3). Then we have the following result.

Theorem 2.8 (Theorem B in [HK20b]). Let q : ML → S3 be the 2-fold
branched covering map of S3 branched over a link L = C(b) for a braid

b ∈ B2g+2. Consider the skew-palindromization b̃ of b and the mapping class

t(̃b) ∈ H(Σg) ⊂ MCG(Σg). Then T
t(̃b)

→ ML is a 2-fold branched cover of

ML branched over the link q−1(W ). In particular t(̃b) ∈ Dg(ML).

Sketch of Proof. We regard M̃L as the Z/2Z + Z/2Z-cover of S3 branched
over the link C(b) ∪W associated with the epimorphism

H1(S
3 \ (C(b) ∪W )) → Z/2Z+ Z/2Z

which maps the meridians of C(b) to (1, 0) and the meridians of W to (0, 1).
Let qW : MW → S3 be the 2-fold branched covering map of S3 branched

over the link W . Note that MW = S2×S1. Then M̃L is the 2-fold branched
cover of S2 × S1 branched over the link q−1

W (C(b)) = cl(̃b) associated with
the epimorphism

H1(S
2 × S1 \ cl(̃b)) → Z/2Z

which maps the meridians of cl(b̃) to 1 and {pt} × S1 to 0. Therefore, M̃L

is homeomorphic to the mapping torus T
t(̃b)

of t(̃b). This completes the

proof. □
We are interested in the case where the mapping class t(̃b) ∈ MCG(Σg)

given in Theorem 2.8 is pseudo-Anosov. The following lemma will be used
in the later section.

Lemma 2.9 (Lemma 5 in [HK20b]). Let β ∈ B2g+2 be a pseudo-Anosov
braid and let Φβ : D2g+2 → D2g+2 be a pseudo-Anosov homeomorphism
which represents Γ(β) ∈ MCG(D2g+2). Suppose that the pseudo-Anosov
braid β possesses the following condition:

♦ The stable foliation F for Φβ defined on D2g+2 is not 1-
pronged at the boundary ∂D of the disk.

Then t(β) ∈ MCG(Σg) is pseudo-Anosov, and the equality λ(t(β)) = λ(β)
holds.
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The basic facts on (un)stable foliations for pseudo-Anosov homeomor-
phisms can be found in Chapter 11.2 and Chapter 13 in [FM12].

2.6. Thurston norm. Let M be a 3-manifold with boundary (possibly
∂M = ∅). When M is a hyperbolic 3-manifold, there exists a norm ‖ · ‖ on
H2(M,∂M ;R), that is called the Thurston norm [Thu86]. The norm ‖ · ‖
has the property such that for any integral class a ∈ H2(M,∂M ;R), we have

‖a‖ = min
S

{−χ(S)},

where the minimum is taken over all oriented surface S embedded in M with
a = [S] and with no components of non-negative Euler characteristic. The
following result by Thurston describes a relation between the norm ‖ · ‖ and
fibrations on M .

Theorem 2.10 (Thurston [Thu86]). The norm ‖ · ‖ on H2(M,∂M ;R) has
the following properties.

(1) There exist a set of maximal open cones C1, . . . ,Ck in H2(M,∂M ;R)
and a bijection between the set of isotopy classes of connected fibers
of fibrations M → S1 and the set of primitive integral classes in
C1 ∪ · · · ∪ Ck.

(2) The restriction of ‖ · ‖ to Cj is linear for each j = 1, . . . , k.
(3) For a fiber Fa of the fibration M → S1 associated with a primitive

integral class a ∈ Cj for j = 1, . . . , k, we have ‖a‖ = −χ(Fa).

We call the open cones Cj the fibered cones of M .

Theorem 2.11 (Fried [Fri82]). For a fibered cone C of a hyperbolic 3-
manifold M , there exists a continuous function ent : C → R with the fol-
lowing properties.

(1) For the monodromy ϕa : Fa → Fa of the fibration M → S1 associated
with a primitive integral class a ∈ C , we have ent(a) = log(λ(ϕa)),
i.e., ent(a) equals the entropy of the pseudo-Anosov monodromy ϕa.

(2) Ent = ‖ · ‖ent : C → R is a continuous function which becomes
constant on each ray through the origin.

We call ent(a) and Ent(a) the entropy and normalized entropy of the class
a ∈ C . By Theorem 2.10(3) and Theorem 2.11(1), if a ∈ C is a primitive
integral class, then

Ent(a) = ‖a‖ent(a) = |χ(Fa)| log(λ(ϕa))(= Ent(ϕa)).

2.7. i-increasing braids.

In [HK20a], the authors introduced i-increasing braids. In this section,
we review some properties of i-increasing braids that are needed in the later
section.

Recall the surjective homomorphism π : Bn → Sn introduced in Section
2.4. We denote by πb, the permutation π(b) ∈ Sn for b ∈ Bn. Suppose that
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(1)  +1 (2)   -1

D

(3)

E

(4)

DD

K'K'

Figure 6. The sign of the intersection point: (1) +1 and (2)
−1. (3) The associated disk D = D(b,1) and (4) the surface

E = E(b,1) for a 1-increasing braid b = σ2
1σ

−1
2 ∈ B3. (E(b,1)

is a twice punctured disk in this case.)

b ∈ Bn is a braid with πb(i) = i, i.e., the permutation πb fixes the index i.
The closure cl(b(i)) of the i-th strand b(i) is a component of the closure cl(b)
of b. We consider an oriented disk D = D(b,i) bounded by the longitude ℓi of
a regular neighborhood N (cl(b(i))) of cl(b(i)). Such a disk D is unique up
to isotopy on E(cl(b(i))). Let b− b(i) ∈ Bn−1 be a braid with n− 1 strands
obtained from b by removing the i-th strand b(i). The braid b is said to be
i-increasing (resp. i-decreasing) if there exists a disk D = D(b,i) as above
with the following conditions (D1) and (D2).

(D1) There exists at least one component K ′ of cl(b − b(i)) such that
D ∩K ′ 6= ∅.

(D2) Each component of cl(b − b(i)) and D intersect with each other
transversally, and every intersection point has the same sign +1
(resp. −1), see Figure 6(1)(2).

We call D = D(b,i) the associated disk of the pair (b, i). Then we set

I(b, i) = D ∩ cl(b− b(i)).

By (D1) we have I(b, i) 6= ∅. Let u(b, i) ≥ 1 be the cardinality |I(b, i)| of
I(b, i). We call u(b, i) the intersection number of the pair (b, i).

Example 2.12.

(1) A braid b = σ2
1σ

−1
2 ∈ B3 is 1-increasing with u(b, 1) = 1. See Figure

6(3).
(2) A pure braid b = σ4

1σ
−2
2 ∈ B3 is 1-increasing with u(b, 1) = 2 and

3-decreasing with u(b, 3) = 1.

Properties of i-increasing braids are given in the next two lemmas. The
same properties hold for i-decreasing braids.

Lemma 2.13. If b and b′ are i-increasing braids with the same number
of strands, then the product bb′ is also i-increasing such that u(bb′, i) =
u(b, i) + u(b′, i).
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Proof. Let D2 be the disk with radius 1. For k = 0, 1, 2, let (D2× [0, 1])k be
cylinders in S3 such that (D2 × [0, 1])1 ∩ cl(b) = b, (D2 × [0, 1])0 ∩ cl(b′) = b′

and (D2 × [0, 1])2 ∩ cl(bb′) = bb′. We set Rθ := {reiθ | 0 ≤ r ≤ 1} ⊂ D2. We
denote by D (resp. D′), an associated disk of the pair (b, i) (resp. (b′, i)).
By an ambient isotopy, we may assume that there exists θ0 ∈ [0, 2π) such
that D∩ (D2× [0, 1])1 = Rθ0 × [0, 1] (resp. D′ ∩ (D2× [0, 1])0 = Rθ0 × [0, 1])
and D ∩ cl(b) = Rθ0 × [0, 1] ∩ cl(b) (resp. D′ ∩ cl(b′) = Rθ0 × [0, 1] ∩ cl(b′)).
We stuck the cylinder (D2 × [0, 1])1 over the cylinder (D2 × [0, 1])0 so that
(D2 × {0})1 is attached to (D2 × {1})0, and we identify the result with
D2 × [0, 2]. Let

F : D2 × [0, 2] → (D2 × [0, 1])2
be the homeomorphism defined by F (x, t) = (x, t/2). Then F (b∪b′) = bb′ by
the definition of the product of braids. The image of the union of Rθ0 × [0, 1]
in (D2 × [0, 1])1 and Rθ0 × [0, 1] in (D2 × [0, 1])0 under the homeomorphism
F is Rθ0 × [0, 1] ⊂ (D2 × [0, 1])2, which intersects with the closure cl(bb′)
of the product bb′ positively at (u(b, i) + u(b′, i)) points. Therefore, bb′ is
i-increasing and the equality u(bb′, i) = u(b, i) + u(b′, i) holds. □
Lemma 2.14. Suppose that b ∈ Bn is an i-increasing braid. Then skew(b) ∈
Bn is an (n− i+1)-increasing braid such that u(skew(b), n− i+1) = u(b, i).

Proof. The assertion follows from that fact that skew : Bn → Bn is induced
by the involution R on the cylinder D2 × [0, 1] given in Section 2.1. □
Example 2.15. Let b = σ2

3σ
−2
4 be the 5-braid as in Example 2.1. Then

b is 3-increasing with u(b, 3) = 1. By Lemma 2.14, the braid skew(b) =
σ−2
1 σ2

2 is 3-increasing with u(skew(b), 3) = 1. Then by Lemma 2.13, the

braid b̃ = skew(b) · b = σ−2
1 σ2

2σ
2
3σ

−2
4 is also 3-increasing with u(̃b, 3) =

u(skew(b), 3) + u(b, 3) = 2.

Recall that Tb = E(br(b)) is the exterior of the braided link br(b) and
the surface Fb is a genus 0 fiber of the fibration Tb → S1. See Section 2.3.
We shall define the 2-dimensional subcone C(b,i) of H2(Tb, ∂Tb;R) for an i-
increasing braid b. To do this, we first consider the braided link br(b) =
cl(b) ∪A. The associated disk D = D(b,i) has a unique point of intersection
with A, and the cardinality of I(b, i) ∪ (D ∩ A) is u(b, i) + 1. To deal with
br(b) = cl(b) ∪ A as an oriented link, we consider an orientation of cl(b) as
we described in Section 2.3, and assign an orientation of the braid axis A of
b so that the sign of the intersection between D and A is +1 as in Figure
6(1). See Figure 3(2) for the orientation of A of the 3-braid σ2

1σ
−1
2 that is

1-increasing.
Next, we define an oriented surface E(b,i) of genus 0 embedded in Tb.

Consider small u(b, i) + 1 disks in the associated disk D = D(b,i) whose
centers are points of I(b, i) ∪ (D ∩ A). Then E(b,i) is a surface of genus 0
with u(b, i) + 2 boundary components obtained from D by removing the
interiors of those small disks. We choose the orientation of E(b,i) so that it
agrees with the orientation of D. See Figure 6(4).
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Lastly, we define the 2-dimensional subcone C(b,i) ofH2(Tb, ∂Tb;R) spanned
by the two integral classes [Fb] and [E(b,i)] as follows.

(2.3) C(b,i) = {x[Fb] + y[E(b,i)] | x > 0, y > 0}.

We write (x, y) = x[Fb] + y[E(b,i)] ∈ C(b,i). The Thurston norm of (x, y) is
denoted by ‖(x, y)‖.

Theorem 2.16 ([HK20a]). Let b be an i-increasing braid. Suppose that b
is pseudo-Anosov. Let C be the fibered cone of the 3-manifold Tb containing
[Fb] = (1, 0) ∈ C(b,i). Then we have the following.

(1) C(b,i) ⊂ C .
(2) The fiber F(x,y) for each primitive integral class (x, y) ∈ C(b,i) has

genus 0.
(3) Let ϕ(x,y) : F(x,y) → F(x,y) denote the monodromy of the fibration

Tb → S1 associated with a primitive integral class (x, y) ∈ C(b,i).
Then there exists a j-increasing braid b(x,y) ∈ B∥(x,y)∥+1 for some
index j = j(x,y) which gives the monodromy ϕ(x,y) : F(x,y) → F(x,y).

The proof of Theorem 2.16(1)(2) can be found in Theorem 3.2(1)(2) in
[HK20a]. The statement of Theorem 2.16(3) follows from the argument in
the proof of Theorem 3.2(3) in [HK20a].

3. Braids increasing in the middle

Let b be a braid with 2n+1 strands. Then the notion ‘i-increasing braid’
makes sense for i = 1, . . . , 2n + 1. (See Section 2.7.) In this section, we
restrict our attention to the case i = n + 1: Suppose that b is an (n + 1)-
increasing braid. In this case we say that b is increasing in the middle. We
write Cb := C(b,n+1) for the subcone of H2(Tb, ∂Tb;R). (See (2.3) for the
definition of the subcone.) Then b• ∈ B2n denotes the braid obtained from
b ∈ B2n+1 by removing the strand of the middle index n+ 1.

Example 3.1. (cf. Example 2.15) Suppose that b ∈ B2n+1 is a braid in-
creasing in the middle. By Lemma 2.14, the braid skew(b) is increasing in

the middle. By Lemma 2.13 the braid b̃ = skew(b) · b is also increasing in
the middle with the intersection number

u(̃b, n+ 1) = u(skew(b), n+ 1) + u(b, n+ 1) = 2u(b, n+ 1).

The skew-palindromization (̃b•) of b• satisfies

(̃b•) = skew(b•)b• = (̃b)•,

i.e., (̃b•) ∈ B2n is obtained from the skew-palindromization b̃ of b by removing
the strand of the middle index n + 1. Hereafter we simply denote the braid

(̃b•) by b̃•. Applying Theorem 2.8 to the circular plat closure L = C(b•) of

b• ∈ B2n, we have t(b̃•) ∈ Dn−1(MC(b•)).
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(2)

E[  ]

[  ]FO

(2,1)

(3,1)(1,1)
(k,1)

(k+1,1)

(1)

Figure 7. (1) The subcone C
β̃
= C

(β̃,n+1)
spanned by [F ]

and [E], where F := F
β̃
and E := E

(β̃,n+1)
. (Primitive in-

tegral classes (1, 1), (2, 1), . . . , (k, 1), . . . in C
β̃
are indicated.)

(2) The braided link br(β̃) of β̃ = σ1σ
2
2σ

2
3σ4 ∈ B5.

Example 3.2. The half twist ∆ = ∆2n+1 ∈ B2n+1 is a braid increasing in
the middle with u(∆, n+ 1) = n. By Lemma 2.13 the positive power ∆p for
p ≥ 1 is a braid increasing in the middle, and it holds

u(∆p, n+ 1) = p · u(∆, n+ 1) = pn.

The braid ∆• ∈ B2n satisfies ∆• = ∆2n ∈ B2n, i.e., ∆
• is equal to the half

twist ∆2n with 2n strands.

Given a braid β ∈ B2n+1 increasing in the middle, we suppose that the

skew-palindromization β̃ of β is pseudo-Anosov. Consider the subcone C
β̃
=

C
(β̃,n+1)

of H2(Tβ̃
, ∂T

β̃
;R) for the hyperbolic 3-manifold T

β̃
(Figure 7(1)).

We now apply Theorem 2.16 for the skew-palindromization β̃. For the class
(1, 0) = [F

β̃
] ∈ C

β̃
, the monodromy ϕ(1,0) : F(1,0) → F(1,0) defined on the

fiber F(1,0) = F
β̃
is given by the braid β̃ that is increasing in the middle.

Theorem 3.4 below tells us that this property is inherited for all primitive
classes (x, y) ∈ C

β̃
⊂ C , where C is the fibered cone of T

β̃
containing

[F
β̃
] ∈ C

β̃
.

Example 3.3. Consider the braid β = σ2
3σ4 ∈ B5. The braid β is increasing

in the middle. The skew-palindromization β̃ = σ1σ
2
2σ

2
3σ4 ∈ B5 is pseudo-

Anosov, see the proof of Step 1 in [HK20a, Proof of Theorem D]. See Figure
7(2) for the braided link.

Theorem 3.4. Let β ∈ B2n+1 be a braid increasing in the middle. Suppose

that the skew-palindromization β̃ of β is pseudo-Anosov. Let (x, y) ∈ C
β̃
be

a primitive integral class. Then we have the following.
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(1) There exists a braid α(x,y) ∈ B∥(x,y)∥+1 increasing in the middle such

that the monodromy ϕ(x,y) : F(x,y) → F(x,y) of the fibration T
β̃
→ S1

associated with (x, y) is given by the skew-palindromization α̃(x,y) of

α(x,y). (In particular α̃(x,y) is a pseudo-Anosov braid.)
(2) Let α•

(x,y) ∈ B∥(x,y)∥ be the braid obtained from α(x,y) by removing

the strand of the middle index. Then C(β•) = C(α•
(x,y)), and hence

t(α̃•
(x,y)) ∈ D ∥(x,y)∥

2
−1

(MC(β•)).

For the proof of Theorem 3.4, we need some preparations from [HK20a].
Let L be a link in S3. Suppose that an unknot K is a component of L.
Then the exterior E(K) is a solid torus (resp. the boundary of the exterior
∂E(K) is a torus). We take a disk D bounded by the longitude of a tubular
neighborhood N (K) of K. We define a mapping class tD defined on E(K) as
follows. We cut E(K) along D. We have resulting two sides obtained from
D, and reglue two sides by twisting 360 degrees so that the mapping class
defined on the torus ∂E(K) is the right-handed Dehn twist about ∂D. We
call such a mapping class tD on E(K) the disk twist about D. For simplicity,
we also call a representative of the mapping class tD the disk twist about D,
and denote it by the same notation

tD : E(K) → E(K).

For any integer ℓ, consider the homeomorphism

tℓD : E(K) → E(K).

Observe that tℓD converts the link L into a link K∪tℓD(L−K) so that S3\L is

homeomorphic to S3 \ (K∪ tℓD(L−K)). Then tℓD induces a homeomorphism

hD,ℓ between the exteriors of links L and K ∪ tℓD(L−K):

hD,ℓ : E(L) → E(K ∪ tℓD(L−K)).

Consider the braided link L = br(b) = A ∪ cl(b) for a braid b with the
braid axis A. We consider the k-th power of the disk twist about the disk
DA bounded by the longitude of N (A):

tkDA
: E(A) → E(A).

Note that A ∪ tkDA
(cl(b)) = A ∪ cl(b∆2k) = br(b∆2k). Hence hDA,k sends

E(br(b)) = E(A ∪ cl(b)) to E(br(b∆2k)) = E(A ∪ cl(b∆2k)).
Following [HK20a, Section 4.1], we next introduce a sequence of braided

links {br(bp)}∞p=1 obtained from an i-increasing braid b ∈ Bn such that
Tbp ' Tb, i.e., the mapping tori Tbp and Tb are homeomorphic to each other
for each p ≥ 1. We set u = u(b, i) that is the intersection number of the pair
(b, i). Let D be an associated disk of the pair (b, i). We take a disk twist

tD : E(cl(b(i))) → E(cl(b(i)))
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so that the point of intersection D ∩ A becomes the center of the twisting
about D, i.e., tD(D ∩A) = D ∩A. It follows that

tD(br(b− b(i))) ∪ cl(b(i))

is a braided link of a j-increasing braid for some index j with (n+u) strands.
(cf. Figures 11 and 12 in [HK20a].) We define b1 to be such a braid with
(n + u) strands. The trivial knot tD(A)(= A) becomes a braid axis of b1.
By definition of the disk twist, we have Tb1 ' Tb. We remark that there is
some ambiguity in defining b1. However the braid b1 is well defined up to
conjugate, see [HK20a, Section 4.1]. The conjugacy class of b1 is denoted by
〈b1〉.

To define the braid bp obtained from the above b for p ≥ 1, we consider
the p-th power

tpD : E(cl(b(i))) → E(cl(b(i)))
using the above disk twist tD. As in the case of p = 1,

tpD(br(b− b(i))) ∪ cl(b(i))

is a braided link of an increasing braid for some index with (n+pu) strands.
We define bp ∈ Bn+pu to be such a braid with n+pu strands. Then Tbp ' Tb.
As in the case of p = 1, the braid bp is well defined up to conjugate. We
denote by 〈bp〉, the conjugacy class of such a braid bp. We say that 〈bp〉 (or
a representative bp) is obtained from b by the disk twist tD (p times).

Now we suppose that a braid b is of the form b = β̃, where β ∈ B2n+1 is a

braid increasing in the middle. Then β̃ is also increasing in the middle. The
following lemma describes a property of a representative of the conjugacy

class 〈(β̃)p〉 obtained from β̃ by the disk twist p times.

Lemma 3.5. Let β ∈ B2n+1 be a braid increasing in the middle with the
intersection number u = u(β, n+1). We consider the skew-palindromization

β̃ (that is increasing in the middle). Let 〈(β̃)p〉 be the conjugacy class of a

braid obtained from β̃ by the disk twist p times for p ≥ 1. We have the
following.

(1) There exists a braid α = α(p) ∈ B2n+2pu+1 increasing in the middle

such that α̃ = α̃(p) ∈ 〈(β̃)p〉, i.e., α̃ = α̃(p) represents the conjugacy

class 〈(β̃)p〉.
(2) C(β•) = C(α•), where α• = α(p)• ∈ B2n+2pu.

(3) t(α̃•) ∈ Dg(MC(β•)), where g = n+ pu− 1.

Proof. (1) Figure 8 illustrates the procedure of the proof. (See also Ex-

ample 3.3.) We put cl(β̃) in D2 × S1 = D2 × ([0, 1]/0 ∼ 1) so that

cl(β̃) ∩D2 × [0, 1/2] = β, cl(β̃) ∩D2 × [1, 1/2] = skew(β) and cl(β̃(n + 1))
corresponds to (the center of D2) × S1, as shown in (1) of Figure 8. Let
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(3)(2)(1)

(4) (6)(5)

Figure 8. (1) The skew-palindromization β̃ of β = σ2
3σ4 ∈

B5. (2) The regular neighborhood of the middle strand (third
strand) is removed. (3) The base points are moved into the

circle {1
2e

iθ | 0 ≤ θ ≤ 2π} ⊂ D2. (4) Project cl(β̃•) to the
torus. (5) Dehn twist about the circle c = {−π

2 } × [0, 1] on

the torus. (6) The skew-palindromization α̃(1) of α(1) =
σ3σ4σ5σ6σ3 ∈ B7. (cf. Figure 7 in [HK20b].)

R = RD2×S1 : D2×S1 → D2×S1 be the involution induced by the involution

R(reiθ, t) = (rei(π−θ), 1− t) on D2 × [0, 1]. Let N be the tubular neighbor-

hood of (the center of D2)×S1 such that cl(β̃)∩(D2×S1\intN ) = cl(β̃•), as
shown in (2) of Figure 8. We identify D2×S1 \ intN with [0, 1]×S1×S1 =
[0, 1] × ([0, 2π]/0 ∼ 2π) × ([0, 1]/0 ∼ 1) so that ∂N = {0} × S1 × S1,
{1
2e

iθ | 0 ≤ θ ≤ 2π}× {pt} = {1
2}×S1 ×{pt}, and for the disk D associated

to the pair (β̃, n+ 1), we have (D2 × S1 \ intN ) ∩D = [0, 1]× {−π
2 } × S1.
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Figure 9. The projection D(cl(β̃•)) consists of b1, b2 and
slanted parallel arcs between them. The disk twist tD induces
a Dehn twist about c = {−π

2 }× [0, 1] on the torus. Compare
Figure 8(4)(5) with Figure 9.

We deform the intersection of cl(β̃•) and D2 × {0} = D2 × {1} together
with the strings (along the arrows in (2) of Figure 8) by an isotopy commut-
ing with the involution R so as to intersect D2 ×{0} in 2n points {1

2e
iθ|θ =

− 1
2n+2π,−

2
2n+2π, . . . ,−

n
2n+2π,−

n+2
2n+2π,−

n+3
2n+2π, . . . ,−

2n+1
2n+2π} and not to oc-

cur new intersections with [0, 1]× {−π
2 } × S1. See also (3) of Figure 8. We

make a projection D(cl(β̃•)) of cl(β̃•) onto {1
2} × S1 × S1 with at most

double points, and each double point indicates which is over pass or un-
der pass in the same way as a knot diagram, as shown in (4) of Figure 8.
For short, we drop {1

2} from {1
2} × S1 × S1 and identify it with a torus

S1×S1 = ([−3
2π,

1
2π]/−

3
2π ∼ 1

2π)× ([0, 1]/0 ∼ 1). With this identification,

the restriction of R on {1
2} × S1 × S1 is an involution which maps (θ, t) to

(−π−θ, 1−t), i.e., a π-rotation about (−π
2 ,

1
2). Since β is an increasing braid

in the middle, D(cl(β̃•)) intersects −π
2 × [12 , 1] in u = u(β, n+1) points and

−π
2 × [0, 12 ] in u = u(β, n+1) points as shown in Figure 9. The disk twist tD

induces the Dehn twist about the circle c = {−π
2 } × [0, 1] in S1 × S1 which

commutes with R|S1×S1 . This Dehn twist changes D(cl(β̃•)) as shown in the
right of Figure 9 and (5) of Figure 8. Now we append (the center of D2)×S1

to the above result, that is, append an under-going string {−π
2 } × [0, 1] in

the right of Figure 9 and regard the new diagram as the closure of the planar
braid, as shown in (6) of Figure 8. Let α(p) be the braid indicated by the
lower part of the result. Then the upper part corresponds to skew(α(p)),

and hence α̃(p) is a representative of 〈β̃p〉. The proof of (1) is done.
(2) We set b = β• ∈ B2g+2 and f = (tc)

p : S1×S1 → S1×S1, following the

notations in [HK20b, p.1811]. Let Φf = f× id[−1,1] then, by (1), Φf (cl(̃b)) =

Φf (cl(β̃•)) = cl(α̃(p)•). Therefore, γ = α̃(p)• and bf = α(p)• = α• satisfy
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the assumptions (∗) and (∗∗) in [HK20b, p.1811]. By Lemma 4 of [HK20b],
we conclude that C(β•) and C(α•) are ambient isotopic. This completes the
proof of (2).

(3) The claim (3) holds from the claim (2) and Theorem 2.8. This com-
pletes the proof of Lemma 3.5. □
Remark 3.6. The proof of Lemma 3.5 tells us that one can describe the
braid α(p) in Lemma 3.5 concretely. In fact it is possible to read off α(p)
from Figure 9. For example, in the case β = σ2

3σ4 ∈ B5 as in Figure 8(1),

the representative α̃(p) ∈ 〈(β̃)p〉 is the skew-palindromization of the braid
α(p) = σ3σ4 . . . σ4+2pσ2+p ∈ B5+2p that is increasing in the middle.

Let β ∈ B2n+1 be the braid increasing in the middle with the intersection
number u = u(β, n + 1) as before. By Lemma 2.13 and Example 3.2, the
product β∆k ∈ B2n+1 of β and ∆k for k ≥ 1 is also increasing in the middle
such that

u(β∆k, n+ 1) = u(β, n+ 1) + u(∆k, n+ 1) = u+ kn.

Consider the skew-palindromization β̃∆k of β∆k. Recall that skew(∆) = ∆
(see Section 2.1), and hence skew(∆k) = ∆k. Thus it follows that

β̃∆k = skew(β∆k)β∆k = skew(∆k)skew(β)β∆k = ∆kβ̃∆k.

By Examples 3.1 and 3.2, β̃∆k is a braid increasing in the middle with

u(β̃∆k, n + 1) = 2u(β∆k, n + 1) = 2u + 2kn. Since ∆kβ̃∆k is conjugate to

β̃∆2k in B2n+1, we have

br(β̃∆k) = br(∆kβ̃∆k) = br(β̃∆2k).

Lemma 3.7. Let β ∈ B2n+1 be a braid increasing in the middle with the
intersection number u = u(β, n + 1). For k ≥ 1, we consider β∆k ∈ B2n+1

and its skew-palindromization β̃∆k. Let 〈(β̃∆k)p〉 be the conjugacy class of

a braid obtained from β̃∆k by the disk twist p times for p ≥ 1. We have the
following.

(1) There exists a braid γ = γ(k, p) ∈ B2n+1+p(2u+2kn) increasing in the

middle such that γ̃ = γ̃(k, p) ∈ 〈(β̃∆k)p〉.
(2) C(β•) = C(γ•), where γ• = γ(k, p)• ∈ B2n+p(2u+2kn).

(3) t(γ̃•) ∈ Dg(MC(β•)) for g = n+ pu+ pkn− 1 ≡ pu− 1 (mod n).

Proof. Recall that for each k ≥ 1, β∆k ∈ B2n+1 is a braid increasing in the
middle with the intersection number u(β∆k, n + 1) = u + kn. The claim
(1) follows immediately from Lemma 3.5(1). For the proof of the claim (2),
note that

(β∆k)• = β•(∆k)• = β•∆k
2n ∈ B2n,

see Example 3.2. Thus C((β∆k)•) = C(β•∆k
2n) = C(β•), see (2.1) in Section

2.3 for the second equality. By Lemma 3.5(2), we have C((β∆k)•) = C(γ•).



BRAIDS AND FIBERED 2-FOLD BRANCHED COVERS OF 3-MANIFOLDS 21

Putting them together, we obtain C(β•) = C(γ•). The proof of (2) is done.
The claim (3) holds from the claim (2) and Theorem 2.8. This completes
the proof. □

We are now ready to prove Theorem 3.4.

Proof of Theorem 3.4. By the assumption of Theorem 3.4, β̃ is pseudo-
Anosov, and it is increasing in the middle. By Theorem 2.16(1)(2), the
subcone C

β̃
= C

(β̃,n+1)
is a subset of the fibered cone C containing [F

β̃
].

Moreover the fiber F(x,y) for each primitive integral class (x, y) ∈ C
β̃
has

genus 0.

Let D = D
(β̃,n+1)

be the associated disk of the braid β̃ increasing in the

middle. We consider two types of the disk twists. One is tkDA
: E(A) → E(A)

for the braid axis A of β̃, and the other is tpD : E(cl(β̃(n+1))) → E(cl(β̃(n+

1))), where β̃(n+ 1) is the middle strand of the (2n+ 1)-braid β̃. Consider
the homeomorphisms

hDA,k : E(br(β̃)) → E(br(β̃∆2k)) = E(br(β̃∆k)),

hD,p : E(br(β̃)) → E(br((β̃)p)) ' E(br(α̃(p))),

where α̃(p) is the braid obtained from Lemma 3.5(1). We obtain the skew-

palindromization β̃∆k = ∆kβ̃∆k (that is increasing in the middle) from the
former homeomorphism hDA,k. We also obtain the skew-palindromization

α̃(p) (that is increasing in the middle) from the latter homeomorphism

hD,p. Both braids are pseudo-Anosov, since the exteriors of the links br(β̃),

br(β̃∆k) and br(α̃(p)) are homeomorphic to each other. Hence one can

further apply two types of the disk twists for each of the two braids β̃∆k

and α̃(p). Then the resulting braids are again the skew-palindromization
of some braids that are increasing in the middle by Lemmas 3.5(1) and
3.7(1). Choosing two types of the disk twists alternatively, one obtains
a family of skew-paindromizations (of some braids) that are increasing in
the middle. By the proof of Theorem 3.2(3) in [HK20a], the monodromy
ϕ(x,y) : F(x,y) → F(x,y) of the fibration T

β̃
→ S1 associated with any primitive

integral class (x, y) ∈ C
β̃
is given by a braid, say the skew-palindromization

α̃(x,y) of some braid α(x,y) in the family. The planar braid α(x,y) is the desired
braid. Let 2N + 1 be the number of the strands of α(x,y) that is increasing
in the middle. Since the Thurston norm ‖(x, y)‖ of the class (x, y) is the
negative Euler characteristic of the (2N + 1)-punctured disk that is equal
to 2N . Thus 2N + 1 = ‖(x, y)‖ + 1 and hence α(x,y) ∈ B∥(x,y)∥+1. This
completes the proof of (1).

The claim (2) follows from Lemma 3.5(2)(3) and Lemma 3.7(2)(3) to-
gether with the above argument in the proof of (1). □
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4. Applications

For the proofs of Theorems 1.1 and 1.2, we first prove the following result.

Proposition 4.1. Let L be a link in S3. Let β(1), . . . , β(n) ∈ B2n+1 be
increasing in the middle for some n ≥ 2. Suppose that β(1), . . . , β(n) satisfy
the following conditions (1)–(3): For each j = 1, . . . , n,

(1) u(β(j), n + 1) ≡ j (mod n), where u(β(j), n + 1) is the intersection
number of the pair (β(j), n+ 1).

(2) L = C(β•
(j)), where β•

(j) ∈ B2n.

(3) The skew-palindromization β̃(j) of β(j) is pseudo-Anosov.

Then we have ℓg(ML) �
1

g
.

Proof. We fix j ∈ {1, . . . , n} for a moment, and apply Lemma 3.7 to β(j),
k ≥ 1 and p = 1. Let γ(k, 1) be a braid increasing in the middle given by

Lemma 3.7(1). By [HK20a, Theorem 5.2], a representative of 〈(β̃(j)∆k)1〉
gives the monodromy ϕ(k+1,1) : F(k+1,1) → F(k+1,1) corresponding to the
primitive integral class (k + 1, 1) ∈ C

β̃(j)
of the fibered 3-manifold T

β̃(j)
.

See Figure 7(1) for the class (k + 1, 1). In particular the representative

γ̃(k, 1) ∈ 〈(β̃(j)∆k)1〉 gives the monodromy ϕ(k+1,1) : F(k+1,1) → F(k+1,1) of

the fibration T
β̃(j)

→ S1. Hence we can say that γ̃(k, 1) is a braid with

‖(k + 1, 1)‖ + 1 strands. (Recall that ‖(x, y)‖ is the Thurston norm of the
class (x, y).)

Note that the ray of the class (k + 1, 1) = (k + 1)(1, 1
k+1) through the

origin converges to the ray of (1, 0) as k → ∞. This together with Theorem
2.11(2) implies that

Ent(γ̃(k, 1)) = Ent((k + 1, 1)) = Ent((1, 1
k+1)) → Ent((1, 0)) as k → ∞.

Since the monodromy on the fiber F(1,0) = F
β̃(j)

is given by β̃(j),

(4.1) Ent(γ̃(k, 1)) = Ent((k + 1, 1)) → Ent((1, 0)) = Ent(β̃(j)) as k → ∞.

By [HK20a, Lemma 6.3], for k large, ˜γ(k, 1)• ∈ B∥(k+1,1)∥ is pseudo-

Anosov with the same dilatation as γ̃(k, 1). By the arguments in the proof
of [HK20a, Lemma 6.3], one sees that for k large, the pseudo-Anosov braid
˜γ(k, 1)• satisfies the condition ♦ in Lemma 2.9. Therefore, for k large,

t( ˜γ(k, 1)•) is still pseudo-Anosov with the same dilatation as ˜γ(k, 1)•. Then
by Theorem 2.8, it holds t( ˜γ(k, 1)•) ∈ D ∥(k+1,1)∥

2
−1

(ML), where L = C(β•
(j)) =

C(γ(k, 1)•) by Lemma 3.7(2). Putting them together, we have

λ(t( ˜γ(k, 1)•)) = λ( ˜γ(k, 1)•) = λ(γ̃(k, 1)) = λ((k + 1, 1)),
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where λ((x, y)) denotes the dilatation of the class (x, y), i.e., log(λ((x, y))) =

ent((x, y)). (See Theorem 2.11(1).) Since t( ˜γ(k, 1)•) is the mapping class

on the closed surface of genus ∥(k+1,1)∥
2 − 1, we have

Ent(t( ˜γ(k, 1)•)) = (‖(k + 1, 1)‖ − 4) log(λ(t( ˜γ(k, 1)•)))
= (‖(k + 1, 1)‖ − 4)ent((k + 1, 1)).

(4.2)

Claim 1. ent((k + 1, 1)) → 0 as k → ∞.

Proof of Claim 1. By (4.1), Ent((k + 1, 1))(= ‖(k + 1, 1)‖ent((k + 1, 1))) →
Ent((1, 0)) as k → ∞. This implies that there exists a constant P > 0
independent of k such that

0 < ‖(k + 1, 1)‖ent((k + 1, 1)) < P

for all k ≥ 1. Since ‖(k + 1, 1)‖ → ∞ as k → ∞, we obtain

ent((k + 1, 1)) <
P

‖(k + 1, 1)‖
→ 0 as k → ∞.

This completes the proof of Claim 1.

By (4.2), Claim 1 and (4.1), one has

lim
k→∞

Ent(t( ˜γ(k, 1)•)) = lim
k→∞

(‖(k + 1, 1)‖ − 4)ent((k + 1, 1))

= lim
k→∞

‖(k + 1, 1)‖ent((k + 1, 1))

= lim
k→∞

Ent((k + 1, 1)) (∵ definition of Ent(·))

= Ent(β̃(j)).

(4.3)

On the other hand, Lemma 3.7(3) tells us that t( ˜γ(k, 1)•) ∈ Dg(ML), where

(4.4) g = n+u(β(j), n+1)+ kn− 1 ≡ u(β(j), n+1)− 1 ≡ j− 1 (mod n).

(See the condition (1) of Proposition 4.1.) For k ≥ 1, consider the set of

all pseudo-Anosov mapping classes t( ˜γ(k, 1)•) obtained from β(j) over all
j = 1, . . . , n. Then by (4.4) together with the condition (1) of Proposition
4.1, one can find a sequence of pseudo-Anosov elements ϕg ∈ Dg(ML) for
all g � 0 in this set. In fact when g ≡ j − 1 (mod n), one can put

ϕg = t( ˜γ(k, 1)•) obtained from the braid β(j), where k satisfies the equality

(4.4). Since each of braids β̃(1), . . . , β̃(n) satisfies (4.3), there exists a constant

C ′ > 0 independent of g so that ℓg(ML) ≤ log(λ(ϕg)) ≤ C′

g .

The result ℓ(MCG(Σg)) � 1
g by Penner [Pen91] tells us that there exists

a constant C > 0 independent of g so that 1
Cg ≤ ℓg(ML). We conclude that

ℓg(ML) � 1
g . This completes the proof. □
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(3)(2)(1)

Figure 10. Case b = σ4
1 ∈ B2. (1) cl(b) for b ∈ B2.

(2) η(b,1) = bσ2
2 = σ4

1σ
2
2 ∈ B5. (3) η(b,1) · skew(η(b,1)) =

σ4
1σ

2
2σ

2
3σ

4
4 ∈ B5.

Theorem 4.2. Let b ∈ Bn be a pure braid for n ≥ 2 of the form

b = σ2m1
j1

σ2m2
j2

. . . σ2mk
jk

,

where m1, . . . ,mk are non-zero integers and j1, . . . , jk ∈ {1, . . . , n−1}. Sup-
pose that b is homogeneous, and each σi for i = 1, . . . , n − 1 appears in
b at least once, i.e., {j1, . . . , jk} = {1, . . . , n − 1}. Then for the 2-fold
branched cover Mcl(b) of S3 branched over the closure cl(b) of b, we have

ℓg(Mcl(b)) �
1

g
. In particular, if a pure braid b ∈ Bn is of the form

b = σ2m1
1 σ2m2

2 · · ·σ2mn−1

n−1 ,

then we have ℓg(Mcl(b)) �
1

g
.

To prove Theorem 4.2, we need the following lemma.

Lemma 4.3. Let b = σ2m1
j1

σ2m2
j2

. . . σ2mk
jk

∈ Bn be a pure braid for n ≥ 2

with the same assumption as in Theorem 4.2. Let b be a (2n+1)-braid with
the same braid word as b. We take a braid

η(j) = η(b,j) := bσ2j
n = (σ2m1

j1
σ2m2
j2

· · ·σ2mk
jk

)σ2j
n ∈ B2n+1

for a positive integer j. Then η(j) is increasing in the middle with the inter-
section number u(η(j), n+ 1) = j, and the braid

η(j) · skew(η(j)) = (σ2m1
j1

· · ·σ2mk
jk

)σ2j
n · σ2j

n+1(σ
2mk
2n+1−jk

· · ·σ2m1
2n+1−j1

) ∈ B2n+1

is pseudo-Anosov.

Proof. By the definition of η(j), it is easy to check that η(j) is increasing
in the middle with u(η(j), n + 1) = j. The braid η(j) · skew(η(j)) ∈ B2n+1

satisfies the assumption of Lemma 2.5, and hence it is pseudo-Anosov. □
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Example 4.4. If b = σ4
1 ∈ B2, then η(1) = η(b,1) = bσ2

2 = σ4
1σ

2
2 ∈ B5. By

Lemma 4.3, η(1) · skew(η(1)) = σ4
1σ

2
2σ

2
3σ

4
4 ∈ B5 is pseudo-Anosov. See Figure

10.

Let us turn to the proof of Theorem 4.2.

Proof of Theorem 4.2. We consider the braid η(j) = η(b,j) ∈ B2n+1 as in
Lemma 4.3 for each j = 1, . . . , n. By Lemma 2.14, skew(η(j)) ∈ B2n+1 is a
braid increasing in the middle, and u(η(j), n+1) = u(skew(η(j)), n+1) = j.
Note that

η•(j) = σ2m1
j1

σ2m2
j2

. . . σ2mk
jk

∈ B2n

with the same word as the braid b ∈ Bn for j = 1, . . . , n. Then we have

C(
(
skew(η(j))

)•
) = C(η•(j)) = cl(b)

as links in S3. By Lemma 4.3, η(j) · skew(η(j)) ∈ B2n+1 is pseudo-Anosov
for j = 1, . . . , n. Notice that η(j) · skew(η(j)) is the skew-palindromization
of skew(η(j)) (since skew : Bn → Bn is an involution). Hence the braids
skew(η(1)), . . . , skew(η(n)) ∈ B2n+1 satisfy the conditions (1)–(3) of Propo-

sition 4.1, where L = C(
(
skew(η(j))

)•
) = cl(b). Thus ℓg(Mcl(b)) �

1

g
. This

completes the proof. □
Theorem 1.1 follows from the following result.

Corollary 4.5. For the lens space L(2m,1) of type (2m, 1) with m 6= 0, we

have ℓg(L(2m,1)) �
1

g
.

Proof. The closure cl(σ2m
1 ) of the 2-braid σ2m

1 with m 6= 0 is the (2m, 2)-
torus link T . (See Figure 10(1) when m = 2.) The 2-fold branched cover
MT = Mcl(σ2m

1 ) of S
3 branched over T is the lens space L(2m,1) of the type

(2m, 1). See [Rol90, p. 302] for example. This together with Theorem 4.2
completes the proof. □
Theorem 4.6. Let ♯nS

2×S1 denote the connected sum of n copies of S2×
S1. For each n ≥ 1, we have ℓg(♯nS

2 × S1) � 1

g
.

Proof. For the n-component trivial link En, we have MEn = ♯n−1S
2 × S1.

See [Rol90, p. 300] for example. Recall that En = C(e2n) for the identity
element e2n ∈ B2n. To prove Theorem 4.6, we check that ℓg(MC(e2n))) �

1
g .

For n ≥ 2, we take a braid β ∈ B2n+1 increasing in the middle with the
following properties.

u(β, n+ 1) = 2n ≡ 0 (mod n) and β• = e2n ∈ B2n.

One can choose such a braid β as follows.

β = σn+1σn+2 · · ·σ2n−1σ
4
2nσ

3
2n−1 · · ·σ3

n+2σ
3
n+1 ∈ B2n+1.
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(2)(1) (3)

D

1   2  3  4  5

a
3

Figure 11. (1) The closure cl(β) for β = σ3σ
4
4σ

3
3 ∈ B5

increasing in the middle with u(β, 3) = 4. (D is an associated

disk of the pair (β, 3).) (2) The skew-palindromization β̃ of
β. (3) The closed curve γ

β̃
(based at a3) in D4 = D2 \

{a1, a2, a4, a5}.

See Figure 11(1) for the braid β = σ3σ
4
4σ

3
3 ∈ B5 when n = 2. Consider the

skew-palindromization β̃ of β, see Figure 11(2). Since β• = e2n ∈ B2n, it

holds β̃• = e2n · e2n = e2n ∈ B2n.

Let a1, . . . , a2n+1 be base points of β̃. The projection of the (n + 1)-th

strand β̃(n+1) ⊂ D2× [0, 1] onto the first factor D2 gives an oriented closed
curve γ

β̃
on the 2n-punctured disk D2n = D2 \{a1, . . . , an, an+2, . . . , a2n+1},

see Figure 11(2)(3). Note that the initial point of the closed curve γ
β̃
cor-

responds to the base point an+1 of β̃. If we choose a braid β increasing in
the middle as above, then one can check that γ

β̃
fills D2n. Here a closed

curve γ ⊂ DN in an N -punctured disk DN fills DN if every loop that is
freely homotopic to γ intersects every essential simple closed curve in DN .

By Kra’s criterion [Kra81, Theorem 2’], β̃ ∈ B2n+1 is pseudo-Anosov.
For each j = 1, . . . , n, we define a braid β(j) ∈ B2n+1 as follows: If

j = n, then β(n) := β. If j = 1, . . . , n − 1, then β(j) := βσ2j
n+1. Notice

that both braids β ∈ B2n+1 and σ2j
n+1 ∈ B2n+1 are increasing in the middles

with the intersection numbers 2n and j respectively. Lemma 2.13 tells us

that β(j) = βσ2j
n+1 is increasing in the middle with the intersection number

u(β(j), n+1) = 2n+j ≡ j (mod n). Moreover β•
(j) = β•(σ2j

n+1)
• = e2n·e2n =

e2n ∈ B2n. Hence En = C(β•
(j)). The closed curve γ

β̃(j)
still fills D2n. Hence

β̃(j) ∈ B2n+1 for j = 1, . . . , n is pseudo-Anosov by the same criterion of Kra.

By Proposition 4.1, we obtain ℓg(MEn) � 1
g . This completes the proof. □

Finally we prove Theorem 1.2.
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(1)

(2)

(3)

Figure 12. This figure illustrates the case where k = 3.
(1) Let P be the complement of the 2k 3-balls containing
twists. (2) We isotope (1) in order to have 2π/3 symmetry.
(3) The 2-fold branched cover of P branched over P ∩ cl(bm)
(indicated by the thick circle) is homeomorphic to S3−N (C6),
where C6 is the minimally twisted 6-chain link.

Proof of Theorem 1.2. Let bm ∈ B3 be a pure braid of the form

bm = σ2m1
1 σ2m2

2 σ2m3
1 σ2m4

2 . . . σ
2m2k−1

1 σ2m2k
2 ,

where k ≥ 3 and m = (m1,m2,m3,m4, . . . ,m2k) ∈ (Z>0)
2k is a 2k-tuple of

positive integers. Notice that bm is homogeneous, and both σ1 and σ2 appear
in bm. As shown in Figure 12, Mcl(bm) is a closed 3-manifold obtained from

the 3-sphere S3 by Dehn surgery about the minimally twisted 2k-chain link
C2k. Let si (i = 1, . . . , 2k) be the slope of this Dehn surgery. It is shown by
Thurston [Thu79, Example 6.8.7] that S3 − C2k has a complete hyperbolic
structure with 2k cusps. (See also [Pur11, Yos97].) Hence, we have vol(S3−
C2k) > 2kv3, where v3 = 1.01494 . . . is the volume of the ideal regular
tetrahedron. See [Ada88, Theorem 7]. We consider the Euclidean structure
on the torus boundary of N (C2k) induced by a maximal disjoint horoball
neighborhood about the cusps. Let λ be the minimum of the Euclidean
lengths of the solpes si. By the 2π-theorem of Gromov-Thurston [BH96,
Theorem 9], if λ > 2π, then Mcl(bm) is hyperbolic. Furthermore, from the
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result by Futer-Kalfagianni-Purcell [FKP08, Theorem 1.1], we have(
1−

(
2π

λ

)2
)3/2

vol(S3 − C2k) ≤ vol(Mcl(bm)) < vol(S3 − C2k).

For any R > 0, if we choose k so that 2kv3 > R and each coordinate of
m sufficiently large, then we have vol(Mcl(bm)) > R. Since the braid bm

satisfies the assumption in Theorem 4.2, we see ℓg(Mcl(bm)) �
1

g
. □
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