ON HYPERBOLIC SURFACE BUNDLES OVER THE CIRCLE AS BRANCHED DOUBLE COVERS OF THE 3-SPHERE

SUSUMU HIROSE AND EIKO KIN

Abstract. The branched virtual fibering theorem by Sakuma states that every closed orientable 3-manifold with a Heegaard surface of genus g has a branched double cover which is a genus g surface bundle over the circle. It is proved by Brooks that such a surface bundle can be chosen to be hyperbolic. We prove that the minimal entropy over all hyperbolic, genus g surface bundles as branched double covers of the 3-sphere behaves like $1/g$. We also give an alternative construction of surface bundles over the circle in Sakuma’s theorem when closed 3-manifolds are branched double covers of the 3-sphere branched over links. A feature of surface bundles coming from our construction is that the monodromies can be read off the braids obtained from the links as the branched set.

1. Introduction

This paper concerns the branched virtual fibering theorem by Sakuma which relates Heegaard surfaces to fiber surfaces. He proved the theorem in 1981 and it is a branched version of the virtual fibering theorem by Agol and Wise which states that every hyperbolic 3-manifold with finite volume has a finite cover which fibers over the circle.

To state Sakuma’s theorem let $\Sigma = \Sigma_{g,p}$ be an orientable, connected surface of genus g with p punctures possibly $p = 0$, and let us set $\Sigma_g = \Sigma_{g,0}$. The mapping class group $\text{Mod}(\Sigma)$ is the group of isotopy classes of orientation preserving self-homeomorphisms on Σ which preserve the punctures setwise. By Nielsen-Thurston classification, elements in $\text{Mod}(\Sigma)$ fall into three types: periodic, reducible, pseudo-Anosov [9]. To each pseudo-Anosov element ϕ, there is an associated dilatation (stretch factor) $\lambda(\phi) > 1$ (see [4] for example). We call the logarithm of the dilatation $\log(\lambda(\phi))$ the entropy of ϕ.

Choosing a representative $f : \Sigma \to \Sigma$ of ϕ we define the mapping torus T_ϕ by

$$T_\phi = \Sigma \times \mathbb{R} / \sim,$$

where $(x, t) \sim (f(x), t + 1)$ for $x \in \Sigma, t \in \mathbb{R}$. We call Σ the fiber surface of T_ϕ. The 3-manifold T_ϕ is a Σ-bundle over the circle with the monodromy ϕ. By Thurston [10] T_ϕ admits a hyperbolic structure of finite volume if and only if ϕ is pseudo-Anosov.

The following theorem is due to Sakuma [8, Addendum 1]. See also [3, Section 3].

\textit{Date:} February 6, 2019.

\textit{2000 Mathematics Subject Classification.} Primary 57M27, 37E30, Secondary 37B40.

\textit{Key words and phrases.} pseudo-Anosov, dilatation (stretch factor), 2-fold branched cover of the 3-sphere, fibered 3-manifold, Heegaard surface, mapping class groups, braid groups.
Theorem 1 (Branched virtual fibering theorem). Let M be a closed orientable 3-manifold. Suppose that M admits a genus g Heegaard splitting. Then there is a 2-fold branched cover \tilde{M} of M which is a Σ_g-bundle over the circle.

It is proved by Brooks [3] that \tilde{M} in Theorem 1 can be chosen to be hyperbolic if $g \geq \max(2, g(M))$, where $g(M)$ is the Heegaard genus of M. See also [6] by Montesinos.

Let $D_g(M)$ be a subset of $\Mod(\Sigma_g)$ consisting of elements ϕ such that T_ϕ is homeomorphic to a 2-fold branched cover of M branched over some link. By Theorem 1 we have $D_g(M) \neq \emptyset$. By Brooks together with the stabilization of Heegaard splittings, there is a pseudo-Anosov element in $D_g(M)$ for each $g \geq \max(2, g(M))$. The set of fibered 3-manifolds T_ϕ over all $\phi \in D_g(M)$ possesses various properties inherited under branched covers of M. It is natural to ask about the dynamics of pseudo-Anosov elements in $D_g(M)$. We are interested in the set of entropies of pseudo-Anosov mapping classes.

We fix a surface Σ and consider the set of entropies

$$\{ \log \lambda(\phi) \mid \phi \in \Mod(\Sigma) \text{ is pseudo-Anosov} \}$$

which is a closed, discrete subset of \mathbb{R} ([1]). For any subset $G \subset \Mod(\Sigma)$ let $\delta(G)$ denote the minimum of dilatations $\lambda(\phi)$ over all pseudo-Anosov elements $\phi \in G$. Then $\delta(G) \geq \delta(\Mod(\Sigma))$. For real valued functions f and h, we write $f \asymp h$ if there is a universal constant c such that $h/c \leq f \leq ch$. It is proved by Penner [7] that

$$\log \delta(\Mod(\Sigma_g)) \asymp \frac{1}{g}.$$

A question arises: what can we say about the asymptotic behavior of the minimal entropies $\log \delta(D_g(M))$’s for each closed 3-manifold M? In this paper we consider this question when M is the 3-sphere S^3. Our main theorem is the following.

Theorem A. We have $\log \delta(D_g(S^3)) \asymp \frac{1}{g}$.

Figure 1. (1) $\sigma_i \in B_n$. (2) Involution on the cylinder. Thick segment in the middle is the fixed point set of the involution. (3) $\tilde{b} = \text{skew}(b) \cdot b$ is invariant under such an involution.
ON HYPERBOLIC SURFACE BUNDLES OVER S^1 AS BRANCHED DOUBLE COVERS OF S^3

Let $q_L : M_L \to S^3$ denote the 2-fold branched covering map of S^3 branched over a link L in S^3. Along the way in the proof of Theorem A we give an alternative proof of Theorem 1 when $M = M_L$ in Theorem B. A feature of surface bundles M_L coming from our construction is that their monodromies can be read off the braids obtained from the links as the branched set. To state Theorem B, we need 3 ingredients.

1. **Involution skew** $: B_n \to B_n$. Let B_n be the (planar) braid group with n strands and let σ_i denote the Artin generator of B_n as in Figure 1(1). We define an involution $\text{skew} : B_n \to B_n$

$$\sigma_{n_1}^{e_1} \sigma_{n_2}^{e_2} \cdots \sigma_{n_k}^{e_k} \mapsto \sigma_{n_{-n_k}}^{e_k} \cdots \sigma_{n_{-n_2}}^{e_2} \sigma_{n_{-n_1}}^{e_1}, \quad e_i = \pm 1.$$

We say that $b \in B_n$ is skew-palindromic if $\text{skew}(b) = b$. The braid $\text{skew}(b) \cdot b$ is skew-palindromic for any $b \in B_n$. (There is a skew-palindromic braid which cannot be written by $\text{skew}(b) \cdot b$ for some b, for example $\sigma_1 \sigma_2 \sigma_3 \in B_4$.) We write $\tilde{b} = \text{skew}(b) \cdot b$.

Note that $\text{skew} : B_n \to B_n$ is induced by the involution on the cylinder as shown in Figure 1(2) and skew-palindromic braids are invariant under such an involution.

2. **Homomorphism** $t : B_{2g+2} \to \text{Mod}(\Sigma_g)$. Let t_i denote the right-handed Dehn twist about the simple closed curve with the number i in Figure 2. Then there is a homomorphism

$$t : B_{2g+2} \to \text{Mod}(\Sigma_g)$$

which sends σ_i to t_i for $i = 1, \ldots, 2g + 1$, since $\text{Mod}(\Sigma_g)$ has the braid relation. (We apply elements of mapping class groups from right to left.) The hyperelliptic mapping class group $\mathcal{H}(\Sigma_g)$ is the subgroup of $\text{Mod}(\Sigma_g)$ consisting of elements with representative homeomorphisms that commute with some fixed hyperelliptic involution. By Birman-Hilden [2], $\mathcal{H}(\Sigma_g)$ is generated by t_i’s. Thus

$$\mathcal{H}(\Sigma_g) = t(B_{2g+2}).$$

3. **Circular plat closure** $C(b)$. We use two types of links in S^3 obtained from braids. One is the closure $\text{cl}(\beta)$ of $\beta \in B_{g+1}$ as in Figure 3(1). The other is the circular plat closure $C(b)$ of $b \in B_{2g+2}$ with even strands as in Figure 3(2)(3). We also use the link $C(b) \cup W$, the union of $C(b)$ and the trivial link $W = O \cup O'$ with 2 components as shown in Figure 3(4).

Any link in S^3 can be represented by $C(\beta')$ for some braid β'. To see this, it is well-known that L is the closure $\text{cl}(\beta)$ for some $\beta \in B_{g+1}$ ($g \geq 1$). The desired braid
\[g + 1 \]

\[\beta' \in B_{2g+2} \] can be obtained from \(\beta \) by adding \(g + 1 \) straight strands as in Figure 3(1).

For a braid \(b \in B_{2g+2} \) let \(q = q_{C(b)} : M_{C(b)} \to S^3 \) be the 2-fold branched covering map of \(S^3 \) branched over \(C(b) \). There is a \((g + 1)\)-bridge sphere \(S \) for the link \(C(b) \subset S^3 \). Hence \(M_{C(b)} \) admits a genus \(g \) Heegaard splitting with the Heegaard surface \(q^{-1}(S) \). Then we have the following result.

Theorem B. Let \(\overline{M_{C(b)}} \) be the 2-fold branched cover of \(M_{C(b)} \) branched over the link \(q^{-1}(W) \). Then \(\overline{M_{C(b)}} \) is homeomorphic to the mapping torus \(T_{e(b)} \).

Acknowledgments. We would like to thank Makoto Sakuma and Yuya Koda for helpful conversations and comments. The first author was supported by Grant-in-Aid for Scientific Research (C) (No. 16K05156), JSPS. The second author was supported by Grant-in-Aid for Scientific Research (C) (No. 18K03299), JSPS.

2. Proof of Theorem B

Proof of Theorem B. We construct the 3-sphere \(S^3 \) from two copies of the 3-ball \(B^3 \) by gluing their boundaries together. Consider the link \(C(b) \cup W \) so that \(C(b) \) is contained in one of the 3-balls, and \(W \) is given by the union of the four thick segments in the two 3-balls, see Figure 4(2). Let \(S \) be the sphere in \(S^3 \) which is the union of the two shaded disks in the same figure. The 2-sphere \(S \) is a \((g + 1)\)-bridge sphere for \(C(b) \), and the preimage \(q^{-1}(S) \) is a genus \(g \) Heegaard surface of \(M_{C(b)} \).

Let \(q_W : M_W \to S^3 \) be the 2-fold branched covering map of \(S^3 \) branched over \(W \) (Figure 4(1)). The preimage \(q_W^{-1}(B^3) \) is homeomorphic to the solid torus \(D^2 \times S^1 \). Then \(M_W \) is obtained from two copies of \(D^2 \times S^1 \) by gluing their boundaries together, and hence \(M_W \) is homeomorphic to \(S^2 \times S^1 \). Observe that the link \(q_W^{-1}(C(b)) \) is a closure of the spherical braid \(b = \text{skew}(b) \cdot b \), i.e.

\[q_W^{-1}(C(b)) = \text{cl}(\tilde{b}) \subset S^2 \times S^1. \]

Let \(p : N_{\text{cl}(\tilde{b})} \to S^2 \times S^1 \) be the 2-fold branched covering map of \(S^2 \times S^1 \) branched over \(\text{cl}(\tilde{b}) \). The 2-fold branched covering of the level surface \(S^2 \times \{u\} \) for \(u \in S^1 \) branched at the \(2g + 2 \) points in \((S^2 \times \{u\}) \cap \text{cl}(\tilde{b}) \) is a closed surface of genus \(g \). Thus
ON HYPERBOLIC SURFACE BUNDLES OVER S^1 AS BRANCHED DOUBLE COVERS OF S^3

\[
\begin{align*}
 T_{\tilde{\mathcal{C}}(\tilde{b})} & \cong \tilde{M}_{\mathcal{C}(b)} & \text{MC(b)} \\
 \downarrow p & \quad & \downarrow q = q_{\mathcal{C}(b)} \\
 M_W & \simeq S^2 \times S^1 & S^3 \\
\end{align*}
\]

\[q_w\]

(3)

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{figure4.pdf}
\caption{(1) $\text{cl}(\tilde{b}) \subset S^2 \times S^1$. (2) $\mathcal{C}(b) \cup W \subset S^3$. (3) Diagram: $\tilde{M}_{\mathcal{C}(b)} \to M_{\mathcal{C}(b)}$ is the 2-fold branched cover of $M_{\mathcal{C}(b)}$ branched over $q_{\mathcal{C}(b)}^{-1}(W)$.}
\end{figure}

Since $\mathcal{C}(b)$ and W are disjoint in S^3, the construction implies that $N_{\text{cl}(\tilde{b})} \simeq T_{\tilde{\mathcal{C}}(\tilde{b})}$ is homeomorphic to $\tilde{M}_{\mathcal{C}(b)}$. This completes the proof. \hfill \square

3. Proof of Theorem A

Given a braid b we first give a construction of a braid b' (with more strands than b) such that $\mathcal{C}(b)$ is ambient isotopic to $\mathcal{C}(b')$.

The bottom and top endpoints of a planar braid with n strands are denoted by l_1, \ldots, l_n and u_1, \ldots, u_n from left to right. For a braid $b \in B_{2g+2}$ with even strands, we choose a braid $b^\circ \in B_{2g+3}$ obtained from b by adding a strand, say $b^\circ(g + 2)$ connecting the middle of two points l_{g+1} and l_{g+2} with the middle of two points u_{g+1} and u_{g+2}. Of course b° is not unique. For example when $b = b_1 = \sigma_3 \in B_4$, one can choose $b^\circ(= \tilde{b}_1^\circ) = \sigma_2^3 \sigma_4 \in B_5$. See Figure 5.

We consider $b^\circ = \text{skew}(b^\circ) \cdot b^\circ \in B_{2g+3}$ with bottom endpoints l_1, \ldots, l_{2g+3} and top endpoints u_1, \ldots, u_{2g+3}. The braid b° has the strand $b^\circ(g + 2)$ with endpoints l_{g+2} and u_{g+2}. If we remove this strand from \tilde{b}°, then we obtain $\tilde{b} = \text{skew}(b) \cdot b$.
Figure 5. (1) $b = \sigma_3$. (2) $\bar{b} = \sigma_3^2 \sigma_4$. (3) \tilde{b}. ($\tilde{b} = \sigma_1 \sigma_3$ is obtained from \bar{b} by removing the strand with endpoints u_3 and u_2.) (4) Braid \tilde{b} on A.

Figure 6. (1) Solid torus $(D^2 \times S^1)_{-1}$. (2) $S^1 \times S^1 \times [-1,1]$ obtained from $S^1 \times [-1,1] \times [-1,1]$ by identifying two annuli $S^1 \times \{1\} \times [-1,1]$ and $S^1 \times \{-1\} \times [-1,1]$. (3) Solid torus $(D^2 \times S^1)_{+1}$.

Now we construct $S^2 \times S^1$ from three pieces, two solid tori $(D^2 \times S^1)_{\pm 1}$ and the product $S^1 \times S^1 \times [-1,1]$ of a torus $S^1 \times S^1$ and the interval $[-1,1]$ by gluing $(\partial D^2 \times S^1)$, to $S^1 \times S^1 \times \{i\}$ together for $i = \pm 1$. See Figure 6. We think of S^1 as the quotient space $[-1,1]/(-1 \sim 1)$, and consider the product

$$S^1 \times S^1 \times [-1,1] = S^3 \times [-1,1]/(-1 \sim 1) \times [-1,1].$$

For the braided link $\text{br}(\tilde{b}) = \text{cl}(\tilde{b}) \cup A$ in S^3, we perform the 0-surgery along the braided axis A. Then we have a link in $S^2 \times S^1$ and we denote this link by $\text{cl}(\tilde{b})$ abusing the notation. We deform this link $\text{cl}(\tilde{b})$ in $S^2 \times S^1$ so that the knot $\text{cl}(\tilde{b}(g + 2))$ becomes the core of $(D^2 \times S^1)_{-1}$ and $\text{cl}(\tilde{b}) = \text{cl}(\tilde{b}) \setminus \text{cl}(\tilde{b}(g + 2))$ is contained in $S^3 \times [-1,1]$. One can regard \tilde{b} as a braid on the annulus $A := S^1 \times \{-1\} \times [-1,1]$ which is embedded in $S^1 \times [-1,1] \times [-1,1]$, and one can
think of the link $\text{cl}(\tilde{b})$ as the closure of the braid \tilde{b} on A. See Figure 5(4). Let

$$R : S^2 \times S^1 \to S^2 \times S^1$$

be the deck transformation of $q_W : S^2 \times S^1 \to S^3$ as in the proof of Theorem B. Then R is an involution and q_W sends the fixed point set of R to the trivial link W (Figure 4(1)(2)). Let

$$f : S^1 \times S^1 \to S^1 \times S^1$$

be any orientation preserving homeomorphism. We may assume that f commutes with the involution

$$\iota : S^1 \times S^1 \to S^1 \times S^1$$

$$(x, y) \mapsto (-x, -y).$$

We consider the homeomorphism

$$\Phi_f = f \times \text{id}_{[-1, 1]} : S^1 \times S^1 \times [-1, 1] \to S^1 \times S^1 \times [-1, 1].$$

The image of $\text{cl}(\tilde{b})$ under Φ_f may or may not be of the closure of some braid on A. We assume the former case (**):

$$\Phi_f(\text{cl}(\tilde{b})) = \text{cl}(\gamma)$$

for some braid γ on A.

Then $R|_{S^1 \times S^1 \times [-1, 1]} = \iota \times \text{id}_{[-1, 1]}$ and the involution $R|_{S^1 \times S^1 \times [-1, 1]}$ has a property such that

$$R(\text{cl}(\beta)) = \text{cl}(\text{skew}(\beta))$$

for any braid β on A. (The first and last equality come from the assumption (**), and the second equality holds since \tilde{b} is skew-palindromic.) Thus $\text{cl}(\gamma) = R(\text{cl}(\gamma))$. We further assume that

$$\Phi_f(\text{cl}(\tilde{b})) = \text{cl}(\gamma) = \text{cl}(\tilde{b}_f)$$

for some braid b_f on A.

Remark 2. Clearly (***) implies $\text{cl}(\gamma) = R(\text{cl}(\gamma))$. It is likely the converse holds.

Now, we think of the braid b_f on A as a planar braid as usual, and consider the link $C(b_f)$ in S^3. We have the following lemma.

Lemma 3. Under the assumptions (***) and (**), $C(b)$ and $C(b_f)$ are ambient isotopic.

Proof. Note that the quotient $(S^1 \times S^1 \times [-1, 1])/R$ is homeomorphic to $S^2 \times [-1, 1]$. Since Φ_f commutes with $R|_{S^1 \times S^1 \times [-1, 1]}$, Φ_f induces a self-homeomorphism

$$\Phi_f : S^2 \times [-1, 1] \to S^2 \times [-1, 1].$$

Since $\Phi_f(\text{cl}(\tilde{b})) = \text{cl}(\tilde{b}_f)$ we have $\Phi_f(C(b)) = C(b_f)$. Any orientation preserving self-homeomorphism on S^2 is isotopic to the identity, and S^3 is a union of $S^2 \times [-1, 1]$ and two 3-balls by gluing the boundaries together. Thus Φ_f extends to a self-homeomorphism on S^3 which sends $C(b)$ to $C(b_f)$. This completes the proof. \qed
Let us consider the mapping class group \(\text{Mod}(D_n) \) of the \(n \)-punctured disk \(D_n \) preserving the boundary \(\partial D \) of the disk setwise. We have a surjective homomorphism

\[
\Gamma : B_n \to \text{Mod}(D_n)
\]

which sends each generator \(\sigma_i \) to the right-handed half twist between the \(i \)th and \((i+1)\)st punctures. We say that \(\beta \in B_n \) is pseudo-Anosov if \(\Gamma(\beta) \in \text{Mod}(D_n) \) is of the pseudo-Anosov type. When \(\beta \) is a pseudo-Anosov braid, the dilatation \(\lambda(\beta) \) is defined by the dilatation of \(\lambda(\Gamma(\beta)) \).

We consider the above homomorphism \(\Gamma : B_{2g+2} \to \text{Mod}(D_{2g+2}) \) when \(n = 2g+2 \). Recall the homomorphism \(t : B_{2g+2} \to \text{Mod}(\Sigma_g) \). The following lemma relates dilatations of \(\beta \) and \(t(\beta) \).

Lemma 4. Let \(\beta \in B_{2g+2} \) be pseudo-Anosov and let \(\Phi_\beta : D_{2g+2} \to D_{2g+2} \) be a pseudo-Anosov homeomorphism which represents \(\Gamma(\beta) \in \text{Mod}(D_{2g+2}) \). Suppose that the stable foliation \(F_\beta \) for \(\Phi_\beta \) defined on \(D_{2g+2} \) is not 1-pronged at the boundary \(\partial D \) of the disk. Then \(t(\beta) \in \text{Mod}(\Sigma_g) \) is pseudo-Anosov, and \(\lambda(t(\beta)) = \lambda(\beta) \) holds.

Proof. Since \(F_\beta \) is not 1-pronged at the boundary of the disk, \(\Phi_\beta : D_{2g+2} \to D_{2g+2} \) induces a pseudo-Anosov homeomorphism \(\Phi'_\beta : \Sigma_{0,2g+2} \to \Sigma_{0,2g+2} \) by lifting \(\partial D \) with a disk. By Birman-Hilden [2], we have a surjective homomorphism

\[
a : \mathcal{H}(\Sigma_g) \to \text{Mod}(\Sigma_{0,2g+2})
\]

sending the Dehn twist \(t_i \) to the right-handed half twist \(h_i \) between the \(i \)th and \((i+1)\)st punctures for \(i = 1, \ldots, 2g+1 \). Consider the 2-fold branched cover \(\Sigma_g \to \Sigma_{0,2g+2} \) branched at the \(2g+2 \) marked points (corresponding to the punctures of \(\Sigma_{0,2g+2} \)). Then there is a lift \(f_\beta : \Sigma_g \to \Sigma_g \) of \(\Phi'_\beta : \Sigma_{0,2g+2} \to \Sigma_{0,2g+2} \) which satisfies \(t(\beta) = [f_\beta] \in \mathcal{H}(\Sigma_g) \). The stable foliation for the pseudo-Anosov \(\Phi'_\beta \) defined on \(\Sigma_{0,2g+2} \) is lifted to the stable foliation for \(f_\beta \) defined on \(\Sigma_g \). Thus \(f_\beta \) is a pseudo-Anosov homeomorphism which represents \(t(\beta) = [f_\beta] \), and we have

\[
\lambda([f_\beta]) = \lambda([\Phi'_\beta]) = \lambda([\Phi_\beta]) = \lambda(\beta).
\]

This completes the proof. \(\square \)
ON HYPERBOLIC SURFACE BUNDLES OVER S^1 AS BRANCHED DOUBLE COVERS OF S^3

Proof of Theorem A. For $g \geq 1$, we consider $b_g = \sigma_3 \sigma_4 \cdots \sigma_{2g+1} \in B_{2g+2}$ and

$\tilde{b}_g = \sigma_1 \sigma_2 \cdots \sigma_{2g-1} \cdot \sigma_3 \sigma_4 \cdots \sigma_{2g+1} \in B_{2g+2}$,

see Figure 8. By Penner’s result it is enough to prove that $t(\tilde{b}_g)$ is a pseudo-Anosov element in $D_g(S^3)$ for large g and $\log \lambda(t(\tilde{b}_g)) \approx 1/g$ holds.

Applying Theorem B for the braid b_g we have the 2-fold branched cover

$$T_{t(\tilde{b}_g)} \to M_{C(b_g)}$$

branched over $q^{-1}(W)$. We first prove that $M_{C(b_g)} \simeq S^3$ for $g \geq 1$. Clearly $C(b_1) = C(\sigma_3)$ is a trivial knot. The 2-fold branched cover of S^3 branched over a trivial knot is S^3, and hence $M_{C(b_1)} \simeq S^3$. We add a strand to $b_1 = \sigma_3 \in B_1$ so that $b_1^2 = \sigma_3^2 \sigma_4 \in B_3$, and think of \tilde{b}_1^2 as a braid on A, see Figure 5. Choose any $v \in S^1$ and consider the annulus A in $S^1 \times S^1 \times [-1, 1]$ with boundary $\{v\} \times S^1 \times \{\pm 1\}$, see Figure 7(1). As a self-homeomorphism f on $S^1 \times S^1$, we take a Dehn twist about $\{v\} \times S^1$. Then the self-homeomorphism Φ_f on $S^1 \times S^1 \times [-1, 1]$ is an annulus twist about A, see Figure 7(2)(3). Observe that $\Phi_f(\text{cl}(\tilde{b}_1)) = \text{cl}(\tilde{b}_2)$ satisfying assumptions (\ast) and $(\ast\ast)$. By repeating this process it is not hard to see that

$$\Phi_f(\text{cl}(\tilde{b}_j-1)) = \text{cl}(\tilde{b}_j)$$

for each $j \geq 2$.

Thus $\Phi_f(\text{cl}(\tilde{b}_j-1))$ satisfies (\ast) and $(\ast\ast)$ for each j. Lemma 3 tells us that $C(b_g)$ is a trivial knot for $g \geq 1$ since so is $C(b_1)$. Thus $M_{C(b_g)} \simeq S^3$, and $(\tilde{b}_g) \in D_g(S^3)$ for $g \geq 1$ by Theorem B.

The proof of Theorem D in [5] says that $\Gamma(\tilde{b}_g) \in \text{Mod}(D_{2g+2})$ is pseudo-Anosov for $g \geq 2$ and $\log \lambda(\tilde{b}_g) \approx 1/g$ holds. Moreover the stable foliation of the pseudo-Anosov representable for $\Gamma(\tilde{b}_g)$ satisfies the assumption of Lemma 4, see the proof of Step 2 in [5, Theorem D]. Thus $t(\tilde{b}_g)$ is pseudo-Anosov with $\lambda(t(\tilde{b}_g)) = \lambda(\tilde{b}_g)$ by Lemma 4, and we obtain the desired claim $\log \lambda(t(\tilde{b}_g)) = \log \lambda(\tilde{b}_g) \approx 1/g$. This completes the proof.

We end this paper with a question.
Question 5. Let M be a closed 3-manifold M which is the 2-fold branched cover of S^3 branched over some link. Then does it hold $\log \delta(D_g(M)) \asymp \frac{1}{g}$?

References

Department of Mathematics, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan

E-mail address: hirose_susumu@ma.noda.tus.ac.jp

Department of Mathematics, Graduate School of Science, Osaka University Toyonaka, Osaka 560-0043, Japan

E-mail address: kin@math.sci.osaka-u.ac.jp