The Magic manifold N

is the hyperbolic and fibered 3-manifold defined by $N:=S^{3} \backslash$ (the 3 -chaink link). It plays a significant ule to study

- exceptional Dehn surgeries of hyperbolic 3-manifolds (Gordon-Wu)
- hyperbolic 3-manifolds with small volumes (Martelli-Petronio, Gabai-Meyerhoff-Milley) - pseudo-Anosovs with small dilatations (Takasawa-K)

Pseudo-Anosovs and dilatations

Consider the mapping class group $\operatorname{Mod}(\Sigma)$ on $\Sigma=\Sigma_{g, n}$; the closed orientable surface of genus g by removing $n \geq 0$ punctures. Each pseudo-Anosov mapping class $\phi \in \operatorname{Mod}(\Sigma)$ is equipped with some algebraic integer $\lambda(\phi)>1$ called the dilatation.

Minimal dilatation problem.
Let $\delta_{g n}=\min \left\{\lambda(\phi) \mid\right.$ pseudo-Anosov $\left.\phi \in \operatorname{Mod}\left(\Sigma_{\beta},\right)\right\}$ and let $\delta_{g}=\delta_{80}$. Determine $\delta_{g,}$. Find pseudo Anosov elements which achieve $\delta_{g, n}$.

smallest known upper bounds
(U1) $\limsup _{g \rightarrow \infty}$
$\log \delta_{0, n} \asymp 1 / n$
$\log \delta_{1, n} \asymp 1 / n$
(U2)
$\log \delta_{0, n} \leq 2 \log (2+\sqrt{3})$
(U3) $\begin{aligned} & n \rightarrow \infty \\ & n \rightarrow \infty \\ & n \rightarrow \infty \\ & n \\ & n\end{aligned} \log \delta_{1, n} \leq 2 \log \delta\left(D_{4}\right) \approx 1.6628$
Given $g \geq 2, \log \delta_{g, n} \asymp \frac{\log n}{n}$ (U4) $\limsup _{n \rightarrow \infty} \frac{n \log \delta_{g, n}}{\log n} \leq 2$ if $2 g+1$ is prime
ref. [Penner], [Hironaka-K], [Tsai], [Hironaka], [Aaber-Dunfield], [Takasawa-K]. Here D_{n} is an
n-punctured disk. n-punctured disk.

Why is the magic manifold mysterious?

The mapping tori of all potential candidates with the smallest dilatations are homeomorphic to N, or they are obtained from N by Dehn fillings along the boundary slops of fibers. Said differently, all examples with the smallest known dilatations are coming from a single 3 -manifold N.

Question and Theorem

Question
Choose any fibered class a of N. Construct the fiber
to a. What do these pseudo-Anosovs Φ_{a} look like?

Theorem. There exists an algorithm to build the followings for each fibered class a of N

(1) The fiber F_{a} and the monodromy $\Phi_{a}: F_{a} \rightarrow F_{a}$.
(2) The invariant train track τ_{a} and the train track map $g_{a}: \tau_{a} \rightarrow \tau_{a}$ associated to $\phi_{a}=\left[\Phi_{a}\right]$.
\star We also construct the metrized, directed graph Γ_{a} from $g_{a}: \tau_{a} \rightarrow \tau_{a}$. Then we build the curved graph G_{a} induced by Γ_{a} which

Hint: First construct (the 3-braid $\sigma^{2} \sigma^{-1}$ monodromy) $\Phi_{a+\rho}$ of the fibration associated to the fibered last: First construct (the 3 -braid $\sigma_{1}^{2} \sigma_{2}^{2}$ monodromy) $\Phi_{\alpha+\beta}$ of the fibration associated to the the
clas $\alpha+\beta$ by using the 'pillow model'. Then the mapping torus $\mathbb{T}_{\Phi} \simeq N$. Next construct the class $\alpha+\beta$ by using the 'pillow model'. Then the mapping torus $\mathbb{T}_{\Phi_{a+\beta}} \simeq N$. Next construct the
branched surface \mathcal{B} which carries the fiber F_{a} of each fibered class $a \in$ int $\left(C_{\Lambda}\right)$. The first return map branched surface \mathcal{B} which carries the fiber F_{a} of each fibered class $a \in$ int $\left(C_{\Delta}\right)$. The first return map
$\Phi_{a}: F_{a} \rightarrow F_{a}$ of the suspension flow $\Phi_{\alpha+\beta}^{t}$ gives us the the desired monodromy. Third, consider the stable foliation $\mathcal{F}_{\alpha+\beta}$ of $\Phi_{\alpha+\beta}$, and take its suspension $\overline{\mathcal{F}}_{\alpha+\beta}$. Construct another branched surface \mathcal{B}_{Δ} which carries $\widehat{\mathcal{F}}_{\alpha+\beta}$. To obtain $g_{a}: \tau_{a} \rightarrow \tau_{a}$, we need to view the intersection $\mathcal{B} \cap \mathcal{B}_{\Delta \cdot}$.

Reference

[1] C. McMullen, Entropy and the clique polynomial. Preprint (2013).
[2] E. Kin, S. Kojima and M. Takasawa, Minimal dilatations of pseudo-Anosovs generated by the magic 3-manifold and their asymptotic behavior Algebraic and Geometric Toposogy 13 (2013), 3537-3602

Pseudo-Anosovs with small dilatation coming From N

InTERESTING FAMILIES OF PSEUDO-ANOSOVs COMING FROM N
Example. [minimizers of $\delta\left(D_{n}\right)$ for $n=3,4,5,6,7,8$] Consider the fibered classes of the form $a=(j, k)_{0}=(k, j+k, 0)$. Then the clique polynomial $Q_{a}(t)$ is given by

$$
Q_{a}(t)=1-\left(2 t^{k}+2 t^{j+k}+t^{j+2 k}\right)
$$

whose largest root equals λ_{a}. In the figure below, (1) $\Phi_{a}: F_{a} \rightarrow F_{a}$, (2) Γ_{a} and (3) G_{a}.

Example. [minimizer of $\left.\delta_{7}^{\dagger}\right]$ Suppose that $g \equiv 7,9(\bmod 10)$, and let
$a=(g+6,2, g)_{+}=(2 g+6,2 g+8, g+6)$. Then F_{a} has genus g. We have the clique polynomial

$$
Q_{a}(t)=f_{a}(t)=\left(t^{g+4}+1\right)\left(t^{2 g+4}-t^{g+4}-t^{g+2}-t^{g}+1\right),
$$

and its largest root gives us the dilatation λ_{a}. In the figure below, (1) $\tau_{a} \subset F_{a}$, (2) Γ_{a} and (3) W_{c}

Background
Fact. (Thurston)
Let M be an oriented hyperbolic 3-manifold. The unit ball U_{M} with respect to the Thurston norm $\|\cdot\|: H_{2}(M, \partial M ; \mathbb{R}) \rightarrow \mathbb{R}$ is a compact, convex polyhedron.
Example. (Thurston norm ball of N.) $\alpha=\left[F_{\alpha}\right], \beta=\left[F_{\beta}\right], \gamma=\left[F_{\gamma}\right] \in H_{2}(N, \partial N ; \mathbb{Z})$.

Theorem and Definition. (Thurston) Suppose that M is a hyperbolic surface bundle over the circle. Then there exists a top dimensional face Ω. on αM such that each integral class $\in \operatorname{int}$ (Cone (Ω)) corresponds to a fiber or is called the fibered class, and the face Ω is called the fibered face.
Fact. (Fried, S. Matsumoto, McMullen)
Let Ω be a fibered face of M.
Let Ω be a fibered face of M.

- Let ent $(a):=\log \lambda\left(\Phi_{a}\right)$, where Φ_{a} is the monodromy of the fibration associated to a fibered class
Let ent $(a):=\log \lambda\left(\Phi_{a}\right)$, where Φ_{a} is the monodromy of the fibration associated to a fibered clas
This defines a map ent : int $\left(C_{\Omega}(\mathbb{Z})\right) \rightarrow \mathbb{R}$. It admits a continuous extension ent : int $\left(C_{\Omega}\right) \rightarrow \mathbb{R}$ - $1 /$ ent : int $(\Omega) \rightarrow \mathbb{R}$ is strictly concave. If $a \in$ int (Ω) goes to $\partial \Omega$, then ent (a) goes to ∞.
$-1 /$ ent $:$ int $(\Omega) \rightarrow \mathbb{R}$ is strictly concave. If $a \in$ int (Ω) goes to $\partial \Omega$, then ent (a) goes to ∞.
- Teichmüler polynomial polynomial P_{Ω} captures the dilatations λ_{a} of all fibered classes a in int $\left(C_{\Omega}\right)$. Theorem. (McMullen [1])
-

(1) Let Γ be a directed graph with a metric $m: E(\Gamma) \rightarrow \mathbb{R}_{+}$. Let $\lambda(\Gamma, m)$ be the growth rate. Then the smallest positive root of the Perron polynomial $P(t)$ of (Γ, m) is given by $\frac{I}{\lambda(\Gamma, m)}$. The function $h(m)=\log \lambda(\Gamma, m)$ is convex of m.
(2) Let G be an undirected graph with a weight $\omega: V(G) \rightarrow \mathbb{R}_{+}$. The clique polynomial $Q(t)$ of (G, ω) captures the growth rate $\lambda(G, \omega)$.
(3) Given (Γ, m), one can define the curved complex (G, ω) of (Γ, m). In this case, the Perron polynomial $P(t)$ of (Γ, m) coincide with the clique polynomial $Q(t)$ of (G, ω)

