Dynamics of the monodromies of the fibrations on the magic 3-manifold

The Magic manifold N

is the hyperbolic and fibered 3-manifold defined by $N := S^3 \setminus (\text{the 3-chaink link})$. It plays a significant rule to study

- exceptional Dehn surgeries of hyperbolic 3-manifolds (Gordon-Wu)
- hyperbolic 3-manifolds with small volumes (Martelli-Petronio, Gabai-Meyerhoff-Milley)
- pseudo-Anosovs with small dilatations (Takasawa-K)

PSEUDO-ANOSOVS AND DILATATIONS

Consider the mapping class group $Mod(\Sigma)$ on $\Sigma = \Sigma_{g,n}$; the closed orientable surface of genus g by removing $n \ge 0$ punctures. Each pseudo-Anosov mapping class $\phi \in Mod(\Sigma)$ is equipped with some algebraic integer $\lambda(\phi) > 1$ called the dilatation.

- Minimal dilatation problem.

Let $\delta_{g,n} = \min\{\lambda(\phi) \mid \text{pseudo-Anosov } \phi \in \text{Mod}(\Sigma_{g,n})\}$, and let $\delta_g = \delta_{g,0}$. Determine $\delta_{g,n}$. Find pseudo-Anosov elements which achieve $\delta_{g,n}$.

asymptotic behaviors	smallest known upper bounds
$\log \delta_g \asymp 1/g$	(U1) $\limsup_{g \to \infty} g \log \delta_g \le \log(\frac{3+\sqrt{5}}{2})$
$\log \delta_{0,n} \asymp 1/n$	(U2) $\limsup_{n \to \infty} n \log \delta_{0,n} \le 2 \log(2 + \sqrt{3})$
$\log \delta_{1,n} \asymp 1/n$	(U3) $\limsup_{n \to \infty} n \log \delta_{1,n} \le 2 \log \delta(D_4) \approx$
Given $g \ge 2$, $\log \delta_{g,n} \asymp \frac{\log n}{n}$	$\frac{n \log \delta_{g,n}}{n \to \infty} = \frac{n \log \delta_{g,n}}{\log n} \le 2 \text{ if } 2g + 1 \text{ is } p$

 $n \rightarrow \infty$ ref. [Penner], [Hironaka-K], [Tsai], [Hironaka], [Aaber-Dunfield], [Takasawa-K]. Here D_n is an *n*-punctured disk.

Why is the magic manifold mysterious?

The mapping tori of all potential candidates with the smallest dilatations are homeomorphic to N, or they are obtained from N by Dehn fillings along the boundary slops of fibers. Said differently, all examples with the smallest known dilatations are coming from a single 3-manifold N.

Question and Theorem

Question.

Choose any fibered class a of N. Construct the fiber F_a and the monodromy Φ_a : to *a*. What do these pseudo-Anosovs Φ_a look like?

Theorem. There exists an algorithm to build the followings for each fibered class *a* of *N*.

(1) The fiber F_a and the monodromy $\Phi_a : F_a \to F_a$.

(2) The invariant train track τ_a and the train track map $g_a : \tau_a \to \tau_a$ associated to $\phi_a = [\Phi_a]$.

 \bigstar We also construct the metrized, directed graph Γ_a from $g_a : \tau_a \to \tau_a$. Then we build the curved graph G_a induced by Γ_a which reflects the 'shape' of Φ_a . We compute the clique polynomial $Q_a(t)$ of G_a to capture the dilatation λ_a .

Hint: First construct (the 3-braid $\sigma_1^2 \sigma_2^{-1}$ monodromy) $\Phi_{\alpha+\beta}$ of the fibration associated to the fibered class $\alpha + \beta$ by using the 'pillow model'. Then the mapping torus $\mathbb{T}_{\Phi_{\alpha+\beta}} \simeq N$. Next construct the branched surface \mathcal{B} which carries the fiber F_a of each fibered class $a \in int(C_{\Lambda})$. The first return map $\Phi_a: F_a \to F_a$ of the suspension flow $\Phi_{\alpha+\beta}^t$ gives us the the desired monodromy. Third, consider the

stable foliation $\mathcal{F}_{\alpha+\beta}$ of $\Phi_{\alpha+\beta}$, and take its suspension $\mathcal{F}_{\alpha+\beta}$. Construct another branched surface \mathcal{B}_{Δ} which carries $\mathcal{F}_{\alpha+\beta}$. To obtain $g_a: \tau_a \to \tau_a$, we need to view the intersection $\mathcal{B} \cap \mathcal{B}_{\Delta}$.

Eiko Kin, Osaka University

$$: F_a \to F_a$$
 associated

Example. [minimizer of δ_7^+] Suppose that $g \equiv 7,9 \pmod{10}$, and let $a = (g + 6, 2, g)_+ = (2g + 6, 2g + 8, g + 6)$. Then F_a has genus g. We have the clique polynomial

$$Q_a(t) = f_a(t) = (t^{g+4} + 1)(t^{2g+4} - t^{g+4})$$

and its largest root gives us the dilatation λ_a . In the figure below, (1) $\tau_a \subset F_a$, (2) Γ_a and (3) W_a .

fibered face

(U2)

$$t^{j+2k}$$
)

(3)

 $(4 - t^{g+2} - t^g + 1),$

- **Fact.** (Thurston) $\|\cdot\|: H_2(M, \partial M; \mathbb{R}) \to \mathbb{R}$ is a compact, convex polyhedron.

(-1,-1,-
Theorem and Definition. (Thurston) – Suppose that M is a hyperbolic surface face Ω on ∂U_M such that each integral of M . Such an integral class is called th
Fact. (Fried, S. Matsumoto, McMuller Let Ω be a fibered face of <i>M</i> .
• Let $ent(a) := \log \lambda(\Phi_a)$, where Φ_a is This defines a map $ent : int(C_{\Omega}(\mathbb{Z}))$ -
• $1/\text{ent}$: $int(\Omega) \to \mathbb{R}$ is strictly concave
• Teichmüler polynomial polynomial <i>P</i>
Theorem. (McMullen [1]) — (1) Let Γ be a directed graph with a m the smallest positive root of the <i>Perror</i> $h(m) = \log \lambda(\Gamma, m)$ is convex of m.
(2) Let <i>G</i> be an undirected graph with a captures the growth rate $\lambda(G, \omega)$.
(3) Given (Γ, m) , one can define the <i>cur</i> mial $P(t)$ of (Γ, m) coincide with the client

Background

Let M be an oriented hyperbolic 3-manifold. The unit ball U_M with respect to the Thurston norm

ce bundle over the circle. Then there exists a top dimensional class \in *int*(Cone(Ω)) corresponds to a fiber of some fibration he fibered class, and the face Ω is called the fibered face.

the monodromy of the fibration associated to a fibered class *a*. $\rightarrow \mathbb{R}$. It admits a continuous extension ent : $int(C_{\Omega}) \rightarrow \mathbb{R}$. ve. If $a \in int(\Omega)$ goes to $\partial \Omega$, then ent(a) goes to ∞ . P_{Ω} captures the dilatations λ_a of all fibered classes a in *int*(C_{Ω}).

netric $m : E(\Gamma) \to \mathbb{R}_+$. Let $\lambda(\Gamma, m)$ be the growth rate. Then on polynomial P(t) of (Γ, m) is given by $\frac{1}{\lambda(\Gamma, m)}$. The function

weight $\omega: V(G) \to \mathbb{R}_+$. The *clique polynomial* Q(t) of (G, ω)

urved complex (G, ω) of (Γ, m) . In this case, the Perron polyno-P(t) of (Γ, m) coincide with the clique polynomial Q(t) of (G, ω)