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TheMagic 3-manifold?
It is the hyperbolic manifold defined by N := S 3\ (the 3-chain link). It plays a significant rule to study the
exceptional Dehn surgeries of hyperbolic 3-manifolds (Gordon-Wu). Also, Interesting hyperbolic
3-manifolds with small volumes can be obtained from N by Dehn fillings (Martelli-Petronio,
Gabai-Meyerhoff-Milley). Let N(r) be the manifold obtained from N by Dehn filling a cusp along the
slope r. Our main examples of this presentation are N( 3

−2), N( 1
−2) and N(1).

Pseudo-Anosovs and dilatations
Consider the mapping class group Mod(Σ) on Σ = Σg,n; the closed orientable surface of genus g by
removing n ≥ 0 punctures. Each pseudo-Anosov mapping class ϕ ∈ Mod(Σ) is equipped with some
algebraic integer λ(ϕ) > 1 called the dilatation.
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Problem.� �
Let δg,n = min{λ(ϕ) | pseudo-Anosov ϕ ∈ Mod(Σg,n)}, and let δg = δg,0. Determine δg,n. Find pseudo-
Anosov elements which achieve δg,n.� �∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

asymptotic behaviors smallest known upper bounds

log δg ≍ 1/g (U1) lim sup
g→∞

g log δg ≤ log(3+
√

5
2 )

log δ0,n ≍ 1/n (U2) lim sup
n→∞

n log δ0,n ≤ 2 log(2 +
√

3)

log δ1,n ≍ 1/n (U3) lim sup
n→∞

n log δ1,n ≤ 2 log δ(D4) ≈ 1.6628

Given g ≥ 2, log δg,n ≍ log n
n (U4) Theorem B in this poster

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ref. [Penner], [Hironaka-K], [Tsai], [Hironaka], [Aaber-Dunfield], [Takasawa-K]. Here Dn is an
n-punctured disk.

Why is the magic manifold mysterious?
The mapping tori of all potential candidates with the smallest dilatations are homeomorphic to N, or
they are obtained from N by Dehn fillings. Interestingly, all examples with the smallest known
dilatations are coming from the single 3-manifold N.
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Main results
Consider the set

M = {the monodoromy of a fibration on the magic manifold N with the condition (∗)}.
(∗) The stable foliation of the monodromy associated to a fibration on N has no 1 prong.

Let M̂ be the set of extensions Φ̂ of Φ ∈ M defined on the closed surfaces. (Note: Φ̂ is pseudo-Anosov
with the same dilatation as Φ.) Let δ̂g be the minimum among dilatations of elements in
M̂ ∩ Mod(Σg,0). (Clearly δg ≤ δ̂g. δ2 = δ̂2 holds.)

Theorem A. (Kojima-Takasawa-K) The upper bound (U1) of the table is “best possible” in N. i.e,

(1) lim
g→∞

g log δ̂g = log(3+
√

5
2 ).

(2) For large g, δ̂g is achieved by the monodromy of some Σg-bundle over the circle obtained from
either N( 3

−2) or N( 1
−2) by Dehn filling both cusps.

Hint: Study the invariants min Ent(N(r),Ωr) for each r ∈ Q \ {−3,−2,−1, 0}. Show that the smallest
one and the second smallest one are

min Ent(N(1)) = 2 log δ(D4) ≈ 1.6628,

min Ent(N(r)) = 2 log(3+
√

5
2 ) ≈ 1.9248 for r = 3

−2,
1
−2.

If we let ag be the fibered class of N which realizes δ̂g, then show that one of the boundary slopes of
the fiber associated to ag is either 1

−2 or 3
−2 for g large. �

Conjecture.� �

δg = δ̂g for g large.� �
Question.� �

Tsai proved that for any fixed g ≥ 2, log δg,n ≍ log n
n . Given g ≥ 2, does lim

n→∞
n log δg,n

log n
exist? What is

its value?� �
Theorem B. (Takasawa-K) If 2g + 1 is relatively prime to s or s + 1 for each 0 ≤ s ≤ g, then

lim sup
n→∞

n log δg,n
log n

≤ 2.

In particular if 2g + 1 is prime for g ≥ 2, then the above inequality holds.

Hint: Find suitable fibered classes of N whose projective classes go to the boundary of the fibered
face. �

Pseudo-Anosovs with small dilatation coming from N
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An interesting family of pseudo-Anosov braids

For m ≥ 3, p ≥ 1, let

Tm,p := (σ2
1σ2σ3 · · ·σm−1)p−1σ2

1σ2σ3 · · ·σm−2σ
−1
m−1 ∈ Bm.

By forgetting the 1st strand of Tm,p, one obtains T ′m,p ∈ Bm−1.

Theorem. (Takasawa-K)� �
S 3 \ br(Tm,p) ≃ N ⇐⇒ m − 1 and p are relatively prime.

(Here br(b) is the closure of a braid b with its axis.)� �
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Why interesting?
• δ(Dn)’s have been computed for 3 ≤ n ≤ 8 (Ko-Los-Song, Ham-Song, Lanneau-Thiffeault). The

following braids reach the minimal dilatations;

T ′4,1 ∈ B3, T ′5,1 ∈ B4, T ′6,2 ∈ B5, T6,2 ∈ B6, T ′8,2 ∈ B7, T ′9,5 ∈ B8.

• For g ≥ 2, T ′2g+2 ∈ B2g+1 is conjugate to the Hironaka-Kin’s braid σg−1,g+1 with the smallest known
dilatation.

Background
Fact. (Thurston)� �

Let M be an oriented hyperbolic 3-manifold. The unit ball UM with respect to the Thurston norm
∥ · ∥ : H2(M, ∂M;R)→ R is a compact, convex polyhedron.� �

Example. (Thurston norm ball of N.) α = [Fα], β = [Fβ], γ = [Fγ] ∈ H2(N, ∂N;Z).

Theorem and Definition. (Thurston)� �
Suppose that M is a hyperbolic surface bundle over the circle. Then there exists a top dimensional
face Ω on ∂UM such that each integral class ∈ int(Cone(Ω)) corresponds to a fiber of some fibration
of M. Such an integral class is called the fibered class, and the face Ω is called the fibered face.� �
Fact. (Fried, S. Matsumoto, McMullen)� �

Let Ω be a fibered face of M.

• Let ent(a) := log λ(Φa), where Φa is the monodromy of the fibration associated to a fibered class a.
This defines a map ent : int(CΩ(Z))→ R. Then it admits a continuous extension

ent : int(CΩ)→ R.

• 1/ent : int(Ω)→ R is strictly concave. If a ∈ int(Ω) goes to ∂Ω, then ent(a) goes to∞.

•McMullen polynomial PΩ captures the dilatations of all fibered classes in int(CΩ).� �
Invariant of hyperbolic fibered 3-manifolds

min Ent(M,Ω) := min{ent(a) | a ∈ int(Ω)}
min Ent(M) := min

Ω
{min Ent(M,Ω)},

where Ω is taken over all fibered faces of M.
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