Minimal dilatations of pseudo-Anosovs and a mystery of the magic 3-manifold

Eiko Kin, Osaka U. (joint work with M. Takasawa and S. Kojima)

THE MAGIC 3-MANIFOLD?

It is the hyperbolic manifold defined by $N := S^3 \setminus (\text{the 3-chain link})$. It plays a significant rule to study the exceptional Dehn surgeries of hyperbolic 3-manifolds (Gordon-Wu). Also, Interesting hyperbolic 3-manifolds with small volumes can be obtained from N by Dehn fillings (Martelli-Petronio, Gabai-Meyerhoff-Milley). Let N(r) be the manifold obtained from N by Dehn filling a cusp along the slope r. Our main examples of this presentation are $N(\frac{3}{-2})$, $N(\frac{1}{-2})$ and N(1).

PSEUDO-ANOSOVS AND DILATATIONS

Consider the mapping class group $Mod(\Sigma)$ on $\Sigma = \Sigma_{g,n}$; the closed orientable surface of genus g by removing $n \ge 0$ punctures. Each pseudo-Anosov mapping class $\phi \in Mod(\Sigma)$ is equipped with some algebraic integer $\lambda(\phi) > 1$ called the dilatation.

Problem.

Let $\delta_{g,n} = \min\{\lambda(\phi) \mid \text{pseudo-Anosov } \phi \in \text{Mod}(\Sigma_{g,n})\}$, and let $\delta_g = \delta_{g,0}$. Determine $\delta_{g,n}$. Find pseudo-Anosov elements which achieve $\delta_{g,n}$.

asymptotic behaviors	smallest known upper bounds
$\log \delta_g \asymp 1/g$	(U1) $\limsup_{g \to \infty} g \log \delta_g \le \log(\frac{3+\sqrt{5}}{2})$
$\log \delta_{0,n} \asymp 1/n$	(U2) $\limsup_{n \to \infty} n \log \delta_{0,n} \le 2 \log(2 + \sqrt{3})$
$\log \delta_{1,n} \asymp 1/n$	(U3) $\limsup_{n \to \infty} n \log \delta_{1,n} \le 2 \log \delta(D_4) \approx 1$

Given $g \ge 2$, $\log \delta_{g,n} \asymp \frac{\log n}{n}$ (U4) Theorem B in this poster

ref. [Penner], [Hironaka-K], [Tsai], [Hironaka], [Aaber-Dunfield], [Takasawa-K]. Here D_n is an *n*-punctured disk.

Why is the magic manifold mysterious?

The mapping tori of all potential candidates with the smallest dilatations are homeomorphic to N, or they are obtained from N by Dehn fillings. Interestingly, all examples with the smallest known dilatations are coming from the single 3-manifold *N*. the upper bounds

Reference

[1] E. Kin, S. Kojima and M. Takasawa, *Minimal dilatations of pseudo-Anosovs generated by the magic* 3-manifold and their asymptotic behavior. to appear in "Algebraic and geometric topology" [2] E. Kin and M. Takasawa, The boundary of a fibered face of the magic 3-manifold and the asymptotic behavior of the minimal pseudo-Anosovs dilatations. preprint.

Consider the set

 $\mathcal{M} = \{\text{the monodoromy of a fibration on the magic manifold } N \text{ with the condition } (*) \}.$

(*) The stable foliation of the monodromy associated to a fibration on N has no 1 prong. Let \mathcal{M} be the set of extensions $\widehat{\Phi}$ of $\Phi \in \mathcal{M}$ defined on the closed surfaces. (Note: $\widehat{\Phi}$ is pseudo-Anosov with the same dilatation as Φ .) Let $\hat{\delta}_g$ be the minimum among dilatations of elements in $\widehat{\mathcal{M}} \cap \operatorname{Mod}(\Sigma_{g,0})$. (Clearly $\delta_g \leq \widehat{\delta}_g$. $\delta_2 = \widehat{\delta}_2$ holds.)

Theorem A. (Kojima-Takasawa-K) The upper bound (U1) of the table is "best possible" in N. i.e,

(1)
$$\lim_{g \to \infty} g \log \widehat{\delta}_g = \log(\frac{3+\sqrt{5}}{2}).$$

(2) For large g, δ_g is achieved by the monodromy of some Σ_g -bundle over the circle obtained from either $N(\frac{3}{-2})$ or $N(\frac{1}{-2})$ by Dehn filling both cusps.

Hint: Study the invariants min $Ent(N(r), \Omega_r)$ for each $r \in \mathbb{Q} \setminus \{-3, -2, -1, 0\}$. Show that the smallest one and the second smallest one are

> $\min \text{Ent}(N(1)) = 2 \log \delta(D_4) \approx 1.6628,$ min Ent(N(r)) = $2\log(\frac{3+\sqrt{5}}{2}) \approx 1.9248$ for $r = \frac{3}{-2}, \frac{1}{-2}$.

If we let a_g be the fibered class of N which realizes δ_g , then show that one of the boundary slopes of the fiber associated to a_g is either $\frac{1}{-2}$ or $\frac{3}{-2}$ for g large. \Box

Conjecture.

- Question.

Tsai proved that for any fixed $g \ge 2$, $\log \delta_{g,n} \asymp \frac{\log n}{n}$. Given $g \ge 2$, does $\lim_{n \to \infty} \frac{n \log \delta_{g,n}}{\log n}$ exist? What is its value?

Theorem B. (Takasawa-K) If 2g + 1 is relatively prime to s or s + 1 for each $0 \le s \le g$, then

$$\limsup_{n \to \infty} \frac{n \log \delta_{g,n}}{\log n} \le$$

In particular if 2g + 1 is prime for $g \ge 2$, then the above inequality holds.

Hint: Find suitable fibered classes of N whose projective classes go to the boundary of the fibered face. □

Places where they live

AN INTERESTING FAMILY OF PSEUDO-ANOSOV BRAIDS

Main results

 $\delta_g = \widehat{\delta}_g$ for g large.

fibered face

- For $m \ge 3$, $p \ge 1$, let
- By forgetting the 1st strand of $T_{m,p}$, one obtains $T'_{m,p} \in B_{m-1}$.
- **Theorem.** (Takasawa-K)
- $S^3 \setminus br(T_{m,p}) \simeq N \iff m-1$ and p are relatively prime. (Here br(*b*) is the closure of a braid *b* with its axis.)

Why interesting?

following braids reach the minimal dilatations;

$$T'_{4,1} \in B_3, \ T'_{5,1} \in B_4,$$

dilatation.

- **Fact.** (Thurston) $\|\cdot\|: H_2(M, \partial M; \mathbb{R}) \to \mathbb{R}$ is a compact, convex polyhedron.

- **Theorem and Definition.** (Thurston)
- Fact. (Fried, S. Matsumoto, McMullen) Let Ω be a fibered face of M.

Invariant of hyperbolic fibered 3-manifolds

- where Ω is taken over all fibered faces of M

 $T_{m,p} := (\sigma_1^2 \sigma_2 \sigma_3 \cdots \sigma_{m-1})^{p-1} \sigma_1^2 \sigma_2 \sigma_3 \cdots \sigma_{m-2} \sigma_{m-1}^{-1} \in B_m.$

• $\delta(D_n)$'s have been computed for $3 \le n \le 8$ (Ko-Los-Song, Ham-Song, Lanneau-Thiffeault). The

 $T'_{62} \in B_5, \ T_{6,2} \in B_6, \ T'_{82} \in B_7, \ T'_{95} \in B_8.$

• For $g \ge 2$, $T'_{2g+2} \in B_{2g+1}$ is conjugate to the Hironaka-Kin's braid $\sigma_{g-1,g+1}$ with the smallest known

Background

Let M be an oriented hyperbolic 3-manifold. The unit ball U_M with respect to the Thurston norm

Suppose that *M* is a hyperbolic surface bundle over the circle. Then there exists a top dimensional face Ω on ∂U_M such that each integral class $\in int(Cone(\Omega))$ corresponds to a fiber of some fibration of M. Such an integral class is called the fibered class, and the face Ω is called the fibered face.

• Let $ent(a) := \log \lambda(\Phi_a)$, where Φ_a is the monodromy of the fibration associated to a fibered class *a*. This defines a map ent : $int(C_{\Omega}(\mathbb{Z})) \to \mathbb{R}$. Then it admits a continuous extension

ent : $int(C_{\Omega}) \to \mathbb{R}$.

• 1/ent : $int(\Omega) \to \mathbb{R}$ is strictly concave. If $a \in int(\Omega)$ goes to $\partial\Omega$, then ent(a) goes to ∞ . • McMullen polynomial P_{Ω} captures the dilatations of all fibered classes in *int*(C_{Ω}).