## Minimal dilatations of pseudo-Anosovs and a mystery of the magic 3-manifold

Eiko Kin, Osaka U. (joint work with M. Takasawa and S. Kojima)

THE MAGIC 3-MANIFOLD?
It is the hyperbolic manifold defined by $N:=S^{3} \backslash$ (the 3-chain link). It plays a significant rule to study the exceptional Dehn surgeries of hyperbolic 3-manifolds (Gordon-Wu). Also, Interesting hyperbolic 3 -manifolds with small volumes can be obtained from $N$ by Dehn fillings (Martelli-Petronio, Gabai-Meyerhoff-Milley). Let $N(r)$ be the manifold obtained from $N$ by Dehn filling a cusp along the slope $r$ Our main examples of this presentation are $N\left(\frac{3}{-2}\right) N\left(\frac{1}{-2}\right)$ and $N(1)$

Pseudo-Anosovs and dilatations
Consider the mapping class group $\operatorname{Mod}(\Sigma)$ on $\Sigma=\Sigma_{g, n}$; the closed orientable surface of genus $g$ by emoving $n \geq 0$ punctures. Each pseudo-Anosov mapping class $\phi \in \operatorname{Mod}(\Sigma)$ is equipped with some algebraic integer $\lambda(\phi)>1$ called the dilatation.


Problem. $=\min \left\{(\phi) \mid\right.$ pseudo-Anosov $\left.\phi \in \operatorname{Mod}\left(\Sigma_{s}\right)\right\}$ and let $\delta_{\varepsilon}=\delta_{\varepsilon}$. Determine $\delta_{g n}$. Find pseudo Anosov elements which achieve $\delta_{g, n}$

| asymptotic behaviors | smallest known upper bounds |
| :---: | :---: |
| $\log \delta_{g} \asymp 1 / \mathrm{g}$ | $\text { (U1) } \limsup _{g \rightarrow \infty} g \log \delta_{g} \leq \log \left(\frac{3+\sqrt{5}}{2}\right)$ |
| $\log \delta_{0, n} \simeq 1 / n$ | (U2) $\limsup _{n \rightarrow \infty} n \log \delta_{0, n} \leq 2 \log (2+\sqrt{3})$ |
| $\log \delta_{1, n} \simeq 1 / n$ | (U3) $\limsup _{n \rightarrow \infty} n \log \delta_{1, n} \leq 2 \log \delta\left(D_{4}\right) \approx 1.6628$ |
| Given $g \geq 2, \log \delta_{g, n} \asymp \frac{\log n}{n}$ | (U4) Theorem B in this poster | ref. [Penner], [Hironaka-K], [Tsai], [Hironaka], [Aaber-Dunfield], [Takasawa-K]. Here $D_{n}$ is an $n$-punctured disk

Why is the magic manifold mysterious?
The mapping tori of all potential candidates with the smallest dilatations are homeomorphic to $N$, or they are obtained from $N$ by Dehn fillings. Interestingly, all examples with the smallest known dilatations are coming from the single 3 -manifold $N$.


## Reference

[1] E. Kin, S. Kojima and M. Takasawa, Minimal dilatations of pseudo-Anosovs generated by the magic 3-manifold and their asymptotic behavior: to appear in "Algebraic and geometric topology" [2] E. Kin and M. Takasawa, The boundary of a fibered face of
behavior of the minimal pseudo-Anosovs dilatations. preprint.

## Main results

## Consider the set

$\mathcal{M}=\{$ the monodoromy of a fibration on the magic manifold $N$ with the condition (*)
*) The stable foliation of the monodromy associated to a fibration on $N$ has no 1 prong. Let $\widehat{\mathcal{M}}$ be the set of extensions $\widehat{\Phi}$ of $\Phi \in \mathcal{M}$ defined on the closed surfaces. (Note: $\widehat{\Phi}$ is pseudo-Anosov with the same dilatation as $\Phi$.) Let $\widehat{\delta}_{g}$ be the minimum among dilatations of elements in $\widehat{\mathcal{M}} \cap \operatorname{Mod}\left(\Sigma_{g, 0}\right)$. (Clearly $\delta_{g} \leq \widehat{\delta}_{g} . \delta_{2}=\widehat{\delta}_{2}$ holds.)

## Theorem A. (Kojima-Takasawa-K) The upper bound (U1) of the table is "best possible" in $N$. i.e,

## (1) $\lim _{g \rightarrow \infty} g \log \widehat{\delta}_{g}=\log \left(\frac{3+\sqrt{5}}{2}\right)$.

(2) For large $g, \widehat{\delta}_{g}$ is achieved by the monodromy of some $\Sigma_{g}$-bundle over the circle obtained from 2) For large $g, \delta_{g}$ is achieved by the monodromy of $N$ either $N\left(\frac{3}{-2}\right)$ or $N\left(\frac{1}{-2}\right)$ by Dehn filling both cusps.

Hint: Study the invariants $\min \operatorname{Ent}\left(N(r) \Omega_{r}\right)$ for each $r \in \mathbb{Q} \backslash\{-3,-2,-1,0\}$ Show that the smalles one and the second smallest one are

$$
\begin{aligned}
\min \operatorname{Ent}(N(1)) & =2 \log \delta\left(D_{4}\right) \approx 1.6628, \\
\min \operatorname{Ent}(N(r)) & =2 \log \left(\frac{3+\sqrt{5}}{2}\right) \approx 1.9248 \text { for } r=\frac{3}{-2}, \frac{1}{-2} .
\end{aligned}
$$

If we let $a_{g}$ be the fibered class of $N$ which realizes $\widehat{\delta}_{g}$, then show that one of the boundary slopes of he fiber associated to $a_{g}$ is either $\frac{1}{-2}$ or $\frac{3}{-2}$ for $g$ large. $\square$


Question.
Tsai proved that for any fixed $g \geq 2, \log \delta_{g, n} \asymp \frac{\log n}{n}$. Given $g \geq 2$, does $\lim _{n \rightarrow \infty} \frac{n \log \delta_{g, n}}{\log n}$ exist? What is its value?

## Theorem B. (Takasawa-K) If $2 g+1$ is relatively prime to $s$ or $s+1$ for each $0 \leq s \leq g$, then

$$
\limsup _{n \rightarrow \infty} \frac{n \log \delta_{g, n}}{\log n} \leq 2 .
$$

In particular if $2 g+1$ is prime for $g \geq 2$, then the above inequality holds.
Hint: Find suitable fibered classes of $N$ whose projective classes go to the boundary of the fibered face. ㅁ

## Pseudo-Anosovs with small dilatation coming from $N$

## Places where they live



AN INTERESTING FAMILY OF PSEUDO-ANOSOV BRAIDS

For $m \geq 3, p \geq 1$, let

$$
T_{m, p}:=\left(\sigma_{1}^{2} \sigma_{2} \sigma_{3} \cdots \sigma_{m-1}\right)^{p-1} \sigma_{1}^{2} \sigma_{2} \sigma_{3} \cdots \sigma_{m-2} \sigma_{m-1}^{-1} \in B_{m}
$$

By forgetting the 1st strand of $T_{m, p}$, one obtains $T_{m, p}^{\prime} \in B_{m-1}$.
Theorem. (Takasawa-K)
$S^{3} \backslash \operatorname{br}\left(T_{m, p}\right) \simeq N \Longleftrightarrow m-1$ and $p$ are relatively prime
(Here br $(b)$ is the closure of a braid $b$ with its axis.)

$\operatorname{br}\left(T_{15,5}\right)$

Why interesting?

- $\delta\left(D_{n}\right)$ 's have been computed for $3 \leq n \leq 8$ (Ko-Los-Song, Ham-Song, Lanneau-Thiffeault). The following braids reach the minimal dilatations;

$$
T_{4,1}^{\prime} \in B_{3}, T_{5,1}^{\prime} \in B_{4}, T_{6,2}^{\prime} \in B_{5}, T_{6,2} \in B_{6}, T_{8,2}^{\prime} \in B_{7}, T_{9,5}^{\prime} \in B_{8}
$$

For $g \geq 2, T_{2 g+2}^{\prime} \in B_{2 g+1}$ is conjugate to the Hironaka-Kin's braid $\sigma_{g-1, g+1}$ with the smallest known dilatation.

## Background

Fact. (Thurston)
Let $M$ be an oriented hyperbolic 3-manifold. The unit ball $U_{M}$ with respect to the Thurston norm Let $M$ be an oriented hyperboic 3 -manifold. Ye unit ball
$\|\cdot\|: H_{2}(M, \partial M ; \mathbb{R}) \rightarrow \mathbb{R}$ is a compact, convex polyhedron.

Example. (Thurston norm ball of $N$.) $\alpha=\left[F_{\alpha}\right], \beta=\left[F_{\beta}\right], \gamma=\left[F_{\gamma}\right] \in H_{2}(N, \partial N ; \mathbb{Z})$.


Theorem and Definition. (Thurston)
Suppose that $M$ is a hyperbolic surface bundle over the circle. Then there exists a top dimensional face $\Omega$ on $\partial U_{M}$ such that each integral class $\in \operatorname{int}($ Cone $(\Omega)$ ) corresponds to a fiber of some fibration of $M$. Such an integral class is called the fibered class, and the face $\Omega$ is called the fibered face.
Fact. (Fried, S. Matsumoto, McMullen)
Let $\Omega$ be a fibered face of $M$.

- Let ent $(a):=\log \lambda\left(\Phi_{a}\right)$, where $\Phi_{a}$ is the monodromy of the fibration associated to a fibered class $a$. This defines a map ent $: \operatorname{int}\left(C_{Q}(\mathbb{Z})\right) \rightarrow \mathbb{R}$. Then it admits a continuous extension

$$
\text { ent }: \operatorname{int}\left(C_{\Omega}\right) \rightarrow \mathbb{R}
$$

$\bullet 1 /$ ent : int $(\Omega) \rightarrow \mathbb{R}$ is strictly concave. If $a \in \operatorname{int}(\Omega)$ goes to $\partial \Omega$, then ent $(a)$ goes to $\infty$.

- McMullen polynomial $P_{\Omega}$ captures the dilatations of all fibered classes in int $\left(C_{\Omega}\right)$.


## nvariant of hyperbolic fibered 3-manifolds

$\min \operatorname{Ent}(M, \Omega):=\min \{\operatorname{ent}(a) \mid a \in \operatorname{int}(\Omega)\}$
$\min \operatorname{Ent}(M):=\min _{\Omega}\{\min \operatorname{Ent}(M, \Omega)\}$,
where $\Omega$ is taken over all fibered faces of $M$.


