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1. Introduction

Let N be the exterior of the 3 chain link C3 (Figure 1) in the three sphere S3. Gordon
and Wu called N the magic manifold, because they found that N has many interesting
non-hyperbolic fillings and this particular manifold plays a significant role for the study
of non-hyperbolic fillings for cusped hyperbolic 3-manifolds. The magic manifold N is a
hyperbolic surface bundles over the circle, and N has the smallest known volume among
orientable 3-cusped hyperbolic 3-manifolds. Martelli and Petronio classified all the non-
hyperbolic Dehn fillings of N in [18]. Let N(r) be the manifold obtained from N by
Dehn filling one cusp along the slope r ∈ Q. The Whitehead link exterior and the
Whitehead sister link (i.e, (−2, 3, 8)-pretzel link) exterior are homeomorphic to N(1)
and N( 3

−2
) respectively. It was proved by Agol [2] that the smallest volume among

orientable 2-cusped hyperbolic 3-manifold is achieved by either N(1) or N( 3
−2

). In the
recent work of Gabai, Meyerhoff and Milley, the magic manifold N plays a central role
for the minimizing problem on volumes of hyperbolic 3-manifolds. The main characters
in this paper are manifolds N , N(1), N( 3

−2
) and N( 1

−2
). The last 2-cusped 3-manifold

N( 1
−2

) is homeomorphic to the exterior of the 622 link (Figure 1).
In [11, 12, 13, 14], we investigated the monodromies of fibrations of N extensively for

the study of the minimal dilatations and their asymptotic behaviors. We found that
N provides many interesting families of pseudo-Anosovs with small dilatations. In this
paper, we give an expository account of results of [11, 12, 13, 14]. All the results in
the paper are contained in those papers, and hence this paper has no new results. The
purpose of this paper is to describe “places in N” where the pseudo-Anosovs with the
smallest dilatations or with the smallest known dilatations “live”. The main tool to do
this is a fibered face of the Thurston norm ball for N .
Let Σg,n be an orientable surface of genus g with n punctures, and let Σg = Σg,0 be a

closed surface of genus g. We consider the mapping class group Mod(Σ) of Σ = Σg,n, that

Figure 1. (from left to right) 3 chain link C3, (−2, 3, 8)-pretzel link, link
622, Whitehead link.
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is the group of isotopy classes of orientation preserving homeomorphisms on Σ. According
to the work of Nielsen and Thurston, elements of Mod(Σ) are classified into three types:
periodic, reducible, pseudo-Anosov. The last type, pseudo-Anosovs have many interesting
and rich properties. The hyperbolization theorem by Thurston asserts that ϕ ∈ Mod(Σ)
is pseudo-Anosov if and only if the mapping torus T(ϕ) of ϕ is a hyperbolic 3-manifold
with finite volume.
Each pseudo-Anosov ϕ ∈ Mod(Σ) has a representative Φ : Σ → Σ, called a pseudo-

Anosov homeomorphism, which satisfies the following: there exists a constant λ > 1 and
there exists a pair of transverse measured foliations F s and Fu such that

Φ(F s) = 1
λ
F s and Φ(Fu) = λFu.

The constant λ = λ(Φ) is called the dilatation of Φ, and F s, Fu are called the stable,
unstable foliation (or invariant foliations) of Φ. It is known that λ(Φ) does not depend
on the choice of a pseudo-Anosov homeomorphism Φ ∈ ϕ, and hence the dilatation λ(ϕ)
of ϕ is defined to be λ(Φ). We call the quantities

ent(ϕ) = log λ(ϕ) and Ent(ϕ) = |χ(Σ)| log λ(ϕ)
the entropy and normalized entropy of ϕ, where χ(Σ) is the Euler characteristic of Σ.
We fix Σ and consider the set of entropies defined on Σ:

{ent(ϕ) | ϕ ∈ Mod(Σ) is pseudo-Anosov} ⊂ R.
It is proved by Ivanov that this set is closed and discrete. In particular there exists a
minimum. We denote by δ(Σ) > 1, the minimal dilatation of pseudo-Anosov elements
defined on Σ.

Problem 1.1 (Minimal dilatation problem). Determine the explicit value of δ(Σ). Iden-
tify a pseudo-Anosov element in Mod(Σ) which achieves δ(Σ).

Let us set δg,n = δ(Σg,n) and δg = δg,0. The explicit values of δg’s are known for the only
cases g = 1, 2. It is known by 1Penner [22] that log δg ≍ 1

g
. After the work of Penner,

several authors examined the asymptotic behaviors of the minimal dilatations on surfaces
varying topology, see [9, 1, 13, 20, 10, 24] and Table 1(1st column).
Problem 1.1 has several aspects, and there are many related questions.

Question 1.2 ([21] for (4)).

(1) Is a pseudo-Anosov element ϕ ∈ Mod(Σ) which achieves δ(Σ) unique up to con-
jugate?

(2) Identify the hyperbolic fibered 3-manifold T(ϕ) of such a minimizer ϕ.
(3) What is the minimal polynomial of δ(Σ)? (Note: The dilatation λ(ϕ) of a pseudo-

Anosov ϕ is known to be an algebraic integer.)
(4) Do lim

g→∞
g log δg, lim

g→∞
g log δ+g , lim

n→∞
n log δ0,n and lim

n→∞
n log δ1,n exist? What are the

values?
(5) Given g ≥ 2, does lim

n→∞
n log δg,n

logn
exist? What is its value?

The smallest known upper bounds on Question 1.2(4)(5) are shown in Table 1(2nd
column). We shall see that all families of pseudo-Anosovs ϕ’s to give the upper bounds
in Table 1(2nd column) ‘come from’ N . More precisely, these pseudo-Anosov mapping

1Let Ag and Bg be functions on g. We write Ag ≍ Bg if there exists a constant c, independent of g,

such that
Ag

c < Bg < cAg.
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Table 1. asymptotic behaviors of minimal dilatations.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

asymptotic behaviors upper bounds

log δg ≍ 1/g [22] lim sup
g→∞

g log δg ≤ log(3+
√
5

2
) [9, 1, 13]

log δ+g ≍ 1/g [20, 10] lim sup
g ̸≡0 (mod 6)

g→∞

g log δ+g ≤ log(3+
√
5

2
) [9, 11]

lim sup
g≡6 (mod 12)

g→∞

g log δ+g ≤ 2 log δ(D5) [11]

log δ0,n ≍ 1/n [10] lim sup
n→∞

n log δ0,n ≤ 2 log(2 +
√
3) [10, 12]

log δ1,n ≍ 1/n [24] lim sup
n→∞

n log δ1,n ≤ 2 log δ(D4) [11]

Given g ≥ 2, log δg,n ≍ logn
n

[24] lim sup
n→∞

n log δg,n
logn

≤ 2 if g enjoys (∗) in Thm. 3.5 [14]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Figure 2. (left) Thurston norm ball UN for N. (right) intersection of ∆
and linear section S∗(r). (1) ∆∩Sβ(

1
−2

) (see (c) in the figure) and ∆∩Sβ(
3
−2

)
(see (b) in the figure); (2) ∆∩Sγ(4) (see (d)) and ∆∩Sγ(−6) (see (a)); (3)
∆ ∩ Sγ(∞); (4) ∆ ∩ Sα(1) = ∆ ∩ Sβ(1) = ∆ ∩ Sγ(1); (5) ∆ ∩ Sβ(−1).

classes ϕ’s have the following property: The mapping torus T(ϕ) is homeomorphic to N ,
or T(ϕ) is obtained from N by Dehn filling cusps along the boundary slopes of a fiber of
N . (i.e, N is a parent manifold of T(ϕ).)
Let δ+g be the minimal dilatation of pseudo-Anosovs with orientable invariant foliations

defined on Σg. (Obviously δg ≤ δ+g .) The explicit value of δ+g is known for all 2 ≤ g ≤ 8
except for g = 6 [1, 9, 13, 16, 26]. (See Table 5(3rd column).) The minimal dilatation
δ(Dn) on an n-punctured disk Dn is determined for all 3 ≤ n ≤ 8 [7, 8, 15, 17]. (See
Table 10(3rd column).) These minimizers come from N in the same sense as above.
The paper is organized as follows. In Section 2, we first review the fibered face theory

which is quite useful to find families of pseudo-Anosovs with small dilatations. Next, we
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describe the properties of fibrations on both N and manifolds N(r)’s. In Section 3, we
examines the asymptotic behaviors of minimal dilatations given in Table 1. Especially we
explain how the constants in the upper bounds of Table 1(2nd column) appear. These
constants are related to an invariant “minEnt” of hyperbolic surface bundles over the
circle. Figure 2(left) shows the Thurston norm ball of N . A particular fibered face ∆ is
shaded in the figure. By using Figure 2(right), we shall illustrate places in N where the
pseudo-Anosovs with the smallest dilatations or with the smallest known dilatations live.
(For the definition of the linear sections Sβ(r) etc, see Section 2.2. See also Figure 3.) We
conclude the paper with conjectures and questions.

2. Preliminalies

2.1. Basic facts on fibered face theory. Let M be an oriented, hyperbolic 3-manifold
possibly with boundary ∂M . We recall the Thurston norm ∥ · ∥ : H2(M,∂M ;R) → R.
See [23] fore more details. The Thurston norm ∥ · ∥ has the property such that for any
integral class a ∈ H2(M,∂M ;R),

∥a∥ = min
F

{−χ(F )},

where the minimum is taken over all oriented surfaces F embedded in M , satisfying
a = [F ], with no components of non-negative Euler characteristic. The surface F which
realizes this minimum is called a minimal representative of a, and it is denoted by Fa.
For a rational number r and an integral class a ∈ H2(M,∂M ;R), ∥ra∥ is defined to be
∥ra∥ = |r|∥a∥. The norm ∥ · ∥ defined on rational classes admits a unique continuous
extension to H2(M,∂M ;R) which is linear on the ray though the origin. The unit ball
UM = {a ∈ H2(M,∂M ;R) | ∥a∥ ≤ 1} is a compact, convex polyhedron.
Suppose that M is a surface bundles over the circle. We now recall Thurston’s descrip-

tion of the relation between ∥ · ∥ and fibrations of M . Let Ω be a top dimensional face
on ∂UM . We denote the cone over Ω with the origin by CΩ, and denote its interior by
int(CΩ). In [23], Thurston proved that if we let F be a fiber of a fibration of M , then
there exists a top dimensional face Ω such that [F ] is an integral class of int(CΩ). On the
other hand, for any integral class a ∈ int(CΩ), a minimal representative Fa becomes a
fiber of the fibration associated to a. For this reason, such a face Ω is called a fibered face
and an integral class a ∈ int(CΩ) is called a fibered class. This property tells us that if
M is a hyperbolic 3-manifold which is a surface bundles over the circle having the second
Betti number more than 1, then it admits an infinite family of fibrations.
If a fibered class a ∈ int(CΩ) is primitive, then the fibration associated to a has a

connected fiber represented by Fa. Since M is hyperbolic, the mapping class ϕa = [Φa]
of the monodromy Φa : Fa → Fa is pseudo-Anosov. The dilatation λ(a) and entropy
ent(a) = log λ(a) are defined as the dilatation λ(ϕa) and entropy ent(ϕa) of ϕa respectively.
We turn to the work of Fried, Matsumoto and McMullen. The entropy defined on

primitive fibered classes is extended to rational classes as follows: For a rational number r
and a primitive fibered class a, the entropy ent(ra) is defined by 1

|r|ent(a). Let int(CΩ(Q))

(resp. int(CΩ(Z))) be the set of rational classes (resp. integral classes) in int(CΩ). Fried
proved that 1

ent
: int(CΩ(Q)) → R is concave [6], and in particular ent : int(CΩ(Q)) → R

admits a unique continuous extension

ent : int(CΩ) → R.

48



Moreover, Fried proved the following: The restriction of ent to the open fibered face
int(Ω) has the property such that ent(a) goes to ∞ as a ∈ int(Ω) goes to a point on ∂Ω.
Thus we have a continuous function

Ent = ∥ · ∥ ent(·) : int(CΩ) → R.
We call Ent(a) the normalized entropy of a ∈ int(CΩ). By definition of ent, we see that
Ent is constant on each ray in int(CΩ) through the origin. McMullen developed a theory
of the Teichmüller polynomial PΩ for a fibered face Ω of hyperbolic surface bundles over
the circle, from which one can compute λ(a) of each a ∈ int(CΩ), see [21].
By Matsumoto [19] and by McMullen [21], it was proved that 1

ent
on int(Ω) is strictly

concave. This implies that ent is strictly convex on int(Ω) because ent is positive valued.
Since ∥ · ∥ is constant (= 1) on a fibered face Ω, the normalized entropy Ent is strictly
convex on int(Ω). Thus Ent|int(Ω) : int(Ω) → R has a minimum at a unique point in
int(Ω). In other words, Ent : int(CΩ) → R admits a minimum at a unique ray through
the origin. We denote this minimum by minEnt(M,Ω). We also denote by minEnt(M),
min
Ω

{minEnt(M,Ω)}, where Ω is taken over all fibered faces for M .

2.2. Properties of fibrations on the magic manifold. In this section, we collect
particular properties on N which are needed in the rest of the paper.
Let Kα, Kβ and Kγ be the components of the 3 chain link C3. They bound the oriented

disks Fα, Fβ and Fγ with 2 holes. Let us set α = [Fα], β = [Fβ], γ = [Fγ ] ∈ H2(N, ∂N ;Z).
The Thurston (unit) ball UN is the the parallelepiped with vertices ±α, ±β, ±γ, ±(α +
β + γ), see Figure 2(left). Every top dimensional face on ∂UN is a fibered face by the
symmetries ofH2(N, ∂N). The set {α, β, γ} is a basis ofH2(N, ∂N ;Z), and xα+yβ+zγ ∈
H2(N, ∂N) is denoted by (x, y, z).
We denote by Tα, the torus which is the boundary of a regular neighborhood of Kα.

We define the tori Tβ and Tγ in the same manner. For a primitive integral class a =
(x, y, z) ∈ H2(N, ∂N), let us set ∂αFa = ∂Fa ∩ Tα which consists of the parallel simple
closed curves on Tα. We define ∂βFa and ∂γFa in the same manner.
Pick a fibered face ∆ on ∂UN as in Figure 2(left) with vertices (1, 0, 0), (1, 1, 1), (0, 1, 0)

and (0, 0,−1). The open face int(∆) is written by

int(∆) = {(x, y, z) | x+ y − z = 1, x > 0, y > 0, x > z, y > z}.
The Thurston norm of (x, y, z) ∈ int(C∆) is given by x+ y − z.

Proposition 2.1 ([11]). Let a = (x, y, z) be a primitive fibered class in int(C∆).

(1) The number of the boundary components ♯(∂Fa) of Fa is given by

♯(∂Fa) = gcd(x, y + z) + gcd(y, z + x) + gcd(z, x+ y),

where gcd(0, w) is defined by |w|. More precisely

♯(∂αFa) = gcd(x, y + z), ♯(∂βFa) = gcd(y, z + x), ♯(∂γFa) = gcd(z, x+ y).

(2) λ(a) = λ(x,y,z) equals the largest real root of

f(x,y,z)(t) = tx+y−z − tx − ty − tx−z − ty−z + 1,

where f(x,y,z)(t) is the specialization of the Teichmüler polynomial P∆ at (x, y, z).
(3) The inverse Φ−1

(x,y,z) of Φ(x,y,z) : F(x,y,z) → F(x,y,z) is conjugate to the monodromy

Φ(y,x,z) : F(y,x,z) → F(y,x,z) of the fibration on N associated to (y, x, z) ∈ int(C∆).
In particular λ(x,y,z) = λ(y,x,z).
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(4) minEnt(N) = minEnt(N,∆) = Ent((1
2
, 1
2
, 0)) = 2 log(2 +

√
3) ≈ 2.6339.

(5) The stable foliation Fa of Φa : Fa → Fa has the property such that each component
of ∂αFa, ∂βFa and ∂γFa has

x
gcd(x,y+z)

prongs, y
gcd(y,x+z)

prongs and x+y−2z
gcd(z,x+y)

prongs

respectively. Moreover Fa does not have singularities in the interior of Fa.
(6) Fa is orientable if and only if x and y are even and z is odd.

We see that the slope of ∂αFa (resp. ∂βFa, ∂γFa) is given by bα(a) =
y+z
−x

(resp. bβ(a) =
z+x
−y

, bγ(a) =
x+y
−z

). We call each of bα(a), bβ(a), bγ(a) the boundary slope of a.

By using the formula in Proposition 2.1, we recover the similar formula for any prim-
itive fibered classes a ∈ H2(N, ∂N). This is because there is a homeomorphism h :
(S3, C3) → (S3, C3) which sends Kα, Kβ, Kγ to Kβ, Kγ, Kα respectively, and H2(N, ∂N)
has symmetries by the isomorphism h∗ : H2(N, ∂N) → H2(N, ∂N) of order 3 induced
from h.
It is known by [18] that N(r) is hyperbolic if and only if r ∈ Hyp = Q\{−3,−2,−1, 0}.

We now recall the description of fibered classes of the hyperbolic Dehn filling N(r)’s. Let
N(r) be the manifold obtained from N by Dehn filling the cusp specified by, say Tβ, along
the slope r ∈ Q or r = 1

0
(= ∞). Then, there exists a natural injection

(1) ιβ : H2(N(r), ∂N(r)) → H2(N, ∂N)

whose image equals the linear section Sβ(r), where

Sβ(r) = {(x, y, z) ∈ H2(N, ∂N) | − ry = z + x},

see [11, Proposition 2.11]. Choose r ∈ Hyp, and assume that a ∈ Sβ(r) = Im ιβ is a
fibered class in H2(N, ∂N). Then, a = ι−1

β (a) ∈ H2(N(r), ∂N(r)) is also a fibered class of
N(r). We sometimes denote N(r) by Nβ(r) when we need to specify the cusp which is
filled.
Similarly, when N(r) is the manifold obtained from N by Dehn filling the cusp specified

by Tα or Tγ along the slope r, one has natural injections,

ια : H2(N(r), ∂N(r)) → H2(N, ∂N),

ιγ : H2(N(r), ∂N(r)) → H2(N, ∂N)

such that their images are

Sα(r) = {(x, y, z) ∈ H2(N, ∂N) | − rx = y + z},
Sγ(r) = {(x, y, z) ∈ H2(N, ∂N) | − rz = x+ y}.

We may denote by Nα(r) or Nγ(r), the manifold N(r) in this case. This description
enables us to compute the Thurston norm of N(r), especially the Thurston unit ball and
fibered faces. For more detailed computation, see [11]. Figure 3 illustrates the intersection
of the Thurston norm ball UN and the linear section S∗(r), ∗ ∈ {α, β, γ}.

Remark 2.2 (Lemmas 3.28 and 5.2 in [11]). Take r ∈ Hyp, and let a ∈ H2(N(r), ∂N(r))
be a primitive integral class. If r ̸= 1, then ♯(∂Fa) is bounded by a constant from above
which depends on r. On the other hand, in the case r = 1, the genus of Fa is always equal
to 1, and hence there exists no upper bound of ♯(∂Fa).
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(i)

(ii)

(a) (b) (c) (d)

(0,0,-1)

(0,1,0) (1,1,1)

(1,0,0)

(-1,0,0) (0,0,1)

(-1,-1,-1) (0,-1,0)

(1,0,0)(0,0,-1)

(0,1/2,1/-2)

(0,0,-1)

(1/2,1/-2,0)

(1/-2,0,1/2)

(1/2,0,1/-2)

(iii)
(0,0,-1) (0,0,-1) (0,0,-1) (0,0,-1)

(0,1/-2,1/2)

Figure 3. 1st row (i) UN ∩ Sβ(r), 2nd row (ii) UN ∩ Sγ(r) and 3rd row
(iii) UN ∩ Sα(r). [(a) r ∈ (−∞,−2), (b) r ∈ (−2,−1), (c) r ∈ (−1, 0), (d)
r ∈ (0,∞).] [the fibered face ∆ is shaded in the figure.]

2.3. Entropy equivalence on the manifolds N(r)’s. The notation “entropy equiva-
lence” on fibered 3-manifolds was introduced in [11]. By using this equivalence relation,
we will see in Theorem 2.3 that there are infinitely many entropy equivalent pairs among
N(r)’s. The particular pair is N( 3

−2
) and N( 1

−2
). They are not homeomorphic to each

other, but they have common properties on the normalized entropy.
We say that 3-manifoldsM andM ′ are Thurston norm equivalent, denoted byM ∼

T
M ′,

if there exists an isomorphism f : H2(M,∂M ;Z) → H2(M
′, ∂M ′;Z) which preserves the

Thurston norm, i.e, ∥a∥ = ∥f(a)∥ for any a ∈ H2(M,∂M ;Z). We call such f the Thurston
norm preserving isomorphism.
Let (M,Ω) and (M ′,Ω′) be pairs of 3-manifolds M , M ′ and their fibered faces Ω,

Ω′ respectively. Possibly M ≃ M ′. Then (M,Ω) and (M ′,Ω′) are entropy equivalent,
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denoted by (M,Ω) ∼
ent

(M ′,Ω′), if there exists a Thurston norm preserving isomorphism

f : H2(M,∂M ;Z) → H2(M
′, ∂M ′;Z) satisfying the following.

• a ∈ int(CΩ(Z)) if and only if f(a) ∈ int(CΩ′(Z)).
• ent(a) = ent(f(a)) for any a ∈ int(CΩ(Z)).

The second bullet implies that ent(a) = ent(f(a)) for any a ∈ int(CΩ) since ent :
int(CΩ(Q)) → R admits a unique continuous extension. Thus if (M,Ω) ∼

ent
(M ′,Ω′),

then minEnt(M,Ω) = minEnt(M ′,Ω′).
Fibered 3-manifolds M and M ′ are entropy equivalent, denoted by M ∼

ent
M ′, if there

exists a Thurston norm preserving isomorphism f : H2(M,∂M ;Z) → H2(M
′, ∂M ′;Z)

satisfying the following.

• a ∈ H2(M,∂M ;Z) is a fibered class if and only if f(a) ∈ H2(M
′, ∂M ′;Z) is a

fibered class.
• Given a fibered face Ω of M , we have ent(a) = ent(f(a)) for any a ∈ int(CΩ(Z)).

If M ∼
ent

M ′, then minEnt(M) = minEnt(M ′).

We turn to the manifolds N(r)’s. Let p ∈ N and q ∈ Z be coprime such that r = p
q
∈

Hyp. Then N(r) has two kinds of fibered faces, A-face and S-face, see [11, Section 2.5].
When r ∈ (−2, 0), the Thurston norm ball of N(r) is a parallelogram and every fibered
face is an A-face. When r ∈ (−∞,−2) ∪ (0,∞) such that |q| ̸= 1 (resp. |q| = 1), the
Thurston norm ball for N(r) is a hexagon (resp. rectangle) having two S-faces and four A-
faces (resp. having two S-faces and two A-faces). cf. Figure 3. One can show that any two
S-faces of N(r) are entropy equivalent, and any two A-faces of N(r) are entropy equivalent
[11, Lemma 2.22]. In the case r = 1, by the symmetry of the Whitehead link exterior N(1)
itself, one can see that an S-face of N(1) and an A-face of N(1) are entropy equivalent

[11, Proposition 3.26]. Moreover the fibered class (1, 1,−2) ∈ H2(Nγ(1), ∂Nγ(1)) achieves
minEnt(N(1)) [11, Corollary 3.27];

minEnt(N(1)) = Ent((1, 1,−2)) = 2 log δ(D4) ≈ 1.6628.

An S-face of N(r) may not be entropy equivalent to an A-face of N(r) for other r.

Theorem 2.3 (Theorem 2.26 in [11]). Let p ∈ N and q ∈ Z be as above.

(1) Suppose that p
q
∈ (−∞,−2) and p+ 2q ̸= 1. Then (N(p

q
),ΩS) ∼

ent
(N(2q+p

−q
),ΩS).

(2) Suppose that p
q
∈ (−∞,−1) and |q| ̸= 1. Then (N(p

q
),ΩA) ∼

ent
(N(−2q−p

q
),ΩA).

(3) Suppose that p
q
∈ (−∞,−1), p+ 2q ̸= 1 and |q| ̸= 1. Then N(p

q
) ∼
ent

N(−2q−p
q

).

In Proposition 2.4, we will see that the entropy function on N has symmetries. This
property is a key for the proof of Theorem 2.3. By Theorem 2.3,

(N(−6)),ΩS) ∼
ent

(N(4),ΩS) and N( 3
−2

) ∼
ent

N( 1
−2

).

Table 2 exhibits the computation of minEnt for these manifolds. Readers may notice
that we encountered these numbers minEnt in the upper bounds of Table 1(2nd column).
It turns out that the both minEnt(N(r),ΩA) for r = 3

−2
, 1
−2

and minEnt(N(r),ΩS) for
r = −6, 4 are achieved by fibered classes for N(r), see Table 2. The topological types of

the fibers are also shown in the table. (e.g. a = (3, 3, 1) ∈ H2(Nγ(−6), ∂Nγ(−6)) achieves
minEnt(N(−6),ΩS), and Fa ≃ Σ2,2.)
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Table 2. minEnt for some N(r)’s. [note: the technique in [11] does not
work for the computation of minEnt(N(r),ΩA) in the case r = −6, 4.]∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N(r) minEnt(N(r),ΩS) minEnt(N(r),ΩA) minEnt(N(r))
fibered class, fiber fibered class, fiber

N( 3
−2

) none 2 log(3+
√
5

2
) 2 log(3+

√
5

2
) ≈ 1.9248

(2, 2, 1), Σ1,2

N( 1
−2

) none 2 log(3+
√
5

2
) 2 log(3+

√
5

2
) ≈ 1.9248

(1, 2, 0), Σ0,4

N(−6) 4 log δ(D5) ? ≤ 4 log δ(D5) ≈ 2.1740

(3, 3, 1), Σ2,2

N(4) 4 log δ(D5) ? ≤ 4 log δ(D5) ≈ 2.1740

(2, 2,−1), Σ2,2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2.4. Mysterious symmetries of entropy function on the magic manifold. The
entropy function on N has mysterious symmetries not coming from the symmetries of N
itself, which we will recall below.
We take (x, y, z) ∈ ∆. (Hence x + y − z = 1.) Let us denote (x, y, z) by [x, y]. Then

the open face int(∆) is written by

int(∆) = {[x, y] | 0 < x < 1, 0 < y < 1}.
On the other hand if (x, y, z) ∈ int(C∆), then

(y − z, y, y − x), (y − z, x− z,−z), (x, x− z, x− y) ∈ int(C∆).

These four classes have the same Thurston norm. Intriguingly, they have the same di-
latation!

Proposition 2.4 (Lemma 2.5 in [11]). The four classes

(x, y, z), (y − z, y, y − x), (y − z, x− z,−z), (x, x− z, x− y) ∈ int(C∆)

have the same dilatation. In particular,

[ x
x+y−z

, y
x+y−z

], [ y−z
x+y−z

, y
x+y−z

], [ y−z
x+y−z

, x−z
x+y−z

], [ x
x+y−z

, x−z
x+y−z

] ∈ int(∆)

have the same dilatation. (See Figure 4(left).)

We note that the topological types of F(x,y,z), F(y−z,y,y−x), F(y−z,x−z,−z), F(x,x−z,x−y) may be
different. (e.g. F(6,5,4) ≃ Σ0,9, F(1,5,−1) ≃ Σ1,7, F(1,2,−4) ≃ Σ3,3 and F(6,2,1) ≃ Σ2,5.) On the
other hand by Proposition 2.1(3), any two classes a = [x, y], ã ∈ [y, x] ∈ int(∆) have the

same dilatation. This together with Proposition 2.4 says that 8 classes b0, b̃0, · · · , b3, b̃3 ∈
int(∆) as in Figure 4(right) have the same dilatation.

3. Asymptotic behaviors of minimal dilatations

3.1. Sequence {δg}g≥2. Let Φ : F → F be the monodromy of a fibration on N , and
let ϕ = [Φ]. Then the fibration extends naturally to a fibration on the closed manifold
obtained from N by Dehn filling three cusps along boundary slopes of F . Also, Φ extends

to the monodromy Φ̂ : F̂ → F̂ of the extended fibration, where the extended fiber F̂ is
obtained from F by filing holes. Suppose that the stable foliation F of Φ has the property
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b0b1

b2 b3

b0b1b1

b2 b3

b0

b1

b3

b2
~

~ ~

~

[0,0] [0,0][1,0]

[1,1]

[1,0]

[1,1][0,1] [0,1]

Figure 4. b0 = [ x
x+y−z

, y
x+y−z

], b1 = [ y−z
x+y−z

, y
x+y−z

], b2 = [ y−z
x+y−z

, x−z
x+y−z

],

b3 = [ x
x+y−z

, x−z
x+y−z

] ∈ int(∆) and b̃i ∈ int(∆).

such that any boundary component of F has no 1 prong. Then F extends canonically to

the stable foliation F̂ of Φ̂, and ϕ̂ = [Φ̂] becomes pseudo-Anosov (including Anosov) with
the same dilatation as that of ϕ. We consider the set M of (pseudo-Anosov) mapping
classes coming from fibrations of N with this condition.

Now, let us denote by M̂, the set of extensions ϕ̂ of ϕ ∈ M defined on the closed

surfaces. Let δ̂g be the minimum among dilatations of elements in M̂ ∩Mod(Σg). Clearly

δg ≤ δ̂g. The equality holds when g = 2. (In fact δ2 is achieved by ϕ̂a ∈ M̂ ∩Mod(Σ2)
when a = (2, 2,−1) or (2, 6, 1).)
The set M is large in the following sense. For any r ∈ Hyp \ {1}, there exist infinitely

many primitive fibered classes an = an(r) ∈ Sβ(r) such that ϕan ∈ M and the genus of Fan

goes to ∞ as n goes to ∞. In [11], we addressed Question 1.2(4) (about the asymptotic

behavior of g log δg) in M̂.

Theorem 3.1 (Theorem 1.4 in [11]).

(1) We have lim
g→∞

g log δ̂g = log(3+
√
5

2
).

(2) For large g, δ̂g is achieved by the monodromy of some Σg-bundle over the circle
obtained from either N( 3

−2
) or N( 1

−2
) by Dehn filling both cusps.

More precisely, one can show the following: For large g such that g ≡ 0, 1, 5, 6, 7, 9

(mod 10) (resp. such that g ≡ 3, 8 (mod 10)), δ̂g is achieved by the monodromy of
some Σg-bundle over the circle obtained from N( 3

−2
) (resp. N( 1

−2
)) by Dehn filling both

cusps, see [11, Remark 3.18].

Table 3 shows the fibered class (x, y, z) ∈ H2(N, ∂N) which achieves δ̂g for large g and
the polynomial f(x,y,z)(t). Notice that such a fibered class (x, y, z) is in either int(C∆) ∩
Sβ(

3
−2

) or int(C∆)∩Sβ(
1
−2

), see (1) in Section 2.2. Its projective class (x′, y′, z′) ∈ int(∆)
goes to the projective class of either (2, 2, 1) or (1, 2, 0) as the Thurston norm ∥(x, y, z)∥
goes to ∞, see Figure 2(1).
For small g, our upper bound of δg is given by the brute computation, see Table 4. We

note that in the case g = 8, 13, δ̂g is not achieved by the monodromy of any Σg-bundle
over the circle obtained from either N( 3

−2
) or N( 1

−2
) by Dehn filling [13, Proposition 4.37].

We describe the outline of the proof of Theorem 3.1(1). It is known that N(−4) ≃
N( 3

−2
), see [18]. We recall:
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Claim 3.2 (Theorem 1.5 in [13]). Let r ∈ { 3
−2

, 1
−2

, 2}. For each g ≥ 3, there exist
Σg-bundles over the circle obtained from N(r) by Dehn filling both cusps along boundary
slopes of fibers of N(r). Among them, there exist monodromies Φg(r) : Σg → Σg of the
fibrations such that

lim
g→∞

g log λ(Φg(r)) = log(3+
√
5

2
).

Let ag be a primitive fibered class of H2(N, ∂N) such that ϕag ∈ M and δ̂g is achieved

by ϕ̂ag ∈ M̂ ∩ Mod(Σg). Since N(1) has no fiber of genus greater than 1, ag does
not have a boundary slope 1 for g ≥ 2. By the analysis of minEnt(N(r),Ω) (see [11,
Theorem 1.11]), one can show that the set of normalized entropies of monodromies of
the fibrations on the closed manifolds, obtained from N by Dehn filling all cusps along

the slopes not in {−4, 3
−2

, 1
−2

, 2}, have no accumulation values ≤ 2 log(3+
√
5

2
). By using

Claim 3.2, one can see that ag has to have a boundary slope in {−4, 3
−2

, 1
−2

, 2} eventually.
Moreover the set of normalized entropies of the monodromies of the fibrations on the
closed manifolds obtained from N by Dehn filling all cusps along the slopes, one of which

is in {−4, 3
−2

, 1
−2

, 2}, have no accumulation values < 2 log(3+
√
5

2
). Then Claim 3.2 leads

to Theorem 3.1(1).

3.2. Sequence {δ+g }g≥2. Let M̂+ be the set of pseudo-Anosov elements of M̂ with ori-

entable invariant foliations. (One can use Proposition 2.1(6) to know whether ϕ̂a ∈ M̂

has orientable invariant foliations or not.) Let δ̂+g be the minimum among dilatations of

elements in M̂+ ∩ Mod(Σg). (Since M̂+ ∩ Mod(Σg) ̸= ∅ for g ≥ 2, δ̂+g is well-defined.)

Clearly δg ≤ δ+g ≤ δ̂+g . The equality δ+g = δ̂+g holds for all 2 ≤ g ≤ 8 except for g = 6, see
Table 5.

Theorem 3.3 (Theorem 1.5 in [11]).

(1) We have lim
g ̸≡0 (mod 6)

g→∞

g log δ̂+g = log(3+
√
5

2
).

(2) For large g such that g ≡ 2, 4 (mod 6) or g ≡ 3 (mod 10) (resp. such that g ≡
1, 5, 7, 9 (mod 10)), δ̂+g is achieved by the monodromy of some Σg-bundle over the

circle obtained from N( 1
−2

) (resp. N( 3
−2

)) by Dehn filling both cusps.

Table 6 shows the fibered class (x, y, z) ∈ H2(N, ∂N) which achieves δ̂+g for large g ̸≡ 0
(mod 6) and the polynomial f(x,y,z)(t).
The proof of Theorem 3.3(1) is similar to that of Theorem 3.1(1). The difference is

that in the case g ≡ 0 (mod 6), there exist no examples of elements in M̂+ defined on Σg

which occur as monodromies of fibrations on manifolds obtained from N( 1
−2

) or N( 3
−2

)
by Dehn filling both cusps. This is the reason why we need the condition g ̸≡ 0 (mod 6).

If we fix any ϵ > 0 so that 1.97475− ϵ > 2 log(3+
√
5

2
), then for large g such that g ≡ 0

(mod 6), we have

|χ(Σg)| log δ̂+g > 1.97475− ϵ > 2 log(3+
√
5

2
),

see [11, Theorem 1.10].

The emphasis is that in the case g ≡ 6 (mod 12), elements of M̂+ provide a new family
of pseudo-Anosovs defined on Σg with orientable invariant foliations obtained from N(−6)

55



or N(4) by Dehn filling both cusps. By using the examples, we obtained the following
bounds in [11, Theorem 1.7].

Theorem 3.4 (Upper bound on δ+g for g ≡ 6 (mod 12)).

(1) δ+g ≤ λ
(
3g
2
+1,

3g
2
−1,

g
2
)
if g ≡ 6, 30, 42, 54, 78 (mod 84). The specialization of the

Teichmüler polynomial P∆ at (3g
2
+ 1, 3g

2
− 1, g

2
) ∈ Sγ(−6) is

f
(
3g
2
+1,

3g
2
−1,

g
2
)
(t) = (t

(
g
2

)
+ 1)(t2g − t

(
3g
2

)
− tg+1 + tg − tg−1 − t

(
g
2

)
+ 1).

(2) δ+g ≤ λ
(g+2,g−2,−g

2
)
if g ≡ 18, 66 (mod 84). The specialization of the Teichmüler

polynomial P∆ at (g + 2, g − 2,−g
2
) ∈ Sγ(4) is

f
(g+2,g−2,−g

2
)
(t) = (t

(
g
2

)
+ 1)(t2g − t

(
3g
2

)
− tg+2 + tg − tg−2 − t

(
g
2

)
+ 1).

The upper bound lim sup
g≡6 (mod 12)

g→∞

g log δ+g ≤ 2 log δ(D5) holds, since the ray of

(3g
2
+ 1, 3g

2
− 1, g

2
) ∈ H2(Nγ(−6), ∂Nγ(−6)) (resp. (g + 2, g − 2,−g

2
) ∈ H2(Nγ(4), ∂Nγ(4)))

converges to the ray of (3, 3, 1) (resp. (2, 2,−1)) as g goes to ∞ which achieves

minEnt(N(−6),ΩS) (resp. minEnt(N(4),ΩS)).

In particular the projective class of (3g
2
+ 1, 3g

2
− 1, g

2
) (resp. (g + 2, g − 2,−g

2
)) lies on

int(∆)∩Sβ(−6) (resp. int(∆)∩Sβ(4)) and it converges to the projective class of (3, 3, 1)
(resp. (2, 2, 1)) as g goes to ∞, see Figure 2(2).
Table 1 in [11] exhibits upper bounds of δ+g for small g such that g ≡ 0 (mod 6) which

improves the bound given in [20, 10].

3.3. Sequences {δ0,n}n≥4 and {δ(Dn)}n≥3. The mapping class group Mod(Dn) on an
n-punctured disk Dn is isomorphic to the subgroup of Mod(Σ0,n+1) consisting of the
elements which fix a puncture of Σ0,n+1. (Hence δ(Dn) ≥ δ0,n+1.) By using the usual
isomorphism Γ : Bn → Mod(Dn) from the n-braid group Bn to Mod(Dn), one represents
each element of Mod(Dn) by an n-braid.
Let Nn be the set of primitive fibered classes a ∈ H2(N, ∂N) such that Fa ≃ Σ0,n. In

[12], we ask about which fibered class in Nn achieves the minimal dilatation. To give a
statement more precisely, let us define an m-braid Tm,p for p ≥ 1 as follows.

Tm,p = (σ2
1σ2σ3 · · ·σm−1)

pσ−2
m−1 = (σ2

1σ2σ3 · · ·σm−1)
p−1σ2

1σ2σ3 · · ·σm−2σ
−1
m−2.

If one forgets the 1st strand of Tm,p, one obtains the (m− 1)-braid, call it T ′
m,p. Observe

that λ(T ′
m,p) ≤ λ(Tm,p) if T ′

m,p is pseudo-Anosov. It was shown that the mapping torus
T(Γ(Tm,p)) is homeomorphic to N if gcd(m − 1, p) = 1 [12, Corollary 3.2]. Otherwise
T(Γ(Tm,p)) is toroidal, i.e, Γ(Tm,p) is reducible [12, Lemma 3.11]. Table 7 describes our
result in [12, Theorem 1.1] which answers the above question. For n ≥ 9, the fibered class
sn = (x, y, z) which achieves the minimal dilatation in Nn and its mapping class ϕsn are
given in the table. (The statement in the case 4 ≤ n ≤ 8 can be found in [12, Theorem
1.1].) Here, we have a remark on the same table(4th column). By Proposition 2.1(1),
♯(∂αFsn) = 1 holds. (Also ♯(∂βFsn) = 1.) Hence the monodromy Φsn : Fsn(≃ Σ0,n) → Fsn

of the fibration associated to sn on N is described by an element in Mod(Dn−1), and
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hence by an (n− 1)-braid. (In this case it turns out that the braid is given by Tn−1,p for
some p.)
We denote by T(n−1), the braid Tn−1,∗ in Table 7(4th column) which represents ϕsn for

the fibered class sn. For example, when n = 2k + 1, T(2k) = T2k,2. The stable foliation
Fsn has the property such that the boundary component of Fsn which lies on the torus
Tα has x(̸= 1) prong, see Proposition 2.1(5). This implies that T ′

(n−1) ∈ Bn−2 is pseudo-

Anosov and λ(T ′
(n−1)) = λ(T(n−1)). One can use both (n − 2)-braids T(n−2) and T ′

(n−1)

for upper bounds of δ(Dn−2), see Table 8(5th column). We would like to point out that
T ′
(2k) = T ′

2k,2 ∈ B2k−1 is conjugate to the braid called σk−2,k in [10]. For small n, our upper

bound of δ(Dn−2) is given in Table 9.
The minimal dilatation δ(Dn) is determined for all 3 ≤ n ≤ 8 [7, 8, 15, 17]. In these

cases, the minimizers “come from” N . More precisely, the minimal representative F(x,y,z)

of the fibered class (x, y, z) ∈ H2(N, ∂N) in Table 10 is homeomorphic to Σ0,n+2. It turns
out that the mapping class ϕ(x,y,z) is of the form Tn+1,p for some p. Except for n = 6, the
braid T ′

n+1,p ∈ Bn in Table 10(6th column) achieves the minimal dilatation δ(Dn). In the
case n = 6, the braid T6,2 achieves the minimal dilatation δ(D6).
Observe that sn ∈ int(C∆) ∩ Sγ(∞) and the ray of sn converges to the ray of [1

2
, 1
2
] =

(1
2
, 1
2
, 0) ∈ int(∆) as n goes to ∞, see Figure 2(3). By Proposition 2.1(4), we obtain

lim sup
n→∞

n log δ(Dn), lim sup
n→∞

n log δ0,n ≤ minEnt(N) = 2 log(2 +
√
3).

3.4. Sequence {δ1,n}n≥1. Let Wn ⊂ H2(N(1), ∂N(1)) be the set of primitive fibered
classes whose minimal representatives are homeomorphic to Σ1,n, see Remark 2.2. In Ta-

ble 11, one can find the fibered class wn = (x, y, z) ∈ H2(Nγ(1), ∂Nγ(1)) which achieves the
minimal dilatation in Wn, see [11, Proposition 3.30]. The dilatation of wn ∈ H2(N, ∂N)
is equal to the dilatation of wn, since Fwn has the property such that the boundary
components of Fwn which lie on Tγ has 3 prong, see Proposition 2.1(5). Thus we have

δ1,n ≤ λ(wn) = λ(wn) = λ(x,y,z).

For the polynomial f(x,y,z)(t) in this case, see Table 11(3rd column).

The ray of wn ∈ H2(Nγ(1), ∂Nγ(1)) converges to the ray of (1, 1,−2) as n goes to ∞
which achieves minEnt(N(1)), see Figure 2(4). Thus

lim sup
n→∞

n log δ1,n ≤ minEnt(N(1)) = 2 log δ(D4).

Table 12 shows our upper bound of δ1,n for small n due to the brute computation. It
turns out that this coincides with the upper bound given by Table 11.

3.5. g > 1, Sequence {δg,n}n≥1. So far, for the upper bounds of normalized entropies
of pseudo-Anosovs, we used the following property of hyperbolic surface bundles over the
circle M : Let Ω be a fibered face of M and let D ⊂ int(Ω) be any compact set. Then
there exists a constant c = cD > 0 such that for any fibered class a ∈ int(CΩ), we have
Ent(a) = Ent(Φa) ≤ c whenever the projective class a′ of a is in the compact set D.
However for any fixed g ≥ 2, the same technique doesn’t work in order to give an upper
bound of δg,n varying n because of Tsai’s result log δg,n ≍ logn

n
. Her result implies that if

there exists a sequence of primitive fibered class classes {ai} with ai = ag,i ∈ int(CΩ) such
that the fiber of the fibration associated to ai is a surface of genus g and ni boundary
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components with ni → ∞, then accumulation points of the sequence of projective classes
{a′i} must lie on the boundary of Ω.
In [14], we found such a sequence {ai} = {ag,i} of the primitive fibered class ai ∈

int(C∆) ∩ Sβ(−1) of N for each g ≥ 2 with the best possible asymptotic behavior, i.e,

log λ(ai) = log λ(Φai) ≍
log ∥ai∥
∥ai∥ . These examples have the property such that the projec-

tive class a′i goes to a particular point (1
2
, 1, 1

2
) ∈ ∂∆ as i goes to ∞, see Figure 2(5). By

using the sequence {ai}, we proved the following.

Theorem 3.5 ([14]). Given g ≥ 2, there exists a sequence {ni}∞i=0 with ni → ∞ such that

lim sup
i→∞

ni log δg,ni

logni
≤ 2. Furthermore, if g ≥ 2 enjoys

(∗) gcd(2g + 1, s) = 1 or gcd(2g + 1, s+ 1) = 1 for each 0 ≤ s ≤ g,

then

(2) lim sup
n→∞

n log δg,n
logn

≤ 2.

For example, (∗) holds for g = 4 since 9 is relatively prime to 1, 2, 4 and 5, but (∗) does
not hold for g = 7 because gcd(15, 5) = 5 and gcd(15, 6) = 3. Observe that g enjoys (∗)
if 2g + 1 is prime. (Hence infinitely many g’s satisfy (∗).)
The inequality (2) in Theorem 3.5 improves the upper bound lim sup

n→∞

n log δg,n
logn

≤ 2(2g+1)

(see [14]) obtained from Tsai’s examples. Note that this upper bound holds for any g ≥ 2.

4. Questions and conjectures

We close with some questions and conjectures about pseudo-Anosovs with the minimal
dilatations and their mapping tori.

Conjecture 4.1 ([11]).

(1) We have lim
g→∞

g log δg = log(3+
√
5

2
). For large g, δg is achieved by the monodromy

of some Σg-bundle over the circle obtained from either N( 3
−2

) or N( 1
−2

) by Dehn
filling both cusps.

(2) We have lim
g ̸≡0 (mod 6)

g→∞

g log δ+g = log(3+
√
5

2
). For large g such that g ̸≡ 0 (mod 6),

δ+g is achieved by the monodromy of some Σg-bundle over the circle obtained from

N( 3
−2

) or N( 1
−2

) by Dehn filling both cusps.

Conjecture 4.2 ([12]).

(1) δ(D2k−1) = λ(T ′
2k,2) for k ≥ 5.

(2) δ(D4k) = λ(T ′
4k+1,2k−1) for k ≥ 3.

(3) δ(D10) = λ(T10,2), and δ(D8k+2) = λ(T ′
8k+3,2k+1) for k ≥ 2.

(4) δ(D8k+6) = λ(T ′
8k+7,2k+1) for k ≥ 1.

Conjecture 4.3 ([11]). We have lim
n→∞

n log δ1,n = 2 log δ(D4). For large n, δ1,n is achieved

by the monodromy of a fibration on N(1).

Question 4.4 ([14]). Can one eliminate the condition (∗) in Theorem 3.5? i.e, given

g ≥ 2, does lim sup
n→∞

n log δg,n
logn

≤ 2 hold?
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Finally, we ask about questions related to the finiteness theorem for small dilatation
pseudo-Anosov homeomorphisms [5, 3]. Given a pseudo-Anosov Φ : Σ → Σ, let Σ◦ ⊂ Σ
be the surface obtained by removing all the singularities of the stable foliation for Φ, and
Φ|Σ◦ : Σ◦ → Σ◦ denotes the restriction of Φ to Σ◦. Observe that λ(Φ) = λ(Φ|Σ◦). The
finiteness theorem implies that the following sets are finite.

U = {T(Φ|Σ◦) | Φ is pseudo-Anosov on Σ = Σg such that λ(Φ) = δg, g ≥ 2},
Ubraid = {T(Φ|Σ◦) | Φ is pseudo-Anosov on Σ = Dn such that λ(Φ) = δ(Dn), n ≥ 3},
Ug=1 = {T(Φ|Σ◦) | Φ is pseudo-Anosov on Σ = Σ1,n such that λ(Φ) = δ1,n, n ≥ 1}.

We know that N ∈ U ∩ Ubraid ∩ Ug=1. Since pseudo-Anosov mapping classes with the
smallest known dilatations defined on either Σg, Dn or Σ1,n come from N , we ask:

Question 4.5. It is true that U = Ubraid = Ug=1 = {N}?

On the other hand, by the fact that given g ≥ 2, log δg,n ≍ logn
n

, one can not appeal to
the finiteness theorem for the following set Ug for g ≥ 2.

Ug = {T(Φ|Σ◦) | Φ is pseudo-Anosov on Σ = Σg,n such that λ(Φ) = δg,n, n ≥ 1}.

The examples which provide the upper bound in Theorem 3.5 are monodromies of fibra-
tions on manifolds obtained from the single manifold N by Dehn fillings. For this reason,
we would like to ask:

Question 4.6. Is there any g ≥ 2 such that Ug is a finite set?

5. Tables

Table 3. fibered class (x, y, z) ∈ H2(N, ∂N) which achieves δ̂g for large g,
see [11, Theorem 1.4, Remark 3.18]. [notice that (x, y, z) is in either Sβ(

3
−2

)

or Sβ(
1
−2

).]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g (x, y, z) ∈ H2(N, ∂N) f(x,y,z)(t)

0, 1, 5, 6 (mod 10) (2g + 5, 2g + 6, g + 4) ∈ Sβ(
3
−2) (tg+3 + 1)(t2g+4 − tg+3 − tg+2 − tg+1 + 1)

7, 9 (mod 10) (2g + 6, 2g + 8, g + 6) ∈ Sβ(
3
−2) (tg+4 + 1)(t2g+4 − tg+4 − tg+2 − tg + 1)

[3 (mod 10)]
3, 13 (mod 30) (g + 1, 2g + 8, 3) ∈ Sβ(

1
−2) (tg+4 + 1)(t2g+2 − tg+4 − tg+1 − tg−2 + 1)

23 (mod 30) (g + 1, 2g + 4, 1) ∈ Sβ(
1
−2) (tg+2 + 1)(t2g+2 − tg+2 − tg+1 − tg + 1)

[8 (mod 10)]
8 (mod 30) (g + 1, 2g + 4, 1) ∈ Sβ(

1
−2) (tg+2 + 1)(t2g+2 − tg+2 − tg+1 − tg + 1)

18, 28 (mod 30) (g + 1, 2g + 8, 3) ∈ Sβ(
1
−2) (tg+4 + 1)(t2g+2 − tg+4 − tg+1 − tg−2 + 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Table 4. upper bounds of δg for small g. [see also [9, 1, 13].]∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g (x, y, z) ∈ H2(N, ∂N) (δg ≤)λ(x,y,z) ≈
3 (4, 14, 3) ∈ Sβ(

1
−2

) 1.4012

4 (5, 16, 3) ∈ Sβ(
1
−2

) 1.2612

5 (13, 12, 5) ∈ Sβ(
3
−2

) 1.1487

6 (15, 14, 6) ∈ Sβ(
3
−2

) 1.1287

7 (16, 14, 5) ∈ Sβ(
3
−2

) 1.1154

8 (17, 18, 7) ∈ Sβ(
4
−3

) 1.1040

9 (20, 18, 7) ∈ Sβ(
3
−2

) 1.0928

10 (23, 22, 10) ∈ Sβ(
3
−2

) 1.0837

11 (25, 24, 11) ∈ Sβ(
3
−2

) 1.0770

12 (25, 22, 8) ∈ Sβ(
3
−2

) 1.0726

13 (27, 21, 8) ∈ Sβ(
5
−3

) 1.0716

14 (29, 26, 10) ∈ Sβ(
3
−2

) 1.0629

15 (33, 32, 15) ∈ Sβ(
3
−2

) 1.0583

16 (35, 34, 16) ∈ Sβ(
3
−2

) 1.0549

17 (36, 34, 15) ∈ Sβ(
3
−2

) 1.0522

18 (19, 44, 3) ∈ Sβ(
1
−2

) 1.0525

19 (40, 38, 17) ∈ Sβ(
3
−2

) 1.0470

20 (43, 42, 20) ∈ Sβ(
3
−2

) 1.0447

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Table 5. fibered class (x, y, z) ∈ H2(N, ∂N) which achieves δ+g for small g.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g (x, y, z) ∈ H2(N, ∂N) δ+g = λ(x,y,z) ≈ minimal polynomial (a factor of f(x,y,z)(t))

2 (2, 6, 1) ∈ Sβ(
1
−2) 1.7220 [26] t4 − t3 − t2 − t+ 1

3 (4, 14, 3) ∈ Sβ(
1
−2) 1.4012 [16] t6 − t4 − t3 − t2 + 1

4 (4, 10, 1) ∈ Sβ(
1
−2) 1.2806 [16] t8 − t5 − t4 − t3 + 1

5 (18, 22, 15) ∈ Sβ(
3
−2) 1.1762 [16] t10 + t9 − t7 − t6 − t5 − t4 − t3 + t+ 1

7 (20, 22, 13) ∈ Sβ(
3
−2) 1.1154 [16, 1, 13] t14 + t13 − t9 − t8 − t7 − t6 − t5 + t+ 1

8 (8, 18, 1) ∈ Sβ(
1
−2) 1.1287 [16, 9] t16 − t9 − t8 − t7 + 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Table 6. fibered class (x, y, z) ∈ H2(N, ∂N) which achieves δ̂+g for large
g ̸≡ 0 (mod 6), see [11, Theorem 1.5]. [notice that (x, y, z) is in either
Sβ(

3
−2

) or Sβ(
1
−2

).]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g (x, y, z) ∈ H2(N, ∂N) f(x,y,z)(t)

7, 9 (mod 10) (2g + 6, 2g + 8, g + 6) ∈ Sβ(
3
−2) (tg+4 + 1)(t2g+4 − tg+4 − tg+2 − tg + 1)

1, 5 (mod 10) (2g + 8, 2g + 12, g + 10) ∈ Sβ(
3
−2) (tg+6 + 1)(t2g+4 − tg+6 − tg+2 − tg−2 + 1)

[3 (mod 10))]
3, 13 (mod 30) (g + 1, 2g + 8, 3) ∈ Sβ(

1
−2) (tg+4 + 1)(t2g+2 − tg+4 − tg+1 − tg−2 + 1)

23 (mod 30) (g + 1, 2g + 4, 1) ∈ Sβ(
1
−2) (tg+2 + 1)(t2g+2 − tg+2 − tg+1 − tg + 1)

2, 4 (mod 6) (g, 2g + 2, 1) ∈ Sβ(
1
−2) (tg+1 + 1)(t2g − tg+1 − tg − tg−1 + 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Table 7. for n ≥ 9, fibered class sn which achieves the minimal dilatation
in Nn and its mapping class ϕsn , see [12, Theorem 1.1]. [notice that sn ∈
Sγ(∞).]∣∣∣∣∣∣∣∣∣∣

n sn = (x, y, z) ∈ H2(N, ∂N) f(x,y,z)(t) ϕsn

2k + 1 (k − 1, k, 0) ∈ Sγ(∞) t2k−1 − 2(tk−1 + tk) + 1 T2k,2

4k + 2 (2k + 1, 2k − 1, 0) ∈ Sγ(∞) t4k − 2(t2k−1 + t2k+1) + 1 T4k+1,2k−1

8k + 4 (4k − 1, 4k + 3, 0) ∈ Sγ(∞) t8k+2 − 2(t4k−1 + t4k+3) + 1 T8k+3,2k+1

8(k + 1) (4k + 5, 4k + 1, 0) ∈ Sγ(∞) t8k+6 − 2(t4k+1 + t4k+5) + 1 T8k+7,2k+1

∣∣∣∣∣∣∣∣∣∣
Table 8. upper bounds of δ(Dn−2), see [12, Corollary 4.1]. [see also [10, 25].]∣∣∣∣∣∣∣∣∣∣∣

n sn = (x, y, z) ∈ H2(N, ∂N) f(x,y,z)(t) filling braid ∈ Bn−2

2k + 1 (k − 1, k, 0) ∈ Sγ(∞) t2k−1 − 2(tk−1 + tk) + 1 α T ′
2k,2

4k + 2 (2k + 1, 2k − 1, 0) ∈ Sγ(∞) t4k − 2(t2k−1 + t2k+1) + 1 α T ′
4k+1,2k−1

8k + 4 (4k − 1, 4k + 3, 0) ∈ Sγ(∞) t8k+2 − 2(t4k−1 + t4k+3) + 1 α T ′
8k+3,2k+1

8(k + 1) (4k + 5, 4k + 1, 0) ∈ Sγ(∞) t8k+6 − 2(t4k+1 + t4k+5) + 1 α T ′
8k+7,2k+1

∣∣∣∣∣∣∣∣∣∣∣
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Table 9. upper bounds of δ(Dn−2) for small n. [see also [10, 25].]∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n (x, y, z) ∈ H2(N, ∂N) (δ(Dn−2) ≤)λ(x,y,z) ≈ filling braid ∈ Bn−2

11 (4, 5, 0) ∈ Sγ(∞) 1.3437 α T ′
10,2

12 (4, 5, 0) ∈ Sγ(∞) 1.3437 none T10,2

13 (5, 6, 0) ∈ Sγ(∞) 1.2724 α T ′
12,2

14 (7, 5, 0) ∈ Sγ(∞) 1.2514 α T ′
13,5

15 (6, 7, 0) ∈ Sγ(∞) 1.2257 α T ′
14,2

16 (9, 5, 0) ∈ Sγ(∞) 1.2225 α T ′
15,3

17 (7, 8, 0) ∈ Sγ(∞) 1.1926 α T ′
16,2

18 (9, 7, 0) ∈ Sγ(∞) 1.1812 α T ′
17,7

19 (8, 9, 0) ∈ Sγ(∞) 1.1680 α T ′
18,2

20 (7, 11, 0) ∈ Sγ(∞) 1.1643 α T ′
19,5

21 (9, 10, 0) ∈ Sγ(∞) 1.1490 α T ′
20,2

22 (11, 9, 0) ∈ Sγ(∞) 1.1419 α T ′
21,9

23 (10, 11, 0) ∈ Sγ(∞) 1.1338 α T ′
22,2

24 (13, 9, 0) ∈ Sγ(∞) 1.1307 α T ′
23,5

25 (11, 12, 0) ∈ Sγ(∞) 1.1215 α T ′
24,2

26 (13, 11, 0) ∈ Sγ(∞) 1.1166 α T ′
25,11

27 (12, 13, 0) ∈ Sγ(∞) 1.1112 α T ′
26,2

28 (11, 15, 0) ∈ Sγ(∞) 1.1086 α T ′
27,7

29 (13, 14, 0) ∈ Sγ(∞) 1.1025 α T ′
28,2

30 (15, 13, 0) ∈ Sγ(∞) 1.0990 α T ′
29,13

31 (14, 15, 0) ∈ Sγ(∞) 1.0951 α T ′
30,2

32 (17, 13, 0) ∈ Sγ(∞) 1.0930 α T ′
31,7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Table 10. fibered class (x, y, z) ∈ H2(N, ∂N) which achieves δ(Dn) for
small n, see [12, Section 4.1]. [for the minimal polynomial of δ(Dn), see the
4th column.]∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n (x, y, z) ∈ H2(N, ∂N) δ(Dn) = λ(x,y,z) ≈ minimal polynomial filling braid ∈ Bn

3 (2, 1, 0) ∈ Sγ(∞) 3+
√
5

2 [7] t2 − 3t+ 1 α T ′
4,1

4 (3, 1, 0) ∈ Sγ(∞) 2.2966 [15] t4 − 2t3 − 2t+ 1 α T ′
5,1

5 (2, 3, 0) ∈ Sγ(∞) 1.7220 [8] t4 − t3 − t2 − t+ 1 α T ′
6,2

6 (2, 3, 0) ∈ Sγ(∞) 1.7220 [17] t4 − t3 − t2 − t+ 1 none T6,2

7 (3, 4, 0) ∈ Sγ(∞) 1.4655 [17] t3 − t2 − 1 α T ′
8,2

8 (5, 3, 0) ∈ Sγ(∞) 1.4134 [17] t8 − 2t5 − 2t3 + 1 α T ′
9,5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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