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Abstract. Let M be a hyperbolic fibered 3-manifold. We study prop-
erties of sequences (Sαn , ψαn) of fibers and monodromies for primitive
integral classes in the fibered cone of M . The main object is the as-
ymptotic translation length `C(ψαn) of the pseudo-Anosov monodromy
ψαn on the curve complex. We first show that there exists a constant
C > 0 depending only on the fibered cone such that for any primitive
integral class (S, ψ) in the fibered cone, `C(ψ) is bounded from above
by C/|χ(S)|. We also obtain a moral connection between `C(ψ) and the
normal generating property of ψ in the mapping class group on S. We
show that for all but finitely many primitive integral classes (S, ψ) in
an arbitrary 2-dimensional slice of the fibered cone, ψ normally gener-
ates the mapping class group on S. In the second half of the paper,
we study if it is possible to obtain a continuous extension of normal-
ized asymptotic translation lengths on the curve complex as a function
on the fibered face. An analogous question for normalized entropy has
been answered affirmatively by Fried and the question for normalized
asymptotic translation length on the arc complex in the fully punctured
case has been answered negatively by Strenner. We show that such an
extension in the case of the curve complex does not exist in general
by explicit computation for sequences in the fibered cone of the magic
manifold.

1. Introduction

Let M be a hyperbolic fibered 3-manifold. Thurston introduced the so-
called Thurston norm on the first cohomology group of M , and showed that
the unit norm ball is a finite sided polyhedron. Let F be a top-dimensional
face of this polyhedron and consider a primitive integral class contained in
the open cone C = CF over F . Thurston showed that if this cohomology
class corresponds to a fibration of M over the circle S1, then all primitive
integral classes in C correspond to fibrations of M over S1. In such case,
we call F a fibered face and the open cone C a fibered cone.

For each primitive integral class α ∈ C , let (Sα, ψα) be the pair of corre-
sponding fiber and its monodromy. Since M is hyperbolic, the monodromy
ψα is pseudo-Anosov by Thurston’s hyperbolization theorem (see, for ex-
ample [FM12, Theorem 13.4]). In this paper, we study the asymptotic
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translation length of ψα on the curve complex of the surface Sα and the
normal generators of mapping class groups Mod(Sα).

Let G be a group acting isometrically on a metric space (X, dX). For
h ∈ G, the asymptotic translation length (or stable length) of h is defined by

`X(h) = lim inf
n→∞

dX(x, hnx)

n
,

where x is a point in X. It is not hard to see that `X(h) is independent of
the choice of x.

For a surface S, let T (S) be the Teichmüller space of S and let C(S) be
the curve complex of S. Since ψα acts by an isometry on both T (Sα) and
C(Sα), one can consider the asymptotic translation lengths of ψα on T (Sα)
and on C(Sα), denoted by `T (ψα) and `C(ψα) respectively.

There has been a lot of work on `T (ψα) for primitive integral classes α in
the fibered cone. See [FLP79, Fri82a, Fri82b, Mat87, LO97, McM00].

In the case of `C(ψα), there has also been some progress in the literature.
See [MM99, Bow08, FLM08, GT11, GHKL13, Val14, AT15, Val17, KS19,
BS18, BSW18].

The following is a general upper bound of `C(ψα) in the fibered cone in
terms of the Euler characteristic χ(Sα) of Sα.

Theorem 1.1 ([BSW18]). Let F be a fibered face of a closed hyperbolic
fibered 3-manifold M . Let K be a compact subset of the interior int(F )
of F . Then there exists a constant C depending on K such that for any
sequence (Sαn , ψαn) of primitive integral classes which is contained in the
intersection between the cone over K and a (d + 1)-dimensional rational
subspace of H1(M), we have

`C(ψαn) ≤ C

|χ(Sαn)|1+ 1
d

.

Here (d + 1)-dimensional rational subspace of H1(M) means a subspace
of H1(M) which admits a basis v1, · · · , vd+1 ∈ H1(M ;Q). We note that
in [BSW18] the above theorem was stated in the case of closed hyperbolic
fibered 3-manifolds, but almost the same proof can be adapted to the case of
compact hyperbolic fibered 3-manifolds possibly with boundary, see Remark
2.5.

Two additional questions naturally arise from Theorem 1.1. First, what
can we say if the sequence is not contained in the cone over any compact
subset of the fibered face F? For instance, given a sequence that has a
subsequence converging projectively to the boundary ∂F , can we determine
the upper bound of the asymptotic translation length of the pseudo-Anosov
monodromies? We answer the first question in the following theorem.

Theorem 3.1. Let F be a fibered face of a compact hyperbolic fibered 3-
manifold possibly with boundary. Then there exists a constant C depending
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on F such that for any primitive integral class (S, ψ) ∈ CF , we have

`C(ψ) ≤ C

|χ(S)|
.

We make a couple of remarks regarding Theorem 3.1. We first note that a
version of Theorem 3.1 was obtained by Schleimer in [Sch03]. Even though
he used different language, Theorem 4.4 of [Sch03] can be reinterpreted to
give a statement of the form of Theorem 3.1 when the manifold is closed.
We give an alternative argument which works for the non-closed case as well.

Secondly we remark that the upper bound in Theorem 3.1 is optimal. In
Lemma 4.12, we give an explicit sequence (Sαn , ψαn) converging projectively
to a point in ∂F such that the asymptotic translation length of the corre-
sponding pseudo-Anosov monodromy is comparable to 1/|χ(Sαn)|. That is,
there exists a constant C such that

1

C

1

|χ(Sαn)|
≤ `C(ψαn) ≤ C

|χ(Sαn)|
.

In general, for real-valued functions A(x) and B(x), we say that A(x) is
comparable to B(x) if there exists a constant C independent of x such that
1/C ≤ A(x)/B(x) ≤ C. We denote it by A(x) � B(x).

The second question is whether the upper bound in Theorem 1.1 is sharp.
It is noted in [BSW18] that the bound is optimal for d = 1. In this paper, we
show that it is also optimal when d = 2 by constructing an example coming
from the magic manifold N , which is the exterior of some 3 components link
in the 3-sphere S3.

Theorem 4.13. Let F be a fibered face of the magic manifold. Then there
exist two points b0 ∈ ∂F and c0 ∈ int(F ) which satisfy the following.

(1) For any r ∈ Q∩ [1, 2), there exists a sequence (Sαn , ψαn) of primitive
integral classes in CF converging projectively to b0 as n → ∞ such
that

`C(ψαn) � 1

|χ(Sαn)|r
.

(2) For any r ∈ Q∩[3
2 , 2], there exists a sequence (Sαn , ψαn) of primitive

integral classes in CF converging projectively to c0 as n → ∞ such
that

`C(ψαn) � 1

|χ(Sαn)|r
.

In particular, the upper bound in Theorem 1.1 is optimal when d = 2.

As an immediate corollary of Theorem 4.13, we conclude that there is no
normalization of the asymptotic translation length function defined on the
rational classes of the fibered face, which continuously extends to the whole
fibered face. More precisely, we have the following.

Corollary 4.15. Let F be a fibered face of the magic manifold N . For
α ∈ F ∩H1(N ;Q), let (Sα̃, ψα̃) be the fiber and pseudo-Anosov monodromy
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corresponding to the primitive integral class α̃ lying on the ray of α pass-
ing through the origin. Then there is no normalization of the asymptotic
translation length function

F ∩H1(N ;Q)→ R≥0

α 7→ `C(ψα̃),

in terms of the Euler characteristic χ(Sα̃) which admits a continuous exten-
sion on F .

For the arc complex, Strenner defined in [Str18] the normalized asymp-
totic translation length function µd for each integer d ≥ 1 on the rational
classes of a fibered face with the fully punctured condition. Strenner proved
in the same paper that the functions µd for d ≥ 2 are typically nowhere
continuous. His result and Corollary 4.15 stand in contrast to Fried’s result
[Fri82a]. See also Matsumoto [Mat87] and McMullen [McM00]. They proved
that the normalized entropy function of pseudo-Anosov monodromies has a
continuous extension on the fibered face, which is strictly convex.

Now we turn our attention to normal generation of mapping class groups.
Let S = Sg,n be an orientable surface of genus g with n punctures, possibly
n = 0. We denote Sg,0 by Sg. We say that an element h of a group
G normally generates G if the normal closure of h is equal to G. For a
given primitive class (Sα, ψα) in the fibered cone C , when does ψα normally
generate Mod(Sα)? Normal generation in the mapping class group has been
studied by many authors. For instance, D. Long [Lon86] asked if there
exist pseudo-Anosov normal generators. Later Ivanov asked in [Iva06] what
properties are satisfied by the pseudo-Anosov normal generators. A work
of Lanier–Margalit [LM18] (partially) answered the questions of Long and
Ivanov. In particular, they showed that for a pseudo-Anosov element f ∈
Mod(Sg), if the stretch factor λ(f) is smaller than

√
2, then f normally

generates Mod(Sg). The normal closure of random elements was studied
as well, for instance by Maher–Tiozzo [MT18]. They showed that with
asymptotic probability 1, the normal closure of a random element is free.
This in particular implies that random elements are not normal generators.

This connects to our brief discussion of asymptotic translation length,
since the logarithm of the stretch factor log λ(f) is equal to `T (f). In other
words, if a pseudo-Anosov element of Mod(S) is contained in some proper
normal subgroup, then its asymptotic translation length on the Teichmüller
space cannot be too small. It is natural to ask an analogous statement for
the curve complexes, i.e., if a pseudo-Anosov element of Mod(S) is contained
in some proper normal subgroup, then its asymptotic translation length on
the curve complex cannot be too small in some sense. The following question
is raised by Dan Margalit [Mar].

Question 1.2. For a subgroup H of Mod(Sg), let us set

LC(H) = min{`C(f) : f is pseudo-Anosov and f ∈ H}.
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Is there a constant C > 0 such that for any g ≥ 2 and for any proper normal
subgroup H of Mod(Sg), we have

LC(H) ≥ C

g
?

As a partial evidence toward this question, it is shown by Baik–Shin
[BS18] that

LC(Ig) �
1

g
,

where Ig is the Torelli group, i.e., the proper normal subgroup of Mod(Sg)
whose action on the first homology is trivial. In fact, by [BS18, Theorem
3.2], we have LC(Ig) ≥ 1

96(g−1) for all g ≥ 2.

Combining with Theorem 3.1, we propose the following conjecture regard-
ing the normal generators of mapping class groups contained in the fibered
cone which was originally asked as a question by Dan Margalit [Mar].

Conjecture 1.3. Let F be a fibered face of a closed hyperbolic fibered 3-
manifold M . Then for all but finitely many primitive classes (Sα, ψα) ∈ CF ,
ψα normally generates Mod(Sα).

We give a partial answer when primitive integral classes are contained in
a 2-dimensional rational subspace of H1(M). See also Remark 3.7.

Theorem 3.4. Let F be a fibered face of a closed hyperbolic fibered 3-
manifold M , and let L be a 2-dimensional rational subspace of H1(M).
Then for all but finitely many primitive integral classes (S, ψ) in CF ∩L, ψ
normally generates Mod(S). In particular, if the rank of H1(M) equals 2,
then Conjecture 1.3 is true.
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Science Research Program through the National Research Foundation of Ko-
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2. Arithmetic sequences in the fibered cone

For a hyperbolic 3-manifold M possibly with boundary ∂M , Thurston
[Thu86] defined a norm || · || on H2(M,∂M ;R). It turns out the unit norm
ball BM with respect to the Thurston norm is a finite-sided polyhedron.
Let F be a top-dimensional face of BM . We consider an open cone C = CF
over F . Thurston showed that if M is a fibered 3-manifold, then either
all integral points in C are fibered or none of them are fibered. (When an
integral cohomology class corresponds to a fibration of M over S1, we say
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the integral point is fibered) In the former case, we call C a fibered cone.
We denote by C the closure of the fibered cone C .

By abuse of notation, the first cohomology classes are treated as their
dual second homology classes throughout this paper without explicitly men-
tioning it. Furthermore, we will write a primitive integral class α ∈ H1(M)
as a pair (S, ψ) when S and ψ are the fiber and the monodromy for the
fibration over S1 corresponding to α.

In this section, we will show a key property of infinite arithmetic sequences
in a fibered cone for the proof of Theorem 3.4. Here by an arithmetic
sequence we mean a sequence of them (α + nβ)n∈Z≥0

where α (resp. β)

is a primitive integral class in a fibered cone C (resp. the closure C of the
fibered cone C ). We first need to find some criterion for a given element of
the mapping class group to be a normal generator. In [LM18], the so-called
well-suited curve criterion is introduced. Roughly speaking, this criterion
says that if there is a simple closed curve c such that the configuration of
c∪f(c) is simple enough, then f is a normal generator for the mapping class
group.

Here we state one special case that we need and show its proof for the
sake of completeness. For more general statements, see [LM18, Sections
2,7,9]. For a closed curve c in the surface Sg without specified orientation,
[c] means the homology class in H1(Sg) with arbitrary orientation.

Lemma 2.1 (Lemma 2.3 in [LM18]). Let f ∈ Mod(Sg) for g ≥ 3. Suppose
that there is a nonseparating curve c in Sg so that c and f(c) are disjoint
and ±[c] 6= [f(c)] ∈ H1(Sg). Then the normal closure of f is Mod(Sg).

Proof. Let f and c be as in the statement of the lemma. Then one can find
nonseparating curves a, b, d, x, and y which satisfy the following conditions.

• a, b, c, and d bound a subsurface S of Sg which is homeomorphic to
a 4-punctured sphere.
• each of the triple of curves (a, b, x), (b, d, y) and (b, c, f(c)) bounds a

pair of pants contained in S.
• no two of the curves a, b, c, d, x, y, and f(c) are homologous.

To see the existence of such curves, start with Figure 1(1) which is the
surface of genus 0 with four boundary components (4-punctured sphere)
labeled by A,B,C,D. Glue a pair of pants along the boundary components
labeled by A and B, and glue another pair of pants along the boundary
components labeled by C and D. Then we get a surface of genus 2 with two
boundary components (Figure 1(2)). Along the two boundary components,
we glue in another surface of genus k ≥ 0 with two boundary components.
The resulting surface is a closed surface of genus 3 + k. We take k so that
3 + k = g which is the genus of our given surface Sg. This is our model
surface, and we let Σ denote the model surface. If we set a = A, b = B,
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Figure 1. (1) 4-punctured sphere. (2) Genus 2 surface with
two boundary components.

c = C, d = D, x = X, y = Y , f(c) = Z, then the above conditions are
satisfied by construction.

By the classification of the compact orientable surfaces, for any two pairs
of disjoint non-homologous simple closed curves on the surface, there exists
a homeomorphism which maps one pair to the other. (This is a special case
of so-called the change of coordinates principle. See for instance [FM12].)
Hence, there exists a homeomorphism Φ from Σ to Sg so that Φ(C) = c
and Φ(Z) = f(c). Now set a = Φ(A), b = Φ(B), d = Φ(D), x = Φ(X), y =
Φ(Y ). Then we get the desired set of curves a, b, d, x, y which satisfies all
the conditions together with c, f(c).

For any curve γ on Sg, let Tγ be the left-handed Dehn twist about γ.
Then by the lantern relation, we have TaTbTcTd = Tf(c)TxTy. Using the
commutativity of the Dehn twists about disjoint curves, one can rewrite the
lantern relation as

Td = T−1
c Tf(c)T

−1
a TxT

−1
b Ty.

Note that T−1
c Tf(c) = T−1

c (fTcf
−1) = (T−1

c fTc)f
−1 which is contained in

the normal closure of f .
As before by the change of coordinates principle, there exists an orientation-

preserving homeomorphism h of Sg such that h(c) = a and h(f(c)) = x.

Then T−1
a Tx = T−1

h(c)Th(f(c)) = h−1T−1
c Tf(c)h, i.e., it is just a conjugate of

T−1
c Tf(c). Hence T−1

a Tx is in the normal closure of f . Similarly, T−1
b Ty is

also contained in the normal closure of f .
This shows that Td lies in the normal closure of f . From the fact that

there exists only one mapping class group orbit of nonseparating simple
closed curves and the Dehn twists about nonseparating simple closed curves
generate the mapping class group, we can now conclude that the entire
mapping class group Mod(Sg) is contained in the normal closure of f . �

Now we prove the key proposition on the sequences in the fibered cone.
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Proposition 2.2. Let C be a fibered cone for a closed hyperbolic fibered
3-manifold M . Let α ∈ C and β ∈ C be integral classes. Then there is
some integer n0 > 0 depending on α and β which satisfies the following. If
(S, ψ) = α + nβ ∈ C is a primitive integral class for n ≥ n0, then there is
an essential simple closed curve c on S such that c, ψ(c), · · · , ψn−1(c) are
disjoint, and ±[c] 6= [ψ(c)] in H1(S).

Proof. Let n be a positive integer such that α + nβ is a primitive integral
class. Let Sα and Sβ be embedded surfaces in M which represent α and
β respectively. Note that their orientations are assigned, and each con-
nected component of those surfaces has genus at least 2, since M is a closed
hyperbolic 3-manifold. In what follows, we explain how to choose these
representatives more explicitly.

For any primitive integral class in C , one obtains a suspension flow F of
the monodromy. Fried showed that when M is a closed hyperbolic fibered
3-manifold, the flow F is an invariant of C in the following sense: if one
considers the suspension flows from two primitive integral classes in C , then
they are the same flow up to reparametrization and conjugation by home-
omorphisms on M . Moreover Fried showed that if an embedded surface
S in M is a fiber for a primitive integral class in C , then S can be made
transverse to F , and the first return map along the flow F represents the
monodromy (see [Fri82b], and Theorem 14.11, Lemma 14.12 in [FLP79]).

Surely Sα can be made transverse to F , since α ∈ C . If β ∈ C , then
the same holds for Sβ. However if β ∈ ∂C = C \ C , then this may or may
not be possible for representatives of β. The transverse surface theorems
by Mosher [Mos91] and Landry [Lan19] including the case of compact hy-
perbolic 3-manifolds tells us that, for any integral class β ∈ C , there exists
a flow F̂ which is semi-conjugate to F so that a representative Sβ of β is

transverse to F̂ . Here F̂ is obtained from F by using the dynamic blowup
of some (possibly empty) singular periodic orbits of F . The flow F̂ is called
a dynamic blowup of F for β ∈ C . (The dynamic blowups of F may not
be unique.) For more details of the dynamic blowup of singular orbits, see
[Mos91, p.8-9], [Lan19, Section 3.1].

We now explain some relevant properties of F̂ which are needed in the
proof of Proposition 2.2. The new flow F̂ is obtained from F by replacing the
singular orbits of F by a set of annuli such that flow lines in the interior of
each annulus spiral toward boundary components of the annulus. Moreover
Sα ∩ A is a union of embedded trees in Sα, where A is the collection of
annuli created during the finitely many blowups of singular orbits. When
β ∈ C , it is shown in the transverse surface theorem that F̂ is obtained from
dynamically blowing up F along an empty collection of periodic orbits, and
hence F̂ is the same as F . Now Sβ is transverse to F̂ . From the construction

of F̂ , we may suppose that Sα is still transverse to F̂ .
For any positive integer n, we can consider n parallel copies of Sβ, say

S1, . . . , Sn such that Si’s are very close to each other. Whenever we are in
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this situation, the n copies of Si are labeled so that for 1 ≤ i < n, Si gets
mapped to Si+1 by the flow F̂ before touching any other Sj . Note that n is
not fixed.

We now describe the surgery, i.e., cut and paste on Sα, S1, . . . , Sn along
the intersection locus to get a surface S which represents α + nβ. Along
each component of the intersection between Sα and each copy of Sβ, we cut
those surfaces. Locally there are four sheets of surfaces, two from Sα and
two from the copy of Sβ. Glue one sheet from Sα to one sheet from Sβ so
that the orientations on those sheets match up. One can do the same for
the other two remaining sheets. The resulting surface S represents α+ nβ.
Clearly S is transverse to F̂ . We note that this is a standard operation. For
instance, it is the same as the oriented sum in [Cal07].

The transversality of S to F̂ implies two things. First of all, this means
S is transverse to A. Since the original flow F is obtained from F̂ by
collapsing the annuli in A to singular orbits of F , S is transverse to F after
the collapsing. Second, the intersection S∩A is a collection of trees on S by
transversality together with the construction of A in the dynamic blowup.
Now let Ψ̂ and Ψ be the first return maps on S for F̂ and F , respectively.
Since Ψ̂ and Ψ differ only on the trees and each tree is contractible, Ψ̂ and Ψ
are clearly homotopic to each other. Therefore Ψ̂ represents the monodromy
ψ = [Ψ] for α+ nβ.

Note that because all Si are parallel copies of Sβ, any curve or region
on Sβ gives rise to a curve or region on each of the Si that are parallel
to it. Hence, in what follows, whenever we specify any multicurve on Sβ
we implicitly specify multicurves on all of the Si which are parallel to each
other.

Let C be a multicurve on Sβ, such that all the connected components of
Sβ\C have genus 0 with three ends (Figure 2(1)). Furthermore, we assume
that every intersecting curve between Sα and Sβ is parallel to one of the
curves in C. Such a multicurve C always exists. To construct one, group
the intersecting curves between Sα and Sβ into parallel families, choose
one in each parallel family and use them to form a multicurve C ′. Now,
if some connected component of Sβ\C ′ has genus greater than 0, or has
more than three ends, then we can add an extra curve to C ′ to break it
into components of lower complexity, and repeat this process until all the
connected components of Sβ\C ′ have genus 0 with three ends.

Now we make use of the graph theoretic lemma below.

Lemma 2.3. Let G be a 3-regular finite graph. Let d be an integer valued
cellular cochain on G whose value on each edge is bounded above by k ≥ 0,
and let G′ be the Z-fold cover constructed from d (i.e. the vertices of G′ are
Z-copies of the vertices of G and each edge e in G from w to v is lifted to
edges from the jth lift of w to the (j+ d(e))th lift of v, see Figures 2(2) and
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Figure 2. (1) A multicurve C together with its 3-regular
graph G on Sβ ' closed surface of genus 2. (2) An example
of a cochain d on G: for three edges from w to v, their values
are −1, 0, 1 respectively. (3) Z-fold cover G′ corresponding
to d of (2).

(2) (3)(1)

e

Figure 3. (1) Parallel curves on Sβ which are some com-
ponents of the intersection between Sα and Sβ. (2) Annular
neighborhood of A and the side of A±. (3) For an edge e
starting from the side of A+, A contributes to d(e) by +1.

2(3)). Then there is some R depending only on k and the number of edges
|E(G)| of G such that G′ has a simple loop γ′ of length no more than 2R.

Proof. Suppose there are no such loops of length less than 2R in G′ for any
R. Then the R-neighborhood (i.e., neighborhood with radius R assigning
each edge length 1) of any vertex v0 in G′ must be a tree whose vertices
have valence 1 or 3. Hence it contains 3× (2R − 1) edges. However, such a
neighborhood must contain at most (2Rk+1)|E(G)| edges. (This is because
in R steps, one can travel up at most Rk levels, i.e., Rk copies of the
fundamental domain, or travel down at most Rk levels. Together with the
original level, there are (2Rk + 1) levels in total that one might be able to
pass through, and hence there are at most (2Rk+ 1)|E(G)| edges in them.)

Since the exponential function grows faster than the linear one, one can
set R sufficiently large to reach a contradiction. �

We continue the proof of Proposition 2.2. Note that the multicurve C
above gives a pants decomposition of Sβ. Let G be the 3-regular graph where
each vertex corresponds to a pair of pants in the pants decomposition of Sβ,
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and each edge corresponds to the component of the multicurve between two
pairs of pants. (See Figure 2(1).) Now we define the cochain d on G which
only depends on Sα and Sβ as follows. (See Figure 3.)

Consider the surface S obtained from the cut and paste construction of
Sα and n copies of Sβ. If a curve A is one component of the intersection
between Sα and Sβ, we cut Sβ along A (hence we cut each copy of Sβ along
a curve corresponding to A) which results in two boundary curves for each
copy of Sβ, say A+ and A−. The labeling A+ and A− are determined as
follows: in the surface obtained from Sα and the copies of Sβ via the cut
and paste construction, an annular piece of Sα connecting the ith copy of
Sβ to the (i + 1)th copy of Sβ is attached to the ith copy of Sβ along A+

(the index of each copy of Sβ is understood as an integer modulo n). We
label the other boundary component A−.

Now the labeling on each copy of Sβ is well-defined, and if one considers
an annular neighborhood of A, then one can make sense of the statement
that one side is the side of A+ and the other side is the side of A−.

Let us consider an edge e on G which intersects the curve A. If e is with
the orientation so that it passes from the side of A+ to that of A−, then A
contributes to d(e) by +1, and A contributes to d(e−1) by −1, where e−1

is the same edge as e with the opposite orientation. The number d(e) is
obtained by summing up all the contributions of curves in Sα ∩ Sβ that the
edge e passes through. Note that the cochain d does not depend on n but
only on Sα and Sβ, since we consider copies of Sβ very close to each other,
the intersection with Sα looks exactly the same in any copy of Sβ.

Let k be the maximum of the values of d on all edges on G, and let R be
the constant from Lemma 2.3. Now let n be any integer so that n ≥ 2Rk+2,
and consider the surface S obtained from Sα and n copies of Sβ by a cut
and paste construction. (In other words, here we will argue that the integer
n0 in Proposition 2.2 can be chosen as 2Rk+ 2.) Let γ′ be a simple loop in
G′ in Lemma 2.3. The fact that |d(e)| ≤ k implies that γ′ passes through at
most 2Rk+ 1 consecutive fundamental domains of the deck group action on
G′. The embedding of these 2Rk + 1 fundamental domains, together with
one more, to 2Rk+ 2 copies of Sβ after the surgery, sends γ′ to some simple
loop γ on the surface S. (To do that, pick a point in each pant in Si. Now
pick a starting vertex v0 on γ′, and let γ start at the point associated to the
corresponding pant in SRk+2. Now, we travel along γ′, and for each edge,
connect the points in the two pants associated with the two end points of
the edge. Construction of G′ and Lemma 2.3 imply that the resulting path
γ will also be closed.)

Let c ∈ C be a component of the multicurve on Sβ and let ci be the
corresponding copies of c on the ith copy Si of Sβ. Suppose that c is chosen
such that cl is crossed by γ once for some l, and that γ does not cross the
lowest copy S1 (see Figure 4). One can choose such c, since the length of
γ′ is no more than 2R. Note that all ci survives under surgery because
they do not cross the intersections between Si and Sα. Furthermore, except
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S1

Sl

c1

cl

γ

Figure 4. The horizontal line segments (with dots) repre-
sent the copies S1, S2, · · · of Sβ, and the curve with arrow
represents the loop γ which passes through Sl but not the
lowest copy S1 of Sβ.

for the top cn, their images under the first return map are ψ(ci) = ci+1.
By construction of S, it follows that c1, ψ(c1) = c2, · · · , ψn−1(c1) = cn are
disjoint. For the proof of Proposition 2.2, we only need to show that [c2]±[c1]
is not homologous to 0. (This also implies that c1 on S is essential.) To do
so, one only needs to show that

(ψl−2
∗ + ψl−3

∗ + · · ·+ id∗)([c2]− [c1]) = [cl]− [c1]

and

(ψl−2
∗ − ψl−3

∗ + · · ·+ (−1)l−2id∗)([c2] + [c1]) = [cl] + (−1)l−2[c1]

are not 0. Since γ passes through cl and it does not pass through c1, simple
closed curves cl and c1 do not bound a subsurface. Therefore [cl] 6= ±[c1].
This completes the proof of Proposition 2.2. �

We now consider a compact hyperbolic fibered 3-manifold M . In order
to obtain an estimate for the asymptotic translation length of monodromies
from the arithmetic sequences in the fibered cone for M , we show the fol-
lowing variant of Proposition 2.2.

Proposition 2.4. Let C be a fibered cone for a compact hyperbolic fibered
3-manifold M possibly with boundary. Let α ∈ C and β ∈ C be integral
classes. Suppose (S, ψ) = α + nβ ∈ C is a primitive integral class for an
integer n ≥ 2. Then there is an essential simple closed curve c on S or
essential arc on S so that c, ψ(c), · · · , ψn−1(c) are disjoint. In particular we
have

`C(ψ) ≤ 2

n− 1
.

Proof. Let F be the suspension flow for the fibered cone C . In [Lan19, Ap-
pendix A], Landry generalized Fried’s theory on the fibered cone (for closed
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hyperbolic fibered 3-manifolds) to the case of compact hyperbolic fibered
3-manifolds M possibly with boundary. In particular F is an invariant of
C as well. Then we use the transverse surface theorem [Mos91, Lan19]

for compact hyperbolic fibered 3-manifolds M again. Let F̂ be a dynamic
blowup of F for β ∈ C . We can take representatives Sα and Sβ of α and β
respectively so that Sα and Sβ are transverse and they intersect the new flow

F̂ transversely. We may assume that Sα and Sβ intersect minimally, i.e.,
the number of components of the intersection between Sα and Sβ is minimal
among all representatives of α and β. The surface obtained from Sα and Sβ
by a cut and paste construction is a fiber of the fibration associated with
α + β ∈ C . This implies that Sα and Sβ are minimal representatives of α
and β.

Do surgery (as in the proof of Proposition 2.2) at the intersection locus
of Sα and n copies of Sβ to obtain a surface S representing α+nβ. We now
find the desired essential simple closed curve on S or an essential arc c on S.
Let c be one of the intersection curves or arcs between Sα and Sβ, and let
S1 be the the lowest copy of Sβ. The fact that c is essential on Sα and on
Sβ follows from the fact that the intersection between Sα and Sβ is minimal
(see [Thu86] or [Cal07, Lemma 5.8]). It is not hard to see from the cut and
paste construction that c is also essential on S.

From the choice of c, it follows that c and ψn−1(c) are disjoint. They are
distinct in the arc and curve complexAC(S), since ψ is pseudo-Anosov. Thus
the distance between c and ψn−1(c) in AC(S) equals 1. This implies that
(n−1)`AC(ψ) = `AC(ψ

n−1) ≤ 1 (cf. [KS19, Lemma 2.1]), where `AC(ψ) is the
asymptotic translation length of ψ on AC(S). It is known that the inclusion
map C(S)→AC(S) is 2-bilipschitz (see, for instance, [MM00, Lemma 2.2]
or [KP10]). In particular, this tells us that

`C(ψ) ≤ 2`AC(ψ).

Thus we have `C(ψ) ≤ 2`AC(ψ) ≤ 2
n−1 . This completes the proof. �

Remark 2.5. In [BSW18], Theorem 1.1 was proved in the case of closed
hyperbolic fibered 3-manifolds. We note that almost the same proof can be
adapted to the case of compact hyperbolic fibered 3-manifold. In fact, one
only needs to modify the last paragraph (after Lemma 8) in the proof of The-
orem 5 in [BSW18] to allow γ and γ′ to be either an essential simple closed
curve or an essential simple arc. Then one obtains the same conclusion of
Theorem 1.1 by the fact that inclusion map C(S)→AC(S) is 2-bilipschitz as
in the proof of Proposition 2.4 in this paper.

3. Applications of arithmetic sequences

3.1. Asymptotic translation lengths in fibered cones. In this section,
we show the following estimate for the asymptotic translation lengths in the
curve complexes.
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Theorem 3.1. Let F be a fibered face of a compact hyperbolic fibered 3-
manifold possibly with boundary. Then there exists a constant C depending
on F such that for any primitive integral class (S, ψ) ∈ CF , we have

`C(ψ) ≤ C

|χ(S)|
.

To prove this theorem, we need the following lemma about rational cones.
Here a rational cone in Euclidean space Rm is the set of the points of the
form

{x = (x1, . . . , xm) ∈ Rm : Axt ≥ 0}
for some k × m matrix A with integer entries. (xt is the transpose of x.)
We further assume that this set has nonempty interior.

Lemma 3.2. Let P be a rational cone in Rm, and let int(P ) be its interior.
Then there exist two nonempty finite sets Ω0 ⊂ int(P )∩Zm and Ω ⊂ P ∩Zm
so that

int(P ) ∩ Zm = {a+
∑
b∈Ω

kbb : a ∈ Ω0, kb ∈ Z, kb ≥ 0}.

Proof. It is a classical result (cf. [Thu14, Proposition 3.4]) that P ∩ Zm is
a finitely generated monoid. Let Ω be a finite set of generators of P ∩ Zm,
and let

Ω0 = {
∑
b∈W

b : W ⊂ Ω,W 6⊂ F for all faces F of ∂P}.

Here a face of ∂P is a polytope of dimension m− 1 which is the intersection
of ∂P with a m− 1 dimensional subspace of Rm. Note that W can possibly
contain only a single point in int(P ). Clearly Ω0 is a finite set with at most

2|Ω| elements.
Note that a linear combination of elements in Ω with nonnegative coeffi-

cients lie on a face of ∂P if and only if all the coefficients for those generators
that are not on this face are 0. In other words, if

∑
b∈Ω kbb is in int(P ) and

kb are all nonnegative, then the set {b ∈ Ω : kb ≥ 1} must not be contained
in any face of ∂P . Hence

int(P ) ∩ Zm = {a+
∑
b∈Ω

kbb : a ∈ Ω0, kb ∈ Z, kb ≥ 0}

and in particular Ω0 ⊂ int(P ) ∩ Zm as we desire. �

Here is an example of the two finite sets Ω0 and Ω for a rational cone in
R2.

Example 3.3. Let us consider the following rational cone in R2.

P =
{

x = (x1, x2) ∈ R2 :

(
0 1
3 −2

)(
x1

x2

)
≥
(

0
0

)}
.

One can take Ω = {b1 = (1, 0), b2 = (1, 1), b3 = (2, 3)} as a set of generators
of P ∩Z2. There are two faces of ∂P . One is {(x, 0) : x ≥ 0} which contains
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{b1} as a subset, and the other is {(x, 3x
2 ) : x ≥ 0} which contains {b3} as

a subset. One sees that Ω0 consists of five elements, b2, b1 + b2 = (2, 1),
b1 + b3 = (3, 3), b2 + b3 = (3, 4) and b1 + b2 + b3 = (4, 4).

Proof of Theorem 3.1. For a fibered cone C , the closure C is a rational cone
in H1(M), because the unit Thurston norm ball is a polytope whose vertices
are rational points [Thu86]. By Lemma 3.2, if an integral class δ is in C ,
then it can always be written of the form δ = a +

∑
b∈Ω kbb, where a ∈ Ω0

and kb is a nonnegative integer. If S is a norm-minimizing surface of δ, then
we have ‖δ‖ = |χ(S)| and it is bounded above by

max(1,max
b∈Ω

(kb))(‖a‖+
∑
b∈Ω

‖b‖).

Hence, when |χ(S)| > max
a∈Ω0

‖a‖+
∑
b∈Ω

‖b‖, we have

|χ(S)| ≤ max
b∈Ω

(kb)(‖a‖+
∑
b∈Ω

‖b‖).

Therefore

max
b∈Ω

(kb) ≥
|χ(S)|

‖a‖+
∑

b∈Ω ‖b‖
≥ |χ(S)|

maxa∈Ω0 ‖a‖+
∑

b∈Ω ‖b‖
.

Let bm be a b in Ω that maximizes kb. We set α = a+
∑

b∈Ω,b 6=bm kbb, β = bm

and n = kbm . We have α ∈ C and β ∈ C . Then δ is written by δ = α+ nβ
with

n ≥ |χ(S)|
maxa∈Ω0 ‖a‖+

∑
b∈Ω ‖b‖

.

Note that the denominator in the right hand side only depends on the fibered

cone. Now, when ‖δ‖ = |χ(S)| > max
a∈Ω0

‖a‖ +
∑
b∈Ω

‖b‖, the conclusion of the

theorem follows directly from Proposition 2.4. The remaining case ‖δ‖ ≤
max
a∈Ω0

‖a‖ +
∑
b∈Ω

‖b‖ consisting of finitely many primitive integral classes δ,

hence the theorem is proved. �

3.2. Normal generation in the fibered cone. In this section, we prove
the following theorem as a partial answer to Conjecture 1.3.

Theorem 3.4. Let F be a fibered face of a closed hyperbolic fibered 3-
manifold M , and let L be a 2-dimensional rational subspace of H1(M).
Then for all but finitely many primitive integral classes (S, ψ) in CF ∩L, ψ
normally generates Mod(S). In particular, if the rank of H1(M) equals 2,
then Conjecture 1.3 is true.

For the proof of Theorem 3.4, we first prove the following result.
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(1) (2)

o

F
p

p

o

DD

F

Figure 5. (1) Fibered face F in the fibered cone C . (p and
p lie on the same ray in CF passing through the origin.) (2)
Subset ND ⊂ C .

Theorem 3.5. Let C be a fibered cone of a closed hyperbolic fibered 3-
manifold M . Then there exists some x ∈ C such that for each primitive
integral class (S, ψ) ∈ x+ C , ψ normally generates Mod(S), where x+ C =
{x+ v : v ∈ C }.

Proof. Let d be any Euclidean metric on H1(M). Let F be the fibered
face corresponding to C . For every point p ∈ C , let p be the intersection
of F with the ray starting from the origin and passing p (Figure 5(1)).
By [McM00, Corollary 5.4], we have a real analytic, strictly concave and
degree 1 homogeneous function y = 1/logK(·) defined on C , such that the
stretch factor λ(p) for p ∈ C is equal to K(p) and y(p) = 1/logK(p)→ 0 as
p→ ∂F . The concavity implies that there must be some k > 0 (independent
of the choice of p) so that

1

log(K(p))
≥ k · d(p, ∂C ).

A way to see the existence of k is as follows: concavity of y implies that
there is some point p0 ∈ F , where y(p0) > 0. Then, for any point p ∈ F ,
consider the line segment from p0 to the boundary of F passing through p.
Then concavity of y means that on this line segment, y is bounded from
below by the linear function L which takes value 0 at one end and y(p0) at
another end. Hence it has a slope s = s(p) that depends on p and s = s(p)
is continuous on p. On the other hand, the function d(·, ∂C ), restricted
to this line segment, is piecewise linear, and hence it is also bounded from
above by a linear function L′ taking value 0 at the end on ∂F . We choose
such linear function L′ with the smallest slope s′ = s′(p). Then s′ = s′(p) is
continuous on p. Now k can be chosen as any number below the ratio s/s′

between these two slopes. As both slopes depends continuously on p, and F
has compact closure, we can choose a universal k that works on the whole
face F .
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Furthermore, the degree 1 homogeneity implies that

1

log(K(p))
=
d(0, p)

d(0, p)
· 1

log(K(p))

For D > 0, we consider the following set ND (Figure 5(2)).

ND = {p ∈ C : d(p, ∂C ) ≤ D}.
From the above computation, the stretch factor for p ∈ C \ND satisfies

λ(p) = elogK(p) = (elogK(p))
d(0,p)
d(0,p) ≤ (e

1
kd(p,∂C) )

d(0,p)
d(0,p) = e

1
kd(p,∂C) ≤ e

1
kD .

Hence as long as D is sufficiently large, λ(p) can be made to be as close to 1
as needed. In particular it is smaller than

√
2 when D is large enough. This

together with [LM18, Theorem 1.2] shows that for some D, all primitive
integral classes in C \ND are normal generators. The theorem now follows
by picking an arbitrary x ∈ C \ND, due to the fact that the boundary of
ND must be parallel to that of ∂C itself (See Figure 5(2)). �

The next result follows immediately from Lemma 2.1 and Proposition 2.2.

Theorem 3.6. Let C be a fibered cone of a closed hyperbolic fibered 3-
manifold. Suppose that (Sαn , ψαn) is a sequence of primitive integral classes
in C such that αn = v + nw, where v ∈ C and w ∈ C are fixed integral
classes. Then ψαn normally generates Mod(Sαn) for sufficiently large n.

We are now ready to prove Theorem 3.4.

Proof of Theorem 3.4. Let L be a 2-dimensional rational subspace ofH1(M)
satisfying the assumption of Theorem 3.4. Theorem 3.5 says that there is
some x ∈ C so that all primitive integral classes (S, ψ) in x + C normally
generate Mod(S). In particular this holds for all primitive integral classes in
(x+C )∩L. Because L is of dimension 2, the integral classes in (C \(x+C ))∩L
are the union of finitely many sequences of the form (v + nw)n∈N, where
v ∈ C and w ∈ C . Thus by Theorem 3.6, for all but finitely many primitive
integral classes (S, ψ) in (C \(x + C )) ∩ L, ψ normally generates Mod(S).
This completes the proof. �

Remark 3.7. Our approach to Theorem 3.4 does not work when the dimen-
sion of the rational subspace L of H1(M) is more than 2. This is because
in this case, the intersection (C \(x + C )) ∩ L no longer consists of finitely
many sequences of primitive integral classes of the form v+nw, where v ∈ C
and w ∈ C .

4. Sequences in the fibered cone of the magic manifold

Let C3 be the 3-chain link in S3 as in Figure 6(1). The magic manifold N
is the exterior of C3 (hence ∂N consists of three boundary tori), and it is a
hyperbolic and fibered 3-manifold. We give some background on invariant
train tracks in Section 4.1 and we discuss the fibered cone of N in Section
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4.2. We compute the upper and lower bounds of the asymptotic translation
length of particular sequences in the fibered cone of N in Sections 4.3 and
4.4. Then we prove Theorem 4.13 in Section 4.5.

4.1. Invariant train tracks for pseudo-Anosov maps. For definitions
and basic results on train tracks, see [BH95, PP87, FM12]. Let ψ : S → S
be a pseudo-Anosov homeomorphism defined on a surface S possibly with
boundary/punctures. When S is a punctured surface, we say that ψ is fully
punctured if the set of singularities of the unstable foliation for ψ is contained
in the set of punctures of S.

Let τ be an invariant train track for ψ. Then ψ : S → S induces a map
on τ to itself which takes switches (vertices) to themselves. Such a map is
called the train track map. By abuse of notation, we denote the train track
map on τ also by ψ : τ → τ . Following [BH95, Section 3.3], we say that a
branch e of τ is real if there exists an integer m ≥ 1 such that ψm(e) passes
through all branches of τ . Otherwise we say that e is infinitesimal. The
train track map ψ : τ → τ induces a finite digraph Γ by taking a vertex
for each real branch of τ , and then adding mij directed edges from the jth
real branch ej to the ith real branch ei, where mi,j is the number of times
so that the image ψ(ej) under the train track map ψ passes through ei in
either direction.

For the lower bound of `C(ψ), we recall a result by Gadre–Tsai. The
following statement is a consequence of Lemma 5.2 in [GT11] together with
the proof of Theorem 5.1 in [GT11].

Proposition 4.1. Let ψ ∈ Mod(Sg,n) be a pseudo-Anosov element and let
τ be an invariant train track for ψ. Suppose that r is a positive integer such
that for any real branch e of τ , ψr(e) passes through every real branch. If
we set h = r + 24|χ(Sg,n)| − 8n, then ψh(e) passes through every branch of
τ (including infinitesimal branches). Moreover if we set

w = h+ 6|χ(Sg,n)| − 2n = r + 30|χ(Sg,n)| − 10n ≤ r + 30|χ(Sg,n)|,

then we have

`C(ψ) ≥ 1

w
≥ 1

r + 30|χ(Sg,n)|
.

4.2. Fibered cones of the magic manifold.

We consider coordinates of integral classes in fibered cones of N . We
assign orientations of the three components of C3 as in Figure 6(1). Let Sα,
Sβ and Sγ be the oriented 2-punctured disks bounded by these components
of C3. We set α = [Sα], β = [Sβ], γ = [Sγ ] ∈ H2(N, ∂N ;Z) ' H1(N ;Z).
Then α, β, γ form a basis of H2(N, ∂N ;Z). We denote by (x, y, z), the
class xα+ yβ + zγ. The Thurston norm ball BN is the parallelepiped with
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Figure 6. (1) 3-chain link C3. (2) Thurston norm ball of N
and fibered face F .

vertices ±α = ±(1, 0, 0), ±β = ±(0, 1, 0), ±γ = ±(0, 0, 1) and ±(α+β+γ) =
±(1, 1, 1), see Figure 6(2).

A symmetry of C3 tells us that every top-dimensional face of BN is a
fibered face. Moreover all fibered faces of N are permuted transitively by
homeomorphisms of N . Hence they have the same topological types in their
fibers and the same dynamics of their monodromies. To study monodromies
of fibrations on N , it suffices to pick a particular fibered face, say F with
vertices (1, 0, 0), (1, 1, 1), (0, 1, 0) and (0, 0,−1), see Figure 6(2). For a prim-
itive integral class (S, ψ) ∈ CF , the monodromy ψ is pseudo-Anosov defined
on S with boundary components, since ∂N 6= ∅. Each connected compo-
nent of ∂S is a simple closed curve which lies on one of the boundary tori
of N . By abusing notations, we often regard boundary components of S as
punctures of S by crushing each boundary component to a puncture. Hence
we think of ψ as a pseudo-Anosov map defined on the punctured surface S.
Such ambiguity does not matter for our purpose since the computation of
the asymptotic translation lengths of the pseudo-Anosov monodromies on
the curve complex will not be affected. Under this convention, one sees that
for any primitive integral class (S, ψ) ∈ CF , the pseudo-Anosov monodromy
ψ is fully punctured, see for example [Kin15].

The open face int(F ) is written by

int(F ) = {(x, y, z) | x+ y − z = 1, x > 0, y > 0, x > z, y > z}.

This implies that (x, y, z) ∈ CF if and only if x > 0, y > 0, x > z and
y > z. The next lemma tells us the topological type of the corresponding
fiber S(x,y,z).

Lemma 4.2 ([KT11]). For a primitive integral class (x, y, z) ∈ CF , let
|∂S(x,y,z)| denote the number of the boundary components of S(x,y,z). The
Thurston norm ‖(x, y, z)‖ = |χ(S(x,y,z))| equals x + y − z, and |∂S(x,y,z)| is
given by

|∂S(x,y,z)| = gcd(x, y + z) + gcd(y, z + x) + gcd(z, x+ y).
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Figure 7. Digraphs (1) Γ(1,j,k)+ , (2) Γ(1,n,n2)+ and (3) Γ(1,3,9)+ .

More precisely, each term in the right-hand side expresses the number of
boundary components of S(x,y,z) which lie on one of the boundary tori of N .

We introduce another coordinate (i, j, k)+. For i, j, k ≥ 0, define

(i, j, k)+ = i(1, 1, 1) + j(0, 1, 0) + k(1, 1, 0) = (i+ k, i+ j + k, i).

Note that (1, 1, 0) ∈ CF , but (0, 1, 0) /∈ CF and (1, 1, 1) /∈ CF (in fact the

two classes lie on ∂F ), see Figure 6(2). We denote by (i, j, k)+, the class
with the Thurston norm 1 which is projectively equal to (i, j, k)+.

If i, j, k are integers with i ≥ 0, j ≥ 0 and k > 0, then (i, j, k)+ ∈ CF . If
(i, j, k)+ is a primitive integral class in CF , then we let (S(i,j,k)+ , ψ(i,j,k)+) be
the pair of the fiber and its monodromy. In [Kin15, Section 3], the second
author constructs an invariant train track τ = τ(i,j,k)+ and the digraph
Γ = Γ(i,j,k)+ of the train track map ψ = ψ(i,j,k)+ : τ → τ for each primitive
integral class (i, j, k)+ ∈ CF . Figure 7(1) illustrates Γ = Γ(1,j,k)+ when i = 1,
j > 0 and k > 0 (see also [Kin15, Figure 22(4)]). The vertices in the left
column of Γ are denoted by s, a1, · · · , ak from bottom to top; vertices in
the right column of Γ are denoted by r1, · · · , rj , b1, · · · , bk from bottom to
top. (Recall that each vertex of Γ corresponds to a real branch of τ .) The
numbers j − 1 and k− 1 near the ‘thick’ edges of Γ indicate their lengths of

paths. For instance, the edge r1
j−1−→ rj from r1 to rj indicates the edge path

r1 → · · · → rj−1 → rj . See Figure 7(3) for the concrete example. When
j = 1 or k = 1, the corresponding ‘thick’ edges collapse (see Figure 11).
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4.3. Computing the lower bounds. For fixed positive integers p and q,
we consider the sequence

(1, np, nq)+ = (1 + nq, 1 + np + nq, 1) ∈ CF

varying positive integer n. The integral class (1, np, nq)+ is primitive, since
gcd(1, np, nq) = 1. From the formula of the Thurston norm in Lemma 4.2,
it is immediate to see the following lemma. See also Figure 6(2).

Lemma 4.3. Let (1, np, nq)+ be the projective class of (1, np, nq)+.

(1) If p = q, then (1, np, nq)+ → (1
3 ,

2
3 , 0) ∈ int(F ) as n→∞.

(2) If p < q, then (1, np, nq)+ → (1
2 ,

1
2 , 0) ∈ int(F ) as n→∞.

(3) If p > q, then (1, np, nq)+ → (0, 1, 0) ∈ ∂F as n→∞.

Here we consider the following three cases: q < p < 2q, p < q ≤ 2p and
2p ≤ q. We define

k = kp,q =


nq(2nq + 1) if q < p < 2q,

nq(2np + 1) if p < q ≤ 2p,

nq(2nq−p + 1) if 2p ≤ q.

Proposition 4.4. For any two vertices v, w of Γ = Γ(1,np,nq)+, there exists
an edge path from v to w of length k + 2np + 3nq.

In other words, if we set k′ = kp,q + 2np + 3nq, then for any real branch v

of τ , ψk
′
(v) passes through every real branch. For the proof of Proposition

4.4, we need some lemmas. Recall that s is the bottom vertex in the left
column of Γ. Let v0 be the top vertex anq in the left column of Γ (Figure
9).

Lemma 4.5. For any vertex v in the left column of Γ, there exists an edge
path from s to v of length k.

Proof. We have an edge path s → a1
nq−1−→ anq = v0 from s to v0 of length

nq. For the proof of the lemma, it suffices to show that for any vertex v in
the left column of Γ, there exists an edge path from v0 to v of length k−nq.
Then the desired path can be obtained from the concatenation of the two
paths, the path from s to v0 and the path from v0 to v. Equivalently, we
show that for any i = 0, . . . , nq, there exists a cycle based at v0 of length
k − nq + i.

It is easy to find two cycles based at v0 in Γ of lengths nq and nq + 1 (see
Figure 7(1)). We have another cycle based at v0 in Γ of length np + nq + 1
as follows:

v0 = anq → r1
np−1−→ rnp → s→ a1

nq−1−→ anq = v0

We show that combining repeated use of these three cycles is enough to
produce the cycles we desire. Suppose q < p < 2q. Then k−nq = 2n2q. We
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now show that for any i = 0, . . . , nq, there exist nonnegative integers a, b,
and c such that

anq + b(nq + 1) + c(nq + np + 1) = 2n2q + i.

This is done by setting c = 0, b = i and a = 2nq − i.
Suppose p < q ≤ 2p. Then k − nq = 2np+q. We claim that for any

i = 0, . . . , nq, there exist nonnegative integers a, b, and c such that

anq + b(nq + 1) + c(nq + np + 1) = 2np+q + i.

This can be done by setting

c = b i

np + 1
c, b = i− (np + 1)b i

np + 1
c, a = 2np − b− c,

where b·c is the floor function. Here b and c are nonnegative integers by
definition, and b is the remainder of i divided by np+1. Hence b must be no
larger than np. On the other hand c ≤ nq−p, because i ≤ nq < nq−p(np+ 1).
Thus b+ c ≤ np + nq−p ≤ 2np, which implies that a is nonnegative.

Lastly, suppose 2p ≤ q. Then k − nq = 2n2q−p. We claim that for any
i = 0, . . . , nq, there exist nonnegative integers a, b, and c such that

anq + b(nq + 1) + c(nq + np + 1) = 2n2q−p + i.

This can be done by setting

c = b i

np + 1
c, b = i− (np + 1)b i

np + 1
c, a = 2nq−p − b− c.

Here b and c are nonnegative integers by definition, and b is the remainder of
i divided by np + 1. Hence b must be no larger than np. On the other hand
c ≤ nq−p, because i ≤ nq < nq−p(np + 1). Thus b+ c ≤ np + nq−p ≤ 2nq−p,
which says that a is nonnegative. This finishes the proof. �

Lemma 4.6. For any vertex v in the left column of Γ and for any m ≥ 0,
there exists an edge path from s to v of length k +m.

Proof. Let v be any vertex in the left column of Γ. For any m ≥ 0, one can
find a vertex v′ in the left column of Γ such that there is an edge path from
v′ to v of length m. (To see this, use the above cycles based at v0 of lengths
nq and nq + 1.) Lemma 4.5 tells us that there exists an edge path from s to
v′ of length k. The concatenation of these edge paths is a desired edge path
of length k +m. �

Lemma 4.7. For any vertex v in the right column of Γ and for any m ≥ 0,
there exists an edge path from s to v of length k + np + nq +m.

Proof. Let v be an arbitary vertex in the right column of Γ. Then there
exists an edge path from v0 to v of length ` with 1 ≤ ` ≤ np + nq. To see
this, use the path

v0 = anq → r1
np−1−→ rnq → b1

nq−1−→ bnq
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from v0 to bnq . On the other hand, Lemma 4.6 tells us that there exists an
edge path from s to v0 of length k+(np+nq−`)+m. Here (np+nq−`)+m
plays the role of m in Lemma 4.6. Concatenating these two paths, one
obtains an edge path from s to v of length k + np + nq +m. �

By Lemmas 4.6 and 4.7, we immediately have the following lemma.

Lemma 4.8. For any vertex v of Γ and for any m ≥ 0, there exists an edge
path from s to v of length k + np + nq +m.

We are now ready to prove Proposition 4.4.

Proof of Proposition 4.4. Note that for any vertex v, there exists an edge
path from v to s of length 0 ≤ ` ≤ np + 2nq. To see this, one can use the
following edge path of length np + 2nq passing through all vertices of Γ.

r1
np−1−→ rnq → b1

nq−1−→ bnq → a1
nq−1−→ anq → s.

By Lemma 4.8 there exists an edge path from s to any vertex w of length
exactly k+(2np+3nq−`), since 2np+3nq−` ≥ np+nq. The concatenation
of the two paths has length k + 2np + 3nq. �

Now we are ready to compute the lower bounds. For real-valued func-
tions A(x) and B(x), we write A(x) & B(x) if there is a constant C > 0
independent of x such that A(x) ≥ C ·B(x).

Theorem 4.9. The sequence (1, np, nq)+ in CF satisfies

`C(ψ(1,np,nq)+) &


1/n2q if q < p < 2q,

1/np+q if p < q ≤ 2p,

1/n2q−p if 2p ≤ q.

Proof. By Lemma 4.2, it is not hard to see that

(kp,q + 2np + 3nq) + 30|χ(S(1,np,nq)+)| �


n2q if q < p < 2q,

np+q if p < q ≤ 2p,

n2q−p if 2p ≤ q.

Then the desired claim follows from Propositions 4.1 and 4.4. �

4.4. Computing the upper bounds. To prove Theorem 4.13, we will also
compute the upper bound of the asymptotic translation length of ψ(1,np,nq)+ .

Theorem 4.10. For any fixed positive integers p and q with q < p < 2q,
the sequence (1, np, nq)+ of primitive integral classes in CF converges pro-
jectively to (0, 1, 0) ∈ ∂F as n→∞, and we have

`C(ψ(1,np,nq)+) ≤ 4

n2q
.
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The first half of Theorem 4.10 follows from Lemma 4.3(3). For the rest
of the proof, we first introduce the dual arcs of real branches of train tracks.
Consider an invariant train track τ for the monodromy ψ defined on the
fiber S of a fibration on N . If we think of the surface S with boundary as
the punctured surface which is again denoted by S abusing notation, each
component of the complement S \ τ of the train track is a once-punctured
ideal polygon, because ψ is fully punctured. Consider the cell decomposition
of S corresponding to τ . That is, 0-cells are switches of τ , 1-cells are branches
of τ , and 2-cells are ideal polygons of S \ τ .

Given a real branch v, the dual arc αv of v is defined to be the edge of
the dual cell complex that connects the punctures in two polygons (possibly
the same polygon) sharing the real branch v (see Figure 8).

τ

s v

αv

αs

Figure 8. Cell decomposition, branches, and dual arcs.

Notice that the dual arc αv is an essential arc. In order to see this, con-
sider a rectangle associated with the real branch v, contained in a Markov
partition for a pseudo-Anosov homeomorphism which represents ψ. Then
v corresponds to leaves of the unstable foliation and the dual arc αv corre-
sponds to leaves of the stable foliation in this rectangle. If the dual arc is not
essential, then this implies that the real branch v cannot support a positive
transverse measure, which is a contradiction to a property of pseudo-Anosov
homeomorphisms.

Readers may notice that the dual arc associated to a real branch is a
general notion for fully punctured pseudo-Anosov homeomorphisms. More
precisely, if τ is an invariant train track for a fully punctured pseudo-Anosov
ψ, then for a real branch v of τ , one can define the dual arc αv which is
essential.

Proof of Theorem 4.10. Let (S, ψ) = (S(1,np,nq)+ , ψ(1,np,nq)+) be the pair of
the fiber and its monodromy for (1, np, nq)+. Let Γ be the digraph of the
train track τ for (1, np, nq)+, and let ψ∗ : V (Γ)→V (Γ) be the induced map,
where V (Γ) is the set of vertices of Γ. The map ψ∗ can be read off Figure 9.

Here is the outline of the proof. We will compute the upper bound of
the asymptotic translation length `AC(ψ) of ψ on the arc and curve complex
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s

a1 b1

b2

...

rnp

...

r3

r2

r1

anq bnq

A B

R2

R1

Figure 9. Digraph Γ(1,np,nq)+ (left). Digraph Γ(1,23,22)+

with partition {A,B,R1, R2} (right).

AC(S). Since C(S) andAC(S) are quasi-isometric, this gives an upper bound
on C(S). We show that there are distinct vertices t and v in Γ, i.e., distinct

real branches t and v of τ , such that ψn
2q

∗ (t) does not contain v. Using
this fact, we also show that there are disjoint arcs βt and αv in AC(S) such

that ψn
2q

(βt) and αv are disjoint. This implies that the distance in AC(S)

satisfies dAC(βt, ψ
n2q

(βt)) ≤ 2, and we deduce that `AC(ψ) ≤ 2

n2q
.

Step 1. C(S) and AC(S) are quasi-isometric.

Proof of Step 1. Just recall that the inclusion map C(S)→AC(S) is 2-
bilipschitz.

Hence for the proof of Theorem 4.10, it is enough to show that the as-
ymptotic translation length ψ on AC(S) satisfies

`AC(ψ) ≤ 2

n2q
.

Step 2. Let t be the vertex bnq of Γ. Then ψn
2q

∗ (t) doesn’t contain all
vertices in Γ.

Proof of Step 2. We will show that there is a vertex v that is not contained

in ψn
2q

∗ (t). Consider the partition {A,B,R1, R2, · · · , Rnp−q} of vertices ai,
bi, and ri of Γ, where each partition element consists of nq vertices as in
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Figure 9. Under the iteration of the nqth power ψn
q

∗ of ψ∗, one can see that

ψn
q

∗ (t) = {anq , rnq},
ψ2nq

∗ (t) = {anq , anq−1, rnq , r2nq},
ψ3nq

∗ (t) = {anq , anq−1, anq−2, rnq , rnq−1, r2nq , r3nq},
...

and that the number of vertices in each partition element, contained in

ψj·n
q

∗ (t) is increasing by at most one as j increases. Hence one can see that
there are vertices in each Rk (k = 1, · · · , np−q) that are not contained in

ψn
2q

∗ (t). More precisely, consider R1 = {r1, r2, · · · , rnq}. One can check that

for vertices in R1, the image ψj·n
q

∗ (t) contains only

{rnq , rnq−1, · · · , rnq−j+2} ⊂ R1

for 2 ≤ j ≤ nq. Therefore ψn
2q

∗ (t) does not contain r1, and we may choose
v to be r1. This completes the proof of Step 2.

Step 3. There are distinct arcs αv and βt in AC(S) such that ψn
2q

(βt)
and αv are disjoint.

Before proving Step 3, we first discuss some properties of the primitive in-
tegral class (1, j, k)+ with j > 0 and k > 0. Recall that r1, · · · , rj , b1, · · · , bk
are vertices of Γ = Γ(1,j,k)+ which lie on the right column of Γ (Figure 7(1)).
There is a single ideal polygon P = P(1,j,k)+ containing a single puncture
cP of the fiber S = S(1,j,k)+ such that the two endpoints of each real branch
bi (i = 1, · · · , k) are switches (of τ) in the boundary ∂P of P , see Figure
10. From the construction of τ in [Kin15], it follows that ∂P consists of
periodic branches, i.e., infinitesimal branches, and ψ = ψ(1,j,k)+ maps cP to
itself (and hence the ideal polygon P is preserved by ψ). To see ψ(cP ) = cP ,
we consider the fiber S = S(i,j,k)+ with boundary. (So we now think of the
above cP as a boundary component of S.) By using Lemma 4.2 for the
primitive integral class (1, j, k)+, we see that there is a boundary torus T of
N such that cP is the only boundary component of S which lies on T . This
implies cP is preserved by ψ.

For the real branch ri (i = 1, · · · , j), consider its dual arc αri . Let cri and
c′ri be boundary components in ∂S which are connected by αri . (Possibly
cri = c′ri .) Then there is another boundary torus T ′ of N on which the both
cri and c′ri lie.

Proof of Step 3. Consider the primitive integral class (1, np, nq)+ in question.
The two endpoints of the real branch t = bnq are switches (of τ) in ∂P . Join
cP and each endpoint of the real branch t by an arc and then we obtain an
arc βt in S (see Figure 10). Since t is a real branch, one sees that the arc
βt is essential. Since ψ maps cP to itself, ψ`(βt) is an essential arc based at
the same cP for each ` > 0. Moreover ψ`(βt) is not homotopic to βt for each
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t

βt

cP

Pτ

Figure 10. (A part of train track τ .) Ideal polygon P , real
branch t = bnq , and arc βt based at cP .

` > 0, since ψ is pseudo-Anosov. Let us consider the dual arc αv of v = r1.
Recall that cv and c′v which are connected by αv lie on a boundary torus T ′

of N , yet cP lies on the different boundary torus T of N . The arc βt has
end points at cP , and hence βt is not homotopic to αv.

Now we prove that ψ2q(βt) and αv are disjoint. The ideal polygon P is

preserved by ψ, and ψn
2q

(t) is carried by τ since τ is invariant under ψ.

Moreover, since ψn
2q

(t) does not pass through v by the proof of Step 2, it

follows that ψn
2q

(βt) is disjoint from v, and hence also disjoint from its dual
arc αv. This completes the proof of Step 3.

Step 4. We have

`AC(ψ) ≤ 2

n2q
.

Proof of Step 4. Clearly βt and αv are disjoint. Since ψn
2q

(βt) is an essential

arc based at cP , we have ψn
2q

(βt) 6= αv in AC(S) by the same argument
as in the proof of Step 3. This together with the fact that the geometric

intersection number i(ψn
2q

(βt), αv) = 0 implies that βt and ψn
2q

(βt) are at

most distance 2 in AC(S), i.e., dAC(βt, ψ
n2q

(βt)) ≤ 2. By the definition of
the asymptotic translation length, it follows that

`AC(ψ) ≤ 2

n2q
.

This completes the proof, and we have finished the proof of Theorem 4.10.
�

Theorem 4.11. For any fixed positive integers p and q with 2p ≤ q, the se-
quence (1, np, nq)+ of primitive integral classes in CF converges projectively
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Figure 11. Digraph Γ(1,n,1)+ .

to (1
2 ,

1
2 , 0) ∈ int(F ) as n→∞, and we have

`C(ψ(1,np,nq)+) ≤ C

n2q−p ,

where C is a constant independent of n.

Proof. The first half of the claim follows from Lemma 4.3(2). For the rest
of the proof, let ψ = ψ(1,np,nq)+ . Consider the digraph Γ = Γ(1,np,nq)+

and the induced map ψ∗ : V (Γ) → V (Γ). Let t be the vertex bnq of Γ.
By using a similar argument as in Step 2 of the proof of Theorem 4.10,

one can show that the set of vertices ψj·n
q

∗ (t) is contained in V (Γ) \ R for

j = 1, · · · ,
⌊
nq−1
np+1

⌋
, where R = {r1, r2, · · · , rnp}. In other words, each vertex

in R is not contained in ψj·n
q

∗ (t) for such j. In particular, if we set D =

D(n) =
⌊
nq−1
np+1

⌋
, then r1 is not contained in ψDn

q

∗ (t). Then we consider the

two arcs βt and αv as in Step 3 of the proof of Theorem 4.10. By the same
argument, it follows that βt, αt and ψDn

q
(βt) are distinct elements in AC(S).

Moreover we have i(ψDn
q
(βt), αv) = 0 and i(βt, αv) = 0. Therefore βt and

ψDn
q
(βt) are at most distance 2 in AC(S), and we have `AC(ψ) ≤ 2

Dnq

which implies that `C(ψ) ≤ 4

Dnq
. Since Dnq � n2q−p, we have finished the

proof. �

4.5. The behaviors of asymptotic translation lengths. We prove the
following lemma which implies that the upper bound of Theorem 3.1 is
optimal.
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Lemma 4.12. The sequence (1, n, 1)+ of primitive integral classes in CF
converges projectively to a point in ∂F as n→∞, and we have

`C(ψ(1,n,1)+) � 1

|χ(S(1,n,1)+)|
.

Proof. The first half of the claim follows from that fact that (1, n, 1)+ →
(0, 1, 0) ∈ ∂F as n → ∞. Since |χ(S(1,n,1)+)| = n + 3, it is enough to
prove that `C(ψ(1,n,1)+) � 1/n. By the digraph Γ = Γ(1,n,1)+ (see Figure 11)
together with Proposition 4.1, it is not hard to see that `C(ψ(1,n,1)+) & 1/n.

Now we compute the upper bound. Let (S, ψ) = (S(1,n,1)+ , ψ(1,n,1)+) and
let t be the vertex b of Γ. We have

ψ∗(t) = {r1}, ψ2
∗(t) = {r2}, · · · , ψn∗ (t) = {rn}.

In particular this implies that ψn(t) does not pass through the real branch
r1 of τ = τ(1,n,1)+ . We consider the essential arc βt for t as in the proof of
Theorem 4.10, and consider the dual arc αr1 of r1. By the same argument
as in the proof of Theorem 4.10, one sees that the three arcs βt, ψ

n(βt) and
αr1 are distinct elements in AC(S). Furthermore for the geometric intersec-
tion numbers between arcs, we have i(βt, αr1) = 0 and i(ψn(βt), αr1) = 0.
Therefore βt and ψn(βt) are at most distance 2 in AC(S), and we have
`AC(ψ) ≤ 2/n, which gives the desired upper bound `C(ψ) ≤ 4/n. This
completes the proof. �

Now we are ready to prove the following theorem.

Theorem 4.13. Let F be a fibered face of the magic manifold. Then there
exist two points b0 ∈ ∂F and c0 ∈ int(F ) which satisfy the following.

(1) For any r ∈ Q∩ [1, 2), there exists a sequence (Sαn , ψαn) of primitive
integral classes in CF converging projectively to b0 as n → ∞ such
that

`C(ψαn) � 1

|χ(Sαn)|r
.

(2) For any r ∈ Q∩[3
2 , 2], there exists a sequence (Sαn , ψαn) of primitive

integral classes in CF converging projectively to c0 as n → ∞ such
that

`C(ψαn) � 1

|χ(Sαn)|r
.

In particular, the upper bound in Theorem 1.1 is optimal when d = 2.

Proof. Because of the symmetry of the Thurston norm ball BN , it suffices
to prove the theorem for the fibered face as we picked in Section 4.2. For
(1), if 1 < r < 2, let p and q be positive integers such that r = 2q/p with
q < p < 2q . By Lemma 4.3, the sequence(1, np, nq)+ converges projectively
to (0, 1, 0) ∈ ∂F . By Theorems 4.9 and 4.10, we have `C(ψ(1,np,nq)+) � 1/n2q.
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Since we have ||(1, np, nq)+|| � np, it follows that

`C(ψ(1,np,nq)+) � 1

|χ(S(1,np,nq)+)|
2q
p

=
1

|χ(S(1,np,nq)+)|r
,

where r = 2q/p ∈ (1, 2). If r = 1, it follows from Lemma 4.12.
For (2), if 3

2 ≤ r < 2, let p and q be positive integers such that r =
2 − p/q with 2p ≤ q. By Lemma 4.3, the sequence (1, np, nq)+ converges
projectively to (1

2 ,
1
2 , 0) ∈ int(F ) as n→∞. By Theorems 4.9 and 4.11, we

have `C(ψαn) � 1/n2q−p. Since we have ||(1, np, nq)+|| � nq, it follows that

`C(ψ(1,np,nq)+) � 1

|χ(S(1,np,nq)+)|2−
p
q

=
1

|χ(S(1,np,nq)+)|r
,

where r = 2 − p/q ∈ [3
2 , 2). For r = 2, one can choose a sequence of

primitive integral classes contained in the intersection between the cone over
some compact set K ⊂ int(F ) and some 2-dimensional rational subspace of
H1(M). (e.g. the sequence (1, n, n)+.) Then the sequence satisfies the
desired property from [BSW18, Corollary 1].

Finally we consider the upper bound in Theorem 1.1 when d = 2. If
(p, q) = (1, 2), then

`C(ψ(1,n,n2)+) � 1

|χ(S(1,n,n2)+)|1+ 1
2

.

Then Theorem 1.1 implies that the sequence (1, n, n2)+ of primitive integral
classes can not be contained in any finite union of 2-dimensional rational
subspaces of H1(N). The fibered cone CF is a (2 + 1)-dimensional rational
subspace of H1(N). Thus Theorem 1.1 is optimal when d = 2. �

In light of Theorem 4.13(1), we ask the following question.

Question 4.14. Let F be a fibered face of a compact hyperbolic fibered
3-manifold. Does there exist a sequence (Sαn , ψαn) of primitive integral
classes in CF converging projectively to ∂F as n→∞ such that `C(ψαn) �

1

|χ(Sαn)|2
?

By Theorem 4.13, we immediately have the following corollary.

Corollary 4.15. Let F be a fibered face of the magic manifold N . For
α ∈ F ∩H1(N ;Q), let (Sα̃, ψα̃) be the fiber and pseudo-Anosov monodromy
corresponding to the primitive integral class α̃ lying on the ray of α pass-
ing through the origin. Then there is no normalization of the asymptotic
translation length function

F ∩H1(N ;Q)→ R≥0

α 7→ `C(ψα̃),

in terms of the Euler characteristic χ(Sα̃) which admits a continuous exten-
sion on F .
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