
AGOL CYCLES OF PSEUDO-ANOSOV MAPS ON THE

2-PUNCTURED TORUS AND 5-PUNCTURED SPHERE

JEAN-BAPTISTE BELLYNCK AND EIKO KIN

Abstract. Given a periodic splitting sequence of a measured train track, an Agol cy-
cle is the part that constitutes a period up to the action of a pseudo-Anosov map and
the rescaling by its dilatation. We consider a family of pseudo-Anosov maps on the 2-
punctured torus and on the 5-punctured sphere and describe their Agol cycles explicitly.
As an application, we classify conjugacy classes of pseudo-Anosov maps in the family.

1. Introduction

Let Σ = Σg,n be an orientable surface with genus g and n punctures. Let MCG(Σ) be the
mapping class group of Σ. According to the Nielsen-Thurston-classification, every element
of MCG(Σ) falls into 3 types: periodic, reducible and pseudo-Anosov. If ϕ : Σ → Σ is a
pseudo-Anosov map, then there exist associated stable and unstable measured laminations
(Ls, νs) and (Lu, νu) and the dilatation λ = λ(ϕ) > 1 such that

ϕ(Ls, νs) = (Ls, λνs) and ϕ(Lu, νu) = (Lu, λ−1νu).

A measured train track (τ, µ) is a train track τ with a transverse measure µ. Edges of a
train track are called branches and vertices are called switches. A branch that locally looks
like the central branch in Figure 1(1) is called a large branch. A splitting at a large branch
is an operation that gives a new measured train track. There are two kinds of splitting,
left and right splitting at a large branch (Figure 1(2)(3)). See Definition 2.1.

A maximal splitting (τ0, µ0) ⇀ (τ1, µ1) is an operation on the measured train track
(τ0, µ0) that splits all the large branches that carry maximal µ0-weight and (τ1, µ1) is the
resulting measured train track. If all the splittings in a maximal splitting are left (resp.

right) splittings, the maximal splitting is denoted by
l
⇀ (resp.

r
⇀) and called a left (resp.

right) maximal splitting.

It was proven by Agol that after enough maximal splittings the measured train track
(τ, µ) suited to the stable measured lamination of a pseudo-Anosov map ϕ will have changed
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Figure 1. (1) A large branch. (2) Left splitting when z > x (⇔ y > w),
(3) right splitting when x > z (⇔ w > y) at the large branch.

to ϕ(τ, λ−1µ) := (ϕ(τ), λ−1ϕ∗(µ)), where the measure ϕ∗(µ) is defined by ϕ∗(µ)(e) :=
µ(ϕ−1(e)) for a branch e in the train track ϕ(τ). To state Agol’s result precisely, a sequence
of consecutive n maximal splittings (τ0, µ0) ⇀ · · · ⇀ (τn, µn) is denoted by (τ0, µ0) ⇀

n

(τn, µn).

Theorem 1.1 (Agol [1]. See also Agol-Tsang [2]). Let ϕ : Σ → Σ be a pseudo-Anosov
map with dilatation λ. Let (τ, µ) be a measured train track suited to the stable measured
lamination of ϕ. Then there exist n ≥ 0 and m > 0 such that

(τ, µ)⇀n (τn, µn)⇀
m (τn+m, µn+m) = ϕ(τn, λ

−1µn).

For the terminology suited to, see Definition 2.2. We call the maximal splitting sequence

(τn, µn)⇀
m (τn+m, µn+m)⇀m (τn+2m, µn+2m)⇀m · · ·

a periodic splitting sequence of ϕ. We call the finite subsequence (τn, µn)⇀
m (τn+m, µn+m)

an Agol cycle of ϕ and call m the Agol cycle length of ϕ, denoted by ℓ(ϕ). The total splitting
number of an Agol cycle of ϕ, denoted by N(ϕ), is the number of large branches that are
split in the Agol cycle (Definition 2.3(3)).

An equivalence class of an Agol cycle is a conjugacy invariant of pseudo-Anosov maps
(Section 2.1). The Agol cycle length ℓ(ϕ) and total splitting number N(ϕ) are conjugacy
invariants as well. If ϕ : Σ → Σ is fully-punctured (i.e., the singularities of the sta-
ble/unstable foliations of ϕ lie on the punctures of Σ), N(ϕ) equals the number of ideal
tetrahedra in the veering triangulation of the mapping torus of ϕ. See [1] for more details.

It is natural to ask how the Agol cycle length ℓ(ϕ) and total splitting number N(ϕ) relate
to other invariants of pseudo-Anosov maps. In [6] it was proven that for every pseudo-
Anosov 3-braid β, its Agol cycle length, the Garside canonical length of any element in the
super summit set of β are the same. Agol-Tsang [2] proved that the total splitting number
N(ϕ) for a fully punctured pseudo-Anosov ϕ : Σ → Σ is bounded from above by a constant

depending on the normalized dilatation λ−χ(Σ), where χ(Σ) is the Euler characteristic of
Σ.

The main goal of this paper is to give an explicit description of an Agol cycle of every
pseudo-Anosov map in the two semigroups FT ⊂ MCG(Σ1,2) and FD ⊂ MCG(Σ0,5) which
will be defined below. On the 2-punctured torus Σ1,2, let δi be the right-handed Dehn
twist about the simple closed curve ci ⊂ Σ1,2 for i ∈ {1, 2, 3} shown in Figure 2(1). The
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hyperelliptic involution exchanges the two punctures of the torus and induces a 2-fold
branched cover Σ1,2 → Σ0,5 of the 5-punctured sphere. Then δi descends to σi, the positive
half-twist about the segment αi connecting the punctures i and i+ 1 (Figure 2(5)).
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Figure 2. (1)(2) Simple closed curves c1, c2 and c3 in Σ1,2. (3) (b,x) in

Σ1,2 and (4) (bL,x) in Σ0,5 for x =
(

x
y
z

)
. (5) Segments αi in Σ0,5.

We study pseudo-Anosov maps in the semigroups

FT := F (δ1, δ3, δ
−1
2 ) ⊂ MCG(Σ1,2) and FD := F (σ1, σ3, σ

−1
2 ) ⊂ MCG(Σ0,5)

generated by δ1, δ3 and δ−1
2 and by σ1, σ3 and σ−1

2 . Each σi for i ∈ {1, 2, 3} fixes the
fifth puncture of Σ0,5. Hence, one can regard an element of FD as a mapping class on the
4-punctured disk. The subset In ⊂ N3n

0 , where N0 = N∪{0}, will be useful for our study of
pseudo-Anosov maps in FT and FD (Definition 2.9). For each p = (pn, p

′
n, qn, ..., p1, p

′
1, q1) ∈

In

Φp := δpn1 δ
p′n
3 δ−qn

2 · · · δp11 δ
p′1
3 δ

−q1
2 ∈ FT and ϕp := σpn1 σ

p′n
3 σ−qn

2 · · ·σp11 σ
p′1
3 σ

−q1
2 ∈ FD

are pseudo-Anosov maps. We take matrices M1 =
(

1 1 0
0 1 0
0 0 1

)
, M3 =

(
1 0 0
0 1 0
0 1 1

)
, M2 =

(
1 0 0
1 1 1
0 0 1

)
.

For each p ∈ In the matrix

Mp :=Mpn
1 M

p′n
3 M qn

2 · · ·Mp1
1 M

p′1
3 M q1

2

is Perron-Frobenius. The Perron-Frobenius eigenvalue λp is equal to the dilatations of maps
Φp and ϕp. In Theorem 2.13 we present an explicit description of the Perron-Frobenius
eigenvalue λp and the normalized eigenvector vp. As a consequence we see that λp is
a quadratic irrational (Remark 2.15). Let b ⊂ Σ1,2 (resp. (bL ∈ Σ0,5) be train track
as in Figure 2(3) (resp. Figure 2(4)). Assigning the coefficients of a Perron-Frobenius
eigenvector x of Mp to the branches of the train track makes the measured train track
(b,x) (resp. (bL,x)).

We say that p ∈ In is symmetric if pi = p′i for all i ∈ {1, . . . , n}. Otherwise, p is

asymmetric. To state our results, we use the symbol
l
⇀

n
(resp.

r
⇀

n
) for n consecutive left

(resp. right) maximal splittings.
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Theorem 1.2. For p = (pn, p
′
n, qn, . . . , p1, p

′
1, q1) ∈ In let Φp ∈ FT be the pseudo-Anosov

map andMp be the Perron-Frobenius matrix associated with p. Let v > 0 be an eigenvector
with respect to the Perron-Frobenius eigenvalue λp of Mp. Then the Agol cycle length ℓ of
Φp is

ℓ =

{ ∑n
i=1(pi + 2qi) if p is symmetric,∑n
i=1(pi + p′i + 3qi) if p is asymmetric.

Moreover, starting with the measured train track (τ0, µ0) = (b, λpv), a finite subsequence
of the maximal splitting sequence

(τ0, µ0)
r
⇀

pn l
⇀

2qn
· · · r

⇀
p1 l
⇀

2q1
(τℓ, µℓ) if p is symmetric,

(τ0, µ0)
r
⇀

pn+p′n l
⇀

3qn
· · · r

⇀
p1+p′1 l

⇀
3q1

(τℓ, µℓ) if p is asymmetric

forms an Agol cycle of Φp.

We later prove an analogous statement for the pseudo-Anosov maps ϕp ∈ FD inside the
semigroup FD (Theorem 4.1). We give formulas on the total splitting numbers N(Φp) and
N(ϕp) for each p ∈ In (Theorems 3.4, 4.8). The total splitting numbers N(Φp) and N(ϕp)
have the following additive property.

Theorem 1.3. For p = (pn, p
′
n, qn, . . . , p1, p

′
1, q1) ∈ In and t = (tm, t

′
m, um, . . . , t1, t

′
1, u1) ∈

Im, we set pt := (pn, p
′
n, qn, . . . , p1, p

′
1, q1, tm, t

′
m, um, . . . , t1, t

′
1, u1) ∈ In+m. The total split-

ting number of Φpt ∈ FT satisfies N(Φpt) = N(Φp) + N(Φt). A parallel statement holds
for ϕpt ∈ FD.

As an application of Theorems 1.2 and 4.1, we classify conjugacy classes of pseudo-
Anosov maps in the two semigroups FT and FD. To state our result, we define maps
T : N3n

0 → N3n
0 , called the shift, and f : N3n

0 → N3n
0 , called the flip, as follows. For

p = (pn, p
′
n, qn, . . . , p1, p

′
1, q1) ∈ N3n

0

T (p) = (pn−1, p
′
n−1, qn−1, . . . , p1, p

′
1, q1, pn, p

′
n, qn),

f(p) = (p′n, pn, qn, . . . , p
′
1, p1, q1).

The shift T permutes by three entries and the flip f interchanges pi and p′i for all i ∈
{1, . . . , n}. Note that p is symmetric if and only if the flip f preserves p, i.e., f(p) = p.
Let p ∈ In and t ∈ Im. We write p ∼ t if n = m and T k(p) ∈ {t, f(t)} for some k ≥ 0.

Theorem 1.4. Let p ∈ In and t ∈ Im. The following are equivalent.

(1) p ∼ t.
(2) Φp and Φt are conjugate in MCG(Σ1,2).
(3) ϕp and ϕt are conjugate in MCG(Σ0,5).

Example 5.1 shows that Theorem 1.4 can distinguish conjugacy classes, even though the
dilatation and Agol cycle length fail.
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The paper is organized as follows. In Section 2 we recall basic definitions and prove
lemmas. In Sections 3 and 4 we compute Agol cycles of pseudo-Anosov maps in FT and
FD. In Section 5 we classify pseudo-Anosov conjugacy classes in FT and FD.

2. Preliminaries

The mapping class group MCG(Σ) of a surface Σ = Σg,n is the group of isotopy classes of
orientation preserving homeomorphisms of Σ preserving the punctures setwise. We apply
elements of the mapping class group from right to left; i.e., the product fg means that we
apply g, then f . For simplicity we do not distinguish between a homeomorphism ϕ : Σ → Σ
and its mapping class [ϕ] ∈ MCG(Σ).

2.1. Measured train tracks. A train track τ ⊂ Σ is a finite C1-embedded graph, equipped
with a well-defined tangent line at each vertex, also satisfying some additional properties
as stated in Penner-Harer [8]. In this paper we assume our train tracks to be trivalent.
A measured train track (τ, µ) is a train track τ with a measure µ. This is a function that
assigns a positive weight to each branch. Measured train tracks are required to satisfy the
switch condition. This means that if two branches a, b merge into one branch c, then the
weights satisfy µ(a) + µ(b) = µ(c). See Figure 3(1).

x

y
z

   x+z   x+y+z
x

y
z

   x+y+z
  y+z

(2)

(a)

(b)

   �(c)

=�(a)+�(b)

(1)

Figure 3. (1) Switch condition. (2) Shifting.

Definition 2.1. We consider a large branch as in Figure 1(1). Depending on weights x, y, z
and w in Figure 1(1), a splitting divides a large branch into two branches and connects
the two parts with either a left-facing or right-facing branch, thereby preserving the switch
condition. Depending on the type of a branch inserted, the splitting is called a left or right
splitting at a large branch (Figure 1(2)(3)). Similarly, we can produce new measured train
tracks through the use of folding (Figure 1) and shifting (Figure 3(2)).

Recall that if all the splittings in a maximal splitting (τ0, µ0) ⇀ (τ1, µ1) are left (resp.

right) splittings, the maximal splitting is denoted by
l
⇀ (resp.

r
⇀) and called a left (resp.

right) maximal splitting. If there exist both left and right splittings, the maximal splitting

is denoted by
lr
⇀ and called a mixed maximal splitting.

Measured train tracks (τ, µ), (τ ′, µ′) in Σ are equal (and write (τ, µ) = (τ ′, µ′)) if there
exists a diffeomorphism f : Σ → Σ isotopic to the identity map such that f(τ, µ) = (τ ′, µ′).

Measured train tracks (τ, µ), (τ ′, µ′) in Σ are equivalent if they are related to each other
by a sequence of splittings, foldings, shiftings and isotopies. Thus measured train tracks
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in a splitting sequence are equivalent. Equivalence classes of measured train tracks are in
one-to-one correspondence with measured laminations [8, Theorem 2.8.5].

Definition 2.2. Let (L, ν) be a measured lamination in Σ, and let (τ, µ) be a measured
train track in Σ. Then (τ, µ) is suited to (L, ν) if there exists a differentiable map f : Σ → Σ
homotopic to the identity map on Σ with the following conditions:

• f(L) = τ .
• f is nonsingular on the tangent spaces to the leaves of L.
• If p is an interior point of a branch e of τ then ν(f−1(p)) = µ(e).

Definition 2.3.

(1) The splitting number of a maximal splitting (τ0, µ0) ⇀ (τ1, µ1) is the number of
large branches split, i.e., the number of the large branches of (τ0, µ0) with maximal
weight.

(2) The total splitting number of a finite sequence of maximal splittings (τ, µ) ⇀n

(τn, µn) is the sum of the splitting numbers over all maximal splittings in the finite
sequence.

(3) The total splitting number of an Agol cycle (τn, µn) ⇀
m (τn+m, µn+m) of ϕ, de-

noted by N(ϕ), is the sum of the splitting numbers over all maximal splittings
(τn+i, µn+i) ⇀ (τn+i+1, µn+i+1) in the Agol cycle. The Agol cycle length ℓ(ϕ) is
less than or equal to N(ϕ). The equality holds if and only if the splitting number
of each maximal splitting in the Agol cycle is exactly 1.

Definition 2.4. Let ϕ, ϕ′ : Σ → Σ be pseudo-Anosov maps with periodic splitting se-
quences

P : (τn, µn)⇀
m (τn+m, µn+m) = ϕ(τn, λ

−1µn) ⇀ · · ·
of ϕ and

P ′ : (τ ′n′ , µ′n′)⇀m′
(τ ′n′+m′ , µ′n′+m′) = ϕ′(τ ′n′ , (λ′)−1µ′n′) ⇀ · · ·

of ϕ′. We say that P and P ′ are combinatorially isomorphic ([5]) if m = m′ is fulfilled
and there exist an orientation-preserving diffeomorphism h : Σ → Σ, integers p, q ∈ Z≥0

and c ∈ R>0 such that the following conditions (1) and (2) hold.

(1) ϕ′ = h ◦ ϕ ◦ h−1.
(2) h(τi+p, µi+p) = (τ ′i+q, cµ

′
i+q) for all i ∈ Z≥0.

We say that two Agol cycles (τn, µn)⇀
m (τn+m, µn+m) of ϕ and (τ ′n′ , µ′n′)⇀m′

(τ ′n′+m′ , µ′n′+m′)
of ϕ′ are equivalent if m = m′ is fulfilled and there exist an orientation-preserving dif-
feomorphism h : Σ → Σ, integers p, p′ ∈ Z≥0 and c ∈ R>0 such that h(τn+p, µn+p) =
(τ ′n′+p′ , cµ

′
n′+p′). The condition for equivalent Agol cycles implies condition (2). See [6,

Lemma 2.2].

Theorem 2.5 (Theorem 5.3 in Hodgson-Issa-Segerman [5]). Pseudo-Anosov maps ϕ, ϕ′ : Σ →
Σ are conjugate in MCG(Σ) if and only if P and P ′ are combinatorially isomorphic.
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As a consequence, the equivalence class of an Agol cycle of ϕ is a conjugacy invariant.
The Agol cycle length ℓ(ϕ) and total splitting number N(ϕ) are conjugacy invariants as
well, since they are equal for equivalent Agol cycles.

When we regard a maximal splitting (τ, µ) ⇀ (τ ′, µ′) as an operation on the measured
train track, we write (τ ′, µ′) = ⇀ (τ, µ). We write n consecutive left (resp. right) max-

imal splittings (τ, µ)
l
⇀

n
(τn, µn) (resp. (τ, µ)

r
⇀

n
(τn, µn)) as (τn, µn) =

l
⇀

n
(τ, µ) (resp.

(τn, µn) =
r
⇀

n
(τ, µ)). We also write a finite sequence (τ, µ)

l
⇀

n
(τn, µn)

r
⇀

m
(τn+m, µn+m)

as (τn+m, µn+m) =
r
⇀

m
◦ l
⇀

n
(τ, µ).

The operation ⇀ and a diffeomorphism ϕ : Σ → Σ commute on measured train tracks:

Lemma 2.6 (Lemma 2.1 in [6]). Let (τ, µ) be a measured train track in Σ and ϕ : Σ →
Σ an orientation-preserving diffeomorphism. If (τ, µ) admits consecutive n left maximal

splittings, then we have (ϕ◦ l
⇀

n
)(τ, µ) = (

l
⇀

n
◦ϕ)(τ, µ). A parallel statement holds for

r
⇀

n
.

Remark 2.7. (This remark is used for the proof of Theorem 1.4.) By Lemma 2.6 we have
the following commutative diagram:

(τ, µ) ⇀ (τ1, µ1) ⇀ · · · ⇀ (τn, µn)
↓ ↓ ↓

ϕ(τ, µ) ⇀ ϕ(τ1, µ1) ⇀ · · · ⇀ ϕ(τn, µn)

Lemma 2.6 tells us that the (left, right, mixed) type of the maximal splitting ϕ(τi, µi) ⇀
ϕ(τi+1, µi+1) is the same as that of (τi, µi)⇀ (τi+1, µi+1).

2.2. Perron-Frobenius matrices. We say that a matrix M is positive if each entry of
M is positive. For matrices A = (ars) and B = (brs) with the same size, we write A ≥ B if
ars ≥ brs for all r, s. Suppose that M is an n by n square matrix with nonnegative integer
entries. We say that M is Perron-Frobenius if some power of M is a positive matrix.
Perron-Frobenius matrices have the following properties.

Theorem 2.8 (Perron-Frobenius). A Perron-Frobenius M has a real eigenvalue λ > 1
which exceeds the moduli of all other eigenvalues. There exists a strictly positive eigenvector
v associated with λ. Moreover, v is the unique positive eigenvector of M (up to positive
multiples), and λ is a simple root of the characteristic equation of M .

For the proof, see [4]. We call λ = λ(M) > 1 the Perron-Frobenius eigenvalue of M and
call v a Perron-Frobenius eigenvector.

Definition 2.9. For each n ∈ N the subset In ⊂ N3n
0 is defined as follows.

In :=

{
p = (pn, p

′
n, qn, . . . , p1, p

′
1, q1) ∈ N3n

0

∣∣∣∣ ∃j, ∃k ∈ {1, . . . , n} such that pj , p
′
k > 0

pi + p′i, qi > 0 for each i ∈ {1, . . . , n}

}
For example, (1, 0, 2, 0, 1, 1) ∈ I2, (1, 0, 2, 1, 0, 1) ̸∈ I2. By definition, I1 = N3.

We recall the matrix Mp =Mpn
1 M

p′n
3 M qn

2 · · ·Mp1
1 M

p′1
3 M q1

2 for p ∈ In.
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Lemma 2.10. For each p ∈ In, Mp is Perron-Frobenius.

Proof. A computation shows that Mn
i ≥ Mi ≥

(
1 0 0
0 1 0
0 0 1

)
for n ∈ N and i = 1, 2, 3. By

definition of In, all the matrices M1,M2 and M3 appear in the product Mp at least once.
We can check that Mp ≥ M1M3M2 = M3M1M2 > 0. This means that Mp is positive. In
particular, Mp is Perron-Frobenius. (This fact also follows from [9, Theorem 3.1].) □

In this section we give an explicit description of a Perron-Frobenius eigenvector of Mp

and its eigenvalue λp. To do this, we first consider the infinite continued fraction expansion
of an irrational number a.

a = a0 +
1

a1 +
1

. . . +
1

ak + · · ·

= [a0, a1, · · · , ak, · · · ]

with ai ∈ Z and ai > 0 for i ≥ 1. By Lagrange’s theorem, a is a quadratic irrational if and
only if the expansion is eventually periodic; i.e., there exists t ≥ 1 with ai = ai+t for all
i ≫ 1. We write a quadratic irrational a = [a0, · · · , ak−1, b0, · · · , bt−1, b0, · · · , bt−1, · · · ] as
[a0, · · · , ak−1, b0, · · · , bt−1].

Given p ∈ In, we next define the width wp,j and height hp,j for each j ∈ N0 as follows.

For j = 0, wp,0 = 1 and hp,0 = [0, pn + p′n, qn, ..., p1 + p′1, q1].

For j > 0, wp,j = wp,j−1 − (pn−j+1 + p′n−j+1)hp,j−1 and hp,j = hp,j−1 − qn−j+1wp,j .

The split ratio sp (0 < sp < 1) is defined by

sp =
∞∑
i=0

p−ihp,i,

where the index of p−i is understood to be mod n.

Definition 2.11. (Partitioned rectangle.) For p = (pn, p
′
n, qn, ..., p1, p

′
1, q1) ∈ In we define

a partitioned rectangle rect(p) as in Figure 4. We start out with a rectangle of width

1 and height hp,0 = [0, pn + p′n, qn, ..., p1 + p′1, q1]. We then partition the rectangle into
squares by the following procedure. First, we insert pn squares from the left. In the
remaining rectangle, we insert p′n from the right and then qn from the bottom. We do
the same for pn−1, p

′
n−1, qn−1, . . . , p1, p

′
1, q1, pn, p

′
n, qn, . . . , repeating the insertion pattern

cyclically, infinitely many times. Rectangles for the example p = (1, 1, 2, 2, 1, 1) and T (p)
are illustrated in Figure 4. (Recall that T : N3n

0 → N3n
0 is the shift defined in Section 1.)

Lemma 2.12. The partitioned rectangle rect(p) is well defined.

Proof. We introduce a useful tool for infinite continued fractions. (See also [7].) We define a
rectangle whose width is 1 and whose height is [0, a1, a2, . . . ] for ai ∈ N. Then it is possible
to iteratively fill in a1, a2, . . . squares as in Figure 5(1). Suppose that [0, a1, a2, . . . , a2n] =
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Figure 4. Partitioned rectangles (1) rect(p), (2) rect(T (p)) for p =
(1, 1, 2, 2, 1, 1), T (p) = (2, 1, 1, 1, 1, 2) ∈ I2.

a1 squares

a
2

sq
u
ares

a3
squares

a
4

sq
u

ares

  reshuffle

1

pn squares p'n squares

q
n

sq
u

ares

p
n-1 p'n-1

qn-1 squares
wp,1

hp,1

1(1) (2)

Figure 5. (1) Rectangle model for [0, a1, a2, . . . ] = [0, 2, 2, 3, 1, . . . ]. (2)
Reshuffling squares when [0, a1, a2, a3, a4] = [0, 1 + 1, 2, 2 + 1, 1].

[0, pn + p′n, qn, . . . , p1 + p′1, q1]. We reshuffle the squares such that pi squares are filled from
the left and p′i squares are filled from the right (see Figure 4). This shows that the partition
into squares for p ∈ In is well defined. □

The values wp,0, hp,0 can be thought of as the widths and heights of the rectangles
obtained when we iteratively delete outside squares as in Figure 4. The values are indicated
in the picture.

Theorem 2.13. For p = (pn, p
′
n, qn, . . . , p1, p

′
1, q1) ∈ In the Perron-Frobenius eigenvalue

λp of Mp and its eigenvector v > 0 are given by

λp =
1

wp,n
and v =

(
sp
hp,0

1−sp

)
.

We call v = vp the normalized eigenvector with respect to λp.
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Proof. Recall that T : N3n
0 → N3n

0 is the shift as in Section 1. For p ∈ In we define
scaling factors λp,i := wp,i/wp,i+1 for i ∈ N0. The scaling factors fulfill the property∏n−1

i=0 λp,i = 1/wp,n. We will prove

λp,0M
−qn
2 M−pn

1 M
−p′n
3

(
sp
hp,0

1−sp

)
=

( sT (p)

hT (p),0

1−sT (p)

)
. (2.1)

Using this, we can then inductively deduce the following statement:

(
n−1∏
i=0

λp,i)(M
pn
1 M

p′n
3 M qn

2 · · ·Mp1
1 M

p′1
3 M q1

2 )−1

(
sp
hp,0

1−sp

)
=

( sTn(p)

hTn(p),0

1−sTn(p)

)
=

(
sp
hp,0

1−sp

)
(2.2)

The definitions of wp,i and hp,i are such that they line up with the lengths of the line
segments in rect(p) as in Figure 4. Adding up the widths of all the squares on the left side,
we get sp(=

∑∞
i=0 p−ihp,i). Using Figure 4, we observe that for( y1

y2
y3

)
:=M−qn

2 M−pn
1 M

−p′n
3

(
sp
hp,0

1−sp

)
=M−qn

2

(
sp,0−pnhp,0

hp,0

1−sp−p′nhp,0

)
=

(
sp−pnhp,0

hp,0−qn(1−(pn+p′n)hp,0)

1−sp−p′nhp,0

)
,

we have wp,1 = 1− (pn + p′n)hp,0 = y1 + y3 and hp,1 = hp,0 − qnwp,1 = y2.

Remove (pn+p
′
n) squares with height hp,0 and qn squares with height wp,1 from rect(p).

If we then scale the remaining small rectangle by λp,0 = 1/wp,1, its width becomes 1 and
the rectangle becomes a partitioned rectangle. By moving all squares to the left, we see that
its height must be [0, pn−1 + p′n−1, qn−1, . . . , p1 + p′1, q1, pn + p′n, qn] = hT (p),0. Its partition
into squares then tells us that the resulting partitioned rectangle is rect(T (p)). The value
y1 is the sum of the widths of all squares sitting on the left of the small rectangle. When
scaling up y1 by λp,0, the value λp,0y1 continues to be the sum of square widths. This
shows λp,0y1 = sT (p). (See Figure 4.) This proves statement (2.1).

Statement (2.2) follows from applying statement (2.1) n times. The value w−1
p,n =∏n−1

i=0 λp,i then becomes the eigenvalue of the eigenvector

(
sp
hp,0

1−sp

)
ofMp. Because the vec-

tor entries are all positive and Mp is Perron-Frobenius, w−1
p,n must be the Perron-Frobenius

eigenvalue λp by Theorem 2.8. □

Corollary 2.14. The splitting ratio sp can be written as follows.

sp =

∞∑
i=0

p−ihp,i =
pnhp,0 + pn−1hp,1 + · · ·+ p1hp,n−1

(pn + p′n)hp,0 + (pn−1 + p′n+1)hp,1 + · · ·+ (p1 + p′1)hp,n−1
.

Proof. The split ratio sp can be interpreted as a ratio dividing the width of the partitioned
rectangle in two parts. Since the partitioned rectangle rect(p) is self-similar, it contains
a rectangle that after rescaling by the factor λp is partitioned and equal to rect(p). To
calculate sp, we can therefore ignore the width of the small self-similar rectangle and only
use the ratio in the statement instead. □
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Remark 2.15. For p ∈ In the height hp,0 is a quadratic irrational since the continued
fraction expansion is eventually periodic. One can prove inductively that the width wp,j is
a quadratic irrational for each j ∈ N0. Thus λp = w−1

p,n is also a quadratic irrational.

Corollary 2.16. Let p = (pn, p
′
n, qn, . . . , p1, p

′
1, q1) ∈ In and t = (tn, t

′
n, un, . . . , t1, t

′
1, u1) ∈

In. If pi + p′i = ti + t′i and qi = ui hold for all i ∈ {1, . . . , n}, then we have the following.

(1) λp = λt.
(2) If t = f(p), then sp+sf(p) = 1, where f : N3n

0 → N3n
0 is the flip defined in Section 1.

(3) If (pn, pn−1, . . . , p1) ≺ (tn, tn−1, . . . , t1), then sp < st, where ≺ is the lexicographic
ordering of Nn

0 .

Proof. Claim (1) follows from Theorem 2.13 since wp,n = wt,n holds for all n ∈ N0. Ex-
changing pi and p

′
i for all i ∈ {1, ..., n}, flips the partitioned rectangle rect(p) horizontally.

This means that sf(p) = 1− sp. The proof of (2) is done. For each p ∈ In and all i ∈ N0,
we have the property wp,i+1 < hp,i. Using the definition of the partitioned rectangle, this
implies claim (3). □

For a vector v = (vi) ∈ Rn, we denote by v|i the i-th coordinate vi of v. When M is an
n by n square matrix, we also use the symbol Mv|i which returns the i-th coordinate of
the vector Mv.

Corollary 2.17. For p ∈ In let v > 0 be a Perron-Frobenius eigenvector of Mp. Then
v|1 = v|3 holds if and only if p is symmetric.

Proof. Corollary 2.16(2)(3) implies that sp = 1
2 holds if and only if f(p) = p holds; i.e.,

p is symmetric. By Theorem 2.13 the Perron-Frobenius eigenvector v = vp satisfies the
desired property. □
Example 2.18. Let us apply Theorem 2.13 and Corollary 2.14 to compute sp and λp.

(1) Let p = (p, p′, q) ∈ I1. Then hp,0 = [0, p+ p′, q ]. We have

sp =
php,0

(p+ p′)hp,0
=

p

p+ p′
, λp =

1

wp,1
=

1

1− (p+ p′)hp,0
.

(2) Let p = (1, 0, 1, 0, 1, 1) ∈ I2. We have hp,0 = [0, 1 ] = −1+
√
5

2 , wp,1 = 1 − hp,0,
hp,1 = hp,0 − wp,1, and wp,2 = wp,1 − hp,1. Hence, sp and λp are given by

sp =
hp,0

hp,0 + hp,1
=

hp,0
3hp,0 − 1

, λp =
1

wp,2
=

1

2− 3hp,0
=

7 + 3
√
5

2
.

By a calculation we have the following lemma.

Lemma 2.19. Let q ∈ N and p, p′ ∈ N0. Let x =
(

x
y
z

)
> 0.

(1) Mp
1M

p
3M

q
2x|1 ≤Mp

1M
p
3M

q
2x|3 if and only if x ≤ z.
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(2) Suppose that p > p′ ≥ 0. Then Mp
1M

p′

3 M
q
2x|1 > Mp

1M
p′

3 M
q
2x|3 for any x > 0.

(3) Suppose that 0 ≤ p < p′. Then Mp
1M

p′

3 M
q
2x|1 < Mp

1M
p′

3 M
q
2x|3 for any x > 0.

As a corollary of Lemma 2.19, we immediately have the following result.

Corollary 2.20. If x =
(

x
y
z

)
is a positive vector with x ̸= z, then Mp

1M
p′

3 M
q
2x|1 ̸=

Mp
1M

p′

3 M
q
2x|3 for any q ∈ N and p, p′ ∈ N0 (possibly p = p′).

2.3. Pseudo-Anosov maps in the semigroup FD = F (σ1, σ3, σ
−1
2 ). We write h1 = σ1,

h3 = σ3 and h2 = σ−1
2 . For a map h = hnk

· · ·hn1 ∈ FD (ni ∈ {1, 2, 3}) we set Mh :=
Mnk

· · ·Mn1 . The following is a well-known result.

Proposition 2.21. The product h = hnk
· · ·hn1 ∈ FD is pseudo-Anosov if all σ1, σ3 and

σ−1
2 appear in the product at least once. In this case the dilatation λ(h) of h equals the

Perron-Frobenius eigenvalue λ(Mh).

For the convenience of the reader, we give an outline of the proof. We use a criterion by
Bestvina-Handel algorithm [3] to determine when a mapping class is pseudo-Anosov. We
first choose a finite graph G ⊂ Σ0,5 that is homotopy equivalent to Σ0,5 as in Figure 6(2).
The graph G has four vertices 1, . . . , 4 and four loop edges, each of which encircles a
puncture. Let P be the set of four loop edges of G.

Given a mapping class ψ ∈ MCG(Σ0,5), one can pick an induced graph map g : G→ G
homotopic to ψ. We require that g sends vertices to vertices, edges to edge paths and
fulfills g(P ) = P . (See [3, Section 1].) We may suppose that g has no backtracks; i.e., g
maps each oriented edge of G to an edge path which does not contain an oriented edge e
followed by the same edge e with the opposite orientation. This map g defines a 3 by 3
transition matrix M (with respect to the 3 non-loop edges). For r, s ∈ {1, 2, 3} the entry
Mrs is the number of times that the g-image of the s-th edge runs the r-th edge in either
direction. We say that g : G→ G is efficient if gn : G→ G has no backtracks for all n > 0.

Notice that hi for i ∈ {1, 2, 3} induces a graph map gi : G→ G which has no backtracks
as shown Figure 6(1)–(4). The transition matrix of gi is given by the matrix Mi as in
Section 1.

The composition gh := gnk
· · · gn1 : G → G is an induced graph map of h = hnk

· · ·hn1 .
(A priori, gh could have backtracks.) We call k the length of the graph map gh. By
induction on the length k, it can be shown that gh : G → G has no backtracks for any
h ∈ FD. In particular, gnh : G → G has no backtracks for any n > 0; i.e., gh : G → G
is efficient, because gnh is an induced graph map of hn ∈ FD. Since gh : G → G has no
backtracks, the transition matrix with respect to the non-loop edges of gh is given by Mh.
If all σ1, σ3 and σ−1

2 appear in the product h at least once, then Mh is Perron-Frobenius
by Lemma 2.10. By the Bestvina-Handel algorithm [3], the two conditions (gh : G→ G is
efficient, and the transition matrixMh is Perron-Frobenius) ensure that h is pseudo-Anosov
with dilatation λ(Mh).
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(1) (2) (4)

(3)

g1 g3

g2

1

2

3

4

(5)

x y
z

1

2

3

4

e'1

e'2
e'3

e'1

e'2
e'3

e'1

e'3

 sm
oothing

x
y

z

(6) (7)

x
y

z

z

x

y

y

1 2

34

1

4

G

e3e1 e2

,v(      )-1 ,v(      ),v(      )

Figure 6. (1)–(4) The graph maps gi : G → G. e′j := gi(ej). (5) (n,v =(
x
y
z

)
) in Σ0,5. (6)(7) The 2-fold branched cover π : Σ1,2 → Σ0,5.

Remark 2.22. Let gh : G → G be an efficient graph map. We obtain a trivalent train
track n in Σ0,5 (Figure 6(5)) by graph smoothing near the vertices of G. See [3, Section 3.3]
for more details. Denote by v the Perron-Frobenius eigenvector of Mh. We assign the
weight v|i (that is the i-th coordinate of v) to the i-th branch and we obtain the measured
train track (n,v) (also described in Figure 6(5)). This measured train track (n,v) is suited
to the stable measured lamination of h by [3, Section 3.4].

2.4. Pseudo-Anosov maps in the semigroup FT = F (δ1, δ3, δ
−1
2 ). The union of curves

c1 ∪ c2 ∪ c3 (Figure 2(1)) fills the surface Σ1,2. A construction of pseudo-Anosov maps by

Penner [9, Theorem 3.1] tells us that the product of δ1, δ3 and δ−1
2 is pseudo-Anosov if all

the Dehn twists δ1, δ3 and δ−1
2 appear in the product at least once. Thus for each p ∈ In,

the map Φp ∈ FT is pseudo-Anosov by the definition of In (Definition 2.9). The map
ϕp ∈ FD is also pseudo-Anosov for each p ∈ In by Proposition 2.21. Additionally, each
pseudo-Anosov map in FT (resp. FD) is conjugate to Φp (resp. ϕp) for some p ∈ In. The
link between the maps Φp and ϕp can be found in the following lemma.

Lemma 2.23. For p ∈ In let v > 0 be an eigenvector for the Perron-Frobenius eigenvalue
λp of Mp. Then the measured train tracks (bL,v) in Σ0,5 and (b,v) in Σ1,2 defined in Sec-
tion 1 are suited to the stable measured laminations of ϕp ∈ FD and Φp ∈ FT respectively.
Moreover, it holds λ(ϕp) = λ(Φp) = λp, where λp is a quadratic irrational.

Proof. By Remark 2.22 (n, 2v) is suited to the stable measured lamination of ϕp. Figure 7
illustrates that (n, 2v) is equivalent to (bL,v). Therefore, (bL,v) is also suited to the stable
measured lamination of ϕp.

We regard Σ0,5 as the once punctured sphere with four marked points pi (i ∈ {1, . . . , 4}).
Consider a 2-fold branched cover π : Σ1,2 → Σ0,5 branched over the four marked points and
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x

y y

z

x

z

2x

2y 2z

x+y

y+z x y+z

zx+y

2y

zx+y

2y

x y+z

y

y

y

y

x y+z

zx+y

x+2y

2y+z

x y+z

zx+y

y

y

x+2y+z

x+y

y+z

x+z

shift l fold fold r

,2v(        ) ,v(         )

Figure 7.
l→ (resp.

r→) denotes the left (resp. right) splittings at the
highlighted large branches. (n, 2v) is equivalent to (bL,v).

induced by the hyperelliptic involution of Σ1,2, exchanging the two punctures. Notice that
δj := δcj ∈ MCG(Σ1,2) is a lift of σj ∈ MCG(Σ0,5). Hence, Φp ∈ FT is a lift of ϕp ∈ FD. It
follows that Φp and ϕp have the same dilatation. By Proposition 2.21 we have λ(ϕp) = λp.
Thus λ(Φp) = λ(ϕp) = λp. By Remark 2.15 λp is a quadratic irrational.

Let Fs and Fu be the stable and unstable foliations with respect to ϕp. The preimages
π−1(Fs) and π−1(Fu) give the stable and unstable foliations with respect to Φp. Since pi
is a 1-pronged singular point of Fs and Fu, the preimage π−1(pi) is a regular point (i.e.,
a 2-pronged point) of π−1(Fs) and π−1(Fu). Notice that π−1(n) admits four bigons each
of which contains a regular point π−1(pi). See Figure 6(6)(7). Then the measured train
track (b,v) in Σ1,2 is obtained from π−1(n,v) by collapsing each bigon. As a result, (b,v)
is suited to the stable measured lamination of Φp. □

We will choose (b, λpv) (resp. (bL, λpv)) as the start of the maximal splitting sequence
in the proof of Theorem 1.2 (resp. Theorem 4.1).

3. Agol cycles of pseudo-Anosov maps in FT

The goal of this section is to prove Theorem 1.2. To do this, we first construct finite
sequences of maximal splittings (Lemma 3.1, Proposition 3.2). Then we concatenate some
finite sequences to produce an Agol cycle of the pseudo-Anosov map Φp.

When p is symmetric, the normalized eigenvector vp with respect to λp fulfills vp|1 =
vp|3 (Corollary 2.17). This extra symmetry gives simpler maximal splitting sequences.
Hence, the measured train tracks with symmetric weights (i.e., x = z) and asymmetric
weights (i.e., x ̸= z) will be treated differently in the following lemma.

Lemma 3.1. Let q ∈ N and p, p′ ∈ N0. Let x =
(

x
y
z

)
> 0.



AGOL CYCLES OF PSEUDO-ANOSOV MAPS 15

(1) Suppose that p > 0. Then

(b,Mp−1
1 Mp−1

3 M q
2x) =

{
(δ−1

1 δ−1
3 ◦ r

⇀)(b,Mp
1M

p
3M

q
2x) if x = z,

(δ−1
1 δ−1

3 ◦ r
⇀

2
)(b,Mp

1M
p
3M

q
2x) if x ̸= z.

(2) Suppose that p > p′ ≥ 0. Then

(b,Mp−1
1 Mp′

3 M
q
2x) = (δ−1

1 ◦ r
⇀)(b,Mp

1M
p′

3 M
q
2x).

(3) Suppose that 0 ≤ p < p′. Then

(b,Mp
1M

p′−1
3 M q

2x) = (δ−1
3 ◦ r

⇀)(b,Mp
1M

p′

3 M
q
2x).

(4) (b,M q−1
2 x) =

 (δ2 ◦
l
⇀

2
)(b,M q

2x) if x = z,

(δ2 ◦
l
⇀

3
)(b,M q

2x) if x ̸= z.

Proof. A calculation M q
2x =

(
x

qx+y+qz
z

)
shows that x|1 =M q

2x|1 = x and x|3 =M q
2x|3 =

z. For the proof of claims (1)–(4), it is suffices to prove them for q = 1. In fact, once we

prove claims (1)–(4) for q = 1, we can apply them to the positive vector x′ =M q−1
2 x.

We have Mp
1M

p
3M2

(
x
y
z

)
=

(
x+py′

y′

py′+z

)
, where y′ = x + y + z. The measured train track

(τ0, µ0) := (b,Mp
1M

p
3M2x) has two large branches with weights x+(p+1)y′ and (p+1)y′+z.

We first consider the case x ̸= z. We may suppose that x < z. Applying 2 maximal
splittings (see Figure 8), we obtain 2 right maximal splittings

(τ0, µ0) = (b,Mp
1M

p
3M2x)

r
⇀

2
(τ2, µ2) = δ1δ3(b,M

p−1
1 Mp−1

3 M2x).

(The second maximal splitting is done on the large branch with the weight x+ py′ + y′ =

x+py′+(x+y+z) > py′+z.) Thus, (b,Mp−1
1 Mp−1

3 M2x) = (δ−1
1 δ−1

3 ◦ r
⇀

2
)(b,Mp

1M
p
3M2x).

This gives claim (1) when x < z.

y'

y'

py'+z

x+py'

r r

(1) (2) (3)

y'

y'

x+py'

(p-1)y'+z

y'

y'

(p-1)y'+z

x+(p-1)y'

(         )  ,0 0 (         )  ,1 1 (         )  ,2 2

1 3

(4)τ τ τ

-1 -1

y'

y'

x+(p-1)y'

(p-1)y'+z

δ1δ3

Figure 8. Proof of Lemma 3.1(1) when x < z. (1) (b,Mp
1M

p
3M2x). (4)

(b,Mp−1
1 Mp−1

3 M2x).
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In the case x = z, the two large branches of the measured train track (b,Mp
1M

p
3M2x)

have the same maximal weight. Applying the maximal splitting, we obtain the right
maximal splitting

(τ0, µ0) = (b,Mp
1M

p
3M2x)

r
⇀(τ1, µ1) = δ1δ3(b,M

p−1
1 Mp−1

3 M2x).

This completes the proof of claim (1).

We turn to claim (2). Suppose that p > p′ ≥ 0. We have Mp
1M

p′

3 M2

(
x
y
z

)
=

(
x+py′

y′

p′y′+z

)
,

where y′ = x+y+z. By Lemma 2.19(2), we haveMp
1M

p′

3 M2x|1 = x+py′ > Mp
1M

p′

3 M2x|3 =
p′y′+z. The measured train track (τ0, µ0) := (b,Mp

1M
p′

3 M2x) has two large branches with
weights x + (p + 1)y′ and (p′ + 1)y′ + z. Applying a maximal splitting (see Figure 9), we
obtain a right maximal splitting

(τ0, µ0) = (b,Mp
1M

p′

3 M2x)
r
⇀(τ1, µ1) = δ1(b,M

p−1
1 Mp′

3 M2x).

The proof of claim (2) is done. One can prove claim (3) in a similar way.

y'

y'

p'y'+z

x+py'

r

(1) (2)

y'

y'

x+(p-1)y'

(         )  ,0 0 (         )  ,1 1

δ1

(3)τ τ

-1

y'

y'

x+(p-1)y'

δ1

p'y'+z p'y'+z

Figure 9. Proof of Lemma 3.1(2). (1) (b,Mp
1M

p′

3 M2x). (3)

(b,Mp−1
1 Mp′

3 M2x).

We now prove claim (4). We set (τ0, µ0) = (b,M2x =
(

x
x+y+z

z

)
). Consider the case

x ̸= z. We may suppose that x < z. Applying 3 maximal splittings (see Figure 10), we
obtain 3 left maximal splittings

(τ0, µ0) = (b,M2x)
l
⇀(τ1, µ1)

l
⇀(τ2, µ2)

l
⇀(τ3, µ3) = δ−1

2 (b,x).

This gives claim (4) for x < z.

In the case x = z, the two large branches of (b,M2x) have the same maximal weight.

Applying 2 maximal splittings, we obtain 2 left maximal splittings (b,M2x)
l
⇀

2
δ−1
2 (b,x).

This completes the proof. □

Proposition 3.2. Let q ∈ N and p, p′ ∈ N0. Let x =
(

x
y
z

)
> 0.
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x+y+z

z

x

l l l

(1) (2) (3) (4)

z

x

x+y

z
x+y

x

y+z

x

x+y

y+z

y

z

x

z

x

y

(         )  ,0 0 (         )  ,1 1 (         )  ,2 2 (         )  ,3 3

x+y+z x+y+z

x+y+z
2

y

z

x

(5)

y

2
-1

Figure 10. Proof of Lemma 3.1(4) when x < z. (1) (b,M2x). (5) (b,x).

(1) (Symmetric case.) Suppose that p > 0. Then

(b,x) = (δq2δ
−p
1 δ−p

3 ◦ l
⇀

2q
◦ r
⇀

p
)(b,Mp

1M
p
3M

q
2x) if x = z.

(2) (Asymmetric case.) Suppose that p+ p′ > 0 (possibly p = p′ > 0). Then

(b,x) = (δq2δ
−p
1 δ−p′

3 ◦ l
⇀

3q
◦ r
⇀

p+p′

)(b,Mp
1M

p′

3 M
q
2x) if x ̸= z.

Proof. We first prove claim (2) in the special case p = p′ > 0. Applying Lemma 3.1(1) in
the latter case x ̸= z, we have

(b,Mp−1
1 Mp−1

3 M q
2x) = ((δ1δ3)

−1 ◦ r
⇀

2
)(b,Mp

1M
p
3M

q
2x). (3.1)

Then applying Lemma 3.1(1) again, we obtain

(b,Mp−2
1 Mp−2

3 M q
2x) = ((δ1δ3)

−1 ◦ r
⇀

2
)(b,Mp−1

1 Mp−1
3 M q

2x)

= ((δ1δ3)
−1 ◦ r

⇀
2
) ◦ ((δ1δ3)−1 ◦ r

⇀
2
)(b,Mp

1M
p
3M

q
2x) (∵ (3.1))

= ((δ1δ3)
−2 ◦ r

⇀
4
)(b,Mp

1M
p
3M

q
2x). (∵ Lemma 2.6).

Repeating this argument, we have

(b,M q
2x) = ((δ1δ3)

−p ◦ r
⇀

2p
)(b,Mp

1M
p
3M

q
2x). (3.2)

Applying Lemma 3.1(4) in the case x ̸= z repeatedly, we have

(b,x) = (δq2 ◦
l
⇀

3q
)(b,M q

2x). (3.3)

The above equalities (3.2) and (3.3) give us

(b,x) = (δq2 ◦
l
⇀

3q
)(b,M q

2x) (∵ (3.3))

= (δq2 ◦
l
⇀

3q
) ◦ ((δ1δ3)−p ◦ r

⇀
2p
)(b,Mp

1M
p
3M

q
2x) (∵ (3.2))

= (δq2δ
−p
1 δ−p

3 ◦ l
⇀

3q
◦ r
⇀

2p
)(b,Mp

1M
p
3M

q
2x). (∵ Lemma 2.6, δ1δ3 = δ3δ1)
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This is the desired equality in the case p = p′. Next we prove claim (2) in the general case.
We may suppose that 0 ≤ p < p′. Applying Lemma 3.1(3) repeatedly, we have

(b,Mp
1M

p
3M

q
2x) = (δ

−(p′−p)
3 ◦ r

⇀
p′−p

)(b,Mp
1M

p′

3 M
q
2x). (3.4)

This together with the equalities (3.2) and (3.3) implies that

(b,x) = (δq2 ◦
l
⇀

3q
)(b,M q

2x) (∵ (3.3))

= (δq2 ◦
l
⇀

3q
) ◦ ((δ1δ3)−p ◦ r

⇀
2p
)(b,Mp

1M
p
3M

q
2x) (∵ (3.2))

= (δq2 ◦
l
⇀

3q
) ◦ ((δ1δ3)−p ◦ r

⇀
2p
) ◦ (δ−(p′−p)

3 ◦ r
⇀

p′−p
)(b,Mp

1M
p′

3 M
q
2x) (∵ (3.4))

= (δq2δ
−p
1 δ−p′

3 ◦ l
⇀

3q
◦ r
⇀

p+p′

)(b,Mp
1M

p′

3 M
q
2x) (∵ Lemma 2.6).

The proof of claim (2) is done. For the proof of claim (1), we assume x = z and use
Lemma 3.1(1)(4). This completes the proof. □

We are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let Mp = Mpn
1 M

p′n
3 M qn

2 · · ·Mp1
1 M

p′1
3 M q1

2 be the Perron-Frobenius
matrix associated with p ∈ In. For a Perron-Frobenius eigenvector v of Mp, we define

positive vectors x(0) := v and x(i) := Mpi
1 M

p′i
3 M

qi
2 x(i−1) for i ∈ {1, . . . , n}. Then x(n) =

Mpv = λpv.

Suppose that p is asymmetric. By Corollaries 2.17 and 2.20, we can inductively prove
that x(i)|1 ̸= x(i)|3 for all i ∈ {0, . . . , n}. Proposition 3.2(2) tells us that

(b,x(i−1)) = (δqi2 δ
−pi
1 δ

−p′i
3 ◦ l

⇀
3qi

◦ r
⇀

pi+p′i)(b,x(i)) for i ∈ {1, . . . , n}.

By the above equality for i = 1, 2, we obtain

(b,v) = (δq12 δ
−p1
1 δ

−p′1
3 ◦ l

⇀
3q1

◦ r
⇀

p1+p′1)(b,x(1))

= (δq12 δ
−p1
1 δ

−p′1
3 ◦ l

⇀
3q1

◦ r
⇀

p1+p′1) ◦ (δq22 δ
−p2
1 δ

−p′2
3 ◦ l

⇀
3q2

◦ r
⇀

p2+p′2)(b,x(2))

= (δq12 δ
−p1
1 δ

−p′1
3 δq22 δ

−p2
1 δ

−p′2
3 ◦ l

⇀
3q1

◦ r
⇀

p1+p′1 ◦ l
⇀

3q2
◦ r
⇀

p2+p′2)(b,x(2)).

Repeating this argument, we finally obtain

(b,v) = (Φ−1
p ◦ l

⇀
3q1

◦ r
⇀

p1+p′1 ◦ · · · ◦ l
⇀

3qn
◦ r
⇀

pn+p′n
)(b, λpv = x(n)).

This means that

(b, λpv)
r
⇀

pn+p′n l
⇀

3qn
· · · r

⇀
p1+p′1 l

⇀
3q1

Φp(b,v),

which is an Agol cycle of Φp with length
∑n

i=1(pi + p′i + 3qi).
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Suppose that p is symmetric. By Corollary 2.17 v|1 = v|3 holds. A calculation shows

that x(i)|1 = x(i)|3 for all i ∈ {0, . . . , n}. Applying Proposition 3.2(1), we have

(b,x(i−1)) = (δqi2 δ
−pi
1 δ−pi

3 ◦ l
⇀

2qi
◦ r
⇀

pi
)(b,x(i)) for i ∈ {1, . . . , n}. (3.5)

Putting the above equalities (3.5) for each i ∈ {1, · · · , n} together, we can obtain

(b,v) = (Φ−1
p ◦ l

⇀
2q1

◦ r
⇀

p1 ◦ · · · ◦ l
⇀

2qn
◦ r
⇀

pn
)(b, λpv).

This gives an Agol cycle of Φp with length
∑n

i=1(pi + 2qi). We finished the proof. □
Example 3.3. We present 2 examples for Agol cycles and their total splitting numbers.
Recall that vp is the normalized eigenvector with respect to λp.

(1) For p = (1, 1, 1) ∈ I1 symmetric, we have vp =
(

x
y
x

)
for some x, y > 0 and Mpvp =

M1M3M2vp =

(
3x+y
2x+y
3x+y

)
. Figure 11 illustrates an Agol cycle (b, λpvp)

r
⇀

l
⇀

2
Φp(b,vp)

of Φp = δ1δ3δ
−1
2 with length 3. The splitting number of each maximal splitting in

the Agol cycle is exactly 2. Hence, we have N(Φp) = 2 · 3 = 6.

(2) For p = (1, 2, 1) ∈ I1 asymmetric, (b, λpvp)
r
⇀

3 l
⇀

3
Φp(b,vp) is an Agol cycle of

Φp = δ1δ
2
3δ

−1
2 with length 6 by Theorem 1.2. The splitting number of each maximal

splitting in the Agol cycle is 1, except for the last maximal splitting
l
⇀ with the

splitting number 2. (See Figure 10(3)(4).) Hence, we have N(Φp) = 7.

2x+y

3x+y

r

(1) (2)

x

x

1 3

(3)

-1 -1

x

x

l

(4)

x
x+y

x

x+y

x

x

l

(5)

x

x+y

x+y

y

x

x

y

2

y

x

x

(6)

y

2x+y

3x+y

2x+y

2x+y

2x+y

2x+y

Figure 11. An Agol cycle of Φp for p = (1, 1, 1). (1) (b,M1M3M2vp). (3)
(b,M2vp). (6) (b,vp).

Theorem 3.4. For p = (pn, p
′
n, qn, . . . , p1, p

′
1, q1) ∈ In the total splitting number of an

Agol cycle of Φp is given by N(Φp) =
∑n

i=1(pi + p′i + 4qi).

Proof. By Proposition 3.2(2) in the case of asymmetric weights, i.e., x ̸= z, we have a

finite sequence (b,Mp
1M

p′

3 M
q
2x)

r
⇀

p+p′ l
⇀

3q
δp1δ

p′

3 δ
−q
2 (b,x). The total splitting number of

the finite sequence (Definition 2.3(2)) is p + p′ + 4q. The coefficient 4 of 4q comes from

the total splitting number of a finite sequence (b,M q
2x)

l
⇀

3
δ−1
2 (b,M q−1

2 x) when x ̸= z.
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See Figure 10. In the case of symmetric weights, i.e., x = z, Proposition 3.2(1) tells us

that there exists a finite sequence (b,Mp
1M

p
3M

q
2x)

r
⇀

p l
⇀

2q
δp1δ

p
3δ

−q
2 (b,x). Its total splitting

number is 2(p+ 2q) = p+ p+ 4q since the splitting number of a maximal splitting in this
finite sequence is exactly 2.

The weight of (b,Mpvp) is given by Mpvp = Mpn
1 M

p′n
3 M qn

2 · · ·Mp1
1 M

p′1
3 M q1

2 vp. By the
repetition of the above argument, we can prove that N(Φp) =

∑n
i=1(pi + p′i + 4qi). □

4. Agol cycles of pseudo-Anosov maps in FD

We introduce positive integers Si(p) and Ai(p) for p ∈ In as follows.

Si(p) = pi + 2 and Ai(p) =

 2pi if p′i = 0,
2p′i if pi = 0,
pi + p′i + 2 otherwise.

In this section, we prove the following result.

Theorem 4.1. For p ∈ In let ϕp ∈ FD be the pseudo-Anosov map and Mp be the Perron-
Frobenius matrix associated with p. Let v > 0 be an eigenvector with respect to the Perron-
Frobenius eigenvalue λp of Mp. Then the Agol cycle length ℓ of ϕp is

ℓ =

{ ∑n
i=1(Si(p) + 2qi) if p is symmetric,∑n
i=1(Ai(p) + 3qi) if p is asymmetric.

Moreover, starting with the measured train track (b0, µ0) = (bL, λpv), a finite subsequence
of the maximal splitting sequence

(b0, µ0)⇀
Sn(p)+2qn · · ·⇀S1(p)+2q1 (bℓ, µℓ) if p is symmetric,

(b0, µ0)⇀
An(p)+3qn · · ·⇀A1(p)+3q1 (bℓ, µℓ) if p is asymmetric

forms an Agol cycle of ϕp. The consecutive maximal splittings consist of the following left,
right and mixed maximal splittings

⇀Si(p)+2qi =
r
⇀

l
⇀

r
⇀

pi−1 l
⇀

r
⇀

l
⇀

2qi−1
,

⇀Ai(p)+3qi =


lr
⇀

r
⇀

2pi−1 l
⇀

3qi
if p′i = 0,

lr
⇀

r
⇀

2p′i−1 l
⇀

3qi
if pi = 0,

r
⇀

l
⇀

r
⇀

pi+p′i−2 l
⇀

2 r
⇀

l
⇀

3qi−1
otherwise.

Figure 12(1) shows the measured train track (bL,x) that was defined in Section 1. Recall
that the vector x reflects the weights of specific branches. Due to the switch condition, the
weights on all remaining branches are determined. We introduce the measured train tracks
(bR,x), (a

′
R,x) and (s,x) in Σ0,5 as in Figure 12(2), (4) and (5) respectively. Figure 12(3)

gives the measured train track ∆(a′R,x), where ∆ = σ1σ2σ3σ1σ2σ1 ∈ MCG(Σ0,5) is the
π-rotation (Figure 12(6)).
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For ϕp = σpn1 σ
p′n
3 σ−qn

2 . . . σp11 σ
p′1
3 σ

−q1
2 ∈ FD we call the product σ

pj
1 σ

p′j
3 σ

−qj
2 the (j-th)

block of ϕp and say that the block is of type A (resp. A’) if p′j = 0 (resp. pj = 0).
Otherwise, we call it a type B block.

For the proof of Theorem 4.1 we consider each block σ
pj
1 σ

p′j
3 σ

−qj
2 of ϕp. The transition

matrix induced by σ
pj
1 σ

p′j
3 σ

−qj
2 is M

pj
1 M

p′j
3 M

qj
2 . Depending on the type of the block, con-

secutive maximal splittings of (bL,M
pj
1 M

p′j
3 M

qj
2 x) will result in different finite sequences.

Figure 13 is the central tool in this paper. It illustrates how finite sequences of maximal
splittings transition one measured train track into another. The details are given in Lem-
mas 4.2, 4.4 and 4.5. We will see that the concatenation of suitable finite sequences gives
an Agol cycle of the pseudo-Anosov map ϕp.

y-x

y

y

Δ

(4)

1

2 4

1

2

3

4

1

2 4

x+z x+z
33

(5)(3)

y

y
l

y

y

(1)

1

2

3

4

x

y y

z

(2)

x

y y

z

z

x

x

z

x

z

(6)

1

2

3

4

5

Δ

2y

Figure 12. (1) (bL,x), (2) (bR,x), (3) ∆(a′R,x), (4) (a
′
R,x), (5) (s,x) for

x =
(

x
y
z

)
. (6) ∆ = σ1σ2σ3σ1σ2σ1 ∈ MCG(Σ0,5). Figures (4)(5) illustrate a

left maximal splitting (a′R,x)
l
⇀(s,x) for z < y.

Lemma 4.2. Let q ∈ N and p, p′ ∈ N0. Let x =
(

x
y
z

)
> 0.

(b1) Suppose that p, p′ > 0. Then

(bR,M
p−1
1 Mp′−1

3 M q
2x) = (σ−1

1 σ−1
3 ◦ l

⇀ ◦ r
⇀)(bL,M

p
1M

p′

3 M
q
2x).

(b2) Suppose that p > 0. Then

(bR,M
p−1
1 Mp−1

3 M q
2x) =

{
(σ−1

1 σ−1
3 ◦ r

⇀)(bR,M
p
1M

p
3M

q
2x) if x = z,

(σ−1
1 σ−1

3 ◦ r
⇀

2
)(bR,M

p
1M

p
3M

q
2x) if x ̸= z.

(b3) Suppose that p > p′ ≥ 0. Then

(bR,M
p−1
1 Mp′

3 M
q
2x) = (σ−1

1 ◦ r
⇀)(bR,M

p
1M

p′

3 M
q
2x).

(b4) Suppose that 0 ≤ p < p′. Then

(bR,M
p
1M

p′−1
3 M q

2x) = (σ−1
3 ◦ r

⇀)(bR,M
p
1M

p′

3 M
q
2x).



22 JEAN-BAPTISTE BELLYNCK AND EIKO KIN

B

A'A

(a'1)

(a'2)(a'3)

(6)

(a1)

(a3)

(a2)

(b1) (b5)

(b2) 

(b3)

(b4)

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Figure 13. “Automaton” illustrating how the train tracks move between
topological types under the operations in Lemmas 4.2, 4.4 and 4.5. Box B
displays Lemma 4.2. Box A and A’ display Lemmas 4.5 and 4.4 respectively.

(b5) (bL,M
q−1
2 x) =

{
(σ2 ◦

l
⇀ ◦ r

⇀ ◦ l
⇀)(bR,M

q
2x) if x = z,

(σ2 ◦
l
⇀

2
◦ r
⇀ ◦ l

⇀
2
)(bR,M

q
2x) if x ̸= z.

(6) (bL,M
q−1
2 x) =

 (σ2 ◦
l
⇀

2
)(bL,M

q
2x) if x = z,

(σ2 ◦
l
⇀

3
)(bL,M

q
2x) if x ̸= z.

Proof. Figure 14 shows that (bL,M1M3a =
(

a+b
b

b+c

)
)

r
⇀

l
⇀σ1σ3(bR,a) for a =

(
a
b
c

)
> 0. In

other words, (bR,a) = (σ−1
1 σ−1

3 ◦ l
⇀ ◦ r

⇀)(bL,M1M3a). Choosing a =Mp−1
1 Mp′−1

3 M q
2x as

a positive vector, we obtain claim (b1).

a+b

b
b

b+c

r l 1 3

-1 -1

2b+c

a+2b

a+b

b

b

b+c

a

c

2b+c

a+2b

2bb

ba
c

2ba

b

b

c

(1) (2) (3) (4)

Figure 14. Proof of Lemma 4.2(b1). (1) (bL,M1M3a). (4) (bR,a).
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It is enough to prove the remaining claims when q = 1. For claim (b2), we set (b0, µ0) =
(bR,M

p
1M

p
3M2x). The proof is similar to that of Lemma 3.1(1). Figure 15 illustrates the

proof of (b2) when x < z. In the case x = z, the two large branches of (bR,M
p
1M

p
3M2x)

have the same weight. (c.f. Figure 15(1).) Applying a maximal splitting, we obtain the

right maximal splitting (bR,M
p
1M

p
3M2x)

r
⇀σ1σ3(bR,M

p−1
1 Mp−1

3 M2x). This completes the
proof of claim (b2).

x+py'

y'

y'

(1)

py'+z

2y'

r r 1 3
-1 -1

(4)(2) (3)

2y'
x+py'

y'
y'

py'+z

(p+1)y'+z

y'
y'

2y'

x+(p-1)y'

(p-1)y'+z

x+(p-1)y' 2y'

y'
y'

(p-1)y'+z
(p-1)y'+z

Figure 15. Proof of Lemma 4.2(b2) when x < z. (1) (bR,M
p
1M

p
3M2x).

(4) (bR,M
p−1
1 Mp−1

3 M2x).

The proof of claim (b3) (resp. (b4)) is similar to that of Lemma 3.1(2) (resp. Lemma 3.1(3))
and we omit the proof.

Before proving claim (b5), we first prove claim (6). We consider the measured train track

(b0, µ0) = (bL,M2x =
(

x
x+y+z

z

)
) when x ̸= z. We may suppose that x < z. Applying 3

maximal splittings (see Figure 16(1)–(4)), we have 3 left maximal splittings

(b0, µ0) = (bL,M2x)
l
⇀(b1, µ1) = (s,M2x)

l
⇀(b2, µ2)

l
⇀(b3, µ3) = σ−1

2 (bL,x). (4.1)

This gives claim (6) when x < z.

We turn to the case x = z. Applying 2 maximal splittings, we obtain 2 left maximal
splittings

(b0, µ0) = (bL,M2x)
l
⇀(b1, µ1) = (s,M2x)

l
⇀(b2, µ2) = σ−1

2 (bL,x).

This gives the proof of claim (6) when x = z.

We finally prove claim (b5). Consider the measured train track (b0, µ0) = (bR,M2x)
when x ̸= z. We may suppose that x < z. Figures 16(1’)–(3’) and (2) show that (b0, µ0) =

(bR,M2x)
l
⇀

2 r
⇀(s,M2x). Taking the last two maximal splittings from the finite sequence

(4.1), we have (s,M2x)
l
⇀

2
σ−1
2 (bL,x). Putting them together, we have

(b0, µ0) = (bR,M2x)
l
⇀

2 r
⇀ (s,M2x)

l
⇀

2
σ−1
2 (bL,x).

This gives claim (b5) when x < z.
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(1) (2) (3)
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x
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l l l

(4) (5)
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y y

z

2

x+
y+
z x+
y+
z

2x+y+z

x+y+2z x

z2x+y+z

y
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y+
z

yx

zy2x+y+z

x+y+2z

y+z

x+y x+y

x

y'

y'
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z

2y' x+y+2z
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l

(2')

2y'

y'
y'

z

x+y+2z

x+y2x+y+z

l

(3')

x

y'
y'

z

2y

y+x

x+y

2x+y+z

x+y+2z

r

Figure 16. (1)–(5) Proof of Lemma 4.2(6) when x < z. (1’)–(3’)(2)–(5)
Proof of Lemma 4.2(b5) when x < z.

In the case x = z, the measured train track (bR,M2x) has two large branches with

maximal weight. This gives the finite sequence (bL,M2x)
l
⇀

r
⇀ (s,M2x)

l
⇀σ−1

2 (bL,x).
This completes the proof. □

Let (bL,M
p
1M

p
3M

q
2x) be a measured train track, where the measure Mp

1M
p
3M

q
2x is pre-

ceded by a type B block. By repeatedly applying the last lemma, we now compute the
maximal splittings of (bL,M

p
1M

p
3M

q
2x).

Proposition 4.3 (Type B block). Let p, p′, q ∈ N. Let x =
(

x
y
z

)
> 0.

(1) (Symmetric case.) (bL,x) = (σq2σ
−p
1 σ−p

3 ◦ ⇀p+2+2q)(bL,M
p
1M

p
3M

q
2x) if x = z.

The consecutive maximal splittings consist of the following left and right maximal
splittings

⇀p+2+2q =
l
⇀

2q−1
◦ r
⇀ ◦ l

⇀ ◦ r
⇀

p−1
◦ l
⇀ ◦ r

⇀.

(2) (Asymmetric case.) (bL,x) = (σq2σ
−p
1 σ−p′

3 ◦⇀p+p′+2+3q)(bL,M
p
1M

p′

3 M
q
2x) if x ̸= z,

possibly p = p′. The consecutive maximal splittings consist of the following left and
right maximal splittings

⇀p+p′+2+3q =
l
⇀

3q−1
◦ r
⇀ ◦ l

⇀
2
◦ r
⇀

p+p′−2
◦ l
⇀ ◦ r

⇀.
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Proof. We prove claim (2). Suppose that x ̸= z. We may assume that p < p′. (The proof
for the case p ≥ p′ can be treated in the same manner.) We have

(bR,M
p−1
1 Mp′−1

3 M q
2x) = (σ−1

1 σ−1
3 ◦ l

⇀ ◦ r
⇀)(bL,M

p
1M

p′

3 M
q
2x) (Lemma 4.2(b1)),

(bR,M
p−1
1 Mp−1

3 M q
2x) = (σ

−(p′−p)
3 ◦ r

⇀
p′−p

)(bR,M
p−1
1 Mp′−1

3 M q
2x) (Lemma 4.2(b4)),

(bR,M
q
2x) = ((σ1σ3)

−(p−1) ◦ r
⇀

2p−2
)(bR,M

p−1
1 Mp−1

3 M q
2x) (Lemma 4.2(b2)),

(bL,x) = (σq2 ◦
l
⇀

3(q−1)
◦ l
⇀

2
◦ r
⇀ ◦ l

⇀
2
)(bR,M

q
2x) (Lemma 4.2(b5),(6)).

By the above equalities together with Lemma 2.6, we obtain

(bL,x) = (σq2σ
−p
1 σ−p′

3 ◦ l
⇀

3q−1
◦ r
⇀ ◦ l

⇀
2
◦ r
⇀

p+p′−2
◦ l
⇀ ◦ r

⇀)(bL,M
p
1M

p′

3 M
q
2x).

This completes the proof of (2). The proof of claim (1) is left to the reader. □

Lemma 4.4. Let q, s ∈ N. Let x =
(

x
y
z

)
> 0.

(a’1) (a′R,M
s−1
3 M q

2x) = (σ−1
3 ◦ r

⇀ ◦ lr
⇀)(bL,M

s
3M

q
2x).

(a’2) (a′R,M
s−1
3 M q

2x) = (σ−1
3 ◦ r

⇀
2
)(a′R,M

s
3M

q
2x).

(a’3) (bL,M
q−1
2 x) = (σ2 ◦

l
⇀

3
)(a′R,M

q
2x) if x ̸= z.

Proof. It is sufficient to prove the lemma when q = 1. Consider the maximal splitting

starting from (bL,M
s
3M2x =

(
x
y′

sy′+z

)
), where y′ = x+ y + z. Figure 17 shows that

x

y'
y'

sy'+z

r3
-1

x

y'

y'

y+z

(s-1)y'+z

y'

(1) (2) (3) (4)

x

(s-1)y'+z

y'

y'

sy'+z

y+z

x

y'

sy'+z

(s-1)y'+z

lr

Figure 17. Proof of Lemma 4.4(a’1). (1) (bL,M
s
3M2x).

(4) (a′R,M
s−1
3 M2x).

(a′R,M
s−1
3 M2x) = (

r
⇀ ◦ σ−1

3 ◦ lr
⇀)(bL,M

s
3M2x) = (σ−1

3 ◦ r
⇀ ◦ lr

⇀)(bL,M
s
3M2x).

The proof of claim (a’1) is done. For the proof of claim (a’2), see Figure 18.

We prove claim (a’3). Consider the measured train track (a′R,M2x). We may suppose
that x < z. Applying 3 maximal splittings consecutively, we obtain 3 left maximal splittings

(a′R,M2x)
l
⇀(s,M2x)

l
⇀

2
σ−1
2 (bL,x). See Figure 19. We finished the proof. □
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(1) (2) (3) (4)

x

(s-1)y'+z

y'

y'

x

sy'+z

y'

y'

x

(s-1)y'+z

y'

y'
r

sy'+z

r

x

(s-1)y'+z

y'

y'

sy'+z

3σ
-1

Figure 18. Proof of Lemma 4.4(a’2). (1) (a′R,M
s
3M2x =

(
x
y′

sy′+z

)
), where

y′ = x+ y + z. (4) (a′R,M
s−1
3 M2x).

(2) (3)

x

z

l l

(4) (5)

x

y y

z

2

x+
y+
z x+
y+
z

2x+y+z

x+y+2z x

z2x+y+z

y

x+
y+
z

yx

zy

y+z

x+y x+y

(1)

l

x

z

x+
y+
z x+
y+
z

Figure 19. Proof of Lemma 4.4(a’3). (1) (a′R,M2x). (2) (s,M2x). (4)
(bL,x).

Recall that ∆ = σ1σ2σ3σ1σ2σ1 is the π-rotation (Figure 12(6)).

Lemma 4.5. Let q, s ∈ N. Let x =
(

x
y
z

)
> 0 and J =

(
0 0 1
0 1 0
1 0 0

)
.

(a1) ∆(a′R,M
s−1
3 M q

2Jx) = (σ−1
1 ◦ r

⇀ ◦ lr
⇀)(bL,M

s
1M

q
2x).

(a2) ∆(a′R,M
s−1
3 M q

2Jx) = (σ−1
1 ◦ r

⇀
2
◦∆)(a′R,M

s
3M

q
2Jx).

(a3) (bL,M
q−1
2 x) = (σ2 ◦

l
⇀

3
◦∆)(a′R,M

q
2Jx) if x ̸= z.

Proof. Observe that ∆(bL,M
s
3M

q
2Jx) = (bL,M

s
1M

q
2x). By ∆σ±1

i = σ±1
j ∆ for the pair

(i, j) = (1, 3) or (3, 1), the proof is analogous to that of Lemma 4.4. □

Let (bL,M
s
1M

q
2x) or (bL,M

s
3M

q
2x) be a measured train track, where the measures are

preceded by a type A and A’ block respectively. We now compute the maximal splittings
of the measured train tracks.

Proposition 4.6 (Type A/A’ block for (1)/(2)). Let q, s ∈ N. Let x =
(

x
y
z

)
> 0.

(1) (bL,x) = (σq2σ
−s
1 ◦ l

⇀
3q

◦ r
⇀

2s−1
◦ lr
⇀)(bL,M

s
1M

q
2x) if x ̸= z.
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(2) (bL,x) = (σq2σ
−s
3 ◦ l

⇀
3q

◦ r
⇀

2s−1
◦ lr
⇀)(bL,M

s
3M

q
2x) if x ̸= z.

Proof. By a similar argument as in the proof of Proposition 4.3, one can prove claims (1)
and (2). In the case of Proposition 4.3, we used Lemma 4.2. For the proof of (1) (resp.
(2)), we use Lemma 4.5 (resp. Lemma 4.4) together with Lemma 4.2(6). □

Proof of Theorem 4.1. As in the proof of Theorem 1.2, for a Perron-Frobenius eigenvector v

ofMp we define positive vectors x(0) := v and x(i) :=Mpi
1 M

p′i
3 M

qi
2 x(i−1) for i ∈ {1, . . . , n}.

Suppose that p is asymmetric. By Propositions 4.3(2) and 4.6, we have

(bL,x
(i−1)) = (σqi2 σ

−pi
1 σ

−p′i
3 ◦⇀Ai+3qi)(bL,x

(i)) for i ∈ {1, . . . , n},
where Ai = Ai(p) is the positive integer defined in Section 1. This gives us

(bL,v = x(0)) = (ϕ−1
p ◦⇀A1+3q1 ◦ · · · ◦⇀An+3qn)(bL, λpv = x(n)).

This means that

(b0, µ0) = (bL, λpv)⇀
An+3qn · · ·⇀A1+3q1 ϕp(bL,v) = (bℓ, µℓ)

is an Agol cycle of ϕp with length ℓ. The consecutive Ai + 3qi maximal splittings ⇀Ai+3qi

are given by Proposition 4.3(2) when the i-th block of ϕp is of type B. The maximal
splittings are given by Propositions 4.6 when the i-th block is of type A or A′.

The proof of the theorem when p is symmetric is left to the reader. □
Example 4.7. We present 2 examples for Agol cycles and their total splitting numbers.

(1) For p = (1, 2, 1) ∈ I1 asymmetric, an Agol cycle of ϕp is given by

(bL, λpvp)
r
⇀

l
⇀

r
⇀

l
⇀

2 r
⇀

l
⇀

2
ϕp(bL,vp)

whose length is 8. The splitting number of each maximal splitting is 1, except for

the first maximal splitting
r
⇀ whose splitting number is 2 (Figure 14(1)(2)). Hence,

we have N(ϕp) = 9.
(2) For p = (1, 0, 1, 0, 1, 1) ∈ I2 asymmetric, an Agol cycle of ϕp is given by

(bL, λpvp)
lr
⇀

r
⇀

l
⇀

3 lr
⇀

r
⇀

l
⇀

3
ϕp(bL,vp),

whose length is 10. The splitting number of each maximal splitting is 1, except for

the 2 mixed maximal splittings
lr
⇀, whose splitting number is 2 (Figure 17(1)(2)).

Hence, we have N(ϕp) = 12.

Theorem 4.8. For p ∈ In the total splitting number of an Agol cycle of ϕp is given by
We have N(ϕp) =

∑n
i=1(Ai(p) + 4qi).

Proof. For each finite sequence of maximal splittings given by Propositions 4.3 and 4.6, we
compute its total splitting number. For instance, take a finite sequence

(bL,M
pi
1 M

qi
2 x)

lr
⇀

r
⇀

2pi−1 l
⇀

3qi
σpi1 σ

−qi
2 (bL,x)
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given by Proposition 4.6(1). Counting the large branches with maximal weight in each
maximal splitting, one sees that its total splitting number is 2pi+4qi(= Ai(p)+ 4qi). One
can prove the total splitting number of the Agol cycle for ϕp given by Theorem 4.1 equals
the sum of Ai(p) + 4qi over i, that is

∑n
i=1(Ai(p) + 4qi). □

Proof of Theorem 1.3. Theorems 3.4 and 4.8 immediately give the desired statement. □

5. Conjugacy classes of pseudo-Anosov maps in FT and FD

Recall T : N3n
0 → N3n

0 is the shift and f : N3n
0 → N3n

0 is the flip defined in Section 1.
Before proving Theorem 1.4, we give an example.

Example 5.1. Let p = (7, 1, 1, 6, 2, 1, 5, 3, 1) ∈ I3 and t′ = (8, 0, 1, 4, 4, 1, 1, 7, 1) ∈ I3.
Then Φp and Φt′ have the same Agol cycle length ℓ = (8 + 3) × 3 = 33 and the same
dilatation λp = λt′ = 969.999 . . . . Although dilatation and Agol cycle length can not tell
Φp and Φt′ are conjugate or not, their Agol cycles can answer this question. In fact p ̸∼ t′,

since T 3(t′) = t′ and T k(t′) ̸∈ {p, f(p)} for each k ∈ {0, 1, 2}. By Theorem 1.4, we conclude
that Φp and Φt′ are not conjugate in MCG(Σ1,2).

Proof of Theorem 1.4. Suppose that p ∼ t. This means that T k(p) = t or T k(p) = f(t)
for some k ≥ 0. By the definition of the shift T , Φp and ΦT (p) (resp. ϕp and ϕT (p)) are
conjugate. Note that Φp and Φf(p) (resp. ϕp and ϕf(p)) are also conjugate. In this case,
a conjugacy is given by F (resp. ∆), where F : Σ1,2 → Σ1,2 is the π-rotation along the
simple closed curve c2 (Figure 2(1)).

Thus the condition (1) implies the conditions (2) and (3).

To see that (2) implies (1), we consider the right maximal splitting (τi, µi)
r
⇀(τi+1, µi+1)

in the Agol cycle of Φp for p ∈ In given in Theorem 1.2. By the proof of Lemma 3.1(1)–(3),
we observe that when p is symmetric (resp. asymmetric) the number of large branches of
the measured train track (τi, µi) with the maximal weight is exactly 2 (resp. 1).

Suppose that Φp and Φt are conjugate in MCG(Σ1,2). By Theorem 2.5 their peri-
odic splitting sequences are combinatorially isomorphic and their Agol cycle lengths are
equal. By condition (2) in Definition 2.4, the number of the splittings that are performed
in each right maximal splitting tells us that p is symmetric if and only if t is symmet-
ric. We now prove that p ∼ t when both p and t are asymmetric. (The proof for
the symmetric case is analogous.) Let ℓ be the Agol cycle lengths of Φp and Φt. For
p = (pn, p

′
n, qn, . . . , p1, p

′
1, q1) ∈ In and t = (tm, t

′
m, um, . . . , t1, t

′
1, u1) ∈ Im, Theorem 1.2

tells us that

(b, λpvp)
r
⇀

pn+p′n l
⇀

3qn
· · · r

⇀
p1+p′1 l

⇀
3q1

Φp(b,vp),

(b, λtvt)
r
⇀

tm+t′m l
⇀

3um

· · · r
⇀

t1+t′1 l
⇀

3u1

Φt(b,vt)
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form Agol cycles of Φp and Φt, respectively and we have ℓ =

n∑
i

(pi + p′i + 3qi) =

n∑
i

(ti +

t′i + 3ui). This together with Remark 2.7 implies that the cyclically ordered sets {(pn +
p′n, 3qn), . . . , (p1 + p′1, 3q1)} and {(tm + t′m, 3um), . . . , (t1 + t′1, 3u1)} have to be equal. In
particular, n = m. Consider a shift T j(t) ∈ In (1 ≤ j ≤ n). Replacing T j(t) ∈ In
(1 ≤ j ≤ n) with t if necessary, we may assume that p, t ∈ In satisfy the next condition.

pi + p′i = ti + t′i and qi = ui for i = 1, . . . , n. (5.1)

The following three cases can occur.

Case 1. pi = ti (and p
′
i = t′i) for i = 1, . . . , n.

Case 2. pi = t′i (and p
′
i = ti) for i = 1, . . . , n.

Case 3. Otherwise.

In case 1 (resp. case 2) we have p = t (resp. p = f(t)). In both cases it holds p ∼ t.

Claim 1. Let (b,x) be a measured train track in Σ1,2 as in Figure 2(3). Let h : Σ1,2 → Σ1,2

be an orientation-preserving diffeomorphism preserving the train track b. Then h(b,x) =
(b,x) or h(b,x) = (b, Jx), where J is the matrix as in Lemma 4.5.

Proof of Claim 1. Let ι : Σ1,2 → Σ1,2 be the hyperelliptic involution, exchanging the two
punctures. Let F : Σ1,2 → Σ1,2 be the π-rotation as above. Then ι(b,x) = (b,x), F (b,x) =
(b, Jx) and F ◦ ι(b,x) = (b, Jx). Consider any orientation-preserving diffeomorphism
h : Σ1,2 → Σ1,2 preserving the train track b. Since large branches are mapped to large
branches under h, we observe that h is either the identity map 1, ι, F or F ◦ ι = ι ◦ F .
This completes the proof.

We turn to case 3. For p ∈ In let vp be the normalized eigenvector of Mp given in
Theorem 2.13. If case 3 occurs, we have sp + st ̸= 1 by Corollary 2.16(2) and sp ̸= st by
Corollary 2.16(3). In particular, vp ̸= Jvt and vp ̸= vt. But since by Claim 1, the only
possible diffeomorphisms are 1, ι, F or F ◦ ι = ι◦F , a diffeomorphism h : Σ1,2 → Σ1,2 with
h(b,vp) = (b, cvt) for some constant c > 0 cannot exist. Since Φp and Φt are conjugate,
there exists a diffeomorphism h : Σ1,2 → Σ1,2 with condition (2) in Definition 2.4. To find
such a diffeomorphism h : Σ1,2 → Σ1,2 that sends the measured train track (b,vp) in the
Agol cycle of Φp to another measured train track in the Agol cycle of Φt, we go back to
the above argument. Replacing T j(t) for another j (1 ≤ j ≤ n) with t, we may suppose
that p and t satisfy the condition (5.1). If case 1 or case 2 occurs, then it holds p ∼ t. If

case 3 occurs, then we apply the above argument for other shifts T j′(t). Up to the shift
T , if case 3 always occurs, then we conclude that the periodic splitting sequences of Φp

and Φt are not combinatorially isomorphic because they do not satisfy condition (2) in
Definition 2.4. (For example, let p and t′ be elements of I3 as in Example 5.1. Take any
t ∈ {t′, T (t′), T 2(t′)}. Then p and t satisfy the condition (5.1) and case 3 always occurs.)
Therefore, Φp and Φt are not conjugate to each other by Theorem 2.5. This contradicts
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the assumption that Φp and Φt are conjugate. Thus the condition (2) implies the condition
(1).

To see that (3) implies (1), suppose that ϕp and ϕt are conjugate in MCG(Σ0,5). For
the 2-fold branched cover Σ1,2 → Σ0,5 their lifts Φp and Φt are conjugate in MCG(Σ1,2).
Then p ∼ t by the above argument. This completes the proof. □
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