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Abstract. For a bridge decomposition of a link in the 3-sphere, we de-
fine the Goeritz group to be the group of isotopy classes of orientation-
preserving homeomorphisms of the 3-sphere that preserve each of the
bridge sphere and link setwise. After describing basic properties of
this group, we discuss the asymptotic behavior of the minimal pseudo-
Anosov entropies. We then give an application to the asymptotic behav-
ior of the minimal entropies for the original Goeritz groups of Heegaard
splittings of the 3-sphere and the real projective space.

Introduction

Every closed orientable 3-manifold M can be decomposed into two han-
dlebodies V + and V − by cutting it along a closed orientable surface Σ of
genus g for some g ≥ 0. Such a decomposition is called a genus-g Hee-
gaard splitting of M and denoted by (M ; Σ). The Goeritz group G(M ; Σ)
of the Heegaard splitting (M ; Σ) is then defined to be the group of isotopy
classes of orientation-preserving self-homeomorphisms of M that preserve
each of the two handlebodies setwise. We note that this group can naturally
be thought of as a subgroup of the mapping class group of the surface Σ.
Indeed, restricting the maps of concern to Σ, we can describe the Goeritz
group G(M ; Σ) as

G(M ; Σ) = MCG(V +) ∩MCG(V −) < MCG(Σ),

where MCG( · ) is the mapping class group. The structure of this group is
studied by many authors (see e.g. recent papers [JR13, JM13, FS18, CK19,
IK20, Zup19] and references therein).

In this paper, we define an analogous group, which we also call the Goeritz
group, for a bridge decomposition of a link, and study some of its interesting
properties. Recall that an n-bridge decomposition (L;S) of a link L in the 3-
sphere S3 is a splitting of (S3, L) into two trivial n-tangles (B+, B+∩L) and
(B−, B− ∩ L) along a sphere S ⊂ S3. We define the Goeritz group G(L;S)
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of the bridge decomposition (L;S) to be the group of isotopy classes of
orientation-preserving self-homeomorphisms of S3 that preserve each of the
trivial tangles setwise. (See Section 2 for the definition.) Similarly to the
case of Heegaard splittings, it is easily seen that this group can be thought
of as a subgroup of the mapping class group MCG(S, S ∩ L), that is, the
group of isotopy classes of orientation-preserving self-homeomorphisms of S
that preserve S ∩L setwise, see for example [HK17, Proposition A.4]. More
precisely, restricting the maps of concern to S, the Goeritz group G(L;S)
can be written as

G(L;S) = MCG(B+, B+ ∩ L) ∩MCG(B−, B− ∩ L) < MCG(S, S ∩ L),

where MCG(B±, B± ∩ L) is the group of isotopy classes of orientation-
preserving self-homeomorphisms of the 3-ball B± that preserve B± ∩ L
setwise.

The Goeritz groups of Heegaard splittings and those of bridge decompo-
sitions are related as follows. Given an n-bridge decomposition

(S3, L) = (B+, B+ ∩ L) ∪S (B−, B− ∩ L)

with n ≥ 2, let q : ML → S3 be the 2-fold covering of S3 branched over
L. Then that bridge decomposition induces a Heegaard splitting ML =
V + ∪Σ ∪V −, where V ± := q−1(B±) and Σ := q−1(S). Let T be the non-
trivial deck transformation of the covering. Note that T |Σ is a hyperelliptic
involution of Σ. We define the hyperelliptic Goeritz group HGT (ML; Σ) to be
the group of orientation-preserving, fiber-preserving self-homeomorphisms
of ML that preserve each of the two handlebodies setwise modulo isotopy
through fiber-preserving homeomorphisms. Here a self-homeomorphism of
ML is said to be fiber-preserving if it takes the fiber (with respect to the
projection q) of each point in S3 to the fiber of some point in S3. Then
we prove in Section 2.2 the following theorem, which is the “hyperelliptic
Goeritz group version” of the original Birman-Hilden’s theorem [BH71] for
hyperelliptic mapping class groups.

Theorem 0.1. We have HGT (ML; Σ)/〈[T ]〉 ∼= G(L;S).

It is then natural to think about a relationship between HGT (ML; Σ) and
the usual Goeritz group G(ML; Σ). In the same section, we give a rigorous
proof of the following naturally expected result.

Theorem 0.2. We have HGT (ML; Σ) ∼= G(ML; Σ) ∩ H(Σ), where H(Σ) is
the hyperelliptic mapping class group with respect to the hyperelliptic invo-
lution T |Σ.

In Theorem 0.2 we regard both G(ML; Σ) and H(Σ) as subgroups of
MCG(Σ).

Using the two isomorphisms in Theorems 0.1 and 0.2, we can obtain finite
presentations for the Goeritz groups of 3-bridge decompositions of 2-bridge
links, see Example 2.9.
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For a Heegaard splitting M = V + ∪Σ V
−, Hempel [Hem01] introduced a

measure of complexity called the distance. Roughly speaking, this is defined
to be the distance between the sets of the boundaries of meridian disks of V +

and V − in the curve graph C(Σ). The distance gives a nice way to describe
the structure of the Goeritz groups of Heegaard splittings. In fact, by work
of Namazi [Nam07] and Johnson [Joh10], it turned out that the Goeritz
group is always a finite group if the distance of the Heegaard splitting is
at least 4. This is completely different from the case for the splittings of
distance at most 1, where the Goeritz group is always an infinite group (see
Johnson-Rubinstein [JR13] and Namazi [Nam07]). The notion of distance
can naturally be defined for bridge decompositions as well, see for example
Bachman-Schleimer [BS05]. It is hence quite natural to expect that the
Goeritz groups of bridge decompositions hold similar properties as above.
In Example 2.11 we actually see that the Goeritz group is always an infinite
group when the distance of the bridge decomposition is at most 1 (except
the case of the 2-bridge decomposition of the trivial knot), and in Section
3, we prove the following.

Theorem 0.3. There exists a uniform constant N > 0 such that for each
integer n at least 3, if the distance of an n-bridge decomposition (L;S) of a
link L in S3 is greater than N , then G(L;S) is a finite group.

We will show that the constant N in the above theorem can actually be
taken to be at most 3796. This number is, however, far bigger than the
constant 4 in the case of Heegaard splittings. For a 2-bridge decomposition
we will see in Example 2.8 that the Goeritz group is always a finite group
except for the case of the trivial 2-component link.

In Sections 4 and 5, we will discuss the Goeritz groups of bridge de-
compositions of links whose orders are infinite. Let Σg,m denote the ori-
entable surface of genus g with m marked points, possibly m = 0. By Σg

we mean Σg,0 for simplicity. The mapping class group MCG(Σg,m) is the
group of isotopy classes of orientation-preserving self-homeomorphisms of
Σg,m which preserve the marked points setwise. Assume 3g−3+m ≥ 1. By
the Nielsen-Thurston classification, elements in MCG(Σg,m) fall into three
types: periodic, reducible, pseudo-Anosov [Thu88, FM12, FLP79]. This
classification can also be applied for elements of the Goeritz group G(L;S)
of an n-bridge decomposition (L;S) by regarding G(L;S) as a subgroup of
MCG(S, S ∩ L) = MCG(Σ0,2n).

Given a bridge decomposition (L;S) of a link L ⊂ S3, consider the bridge
decomposition (L;S(p,1)) obtained by the 1-fold stabilization of (L;S) at a
point p ∈ S ∩ L (see Section 1.3 for the definition of a stabilization). This
bridge decomposition has distance at most 1 (see Lemma 1.3), and hence
the order of its Goeritz group is infinite (except the case of the 2-bridge
decomposition of the trivial knot, which is the 1-fold stabilization of the
1-bridge decomposition of the trivial knot). Therefore, it is quite natural to
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ask whether it contains a pseudo-Anosov element. In Section 4 we give a
complete answer to this question as in the following way.

Theorem 0.4. Let (L;S) be an n-bridge decomposition of a link L in S3

with n ≥ 2. Let p be an arbitrary point in S ∩ L. If (L;S) is the 2-bridge
decomposition of the 2-component trivial link, then G(L;S(p,1)) is an infinite
group consisting only of reducible elements. Otherwise, the Goeritz group
G(L;S(p,1)) contains a pseudo-Anosov element.

Consider the sequence

(L;S(p,1)), (L;S(p,2)), . . . , (L;S(p,k)), . . .

obtained by a k-fold stabilization of a bridge decomposition (L;S) at a
point p ∈ S ∩ L for each positive integer k. By Theorem 0.4, the Goeritz
groups of the bridge decompositions in this sequence always have pseudo-
Anosov elements. We are interested in how big those Goeritz groups can
be from the view point of dynamical properties of their elements. In the
final section of the paper we actually discuss the asymptotic behavior of the
minimal pseudo-Anosov dilatations in the Goeritz groups with respect to
stabilizations. To each pseudo-Anosov element φ ∈ MCG(Σg,m), there is an
associated dilatation (stretch factor) λ(φ) > 1. The logarithm log λ(φ) of
the dilatation is called the entropy of φ.

Fix a surface Σg,m and consider the set of entropies

{log λ(φ) | φ ∈ MCG(Σg,m) is pseudo-Anosov}.

This is a closed, discrete subset of R due to Ivanov [Iva88]. For any sub-
group G ⊂ MCG(Σg,m) containing a pseudo-Anosov element, let `(G) de-
note the minimum of entropies over all pseudo-Anosov elements in G. Note
that `(G) ≥ `(MCG(Σg,m)). Penner [Pen91] proved that `(MCG(Σg)) is
comparable to 1/g, and Hironaka-Kin [HK06] proved that `(MCG(Σ0,m)) is
comparable to 1

m . Here, for real valued functions f, h : X → R on a subset
X ⊂ N, we say that f is comparable to h, and write f � h, if there exists
a constant c > 0 such that h(x)/c ≤ f(x) ≤ ch(x) for all x ∈ X. For the
genus-g handlebody group MCG(Vg) ⊂ MCG(Σg), Hironaka [Hir14] proved
that `(MCG(Vg)) is also comparable to 1

g .

In Section 5, we show the following.

Theorem 0.5. Let (O;n) be the n-bridge decomposition of the trivial knot
O ⊂ S3. Then we have

`(G(O;n)) � 1

n
.

We note that the sequence (O; 2), (O; 3), . . . we consider in the above
theorem is nothing but that of finite-fold stabilizations of the 1-bridge de-
composition (O; 1) of the trivial knot O (at any point).
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Theorem 0.6. Let (H;S(p,n−2)) be the n-bridge decomposition of the Hopf

link H ⊂ S3 obtained from the 2-bridge decomposition (H;S) by the (n−2)-
fold stabilization at a point p ∈ S ∩H. Then we have

`(G(H;S(p,n−2))) �
1

n
.

The proofs of Theorems 0.5 and 0.6 are based on the braid-theoretic
description (Theorem 2.1) of the Goeritz groups of bridge decompositions
derived from the earlier-mentioned identification G(L;S) = MCG(B+, B+∩
L) ∩MCG(B−, B− ∩ L) for a bridge decomposition (L;S). Theorems 0.5
and 0.6, together with Theorems 0.1 and 0.2, allow us to have the following
intriguing application to the Goeritz groups of Heegaard splittings.

Corollary 0.7. Let (S3; g) be the genus-g Heegaard splitting of S3 for g ≥ 0.
Then we have

`(G(S3; g)) � 1

g
.

Corollary 0.8. Let (RP3; g) be the genus-g Heegaard splitting of the real
projective space RP3 for g ≥ 1. Then we have

`(G(RP3; g)) � 1

g
.

1. Preliminaries

Throughout the paper, we will work in the piecewise linear category. For
a subspace Y of a space X, N(Y ;X) denotes a regular neighborhood of Y in
X, Cl(Y ;X) the closure of Y in X, and Int(Y ) the interior of Y . When X is
a metric space, Nε(Y ;X) denotes the closed ε-neighborhood of Y . If there
is no ambiguity about the ambient space in question, the X is suppressed
from the notation. The number of components of X is denoted by #X.

Let X1, . . . , Xn be possibly empty subspaces of an orientable manifold
M . Let Homeo+(M,X1, . . . , Xn) denote the group of orientation-preserving
self-homeomorphisms of M that map Xi onto Xi for each i = 1, . . . , n. The
mapping class group, denoted by MCG(M,X1, . . . , Xn), is defined by

MCG(M,X1, . . . , Xn) = π0(Homeo+(M,X1, . . . , Xn)).

Here, we do not require that the maps and isotopies fix the points in ∂M .
For a compact orientable surface Σ with marked points, by MCG(Σ) we
mean MCG(Σ, {p1, . . . , pm}), where {p1, . . . , pm} is the set of marked points
of Σ. We apply elements of mapping class groups from right to left, i.e., the
product fg means that g is applied first.

1.1. Heegaard splittings. A handlebody of genus g is an oriented 3-manifold
obtained from a 3-ball by attaching g copies of a 1-handle. Every closed ori-
entable 3-manifold M can be obtained by gluing together two handlebodies
V + and V − of the same genus g for some g ≥ 0, that is, M can be repre-
sented as M = V +∪V − and V +∩V − = ∂V + = ∂V − = Σ ∼= Σg. We denote
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γ

Σ Σ

Figure 1. A stabilization for a Heegaard surface.

such a decomposition by (M ; Σ) or V +∪Σ V
−, and we call it a genus-g Hee-

gaard splitting of M . The surface Σ is called the Heegaard surface of the
splitting. We say that two Heegaard splittings (M ; Σ) and (M ; Σ′) of M are
equivalent if the Heegaard surfaces Σ and Σ′ are isotopic in M .

We recall the notion of stabilization for a Heegaard splitting V + ∪Σ V
−

of M . Take a properly embedded arc γ in V + which is parallel to Σ (Figure

1). We denote the union V − ∪ N(γ) by V̂ −, the closure of V + \ N(γ) by

V̂ +, and their common boundary ∂V̂ + = ∂V̂ − by Σ̂. Then V̂ + ∪
Σ̂
V̂ − is

again a Heegaard splitting of M , where the genus of Σ̂ is one greater than

that of Σ. Note that Σ̂ does not depend on γ. We say that Σ̂ is obtained
from Σ by a stabilization.

By Waldhausen [Wal68], the 3-sphere S3 admits a unique genus-g Hee-
gaard splitting up to equivalence for each g ≥ 0. Similarly, by Bonahon-Otal
[BO83], a lens space admits a unique genus-g Heegaard splitting up to equiv-
alence for each g ≥ 1.

1.2. Goeritz groups of Heegaard splittings. Let V = Vg be a handle-
body of genus g. We call MCG(V ) a handlebody group. Since the map

MCG(V )→ MCG(∂V )

sending [f ] ∈ MCG(V ) to [f |∂V ] ∈ MCG(∂V ) is injective, we regard MCG(V )
as a subgroup of MCG(∂V ).

Suppose that M admits a genus-g Heegaard splitting (M ; Σ) = V +∪ΣV
−.

We equip the common boundary ∂V + = ∂V −(= Σ) with the orientation
induced by that of V −. The Goeritz group, denoted by G(M ; Σ) or G(V +∪Σ

V −), of the Heegaard splitting is defined by

G(M ; Σ) = MCG(M,V +).

We note that MCG(M,V +) = MCG(M,V −). We can regard G(M ; Σ) as a
subgroup of both MCG(V +) and MCG(V −). Further, regarding MCG(V +)
and MCG(V −) as subgroups of MCG(Σ), the group G(M ; Σ) is nothing but
the intersection MCG(V +) ∩MCG(V −).

When (M ; Σ) is the unique genus-g Heegaard splitting of M up to equiv-
alence, we simply call G(M ; Σ) the genus-g Goeritz group of M , and we
denote it by G(M ; g).
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B1 2 n

B

∂2

Figure 2. The standard n-tangle A = An.

1.3. Bridge decompositions. Let T = T1 ∪ · · · ∪ Tn be n disjoint arcs
properly embedded in a 3-ball B. We call T an n-tangle or simply a tangle.
The endpoints of T , denoted by ∂T , mean the set ∂T1 ∪ · · · ∪ ∂Tn of 2n
points in ∂B.

Suppose that T and T ′ are n-tangles in B such that they share the same
endpoints, that is, ∂T = ∂T ′. We say that T and T ′ are equivalent if there
exists an orientation-preserving homeomorphism f : B → B sending T to
T ′ with f |∂B = id∂B. In this case, we write T = T ′.

In what follows, when we consider an n-tangle in the 3-ball B, we always
adopt the following convention.

• We identify the boundary ∂B of the 3-ball B with S2, and we im-
plicitly fix an oriented great circle C of ∂B.
• We fix 2n points labeled 1, 2, . . . , 2n on C, where the order of the

labels is compatible with the prefixed orientation of C.
• The endpoints ∂T of a given n-tangle T is exactly the set {1, 2, . . . , 2n}.
• When we show a figure of a given n-tangle T , we draw C as a

horizontal line in such a way that the labeled points 1, 2, . . . , 2n are
ordered from left to right as in Figure 3. The sphere S := ∂B near
C is perpendicular to the paper plane in such a figure.

This convention will be particularly important in the arguments in Section
1.7.

Let A = An be the n-tangle in B as in Figure 2. We say that an n-tangle
in B is standard if it is equivalent to A.

We say that an n-tangle T in B is trivial if there exists an orientation-
preserving homeomorphism f : B → B sending A to T . Here, f does not
necessarily respect the label of the endpoints. In other words, an n-tangle
T in B is trivial if we can move N(∂T ; T ) by an isotopy keeping ∂T lying
in ∂B so that the resulting tangle is equivalent to A. For example, Figure
3 shows examples of trivial n-tangles (1) B = Bn and (2) C = Cn.

Consider the genus-0 Heegaard splitting B+ ∪S B− of S3, where B+ and
B− are 3-balls and S = ∂B+ = ∂B−. Let R3

+ = {(x, y, z) ∈ R3 | z ≥ 0} and
R3
− = {(x, y, z) ∈ R3 | z ≤ 0}. We identify B+ with R3

+ ∪ {∞}, B− with
R3
− ∪ {∞}. Then S is written by S = {(x, y, z) ∈ R3 | z = 0} ∪ {∞}. Define

an involution ρ : S3 → S3 by ρ(x, y, z) = (x, y,−z). Note that ρ|S = idS ,
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(1) (2)

1 2 1 2

S S

n2 n2

Figure 3. The n-tangles (1) B = Bn and (2) C = Cn.

1 2
S

1 2

B

S

(1) (2)

B
+

-

B
+

B
-

�

� n2

n2

Figure 4. The involution ρ : S3 → S3 interchanges (1) the
n-tangle A in B− with (2) the n-tangle Ā in B+.

and ρ interchanges B+ with B−. This means that ρ interchanges n-tangles
in B+ with n-tangles in B−. Consider the standard n-tangle A = An in
B−. We set Ā = Ān = ρ(An), which is a trivial n-tangle in B+. Hereafter,
we illustrate the splitting B+ ∪S B− as in Figure 4: again, the horizontal
line indicates the sphere S, the 3-ball B− lies below S and the other 3-ball
B+ lies above S.

Let L be a link, possibly a knot in S3. Suppose that B+ ∩L and B− ∩L
are trivial n-tangles. Then we have the decomposition

(S3, L) = (B+, B+ ∩ L) ∪ (B−, B− ∩ L),

which is denoted by (L;S) or (B+ ∩L)∪S (B− ∩L). We call such a decom-
position an n-bridge decomposition of L. We also call S = ∂B+ = ∂B− a
bridge sphere of L.

We say that two n-bridge decompositions (L;S) and (L;S′) are equivalent
if S and S′ are isotopic through bridge spheres of L.

A stabilization of an n-bridge decomposition (L;S) = (B+∩L)∪S (B−∩L)
is defined as follows. Take a point p ∈ L∩S. We deform the bridge sphere S
near p into a sphere S(p,k) so that the cardinality of the intersection L∩S(p,k)

increases by 2k as illustrated in Figure 5(2). More precisely, let U be a disk
embedded in B+ whose boundary consists of three arcs α, β and γ, where
α = U ∩ L, β = U ∩ S, see Figure 5(1). Then γ ∩ L consists of an endpoint
of γ, and γ ∩ S consists of the other endpoint of γ. Let N(γ) be a regular
neighborhood of γ. We denote the union B− ∪ N(γ) by B−(p,1), the closure

of B+ \N(γ) by B+
(p,1), their common boundary by S(p,1). For k ≥ 1, take k
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S

L

p

k

p

L

S p,k(     )

(2)(1) (3)

k

p

L

S p,k(     )

U
α

β

γ

Figure 5. A stabilization for a bridge sphere. (1) A bridge
sphere S. (2) The bridge sphere S(p,k) obtained from S by
a k-fold stabilization, where k = 2. (3) Illustration of the
bridge decomposition (L;S(p,k)).

parallel copies γ′1, . . . , γ
′
k of γ, and consider the union γk = γ′1∪· · ·∪γ′k ⊂ U .

Let N(γk) be a closed regular neighborhood of γk. We denote the union
B− ∪ N(γk) by B−(p,k), the closure of B+ \ N(γk) by B+

(p,k), their common

boundary by S(p,k). Then

(L;S(p,k)) = (B+
(p,k) ∩ L) ∪S(p,k)

(B−(p,k) ∩ L)

is an (n+k)-bridge decomposition. Note that S(p,k) does not depend on the
disk U . It only depends on S, p and k. We say that S(p,k) is obtained from
S by a k-fold stabilization (at p). When L is a knot, the stabilized bridge
decomposition (L;S(p,k)) does not depend on the choice of the point p in
L ∩ S. See Jang-Kobayashi-Ozawa-Takao [JKOT19] for a rigorous proof of
this fact.

It is proved by Otal [Ota82] that for each n ≥ 1, an n-bridge decom-
position of the trivial knot O is unique up to equivalence. We denote the
n-bridge decomposition of O by (O;n). We note that the same consequence
holds as well for the 2-bridge knots by Otal [Ota85], and the torus knots by
Ozawa [Oza11].

Consider the 1-bridge decomposition (O; 1) with the bridge sphere S. Let
p be a point in O ∩ S, and let S(p,n−1) be the bridge sphere obtained from
S by an (n − 1)-fold stabilization, see Figure 6(1). The resulting n-bridge
decomposition of O can be expressed by using the trivial tangles Ā = Ān
and B = Bn as follows.

(O;n) = Ā ∪S(p,n−1)
B.

For the 2-bridge decomposition (H;S) of the Hopf link H, we pick a point
p ∈ H ∩S as in Figure 6(2). Let S(p,n−2) be the bridge sphere obtained from
S by an (n− 2)-fold stabilization. The resulting n-bridge decomposition of
H is of the form

(H;S(p,n−2)) = Ā ∪S(p,n−2)
C
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p

n- 1

(1)

n- 2

(2)

S

p

S

S p,n- S p,n-(        )

1 2

1 2(        )

Figure 6. (1) The n-bridge sphere of the trivial knot O
obtained from the stabilization of the 1-bridge sphere. (2)
The n-bridge sphere of the Hopf link H obtained from the
stabilization of the 2-bridge sphere.

by using the trivial tangles Ā = Ān and C = Cn.

1.4. Curve graphs. Let Σ be a compact orientable surface. A simple closed
curve on Σ is said to be essential if it does not bound a disk in Σ and it is
not parallel to a component of the boundary. A properly embedded arc in
Σ is said to be essential if it cannot be isotoped (rel. ∂Σ) into ∂Σ.

Suppose that Σ is not an annulus. The curve graph C(Σ) of Σ is defined
to be the 1-dimensional simplicial complex whose vertices are the isotopy
classes of essential simple closed curves on Σ and a pair of distinct vertices
spans an edge if and only if they admit disjoint representatives. By defini-
tion, when Σ is a torus, a 1-holed torus or a 4-holed sphere, C(Σ) has no
edges. In these cases, we alter the definition slightly for convenience. When
Σ is a torus or a 1-holed torus, two distinct vertices of C(Σ) span an edge
if and only if their geometric intersection number is equal to 1. When Σ
is a 4-holed sphere, two vertices of C(Σ) span an edge if and only if their
geometric intersection number is equal to 2.

Similarly, the arc and curve graph AC(Σ) of Σ is the 1-dimenaional sim-
plicial complex defined as follows. When Σ is not an annulus, the vertices
of AC(Σ) are the isotopy classes of essential simple closed curves and iso-
topy classes of essential arcs (rel. ∂Σ) on Σ. A pair of distinct vertices
spans an edge if and only if they admit disjoint representatives. When Σ is
an annulus, the vertices of AC(Σ) are isotopy classes of essential arcs (rel.
endpoints). Two distinct vertices spans an edge if and only if they admits
disjoint representatives. In this case, we set C(Σ) := AC(Σ) for convenience.

By C(0)(Σ) and AC(0)(Σ) we denote the set of vertices of C(Σ) and AC(Σ),
respectively. We can regard C(Σ) (respectively, AC(Σ)) as the geodesic
metric space equipped with the simplicial metric dC(Σ) (respectively, dAC(Σ)).

Let δ > 0. A geodesic metric space is said to be δ-hyperbolic if any
geodesic triangle is δ-slim, that is, each side of the triangle lies in the closed
δ-neighborhood of the union of the other two sides.
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Recent independent work by Aougab [Aou13], Bowditch [Bow14], Clay-
Rafi-Schleimer [CRS14] and Hensel-Przytycki-Webb [HPW15] after a fa-
mous work on the hyperbolicity of C(Σ) by Masur-Minsky [MM99] shows
the following.

Theorem 1.1. The curve graph C(Σ) is a δ-hyperbolic space, where δ does
not depend on the topological type of Σ.

We note that in [HPW15] it was shown that the constant 102 1 is enough
for the hyperbolicity constant δ in the above theorem.

Let Σ be a compact orientable surface with a negative Euler characteristic.
In what follows, we assume that simple closed curves in a surface are prop-
erly embedded, essential, and their intersection is transverse and minimal
up to isotopy. Recall that a subsurface Y of Σ is said to be essential if each
component of ∂Y is not contractible in Σ. We do not allow annuli homotopic
to a component of ∂Σ to be essential subsurfaces. We always assume that
essential subsurfaces are connected and proper. Let Y be an essential sub-
surface of Σ. The subsurface projection πY : C(0)(Σ) → P(C(0)(Y )), where
P( · ) denotes the power set, is defined as follows. First, we consider the

case where Y is not an annulus. Define κY : C(0)(Σ) → P(AC(0)(Y )) to be

the map that takes α ∈ C(0)(Σ) to α ∩ Y ⊂ P(AC(0)(Y )). Further, define

σY : AC(0)(Y )→ P(C(0)(Y )) by taking α ∈ AC(0)(Y ) to the set of essential
simple closed curves that are components of the boundary of N(α∪∂Y ;Y ).

The map σY naturally extends to the map σY : P(AC(0)(Y ))→ P(C(0)(Y )).
The map πY is then defined by πY := σY ◦ κY . Next we consider the case
where Y is an annulus. Fix a hyperbolic metric on Σ. Let p : Ỹ → Σ be the
covering map corresponding to π1(Y ). Let Ŷ be the metric completion of Ỹ .

We can identify Y with Ŷ . Suppose that α ∈ C0(Σ). We can regard p−1(α)
as the set of properly embedded arcs in Y and define πY (α) to be the set of
the properly embedded arcs that are essential in Y . The following theorem,
called the bounded geodesic image theorem, was proved by Masur-Minsky
[MM00].

Theorem 1.2. Let Σ be a compact orientable surface with a negative Euler
characteristic. Then there exists a constant C > 0 satisfying the following
condition. Let Y ( Σ be an essential subsurface that is not a 3-holed sphere.
Let c be a geodesic in C(Σ) such that πY (α) 6= ∅ for any vertex α of c. Then
diamC(Y )(πY (c)) ≤ C.

We remark that Webb [Web15] showed that the constant C in the above
theorem can be taken to be independent of the topological type of Σ.

1In [HPW15] the hyperbolicity constant is defined using the k-centered triangle con-
dition instead of the δ-slim triangle condition, which we adopt in this paper. The claim
of [HPW15] is that any geodesic triangle of C(Σ) is 17-centered. By Bowditch [Bow06,
Lemma 6.5], this implies that C(Σ) is 17 · 6 = 102-hyperbolic.
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(L;S) (L;S(p,1))

p

S

B+

B−

p

T+
1 T+

n−1

S(p,1)

B+
(p,1)

B−
(p,1)

T+
1 T+

n−1Z+
1

Z−n+1

T−n+1

Figure 7. The bridge decompositions (L;S) and (L;S(p,1)).

1.5. The distance of bridge decompositions. Let L be a link in S3,
and let (B+ ∩ L) ∪S (B− ∩ L) be an n-bridge decomposition of L with
n ≥ 2. Set SL := Cl(S − N(S ∩ L;S)). We denote by D+ (respectively,
D−) the set of vertices of C(SL) that are represented by simple closed curves
bounding disks in B+ − L (respectively B− − L). The distance d(L;S) of
the bridge decomposition (S;L) is defined to be the (extrinsic) distance of
the two subsets D+ and D− in the curve graph C(SL), that is, d(L;S) :=
min dC(SL)(α, β), where the minimum is taken over all α ∈ D+ and β ∈ D−.

Lemma 1.3. The distance of a stabilized bridge decomposition of a link in
S3 is at most 1.

Proof. Let (L;S) = (B+ ∩ L) ∪S (B− ∩ L) be an n-bridge decomposition of
L. Take a point p ∈ S ∩ L. Consider the (n+ 1)-bridge decomposition

(L;S(p,1)) = (B+
(p,1) ∩ L) ∪S(p,1)

(B−(p,1) ∩ L).

It suffices to show that d(L;S(p,1)) is at most 1. If n = 1, then (L;S) = (O; 1)
and (L;S(p,1)) = (O; 2). It is thus easily checked that d(L;S(p,1)) = 1. See
the definition of the curve graph for a 4-holed sphere. Suppose that n ≥ 2.
Let T+

1 , . . . , T
+
n−1 (respectively, T−1 , . . . , T

−
n−1) be the components of B+ ∩L

(respectively, B− ∩ L) disjoint from p. We note that the arcs T+
1 , . . . , T

+
n−1

(respectively, T−1 , . . . , T
−
n−1) remain to be components of B+

(p,1) ∩ L (respec-

tively, B−(p,1) ∩ L). See Figure 7. Let T−n+1 be the (unique) component

of (B−(p,1) ∩ L) −
⋃n−1
i=1 T

−
i disjoint from p. Then there exist disjoint disks

Z+
1 ⊂ B+

(p,1) and Z−n+1 ⊂ B−(p,1) such that Z+
1 ∩ L = ∂Z+

1 ∩ L = T+
1 ,

∂Z+
1 −T

+
1 ⊂ S(p,1), Z

−
n+1∩L = ∂Z−n+1∩L = T−n+1 and ∂Z−n+1−T

−
n+1 ⊂ S(p,1).

The simple closed curve α := ∂N(Z+
1 ∩ S(p,1);S(p,1)) bounds a disk in

B+
(p,1) − (B+

(p,1) ∩ L) while β := ∂N(Z−n+1 ∩ S(p,1);S(p,1)) bounds a disk in

B−(p,1) − (B−(p,1) ∩L). Since both α and β are disjoint essential simple closed
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curves in Cl(S(p,1)−N(S(p,1)∩L;S(p,1))), the distance d(L;S(p,1)) is at most
1. �

Recall that a subset Y of a geodesic metric space X is said to be K-
quasiconvex in X for a positive number K > 0 if, for any two points x, y in
Y , any geodesic segment in X connecting x and y lies in the K-neighborhood
of Y . We are going to discuss the quasiconvexity of D+ and D− in C(SL).
In fact, the following holds.

Theorem 1.4. There exist a constant K > 0 satisfying the following prop-
erty. For any n-bridge decomposition of a link L in S3 with n ≥ 2, the set
D+ (respectively, D−) is K-quasiconvex in C(SL).

This theorem can actually be proved using Masur-Minsky [MM04] and
Hamenstädt [Ham18, Section 3]. In the following we adopt Vokes’s argu-
ments in [Vok18] and [Vok19] to explain that the K in the above theorem
can be taken to be at most 1796.

A compact orientable genus-g surface Σ with m holes is said to be non-
sporadic if 3g + m ≥ 5. Let α and β be simple closed curves in a non-
sporadic surface Σ. A simple closed curve γ in Σ is called an (α, β)-curve
with 0 corners if γ = α or γ = β. A simple closed curve γ in Σ is called
an (α, β)-curve with 2 corners if there exist subarcs α′ ⊂ α and β′ ⊂ β
such that ∂α′ = ∂β′, Intα′ ∩ Intβ′ = ∅, and γ is homotopic in Σ to the
concatenation α′ ∗ β′, where orientations are chosen in an appropriate way.
A simple closed curve γ in Σ is called an (α, β)-curve with 4 corners if there
exist subarcs α′1, α

′
2 ⊂ α and β′1, β

′
2 ⊂ β satisfying the following.

• Intα′1, Intα′2, Intβ′1, Intβ′2 are mutually disjoint,
• ∂α′1 ∪ ∂α′2 = ∂β′1 ∪ ∂β′2 (we allow the case where ∂α′1 and ∂α′2 (and

hence ∂β′1 and ∂β′2) share a single point),
• α′1 ∪ α′2 ∪ β′1 ∪ β′2 is connected,
• γ is homotopic in Σ to the concatenation α′1 ∗ β′1 ∗ α′2 ∗ β′2, where

orientations are chosen in an appropriate way.

We note that an (α, β)-curve with at most 2 corners are called a bicorn
curve in Przytycki-Sisto [PS17]. For any simple closed curves α, β in a non-
sporadic surface Σ, let L0(α, β) denote the full subgraph of C(Σ) spanned
by the set of (α, β)-curves with at most 4 corners. For a positive number
h, we set R(h) := m − 4h, where m > 0 is the number defined by 2h(6 +
log2(m+ 2)) = m.

The following proposition is a part of Proposition 3.1 of Bowditch [Bow14]
that is necessary for our arguments.

Proposition 1.5. Let h > 0 be a constant. Let G be a connected graph
equipped with the simplicial metric dG. Suppose that each pair {x, y} (possibly
x = y) of vertices of G is associated with a connected subgraph L(x, y) ⊂ G
with x, y ∈ L(x, y) satisfying the following.

(1) For any vertices x, y, z of G, L(x, y) ⊂ Nh(L(x, z) ∪ L(y, z)).



14 S. HIROSE, D. IGUCHI, E. KIN, AND Y. KODA

(2) For any vertices x, y of G with dG(x, y) ≤ 1, the diameter of L(x, y)
is at most h.

Then for any vertices x, y of G, the Hausdorff distance in G between L(x, y)
and any geodesic segment c in G connecting x and y is at most R(h).

The following lemma is proved in [Vok18, Lemma 5.1.4].

Lemma 1.6. There exists a constant h1 > 0 such that for any simple closed
curves α, β in any non-sporadic surface Σ, Nh1(L0(α, β)) is connected.

We note that by the remark just before Lemma 5.1.12 in [Vok18] that the
constant h1 in the above lemma can be taken to be at most 7.

The next lemma is due to [Vok18, Lemma 5.1.5].

Lemma 1.7. There exists a constant h2 > 0 such that for any simple closed
curves α, β, γ in any non-sporadic surface Σ, L0(α, β) ⊂ Nh2(L0(α, γ) ∪
L0(β, γ)).

By [Vok18, Lemma 5.1.12], the constant h2 in the above lemma can be
taken to be at most 18. For any simple closed curves α, β in a non-sporadic
surface Σ, set L(α, β) := Nh1(L0(α, β)). By [Vok19, Claim 10.4.2], for the
constant h0 := 2h1 + h2, which can be taken to be at most 2 · 7 + 18 = 32,
the curve graph C(Σ) endowed with the associated subgraphs L(α, β) for

α, β ∈ C(0)(Σ) satisfies the condition of Proposition 1.5. Using this fact,
[Vok19, Lemma 10.4.4] shows the following. 2

Lemma 1.8. Let α, β be simple closed curves in a non-sporadic surface
Σ, P a path in L(α, β) from α and β. Then any geodesic segment in C(Σ)
connecting α and β lies in the (2R(h0) + 2)-neighborhood of P .

We note that the minimum integer greater than or equal to R(h0) is 897.
Therefore, the above constant 2R(h0) + 2 can be taken to be at most 1796.

Now, we quickly review the notion of disk surgery. Let D and E be
properly embedded disks in a 3-manifold M intersecting transversely and
minimally. Suppose that D ∩ E 6= ∅. Let E′ be an outermost subdisk of E
cut off by D∩E. The arc ∂E′∩D cuts D into two subdisks. Choose one D′

of them. Set D1 := D′∪E′. By a slight isotopy, the disk D1 can be moved to
be disjoint from D∪E′. We call D1 a disk obtained by a surgery on D along E
(with respect to E′). An operation to obtain D1 from D in the above way is
called a disk surgery. We note that the number #(D′∩E) of components of
D′∩E is less than #(D∩E). Therefore, applying disk surgeries repeatedly,
we obtain a finite sequence D = D0, D1, D2, . . . , Dk = E of disks in M such
that Di ∩Di+1 = ∅ for i = 0, 1, . . . , k − 1.

2Precisely speaking, [Vok19, Lemma 10.4.4] considers only the case of bicorn curves in
a closed orientable surface instead of curves with at most four corners in a non-sporadic
orientable surface (possibly with boundary). Lemma 1.8, however, can be proved in exactly
the same way.
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(1)

i i+
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n

n
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1 1

Figure 8. (1) The generator σi in the spherical/planar braid
group. (2) The 3-braid σ1σ

−1
2 . (3) The half twist hi in the

mapping class group on the sphere/disk with marked points.

Proof of Theorem 1.4. Let (L;S) be an n-bridge decomposition of a link L
in S3 with n ≥ 2. Let α and β be arbitrary points in D+. Let {γi}0≤i≤s be
a sequence of vertices of D+ obtained by disk surgery such that α = γ0 and
β = γs. By definition the path P in C(SL) corresponding to this sequence lies
within the set L(α, β). It follows from Lemma 1.8 that any geodesic segment
c in C(SL) connecting α and β lies within the (2R(h0)+2)-neighborhood of P .
Since {γi}0≤i≤s ⊂ D+, the geodesic segment c lies within the (2R(h0) + 2)-
neighborhood of D+, which implies the assertion. The argument for D− is
of course the same. �

1.6. Braid groups. In this subsection, we fix conventions on the planar/spherical
braid groups and their relation to mapping class groups. See [Bir74, Chapter
1] for details.

Let Bn be the (planar) braid group with n strands. The group Bn is
generated by braids σ1, σ2, . . . , σn−1 as shown in Figure 8(1). The product
of braids is defined as follows. Given b, b′ ∈ Bn, we place b above b′, and
concatenate the bottom of b with the top of b′. The product bb′ ∈ Bn is the
resulting braid, see Figure 8(2).

We set δj = σ1σ2 · · ·σj−1 ∈ Bn. The half twist ∆ ∈ Bn is given by

∆ = δnδn−1 · · · δ2.

The second power ∆2 is called the full twist.
Let SBn be the spherical braid group with n strands. By abusing notation,

we still denote by σi, the spherical braid as shown in Figure 8(1). We define
the product of spherical braids in the same manner as above.

We recall connections between the planar/spherical braid groups and the
mapping class groups on the disk/sphere with marked points. Let Dn be
the disk with n marked points. Then we have the surjective homomorphism

ΓD : Bn → MCG(Dn)

which sends each generator σi to the right-handed half twist hi between the
ith and (i + 1)th marked points, see Figure 8(3). The kernel of ΓD is an
infinite cyclic group generated by the full twist ∆2, that is, ker ΓD = 〈∆2〉.
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(1) (2)

b

T

U

UTb �

S

S

Figure 9. (1) The tangle bT in the 3-ball B−, where T =
σ2σ
−1
3 A. (2) The tangle Uβ in the 3-ball B+, where U =

Āσ3σ
−1
2 .

Thus, we have

Bn/〈∆2〉 ∼= MCG(Dn).

We also have the surjective homomorphism

Γ : SBn → MCG(Σ0,n),

sending each generator σi to the right-handed half twist hi between the ith
and (i+ 1)th marked points in the sphere. The kernel of Γ is isomorphic to
Z/2Z which is generated by the full twist ∆2 ∈ SBn. Thus we have

SBn/〈∆2〉 ∼= MCG(Σ0,n).

1.7. Wicket groups on trivial tangles. Let T be an n-tangle in B− and
let b ∈ SB2n. We place b above T concatenating the bottom endpoints of b
with the endpoints ∂T . Then we obtain an n-tangle bT in B−, see Figure
9(1). We may assume that bT share the same endpoints as T . Observe that
SB2n acts on n-tangles in B− from the left:

b′bT = b′(bT ) for b, b′ ∈ SB2n.

Similarly, given an n-tangle U in B+ and a braid β ∈ SB2n, we obtain
an n-tangle Uβ in B+, see Figure 9(2). Then SB2n acts on n-tangles in B+

from the right:

Uβ′β = (Uβ′)β for β, β′ ∈ SB2n.

Recall the involution ρ : S3 → S3 defined in Section 1.3. Let A and Ā be
n-tangles in B− and B+ respectively as before. By the definition of ρ, we
have ρ(x, y, z) = (x, y,−z) for (x, y, z) ∈ R3. This implies that

ρ(bA) = Āb−1
,

ρ(Āβ) = β−1A.

For example, ρ interchanges σ2σ
−1
3 A with Āσ3σ

−1
2 .
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Remark 1.9. Given φ ∈ MCG(Σ0,2n), there is a braid bφ ∈ SB2n such that
Γ(bφ) = φ. Take any representative f : Σ0,2n → Σ0,2n of φ. We regard f as
an orientation-preserving homeomorphism on the sphere S = ∂B− = ∂B+

with 2n marked points. Let Φ : B− → B− be an extension of f , that is,
Φ|∂B− = f . Let A be the standard n-tangle in B−. Assume that ∂A ⊂ S
equals the set of 2n marked points. Then Φ(A) is an n-tangle in B−. One
sees that

Φ(A) = bφA.
for we equip S with the orientation induced by that of B−. Let us turn
to the homeomorphism ρΦρ|B+ : B+ → B+. Since ρ|S = idS, we have
ρΦρ|∂B+ = f . Hence ρΦρ|B+ : B+ → B+ is an extension of f over B+.
Then we have

ρΦρ(Ā) = ρΦ(A) = ρ(bφA) = Āb
−1
φ .

From the above discussion, it is easy to see the following lemma.

Lemma 1.10. Let T be an n-tangle in B−, and let U be an n-tangle in B+.

(1) T is trivial if and only if T = bA for some b ∈ SB2n.
(2) U is trivial if and only if U = Āβ for some β ∈ SB2n.

For a trivial n-tangle T in B−, we define a subgroup SW2n(T ) ⊂ SB2n

as follows.

SW2n(T ) = {b ∈ SB2n | bT = T }.
Since ∆2 ∈ SW2n(T ), we have

ker Γ = 〈∆2〉 ⊂ SW2n(T ).

The group SW2n(A) for the standard n-tangle A is called the wicket group.
We write

SW2n = SW2n(A).

See Brendle-Hatcher [BH13] for a more extended study on the wicket groups.
Since the map

MCG(B−,A)→ MCG(∂B−, ∂A)

sending [f ] ∈ MCG(B−,A) to [f |∂B− ] ∈ MCG(∂B−, ∂A) is injective, we
regard MCG(B−,A) as a subgroup of MCG(∂B−, ∂A) (= MCG(Σ0,2n)).
The following theorem is proved in [HK17, Theorem 2.6].

Theorem 1.11. The equation Γ(SW2n) = MCG(B−,A) holds. Thus, we
have SW2n/〈∆2〉 ∼= MCG(B−,A).

Example 1.12. We define x, y, z ∈ SB6 as follows. (See Figure 10.)

x = σ2
3σ2σ

2
3σ2,

y = σ2
1σ2σ3σ4σ5σ1σ2σ3σ4,

z = σ2
1σ2σ3σ4σ1σ2σ3σ3σ4.

The tangles xA, yA and zA are equivalent to A. Hence x, y, z ∈ SW6.
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(1) (3)(2) ( )4

Figure 10. (1) xA; (2) yA; and (3) zA for x, y, z ∈ SB6 in
Example 1.12. They are equivalent to (4) A.

Lemma 1.13. Let T be a trivial n-tangle in B−. Let b be a spherical 2n-
braid such that T = bA. Then we have SW2n(T ) = b(SW2n)b−1.

Proof. Take an element β ∈ SW2n(T ) = SW2n(bA). By the definition of

SW2n(bA), we have β(bA) = bA. Then b−1βbA = A. Hence we have b−1βb ∈
SW2n, which says that β ∈ b(SW2n)b−1. Thus SW2n(T ) ⊂ b(SW2n)b−1.
The proof of b(SW2n)b−1 ⊂ SW2n(T ) is similar. �

For trivial n-tangles T and U in B−, we set

SW2n(T ,U) = SW2n(T ) ∩ SW2n(U).

We call the group SW2n(T ,U) the wicket group on T and U . Obviously,
SW2n(A,A) = SW2n(A)(= SW2n).

The following lemma will be used in the proofs of Theorems 0.5 and 0.6.

Lemma 1.14. Let x, y and z be elements of SW6 as in Example 1.12. Let
B = B3 and C = C3 be the trivial tangles as in Figure 3. Then we have
x, y ∈ SW6(B) and x, z ∈ SW6(C). In particular x, y ∈ SW6(A,B) and
x, z ∈ SW6(A, C).

Proof. We see that xB = B = yB, and xC = C = zC (Figure 11). We are
done. �

By Lemma 1.13, we immediately have the following corollary.

Corollary 1.15. Let b, d ∈ SB2n. Then we have

SW2n(bA, dA) = b(SW2n)b−1 ∩ d(SW2n)d−1.

Lemma 1.16. Let T and U be trivial n-tangles in B−. Let b and d be the
spherical 2n-braids such that T = bA and U = dA. Then we have

SW2n(T ,U) = b(SW2n(A, b−1dA))b−1.

Proof. By Corollary 1.15, we have

SW2n(T ,U) = b(SW2n)b−1 ∩ d(SW2n)d−1.
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(1) (2)

__ __ __ __

Figure 11. (1) xB = B = yB and (2) xC = C = zC for
x, y, z ∈ SB6 in Example 1.12. See also Figure 3.

1
2 2g

2g+1

ι̂

Figure 12. A hyperelliptic involution ι̂ defined on Vg.

By Corollary 1.15 again, we have

SW2n(A, b−1dA) = SW2n ∩ b−1d(SW2n)d−1b.

These two equalities imply the assertion. �

1.8. Hyperelliptic handlebody groups. In this subsection, we review
the notion of the hyperelliptic handlebody group developed in [HK17]. We
provide details on properties to be used later.

Let Vg be a handlebody of genus g ≥ 2 with ∂Vg = Σg. We call an
involution ι̂ ∈ Homeo+(Vg) a hyperelliptic involution of Vg if ι̂|Σg is a hyper-
elliptic involution of Σg, that is, ι̂|Σg is an order 2 element of Homeo+(Σg)
that acts on H1(Σg;Z) by −I. The following lemma is straightforward from
Pantaleoni-Piergallini [PP11].

Lemma 1.17. Any two hyperelliptic involutions of Vg are conjugate in the
handlebody group MCG(Vg).

By this lemma, without loss of generality we can assume that ι̂ is the map
shown in Figure 12, where we think of Vg as being embedded in R3.

Fix a hyperelliptic involution ι̂ of Vg and set ι := ι̂|Σg . We denote by
SHomeo+(Vg) (respectively, SHomeo+(Σg)) the centralizer in Homeo+(Vg)
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(respectively, Homeo+(Σg)) of ι̂ (respectively, ι). We call

H(Vg) := π0(SHomeo+(Vg))

a hyperelliptic handlebody group, and

H(Σg) := π0(SHomeo+(Σg))

a hyperelliptic mapping class group. By Birman-Hilden [BH71] the following
holds.

Theorem 1.18. We have a canonical isomorphism

H(Σg)/〈[ι]〉 ∼= MCG(Σ0,2g+2).

We note that this theorem, together with [BH73, Theorem 4], implies
that the group H(Σg) can naturally be identified with the centralizer in
MCG(Σg) of the mapping class [ι]. By Theorem 1.18 the quotient map
H(Σg)→ H(Σg)/〈[ι]〉 gives the surjective homomorphism

Π : H(Σg)→ MCG(Σ0,2g+2).

The map Π sends τi to the half twist hi, where τi is the right-handed Dehn
twist about the simple closed curve labeled with the number i in Figure 12.

Let q : Vg → Vg/ι̂ =: B be the projection. Set A(= Ag+1) := q(Fix(ι̂)),
where Fix( · ) denotes the set of fixed points. We note that A is the trivial
(g + 1)-tangle in the 3-ball B. By basic algebraic topology arguments, we
have the following.

Lemma 1.19. (1) Any element in Homeo+(B,A) lifts to an element of
SHomeo+(Vg).

(2) Given a path in Homeo+(B,A) with the initial point φ̂ ∈ Homeo+(B,A)

and a lift f̂ ∈ SHomeo+(Vg) of φ̂, there exists a unique lift in

SHomeo+(Vg) of the path with the initial point f̂ .

The next theorem follows from Theorem 1.18 and Lemma 1.19.

Theorem 1.20 (Theorem 2.11 in [HK17]). The natural map

H(Vg)→ MCG(B,Ag+1)

is surjective and its kernel is 〈[ι̂]〉. Thus, we have H(Vg)/〈[ι̂]〉 ∼= MCG(B,Ag+1).

We denote by EHomeo+(Σg) the subgroup of Homeo+(Σg) consisting of
homeomorphisms of Σg that extend to those of Vg. Note that the injectivity
of the natural map MCG(Vg)→ MCG(Σg) implies

π0(EHomeo+(Σg)) ∼= MCG(Vg).

We say that two elements of SHomeo+(Vg) (respectively, SHomeo+(Σg)) are
symmetrically isotopic if they lie in the same component of SHomeo+(Vg)
(respectively, SHomeo+(Σg)).

Lemma 1.21. (1) For any f ∈ EHomeo+(Σg) ∩ SHomeo+(Σg), there

exists an element f̂ ∈ SHomeo+(Vg) with f̂ |Σg = f .
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C1
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C2g+1

C2g+2
ι̂

Figure 13. The simple closed curves C1, . . . , C2g+2 on Σg.

(2) Let f̂0 and f̂1 be elements of SHomeo+(Vg) that are isotopic. Then

f̂0 and f̂1 are symmetrically isotopic.

Proof. (1) Choose an arbitrary map f ∈ EHomeo+(Σg) ∩ SHomeo+(Σg).
Let C1, . . . , C2g+2 be the simple closed curves on Σg with ι(C2k−1) = C2k

(k = 1, . . . , g + 1) as shown in Figure 13. There exist disks D1, . . . , D2g+2

in Vg such that ∂Di = Ci (i = 1, . . . , 2g + 2), Di ∩ Dj = ∅ (i 6= j), and
ι̂(D2k−1) = D2k (k = 1, . . . , g + 1). Let Ak ⊂ Σg be the parallelism region,
which is an annulus, between Ck−1 and Ck. Let Bk be the 3-ball bounded
by D2k−1 ∪Ak ∪D2k. Set C ′i := f(Ci). We note that we have

ι(C ′2k−1) = ι(f(C2k−1)) = f(ι(C2k−1)) = f(C2k) = C ′2k

for each k = 1, . . . , g + 1, and

f(Fix(ι)) = f(ι(Fix(ι))) = ι(f(Fix(ι))).

The latter implies that f(Fix(ι)) = Fix(ι). By Edmonds [Edm86] there exist
disks D′1, D

′
3, . . . , D

′
2g+1 in Vg such that ∂D′2k−1 = C ′2k−1, D′2k−1∩Fix(ι̂) = ∅,

and D′2k−1 ∩ ι̂(D′2k−1) = ∅ (k = 1, . . . , g + 1). Set D′2k = ι̂(D′2k−1). We note
that ∂D′2k = C ′2k. Since f preserves Fix(ι), the self-homeomorphism φ of ∂B
induced from f preserves ∂A, that is, φ is an element of Homeo+(∂B, ∂A).
Set Ek := q(D2k−1) = q(D2k) and E′k := q(D′2k−1) = q(D′2k) (k = 1, . . . , g +
1). Since ∂E′i∩∂E′j = ∅ (i 6= j), the intersection of E′i and E′j consists only of

simple closed curves. Since B\A is irreducible, we can move E′1, . . . , E
′
g+1 by

an isotopy in B \A so as to satisfy E′i∩E′j = ∅ (i 6= j). The disk Ek cuts off

from B the 3-ball q(Bk) that contains the single component q(Bk)∩A of A.
Similarly, the disk E′k cuts off from B the 3-ball q(f(Bk)) that contains the
single component q(f(Bk)) ∩ A of A. Therefore, we can find an extension

φ̂ ∈ Homeo+(B,A) of φ with φ̂(Ek) = E′k. By Lemma 1.19, φ̂ lifts to

f̂ ∈ SHomeo+(Vg). By replacing f̂ with ι̂◦ f̂ , if necessary, we have f̂ |Σg = f .

(2) For i = 0, 1, let φ̂i be the elements in Homeo+(B,A) induced from

f̂i. Set φi := φ̂i|∂B ∈ Homeo+(∂B, ∂A). By Theorem 1.18 there exists

a symmetric isotopy from f̂0|Σg to f̂1|Σg . This isotopy induces a path in
Homeo+(∂B, ∂A) from φ0 to φ1. By Proposition A.4 in [HK17], there exists
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a path in Homeo+(B,A) from φ̂0 to φ̂1. By Lemma 1.19(2), this path lifts

to a path in SHomeo+(Vg) with the initial point f̂0. Since ι̂ is an involution,

the terminal point of the path is either f̂1 or ι̂ ◦ f̂1. The latter is impossible
as we assumed that f̂0 and f̂1 are isotopic, and so f̂0 and ι̂ ◦ f̂1 cannot be
isotopic. This completes the proof. �

Recall that bothH(Σg)(= π0(SHomeo+Σg)) and MCG(Vg)(∼= π0(EHomeo+(Σg)))
can be regarded as subgroups of MCG(Σg).

Theorem 1.22. The map

SHomeo+(Vg)→ EHomeo+(Σg) ∩ SHomeo+(Σg)

that takes f̂ ∈ SHomeo+(V ) to f̂ |Σg induces an isomorphism

H(Vg)
∼=−→ MCG(Vg) ∩H(Σg).

Proof. Recall that π0(SHomeo+(Vg)) = H(Vg). Note that any element
of Homeo+(Σg) isotopic to an element of EHomeo+(Σg) is contained in
EHomeo+(Σg). This fact, together with Theorem 1.18, allows us to think
of π0(EHomeo+(Σg)∩SHomeo+(Σg)) as the subgroup of π0(EHomeo+(Σg))
consisting of the mapping classes that contain an element of SHomeo+(Σg).
Therefore, we can identify π0(EHomeo+(Σg)∩SHomeo+(Σg)) with MCG(Vg)∩
H(Σg) in a natural way. The surjectivity and injectivity of the mapH(Vg)→
MCG(Vg)∩H(Σg) now follow from Lemma 1.21(1) and (2), respectively. �

In consequence, we have the following canonical identifications from The-
orems 1.11, 1.20 and 1.22:

H(Vg) = MCG(Vg) ∩H(∂Vg) = Π−1(Γ(SW2g+2)).

H(Vg)/〈[ι̂]〉 = MCG(B,Ag+1) = Γ(SW2g+2) = SW2g+2/〈∆2〉.

2. Goeritz groups of bridge decompositions

Let (L;S) = (B+∩L)∪S (B−∩L) be an n-bridge decomposition of a link
L ⊂ S3. We define the Goeritz group, denoted by G(L;S) or G((B+ ∩L)∪S
(B− ∩ L)), of the n-bridge decomposition by

G(L;S) = MCG(S3, B+, L).

Since the map

G(L;S)→ MCG(S, S ∩ L) ∼= MCG(Σ0,2n)

sending [f ] ∈ G(L;S) to [f |S ] ∈ MCG(S, S ∩ L) is injective, we regard
G(L;S) as a subgroup of MCG(Σ0,2n). When (L;S) is a unique n-bridge
decomposition of L up to equivalence, we simply call G(L;S) the n-bridge
Goeritz group of L, and we denote it by G(L;n). In this section, we discuss
several basic properties of this group.
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2.1. Relation to wicket groups on tangles. Let (B+∩L)∪S (B−∩L) be
an n-bridge decomposition of a link L. Then there exist braids b, d ∈ SB2n

such that

(B+ ∩ L) ∪S (B− ∩ L) = Ād ∪S bA.
We now describe Goeritz groups of the bridge decompositions in terms of
wicket groups on tangles.

Theorem 2.1. Let b, d ∈ SB2n. Then we have

G(Ād ∪S bA) = Γ
(
SW2n(d

−1A, bA)
) ∼= SW2n(d

−1A, bA)/〈∆2〉.

Proof. We prove that G(Ād ∪S bA) ⊂ Γ
(
SW2n(d

−1A, bA)
)
. Take an element

φ ∈ G(Ād ∪S bA). Then there exists a braid bφ ∈ SB2n with Γ(bφ) = φ.
By abuse of notation, we regard φ as a representative of φ. Notice that φ
extends to a self-homeomorphism of S3 = B+ ∪S B− preserving Ād and bA
setwise. By Remark 1.9 and Lemma 1.10, it follows that

Ād = Ādb
−1
φ and bA = bφbA.

The second equality implies that bφ ∈ SW2n(bA).

Now, consider the image of Ād = Ādb
−1
φ under ρ. We have

d−1A = ρ(Ād) = ρ(Ādb
−1
φ ) = bφd

−1A.

Hence we have A = dbφd
−1A, which implies that dbφd

−1 ∈ SW2n. Thus

bφ ∈ d−1(SW2n)d = SW2n(d
−1A) by Lemma 1.13. Putting them together,

we have

bφ ∈ SW2n(d
−1A) ∩ SW2n(bA) = SW2n(d

−1A, bA),

which says that φ ∈ Γ
(
SW2n(d

−1A, bA)
)
. We are done.

The proof of G(Ād ∪S bA) ⊃ Γ
(
SW2n(d

−1A, bA)
)

is similar. �

Let Ād ∪S bA be an n-bridge decomposition of a link L for some b, d ∈
SB2n. This is equivalent to the n-bridge decomposition Ā ∪S dbA. By
Lemma 1.16 and Theorem 2.1, one sees that their Goeritz groups G(Ād∪SbA)
and G(Ā ∪S dbA) are conjugate to each other in MCG(Σ0,2n).

2.2. Relation to hyperelliptic Goeritz groups of Heegaard split-
tings. Let (M ; Σ) = V +∪Σ V

− be a genus-g Heegaard splitting with g ≥ 2.
Assume that there exists an involution

ι̂ : (M,V +)→ (M,V +)

such that ι̂|Σ is a hyperelliptic involution on the Heegaard surface Σ. By
definition ι̂|V + and ι̂|V − are hyperelliptic involutions of the handlebodies
V + and V −, respectively. Let SHomeo+(M,V +) denote the centralizer in
Homeo+(M,V +) of ι̂. The hyperelliptic Goeritz group HG ι̂(M ; Σ) is then
defined by

HG ι̂(M ; Σ) = π0(SHomeo+(M,V +)).
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See Remark 2.4 for this notation. Let q : M →M/ι̂ = S3 be the projection.
Set B± := q(V ±), S := q(Σ), L := q(Fix(ι̂)). We note that (L;S) =
(B+, B+ ∩L)∪S (B−, B− ∩L) is a (g+ 1)-bridge decomposition of the link
L ⊂ S3.

The following theorem, which implies Theorem 0.1, is again a consequence
of Theorem 1.18 and Lemma 1.19 as in Theorem 1.20.

Theorem 2.2. The natural map

HG ι̂(M ; Σ)→ G(L;S)

is surjective and its kernel is 〈[ι̂]〉. Thus, we have HG ι̂(M ; Σ)/〈[ι̂]〉 ∼= G(L;S).

We denote by E±Homeo+(Σ) the subgroup of Homeo+(Σ) consisting of
homeomorphisms of Σ that extend to those of V ±.

The following theorem, which implies Theorem 0.2, corresponds to The-
orem 1.22 for hyperelliptic handlebody groups.

Theorem 2.3. The map

SHomeo+(M,V +)→ E+Homeo+(Σ) ∩ E−Homeo+(Σ) ∩ SHomeo+(Σ)

that takes f̂ ∈ SHomeo+(M,V +) to f̂ |Σ induces an isomorphism

HG ι̂(M ; Σ)
∼=−→ G(M ; Σ) ∩H(Σ).

Proof. Recall that π0(SHomeo+(M,V +)) = HG ι̂(M ; Σ). As in the proof of
Theorem 1.22, we can think of

π0(E+Homeo+(Σ) ∩ E−Homeo+(Σ) ∩ SHomeo+(Σ))

as the subgroup of

π0(E+Homeo+(Σ) ∩ E−Homeo+(Σ))

consisting of the mapping classes that contain an element of SHomeo+(Σ).
Therefore, we can identify

π0(E+Homeo+(Σ) ∩ E−Homeo+(Σ) ∩ SHomeo+(Σ))

with G(M ; Σ) ∩H(Σ).
The surjectivity and injectivity of the map HG ι̂(M ; Σ)→ G(M ; Σ)∩H(Σ)

follow from Lemma 1.21(1) and (2), respectively. �

We can summarize the above discussion as follows. Let L be a link in S3

admitting an n-bridge decomposition (L;S) = Ā ∪S bA for some b ∈ SW2n.
Let q : ML → S3 be the 2-fold covering branched over L, and set Σ :=
q−1(S). The preimage of q of the genus-0 Heegaard splitting S3 = B+∪SB−
gives a genus-(n− 1) Heegaard splitting

(ML; Σ) = q−1(B+) ∪Σ q
−1(B−).

We call (ML; Σ) the Heegaard splitting of ML associated with the bridge
decomposition (L;S). Let T : ML → ML be the non-trivial deck transfor-
mation of q : ML → S3. We note that T |Σ : Σ → Σ is a hyperelliptic
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involution. Let H(Σ) be the hyperelliptic mapping class group associated
with T |Σ. By Theorems 2.1, 2.2 and 2.3, we have the following canonical
identifications:

HGT (ML; Σ) = G(ML; Σ) ∩H(Σ) = Π−1(Γ(SW2n(A, bA))).

HGT (ML; Σ)/〈[T ]〉 = G(L;S) = Γ(SW2n(A, bA)) = SW2n(A, bA)/〈∆2〉.

Remark 2.4. Let (M ; Σ) = V +∪Σ V
− be a genus-g Heegaard splitting with

g ≥ 2. Assume that there exists an involution

ι̂ : (M,V +)→ (M,V +)

such that ι̂|Σ is a hyperelliptic involution on the Heegaard surface Σ. Some
readers might wonder why we write HG ι̂(M ; Σ) rather than HG(M ; Σ), whereas
a hyperelliptic mapping class group and a hyperelliptic handlebody group are
simply denoted by H(Σg) and H(Vg), respectively. The reason for the case
of H(Σg) is that any two hyperelliptic involutions of a closed surface Σg are
conjugate in MCG(Σg) (see e.g. Farb-Margalit [FM12, Proposition 7.15]).
Thus, any two hyperelliptic mapping class groups are conjugate. In partic-
ular, the structure of the group H(Σg) does not depend on the choice of a
particular hyperelliptic involution of Σg. The same fact holds for hyperel-
liptic handlebody groups as well by Lemma 1.17. In the case of hyperelliptic
Goeritz groups, however, the situation is more subtle. In fact, the conjugacy
class of the above involution ι̂ in the Goeritz group does depend on the choice
of ι̂ as we shall see now.

Let (H,S) be the 2-bridge decomposition of the Hopf link H ⊂ S3. Let
K and K ′ be the components of H. Take p ∈ S ∩K and p′ ∈ S ∩K ′, and
consider the two 4-bridge decompositions (H;S(p,2)) and (H; (S(p,1))(p′,1)) of
H. Since |S(p,2) ∩K| = 6 and |S(p,2) ∩K ′| = 2 whereas |(S(p,1))(p′,1) ∩K| =
|(S(p,1))(p′,1) ∩K ′| = 4, these bridge decompositions are not equivalent. Let

q : RP3 → S3 be the 2-fold covering branched over H. Let (RP3; Σ1) and
(RP3; Σ2) be the Heegaard splittings of RP3 associated with (H;S(p,2)) and

(H; (S(p,1))(p′,1)), respectively. Let T : RP3 → RP3 be the non-trivial deck

transformation of q : RP3 → S3. Then T |Σ : Σ → Σ and T |Σ′ : Σ′ → Σ′

are hyperelliptic involutions on Σ and Σ′, respectively. Recall, by the way,
that due to Bonahon-Otal [BO83], the Heegaard splittings (RP3; Σ1) and
(RP3; Σ2) are equivalent. Therefore, for the unique genus-3 Heegaard split-
ting (RP3,Σ) of RP3, we can consider the two involutions: one corresponds
to T for (RP3,Σ) and the other corresponds to T for (RP3,Σ′). We de-
note the former involution by ι̂ and the latter by ι̂′. Then ι̂ and ι̂′ can
no longer be conjugate in the Goeritz group G(RP3; Σ), for (H;S(p,2)) and
(H; (S(p,1))(p′,1)) are not equivalent. Therefore, it is not necessarily true that

the hyperelliptic Goeritz groups HG ι̂(RP3; Σ) and HG ι̂′(RP3; Σ) are conju-
gate.
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Figure 14. Ũ = q−1(U) and γ̃ = q−1(γ).

Let S be an n-bridge sphere of a link L ⊂ S3. Take a point p ∈ L ∩ S.
Let

(L;S(p,k)) = (B+
(p,k) ∩ L) ∪S(p,k)

(B−(p,k) ∩ L)

be the bridge decomposition of L, where S(p,k) is the bridge sphere of L
obtained from the k-fold stabilization of S near p. Consider the Heegaard
splitting

q−1(B+
(p,k)) ∪q−1(S(p,k))

q−1(B−(p,k))

of ML associated with the bridge decomposition (L;S(p,k)). We note that the

Heegaard surface q−1(S(p,k)) of ML is obtained from the Heegaard surface

q−1(S) by k stabilizations. To see this, take a disk U embedded in the 3-
ball B+ together with an arc γ ⊂ ∂U (as in Section 1.3) so that S(p,1) =

∂(B− ∪ N(γ)) is obtained from S by a stabilization. Let Ũ = q−1(U),
γ̃ = q−1(γ) be the preimages of U , γ, respectively. See Figure 14. Then γ̃ is
a properly embedded arc in q−1(B+) which is parallel to q−1(S). Therefore,
∂(q−1(B−)∪N(γ̃)) is obtained from q−1(S) by a stabilization. By iterating
the same argument, we obtain the desired claim.

2.3. Examples. Below we provide several examples of the Goeritz groups
of bridge decompositions that can be computed from the definitions. In
Examples 2.6 and 2.7 we describe the Goeritz groups of the n-bridge de-
composition (O;n) of the trivial knot O and the n-bridge decomposition
(H;Sp,n−2) of the Hopf link H defined in Section 1.3 in terms of wicket
groups, which play a key role in Section 5. In Examples 2.8 and 2.9 we give
explicit presentations of the Goeritz groups of 2- and 3-bridge decomposi-
tions of all 2-bridge links. A sufficient condition for the Goeritz group to be
an infinite group in terms of the distance will also be provided.

Example 2.5. Consider the n-bridge decomposition (On;n) = Ā∪SA of the
n-component trivial link On, where Ā = Ān and A = An. By Theorems 1.11
and 2.1 we have

G(On;n) ∼= Γ
(
SW2n(A,A)

)
= Γ(SW2n) = MCG(B−,A).

In particular, the group G(On;n) is an infinite group except G(O1; 1) ∼=
Z/2Z. A finite generating set of G(On;n) is given by work [Hil75] of Hilden
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on MCG(B−,A). The asymptotic behavior of the minimal pseudo-Anosov
dilatations in these groups was studied in [HK17].

Example 2.6. Recall that the n-bridge decomposition Ā∪S(p,n−1)
B defined

in Section 1.3 is the bridge decomposition (O;n) of the trivial knot O. By
Theorem 2.1, we have G(O;n) = Γ(SW2n(A,B)). The 3-sphere S3 is the
2-fold covering of S3 branched over O. Let (S3; Σ) be the genus-(n − 1)
Heegaard splitting of S3 associated with (O;n). Then by Theorems 2.2 and
2.3 we have

HGT (S3; Σ) = Π−1(Γ(SW2n(A,B))).

Example 2.7. Recall that the n-bridge decomposition Ā∪S(p,n−2)
C defined

in Section 1.3 is the bridge decomposition (H;S(p,n−2)) of the Hopf link
H. By Theorem 2.1, we have G(H;S(p,n−2)) = Γ(SW2n(A, C)). The real

projective space RP3 is the 2-fold covering of S3 branched over H. Let
(RP3; Σ) be the genus-(n − 1) Heegaard splitting of RP3 associated with
(H;S(p,n−2)). Then by Theorems 2.2 and 2.3 we have

HGT (RP3; Σ) = Π−1(Γ(SW2n(A, C))).

Example 2.8. Let L = S(p, r) be a 2-bridge link (or the trivial knot) given
by the Schubert normal form (Schubert [Sch56], see also Hatcher-Thurston
[HT85]). By Otal [Ota82], there exists a unique 2-bridge decomposition
(L;S) = (B+ ∩ L) ∪S (B− ∩ L) of L. If (p, r) = (0, 1), then L is the 2-
component trivial link O2 and the Goeritz group G(L;S) = G(O2; 2) has
already been described in Example 2.5. Suppose that (p, r) 6= (0, 1). Since
B+ ∩ L (respectively, B− ∩ L) is a trivial 2-tangle, there exists a unique
essential separating disk D+ (respectively, D−) in B+ − L (respectively,
B− − L). This implies that any element of G(L;S) preserves both D+ and
D−. Since (p, r) 6= (0, 1), S − (∂D+ ∪ ∂D−) consists only of disks, and
each of them contains at most one point of S ∩ L. Therefore, G(L;S) acts
on the pair (∂D+, ∂D+ ∩ ∂D−) faithfully. This implies that G(L;S) is a
subgroup of the dihedral group Dk, where k = #(∂D+∩∂D−). In fact, it is
now easily checked that for any (p, r) 6= (0, 1), the Goeritz group G(L;S) is
isomorphic to D2

∼= Z/2Z×Z/2Z, where the generators are given in Figure
15. In the figure, we think of L and S as being embedded in R3, and the
3-ball bounded by S is B−. The element shown on the left-hand side in the
figure is Γ(σ−1

1 σ3), and the one shown on the right-hand side is Γ(∆), where
Γ : SB4 → MCG(Σ0,4).

Example 2.9. Let L = S(p, r) again be a 2-bridge link (or the trivial knot)
given by the Schubert normal form. Let (L;S) = (B+ ∩ L) ∪S (B− ∩ L) be
a 3-bridge decomposition of L. Let q : L(p, r) → S3 be the 2-fold covering
branched over L, where L(p, r) is a lens space. Set Σ := q−1(S). Let T be
the non-trivial deck transformation of q. Then by Theorem 2.2, we have
G(L;S) ∼= HGT (L(p, r); Σ)/〈[T ]〉. Since the genus of Σ is two, it follows
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Figure 15. The two generators of G(L;S) ∼= Z/2Z × Z/2Z
in the case of L = S(5, 2). They are given as half rotations
along the illustrated axes.

from Theorem 2.3 that the hyperelliptic Goeritz group HGT (L(p, r); Σ) is
canonically isomorphic to the Goeritz group G(L(p, r); Σ) itself, whose fi-
nite presentation is given by [Akb08, Cho08, Cho13, CK14, CK16, CK19].
Therefore, we can obtain a finite presentation of the Goeritz group G(L;S) ∼=
G(L(p, r); Σ)/〈[T ]〉 for each (p, r).

Question 2.10. Is the Goeritz group of the bridge decomposition of a link
in S3 always finitely generated? In particular, is G(O;n) finitely generated
for any n?

Example 2.11. Let (L;S) = (B+, B+∩L)∪S (B−, B−∩L) be an n-bridge
decomposition of a link L ⊂ S3 with n ≥ 3 and d(L;S) ≤ 1. Then we can
show that the Goeritz group G(L;S) is an infinite group as follows. Here
we regard G(L;S) as a subgroup of MCG(S, S ∩ L) consisting of elements
that extend to both MCG(B+, B+ ∩ L) and MCG(B−, B− ∩ L). For con-
venience, we will not distinguish curves and homeomorphisms from their
isotopy classes. Similar arguments for Heegaard splittings can be found in
Johnson-Rubinstein [JR13, Corollary 6.2] and Namazi [Nam07, Proposition
1].

Suppose first that d(L;S) = 0. Then there exists an essential simple
closed curve α ∈ D+ ∩ D−, that is, α is a simple closed curve on SL =
Cl(S−N(S∩L;S)) bounding a disk D+ ⊂ B+−L and a disk D− ⊂ B−−L.
Therefore, the Dehn twist τα about α is an element of G(L;S). Indeed, τα
extends to an element of G(L;S) as a rotation along the sphere D+ ∪D−.
Since α is essential, the order of τα in MCG(S, S ∩ L) is infinite. Thus
G(L;S) is an infinite group.

Suppose that d(L;S) = 1. Then there exist disjoint essential simple closed
curves α ∈ D+ and β ∈ D−. (Note that here we use the assumption n ≥ 3.
Indeed, in the case of n = 2 the definition of the curve graph C(SL) is
different from the usual case.) The simple closed curve α bounds a disk
D+ ⊂ B+ − L, and β bounds a disk D− ⊂ B− − L. Take a simple arc
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S

D−

D+

A−

A+

α β δ

Figure 16. The 2-sphere X = D+ ∪A− ∪A+ ∪D−.

γ ⊂ SL connecting α and β. Let δ be the component of the boundary of
N(α ∪ γ ∪ β;S) that is not isotopic to α or β. Then α and δ cobound an
annulus A− ⊂ B− − L, while β and δ cobound an annulus A+ in D+ ⊂
B+ − L. In this way, we obtain a 2-sphere X := D+ ∪ A− ∪ A+ ∪ D−
in S3 − L with X ∩ S = α ∪ β ∪ δ, see Figure 16. Consider the map
φ := τα ◦ τ−1

δ ◦ τβ : (S, S ∩ L) → (S, S ∩ L). By the above construction, φ
extends to a homeomorphism of B+ as the composition of the twist about
D+ and the twist about A+, while φ extends to a homeomorphism of B−

as the composition of the twist about D− and the twist about A−. Thus,
φ extends to an element φ̂ of G(L;S). Since α, β, δ are pairwise disjoint,
pairwise non-parallel, essential simple closed curves on SL, the order of φ in
MCG(S, S ∩ L) is infinite. Therefore, G(L;S) is an infinite group.

3. The Goeritz groups of high distance bridge decompositions

As we have seen in Example 2.11, the Goeritz group of a bridge decom-
position (L;S) is an infinite group if the distance of (L;S) is at most one.
In contrast to Example 2.11, we are going to show that the Goeritz group
of (L;S) is a finite group if the distance of (L;S) is sufficiently large. The
aim of this section is to prove Theorem 0.3, which is restated below.

Theorem 3.1. There exists a uniform constant N such that if the distance
of an n-bridge decomposition (L;S) of a link L in S3 with n ≥ 3 is greater
than N , then the Goeritz group G(L;S) is a finite group.

We note that an analogous fact was proved for Heegaard splittings by
Namazi [Nam07], that is, in that paper he showed that if the distance of a
Heegaard splitting is sufficiently large, its Goeritz group is a finite group.
If the distance of the Heegaard splitting associated with a bridge decom-
position of high distance is also high, then Namazi’s result together with
Theorems 2.2 and 2.3 immediately implies Theorem 3.1. However, we do
not know at present whether there exists a lower bound of the distance of
the associated Heegaard splitting in terms of that of a bridge decomposition.
Instead, we will give a more direct proof, which shares the same spirit as
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Namazi’s proof. We also note that Ohshika-Sakuma [OS16] studied another
kind of groups related to Heegaard splittings and bridge decompositions.
The main result of [Nam07] and the above theorem are comparable with
Theorem 2 of [OS16].

Lemma 3.2. If G(L;S) contains a non-periodic reducible element, then the
distance d(L;S) is at most 2K + 4. Here K is the uniform constant in
Theorem 1.4.

Proof. Assume that G(L;S) contains non-periodic reducible element φ. Let
γ be a curve in the canonical reducing system for φ.

Claim 3.3. Let α be an element of C0(SL), where we recall that SL =
Cl(S−N(S ∩L);S). If k > 0 is sufficiently large, then the distance between
γ and any geodesic segment that connects α and φk(α) is at most 2.

Proof of Claim 3.3. Let {γ1, . . . , γs} be the canonical reducing system for φ.
Note that dC(Σ)(γ, γi) ≤ 1 for 1 ≤ i ≤ s. By Namazi [Nam07, Proposition
3.2], there exists an essential subsurface Y of SL, where Y is a pseudo-
Anosov component of φ or an annular neighborhood of some γi, such that
dC(Y )(πY (α), πY (φk(α))) → ∞ as k → ∞. Let c be a geodesic segment

connecting α and φk(α). By Theorem 1.2, if every vertex of c intersects
Y , then we have diamC(Y )(πY (c)) ≤ C. Here C > 0 is the constant in

Theorem 1.2. Since dC(Y )(πY (α), πY (φk(α))) → ∞ as k → ∞, there exists
a vertex of c that does not intersect Y for a sufficiently large k. Thus the
distance between ∂Y and c is at most 1 in the curve graph C(SL). Therefore
the distance between γ and c is at most 2. �

Let α be an arbitrary element of D+. Let k > 0 be a sufficiently large
integer. Let c be a geodesic segment that connects α and φk(α). By Theo-
rem 1.4, c lies within the K-neighborhood of D+. Combining this fact and
Claim 3.3, we conclude that the distance between γ and D+ is at most K+2.

Since the same argument can be applied to D−, the distance between
γ and D− is at most K + 2. Thus we have d(L;S) ≤ dC(SL)(D+, γ) +

dC(SL)(γ,D−) ≤ 2K + 4. �

Lemma 3.4. If G(L;S) contains a pseudo-Anosov element, then the dis-
tance d(L;S) is at most 2K + 2δ. Here K and δ are the uniform constants
in Theorem 1.4 and Theorem 1.1, respectively.

Proof. Let α (respectively, β) be an arbitrary element of D+ (respectively,
D−). Let ck be a geodesic segment connecting α and φk(α) for each k >
0. Let dk be a geodesic segment connecting β and φk(β) for each k > 0.
By Theorem 1.1, the distance between ck and dk is at most 2δ when k is
sufficiently large. By Theorem 1.4, ck lies within the K-neighborhood of
D+. Similarly, dk lies within the K-neighborhood of D−. Thus we have

d(L;S) ≤ dC(SL)(D+, ck) + dC(SL)(ck, dk) + dC(SL)(dk,D−) ≤ 2K + 2δ,

which is our assertion. �
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The following lemma is well known, but we include a proof for complete-
ness.

Lemma 3.5. Any torsion subgroup of MCG(Σ0,2n) is finite.

Proof. By Serre [Ser61], Mod(Σn−1) contains a torsion-free subgroup G of
finite index. Set G′ := H(Σn−1) ∩G. Then we have

[H(Σn−1) : G′] = [H(Σn−1) ·G : G] ≤ [Mod(Σn−1) : G] <∞.
Thus, the index of G0 := Π(G′) in MCG(Σ0,2n) is finite, where we recall
that Π : H(Σn−1) → MCG(Σ0,2n) is the natural map. Since G′ is torsion
free and ker Π ∼= Z/2Z, G0 is also torsion free.

Suppose that F is a torsion subgroup of MCG(Σ0,2n). Since G0 is torsion
free, F ∩ G0 is the trivial group. Since [MCG(Σ0,2n) : G0] is finite, we
conclude that F is a finite group. �

Proof of Theorem 3.1. Set N := max{2K+4, 2K+2δ}, where we recall this
is a uniform constant. Let (L;S) be an n-bridge decomposition of a link in
S3 with n ≥ 3. Suppose that d(L;S) > N . By Lemmas 3.2 and 3.4, G(L;S)
contains neither a reducible element nor a pseudo-Anosov element. Thus
G(L;S) is a torsion subgroup of MCG(Σ0,2n). By Lemma 3.5, G(L;S) is a
finite group. �

As we have explained in Sections 1.4 and 1.5, the constant δ can be chosen
to be at most 102, and K can be chosen to be at most 1796. Therefore, the
above proof shows that the constant 3796 is enough for the constant N in
Theorem 3.1.

4. Pseudo-Anosov elements in the Goeritz groups of stabilized
bridge decompositions

It follows immediately from Example 2.11 and Lemma 1.3 that the Goeritz
group of a stabilized bridge decomposition of a link in S3 is an infinite group
except the case of the 2-bridge decomposition (O; 2) of the trivial knot O.
For each of those bridge decompositions, we can find an infinite order element
of the Goeritz group looking at a local part of the decomposition as follows.
Let (L;S) be an n-bridge decomposition of L with n ≥ 2. Let p be a point
in S ∩ L. Without loss of generality, we may assume that the point p is
labeled by 2n. Consider the (n+ 1)-bridge decomposition

(L;S(p,1)) = (B+
(p,1) ∩ L) ∪S(p,1)

(B−(p,1) ∩ L).

Set S′ := S(p,1). Recall that the triples (S3, S, L) and (S3, S′, L) are identical
except within a small 3-ball B near the point p shown in Figure 17(1). Set
α := ∂B ∩ S′. Since α bounds a disk D+ ⊂ B+ (D− ⊂ B−, respectively)
with #(D+ ∩ L) = 1 (#(D− ∩ L) = 1, respectively), the Dehn twist τα :
(S′, S′ ∩ L) → (S′, S′ ∩ L) extends to an element of MCG(B+

(p,1), B
+
(p,1) ∩

L) (MCG(B+
(p,1), B

+
(p,1) ∩ L), respectively). Therefore, τα ∈ MCG(Σ0,2n+2)
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L

1 2 2n−1

2n = p
2n+1

2n+2

α

· · ·
S′

B

· · ·

1 2 2n−1 2n 2n+1 2n+2

(1) (2)

Figure 17. (1) A stabilized (n + 1)-bridge decomposition
of a link L and the 3-ball B. (2) An element b ∈ SW2n+2

(which is a “full twist” with 3 strands).

defines an element τ̂α of G(L;S′), whose order is clearly infinite. Note that
τα = Γ(b), where b is the element of SW2n+2 shown in Figure 17(2).

The infinite-order elements of the Goeritz group of a stabilized bridge
decomposition we have given so far are all reducible: each of them is an
extension of either a single Dehn twist (Figure 17) or the composition of the
Dehn twists about three disjoint simple closed curves (Example 2.11) in the
bridge sphere. In this section, we discuss pseudo-Anosov elements in the
Goeritz group. In fact, we prove Theorem 0.4, which is restated below.

Theorem 4.1. Let (L;S) be an n-bridge decomposition of a link L in S3

with n ≥ 2. Let p be an arbitrary point in S∩L. If (L;S) = (O2; 2), then the
Goeritz group G(L;S(p,1)) is an infinite group consisting only of reducible el-
ements. Otherwise, the Goeritz group G(L;S(p,1)) contains a pseudo-Anosov
element.

There are two ingredients for the construction of a pseudo-Anosov element
in the above theorem. One is a slight modification of the element given in
the first paragraph of this section, which corresponds to a Dehn twist about
a simple closed curve in SL. The other is a construction of pseudo-Anosov
elements by Penner [Pen88].

In the following arguments, we always assume that curves under consid-
eration in a (marked) surface are properly embedded, and their intersection
is transverse and minimal up to isotopy. We will not distinguish curves,
surfaces and homeomorphisms from their isotopy classes in this section.

Let

(L;S) = (B+ ∩ L) ∪S (B− ∩ L)

be an n-bridge decomposition of a link L in S3 with n ≥ 2. Let p be an
arbitrary point in S ∩ L. Then there exists a unique component T+ (T−,
respectively) of B+ ∩ L (B− ∩ L, respectively) one of whose endpoints is p.
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T+

Zγ

γ
p

S αγ

Figure 18. A reference arc γ for T+.

A simple arc γ in the marked sphere (S, S ∩ L) with ∂γ = ∂T+ is called
a reference arc for T+ if there exists a disk Zγ embedded in B+ such that
Zγ ∩ L = ∂Zγ ∩ L = T+ and ∂Zγ − T+ = γ. A simple closed curve α ∈ D+

is said to be associated with p if there exists a reference arc γ for T+ with
α = ∂N(γ;S). In this case, we write α = αγ . See Figure 18. We note that
Zγ and αγ as above are uniquely determined for each γ. We denote by D+

p

the subset of D+ consisting of simple closed curves associated with p. The
subset D−p ⊂ D− is defined exactly in the same way as above (using “−”
instead of “+”). Two simple closed curves α, β ∈ C(SL) are said to fill the
surface SL if the union α ∪ β cuts SL into open disks and half-open annuli.

Lemma 4.2. If (L;S) 6= (O2; 2), then there exist simple closed curves α+ ∈
D+
p and α− ∈ D−p that fill SL.

Proof. Suppose first that n = 2, that is, (L;S) is a 2-bridge decomposition.
In this case, we have D+

p = D+ (D−p = D−, respectively), and it consists

of only one simple closed curve α+ (α−, respectively) (cf. Example 2.8). If
(L;S) 6= (O2; 2), then using its Schubert normal form it is easily seen that
α+ and α− fill SL. (In the case (L;S) = (O2; 2), we have α+ = α− and they
do not fill SL.)

In the following we suppose that n ≥ 3. Choose arbitrary simple closed
curves α+ ∈ D+

p and β ∈ D−p . By [HK17, Proposition 1.3] there exists a

pseudo-Anosov element φ in MCG(B+, B+ ∩ L). By replacing φ with some
positive power, if necessary, we can assume that φ is the identity on ∂B+∩L.
It follows from Masur-Minsky [MM99, Proposition 4.6] that

lim
k→∞

dC(SL)(α
+, φk(α+)) =∞,

which in particular implies that there exists k0 ∈ N with dC(SL)(α
+, φk0(α+)) ≥

5. Since we have assumed that φ fixes ∂B+ ∩ L, the image φk0(α+) re-
mains to be contained in D+

p . Now by applying triangle inequalities we have

dC(SL)(α
+, α−) ≥ 3 or dC(SL)(φ

k0(α+), α−) ≥ 3, which implies the asser-
tion. �
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T+
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p
Sβ

γ

T+
2

T−1
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1

T−2

p
p′

γ1

β1

γ2

β2

S(p,1)

(1) (2)

Figure 19. (1) The bridge decomposition (L;S) around p.
(2) The bridge decomposition (L;S(p,1)) around p.

S(p,1)

p′

T+
1

T−2

β1

γ2

Zβ1

Zγ2

α̂β

Sβ

Figure 20. The sphere Sβ.

Proof of Theorem 4.1. By a 1-fold stabilization of (L;S) at p, we obtain a
bridge decomposition

(L;S(p,1)) = (B+
(p,1) ∩ L) ∪S(p,1)

(B−(p,1) ∩ L).

Suppose first that (L;S) 6= (O2; 2). By Lemma 4.2 there exist reference
arcs β and γ for T+ and T−, respectively, such that simple closed curves αβ ∈
D+
p and αγ ∈ D−p fill SL. Let T+

1 and T+
2 (T−1 and T−2 , repsectively) be the

components of B+
(p,1)∩L (B−(p,1)∩L, respectively), p′ the point of S(p,1)∩L as

shown in Figure 19. Since the component T+
1 (T−1 , respectively) of B+

(p,1)∩L
(B−(p,1)∩L, respectively) naturally corresponds to T+ (T−, respectively), the

reference arc β (γ, respectively) defines in a canonical way a reference arc
β1 (γ1, respectively) for T+

1 (T−1 , respectively). Here we note that under the
convention in Section 1.3 (Figure 5), γ1 is nothing but γ thought of as being
embedded in S(p,1). Choose a reference arc β2 (γ2, respectively) for T+

2 (T−2 ,
respectively) so that β2 ∩ γ1 = {p} (γ2 ∩ β1 = {p′}, respectively). Consider
the 2-spheres Sβ := ∂N(Zβ1 ∪Zγ2) and Sγ := ∂N(Zγ1 ∪Zβ2), see Figure 20.
Since αβ and αγ fill the surface SL, the simple closed curves α̂β := S(p,1)∩Sβ
and α̂γ := S(p,1) ∩Sγ fill (S(p,1))L. Set D+

β := Sβ ∩B+
(p,1), D

−
β := Sβ ∩B−(p,1),
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D+
γ := Sγ ∩ B+

(p,1) and D−γ := Sγ ∩ B−(p,1). Then each of the disks D+
β , D−β ,

D+
γ and D−γ intersects L once and transversely. This implies that each of

the Dehn twists τα̂β and τα̂γ extends to an element of G(L;S(p,1)). Now, it

follows from Penner [Pen88] that the composition τα̂β ◦ τ
−1
α̂γ

gives rise to a

pseudo-Anosov element of G(L;S).
Finally, suppose that (L;S) = (O2; 2). Let q : S2×S1 → S3 be the 2-fold

covering branched over L. Set Σ := q−1(S(p,1)), which is the unique genus-2

Heegaard splitting of S2×S1. Let T be the non-trivial deck transformation
of q. Then as we have seen in Example 2.9, the group G(L;S) is isomor-
phic to G(S2 × S1; Σ)/〈[T ]〉. The conclusion now follows from Cho-Koda
[CK14], which shows that the Goeritz group G(S2 × S1; Σ) is an infinite
group consisting only of reducible elements. �

5. Asymptotic behavior of minimal pseudo-Anosov entropies

In this section, we prove Theorems 0.5 and 0.6.
We say that β ∈ SBn is pseudo-Anosov if Γ(β) ∈ MCG(Σ0,n) is a pseudo-

Anosov mapping class. In this case, the dilatation λ(β) (respectively, entropy
log λ(β)) of β is defined by the dilatation (respectively, entropy) of Γ(β).

Collapsing ∂D to a point, we obtain an injective homomorphism

c : MCG(Dn)→ MCG(Σ0,n+1).

We say that b ∈ Bn is pseudo-Anosov if c(ΓD(b)) is a pseudo-Anosov map-
ping class. Then the dilatation λ(b) (respectively, entropy log λ(b)) of b is
defined by the dilatation (respectively, entropy) of c(ΓD(b)). Let

s : Bn → SBn

be the surjective homomorphism which sends a braid b ∈ Bn to the spherical
braid in SBn represented by the same word of letters σ±1

j ’s as b. Let

s+ : Bn → SBn+1

be the homomorphism which sends a braid b ∈ Bn to the spherical braid
obtained from s(b) with n strands adding the (n + 1)th straight strand.
Hence s+(b) is also represented by the same word of letters σ±1

j ’s as b.

Remark 5.1. By the definition of pseudo-Anosov braids in Bn, we see that
b ∈ Bn is pseudo-Anosov if and only if s+(b) ∈ SBn+1 is pseudo-Anosov. In
this case, λ(b) = λ(s+(b)) holds.

For the proofs of Theorems 0.5 and 0.6, we use a result in [HK20], which
we recall now. Let zn be a pseudo-Anosov braid on the plane with dn strands.
We say that a sequence {zn} has a small normalized entropy if dn � n and
there is a constant P > 0 which does not depend on n such that

(5.1) dn · log λ(zn) ≤ P.
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1 2  n

(1) (2)

1 2   n-

(3)

1 m2 2 12

Figure 21. (1) X = Xm ∈ Bm. (2) Y = Y2n ∈ B2n. (3)
Z = Z2n−1 ∈ B2n−1.

Here recall that dn � n means that dn is comparable to n. It is known by
Penner [Pen91] that if φ ∈ MCG(Σ0,n) is pseudo-Anosov for n ≥ 4, then

log λ(φ) ≥ log 2
4n−12 . This implies that if {zn} satisfies (5.1), then we have

log λ(zn) � 1

n
.

For the definition of i-increasing planar braids, see [HK20, Section 3]. (i
stands for the indices of strands.) If a pseudo-Anosov braid b is i-increasing,
then one obtains a pseudo-Anosov braid (b∆2n)1 with more strands than b
for each n ≥ 1 which is well-defined up to conjugate [HK20, Section 4.1]. The
number of strands of (b∆2n)1 can be computed from b. The braid (b∆2n)1

enjoys the property that the mapping torus of (b∆2n)1 is homeomorphic
to the mapping torus of the original braid b [HK20, Example 4.4(3)]. Fur-
thermore, the sequence of pseudo-Anosov braids {(b∆2n)1} varying n has a
small normalized entropy [HK20, Theorem 5.2(3)].

For each m ≥ 5 and n ≥ 3, we define the braids X,Y and Z as follows.

X = Xm = (σ2σ3)3 = σ2
3σ2σ

2
3σ2 ∈ Bm,

Y = Y2n = σ2
1σ2σ3 · · ·σ2n−1σ1σ2 · · ·σ2n−2 ∈ B2n,

Z = Z2n−1 = σ2
1σ2σ3 · · ·σ2n−2σ1σ2 · · ·σ2n−3σ2n−3σ2n−2 ∈ B2n−1,

see Figure 21. The spherical 6-braids s+(X5), s(Y6) and s+(Z5) are equal
to x, y, and z, respectively, in Example 1.12. For each n ≥ 3, we have
s(Y ), s+(Z) ∈ SB2n. For each m = 2n − 1 with n ≥ 3, we have s+(X) ∈
SB2n. We write

x = s+(X), y = s(Y ), z = s+(Z) ∈ SB2n.

It is easy to see the following lemma. (Cf. Lemma 1.14.)

Lemma 5.2. We have x, y ∈ SW2n(A,B) and x, z ∈ SW2n(A, C).

For a subgroup G ⊂ SBn containing a pseudo-Anosov element, we write
`(G) = `(Γ(G)). Example 2.6 tells us that

`(G(O;n)) = `(SW2n(A,B)).

We can then restate Theorem 0.5 as follows.
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Theorem 5.3. We have

`(G(O;n)) = `(SW2n(A,B)) � 1

n
.

Theorem 5.3 implies Corollary 0.7. The reason is that if φ ∈ MCG(Σ0,2g+2)
is pseudo-Anosov, then each element of Π−1(φ) is pseudo-Anosov with the
same entropy as φ. Theorem 5.3 together with Example 2.6 says that

`(HGT (S3; q−1(S(p,g)))) �
1

g
.

Since
HGT (S3; q−1(S(p,g))) ⊂ G(S3; g) ⊂ MCG(Σg)

and `(MCG(Σg)) � 1
g by Penner [Pen91], we conclude that

`(G(S3; g)) � 1

g
.

Proof of Theorem 5.3. In the proof, we regard Dn as the disk with n punc-
tures. For braids X,Z ∈ B5 as above, we consider the product

α := XZ = (σ2
3σ2σ

2
3σ2)(σ2

1σ2σ3σ4σ1σ2σ
2
3σ4) ∈ B5,

see Figure 22(1). We now claim that α is pseudo-Anosov. To see this, we
first observe that

α∆−2 = σ2σ3σ3σ2σ
−1
4 σ−1

3 σ−1
3 σ−1

4 σ−1
2 σ−1

1 σ−1
3 σ−1

2 .

Let γ denote the following 5-braid

γ = σ1σ2σ
−1
4 σ−1

3 σ−1
3 σ−1

4 σ−1
2 σ−1

3 .

Then one can check that η−1(α∆−2)ηγ−1 equals the identity element in B5,
where

η = σ1σ2σ1σ3σ2σ1σ4 · σ1σ2σ1σ4σ3σ2σ1 · σ2σ3σ2σ1σ4σ3 · σ3σ4σ3σ2σ1.

This implies that ΓD(α) = ΓD(α∆−2) is conjugate to ΓD(γ) in MCG(D5).
It is enough to show that γ is pseudo-Anosov, for the Nielsen-Thurston types
are preserved under the conjugation.

Removing the third and fourth strands from γ, we obtain σ1σ
−2
2 ∈ B3.

It is easy to see that σ1σ
−2
2 is pseudo-Anosov. For instance, see [Han97].

Let Φ : D3 → D3 be a pseudo-Anosov homeomorphism which represents
ΓD(σ1σ

−2
2 ) ∈ MCG(D3). Let O be a periodic orbit with period k of Φ.

Blow up each periodic point in O. Then we still have a pseudo-Anosov
homeomorphism Φ◦ : D3 \ O → D3 \ O defined on the (3 + k)-punctured
disk with the same entropy as Φ. By using train track maps for pseudo-
Anosov 3-braids (see [Han97]), it is not hard to show that there is a periodic
orbit O with period 2 such that the pseudo-Anosov homeomorphism Φ◦ :
D3 \ O → D3 \ O represents ΓD(γ) ∈ MCG(D5). Thus γ is pseudo-Anosov.

Next, we prove that `(SW4n+2(A,B)) � 1
n . We note that the above

α ∈ B5 is a 5-increasing braid. One sees that (α∆2n)1 is written by

(α∆2n)1 = XZ2n+1 ∈ B4n+7.
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(See Figure 22(2) in the case n = 1.) Let (α∆2n)•1 be the braid with (4n+6)
strands obtained from (α∆2n)1 by removing the last strand. Then we have

(α∆2n)•1 = XY 2n+1 ∈ B4n+6.

(See Figure 22(3) in the case n = 1.) By Lemma 5.2, we have

s((α∆2n)•1) = s(XY 2n+1) = xy2n+1 ∈ SW4n+6(A,B).

Then [HK20, Lemma 6.3] tells us that for n large, s((α∆2n)•1) is a pseudo-
Anosov braid with the same entropy as (α∆2n)1. Therefore we have

log λ(s((α∆2n)•1)) = log λ(xy2n+1) � 1

n
,

since the sequence {(α∆2n)1} varying n has a small normalized entropy
[HK20, Theorem 5.2(3)], and we are done.

Finally, we prove `(SW4n(A,B)) � 1
n . We consider α2 = XZXZ ∈ B5

which is pseudo-Anosov, since α is pseudo-Anosov. This is a 5-increasing
braid as well. We consider the sequence of pseudo-Anosov braids (α2∆2n)1

varying n. The braid (α2∆2n)1 can be written as (α2∆2n)1 = XZXZ2n+1 ∈
B4n+9. Then (α2∆2n)•1 ∈ B4n+8 obtained from (α2∆2n)1 by removing the
last strand is of the form (α2∆2n)•1 = XYXY 2n+1 ∈ B4n+8. Hence its
spherical braid satisfies the following property.

s((α2∆2n)•1) = s(XYXY 2n+1) = xyxy2n+1 ∈ SW4n+8(A,B).

By [HK20, Lemma 6.3] again, it follows that for n large, s((α2∆2n)•1) is a
pseudo-Anosov braid with the same entropy as (α2∆2n)1. The sequence of
pseudo-Anosov braids (α2∆2n)1 has a small normalized entropy, and hence
this property also holds for s((α2∆2n)•1) = xyxy2n+1 ∈ SW4n+8(A,B). This
completes the proof. �

Finally we prove Theorem 0.6. By Example 2.7, we have

`(G(H;S(p,n−2))) = `(SW2n(A, C)).

We restate Theorem 0.6 as follows.

Theorem 5.4. We have

`(G(H;S(p,n−2))) = `(SW2n(A, C)) � 1

n
.

As in the proof of Corollary 0.7, Corollary 0.8 then follows from Theorem
5.4 and Example 2.7.

Proof of Theorem 5.4. We first prove that `(SW4n(A, C)) � 1
n . In the proof

of Theorem 5.3, we obtain a sequence of pseudo-Anosov braids (α∆2n)1 =
XZ2n+1 ∈ B4n+7 having a small normalized entropy. We have

s+((α∆2n)1) = s+(XZ2n+1) = xz2n+1 ∈ SB4n+8,
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Figure 22. (1) α = X5Z5 ∈ B5. (2) (α∆2)1 = X11Z
3
11 ∈

B11. (3) (α∆2)•1 = X10Y
3

10 ∈ B10.

and it is an element of SW4n+8(A, C) by Lemma 5.2. Since s+((α∆2n)1) is
a pseudo-Anosov braid with the same entropy as (α∆2n)1 (see Remark 5.1),
we are done.

Next, we prove `(SW4n+2(A, C)) � 1
n . In the proof of Theorem 5.3,

we obtain a sequence of pseudo-Anosov braids (α2∆2n)1 = XZXZ2n+1 ∈
B4n+9 having a small normalized entropy. By Remark 5.1, the spherical
braid s+(XZXZ2n+1) ∈ SB4n+10 has the same entropy as XZXZ2n+1 ∈
B4n+9. We have

s+(XZXZ2n+1) = xzxz2n+1

which is an element of SW4n+10(A, C) by Lemma 5.2. This completes the
proof. �

Theorems 0.5 and 0.6 motivate us to pose the following question.

Question 5.5. For any bridge decomposition (L;S) of a link L ⊂ S3 and
any point p ∈ L∩S do we have `(G(L;S(p,k))) � 1

k , where S(p,k) is the bridge
sphere of L obtained from a k-fold stabilization of S at p?
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