
REPRESENTATIONS OF GSp(4,R)
WITH EMPHASIS ON DISCRETE SERIES

TOMONORI MORIYAMA

Abstract. In this note, we survey some elementary aspects of the representation theory
of the real reductive groups GSp(4,R) or Sp(4,R). We also discuss automorphic forms
on Sp(4,R) which generate discrete series representations. Caution: Some terminologies
such as “tempered” are used before we recall their definitions. We use some technical
terms without giving detailed explanation, for which we refer the reader to standard
textbooks such as [Kn], [Wa-1] or the survey article [N].
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§1. The Langlands classification

In this section, we shall explain the classification theory of irreducible admissible repre-

sentations of a reductive linear Lie group G, which is known as Langlands Classification.

Before discussing the general theory, let us look at the simplest example G = SL(2,R).

Ex. 1. G = SL(2,R) We fix an Iwasawa decomposition G = NAK of G as follows:

N :=
{(1 x

0 1

)
|x ∈ R

}
, A :=

{(√y 0

0 1/
√
y

)
|y > 0

}
,

K :=
{
rθ =

(
cos θ sin θ

− sin θ cos θ

)
|θ ∈ R

}
.

We introduce two kinds of irreducible representations of G – (i) (limits of) discrete series

representations and (ii) (non-unitary) principal series representations.

(i) (limits of) discrete series. As a C-basis of sl2(C), we take

H :=

(
0 −√−1√−1 0

)
, X± :=

1

2

(
1 ±√−1

±√−1 −1

)
.

Then {H,X+, X−} is an sl2-triplet. For each k ∈ C, consider the Verma module

M(k) = U(g) ⊗U(�̄) Ck with b̄ = C ·H ⊕ C ·X−.
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Here Ck = Cvk is a one dimensional b̄-module characterized by H ·vk = kvk and X− ·vk =

0. Then it is well-known that M(k) is unitarizable if k ∈ Z>0. That is, there exists an

irreducible unitary representation D+
k of G such that its underlining (g, K)-module is

M(k). We denote by D−
k the contragredient representation of D+

k , which has the highest

weight −k. If k ≥ 2, every matrix coefficient of D+
k belongs to L2(G). The representation

D±
k (k ≥ 2) is called the discrete series representation with Blattner parameter ±k. The

representations D±
1 are the limits of discrete series representations. For a congruence

subgroup Γ of G and k ≥ 1, it is a standard fact (see §3) that

Mk(Γ) ∼= Hom�,K(D+
k ,A(Γ\G));

Sk(Γ) ∼= Hom�,K(D+
k ,Acusp(Γ\G)) ∼= HomG(D+

k , L
2(Γ\G)).

Here Mk(Γ) (resp. Sk(Γ)) is the space of modular forms (resp. cusp forms) on H1 :=

{z ∈ C | Im(z) > 0} with respect to Γ.

(ii) (non-unitary) principal series. We set

B :=
{(∗ ∗

0 ∗

)
∈ G

}
= MAN with M := {±I2} (Borel subgroup) .

For each ε : M → C× and ν ∈ C, the (non-unitary) principal series representation of G

is given by

I(ε, ν) := {f : G
C∞→ C | f(

(
a ∗
0 a−1

)
g) = ε(a/|a|)|a|ν+1f(g), ∀

(
a ∗
0 a−1

)
∈ B, ∀g ∈ G}.

Then we have the following exact sequence:

0 → D+
k ⊕D−

k → I((−1)k, k − 1) → Fk−2 → 0, k ≥ 2.(1.1)

Moreover we have

I(−, 0) ∼= D+
1 ⊕D−

1 .

Here for a non-negative integer m ≥ 0, Fm = Symm(C2) stands for the m-th symmetric

tensor representation of the natural (tautological) two dimensional representation of G.

Here is the classification:

Classification for SL(2,R). Let Ĝadm be the set of (infinitesimal equivalent classes of)

irreducible admissible representations of G. The set of irreducible tempered represen-

tations of G (resp. irreducible discrete series representations of G) is denoted by Ĝtemp

(resp. ĜDS). Note that

ĜDS ⊂ Ĝtemp ⊂ Ĝadm.

Then we have

(i) Ĝadm \ Ĝtemp = {I(+; ν) | Re(ν) > 0, ν �= 1, 3, 5, · · · } ∪ {I(−; ν) | Re(ν) > 0, ν �=
2, 4, 6, · · · } ∪ {Fm | m ≥ 0};
(ii) Ĝtemp \ ĜDS = {D+

1 , D
−
1 } ∪ {I(+; ν) | ν ∈ √−1R} ∪ {I(−; ν) | ν ∈ √−1R \ {0}};

(iii) ĜDS = {D+
k , D

−
k | k ≥ 2}.

Moreover the set Ĝu of unitary equivalence classes of irreducible unitary representations of

G is given by Ĝu = Ĝtemp∪{I(+; ν) | 0 < ν < 1}∪{F0}. The family {I(+; ν) | 0 < ν < 1}
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of irreducible non-tempered unitary representations is called the complementary series.

Remarks (i) Translation functor ([Kn, Ch X, §9]). We can “jump” from a representation

D+
k to another D+

l in the following sense. For k ≥ 2 we have

D+
k ⊗ F1

∼= D+
k+1 ⊕D+

k−1.

Hence we have

D+
k−1 = {v ∈ D+

k ⊗ F1 | Ωv = {(k − 2)2 − 1}v}, (Ω: Casimir element).

That is, we obtain D+
k−1 from D+

k considering the tensor product with a finite dimensional

representation of G. Hence D±
1 is the “limit” of {D±

k | k ≥ 2}.
(ii) Selberg’s 1/4 conjecture. Let f : Γ\G/K → C be a wave cusp form with respect

to a congruence subgroup Γ. Then f generates an irreducible unitary representation

πf ∼= I(+, ν) with ν ∈ √−1R ∪ (0, 1). This gives

∆f(z) ≡ −y2
( ∂2

∂x2
+

∂2

∂y2

)
f(z) =

1

4
(1 − ν2)f(z).

The conjecture asserts that 1
4
(1 − ν2) ≥ 1/4 should hold, which is equivalent to that πf

should be tempered (i.e. ν ∈ √−1R). Note that this is an archimedean analogue of the

Ramanujan conjecture.

General case The classification in the general case goes as follows:

Ĝadm := {irreducible admissible representations of G}/ ∼
⇓ Step1: Theorem 1.2

M̂temp := {irreducible tempered representations of M}/ ∼
P = MAN(⊆ G) : a parabolic subgroup of G

⇓ Step2: Theorem 1.3

M̂1,DS := {discrete series representations of M1}/ ∼
P1 = M1A1N1(⊆M) : a parabolic subgroup of M.

Def-Prop 1.1. Let (π,Hπ) ∈ Ĝu be an irreducible unitary representation of G.

(i) π is tempered :⇔ the global character Θπ of π can be extended to the Schwartz space

C(G). ⇔ Every K-finite matrix coefficient of π belongs to ∩ε>0L
2+ε(G).

(ii) π belongs to the discrete series :⇔ ∃ a non-zero matrix coefficient of G belongs to

L2(G). ⇔ Every matrix coefficient of G belongs to L2(G).

Let P be a parabolic subgroup ofG with Langlands decomposition P = MAN . For each

µ ∈ a∗
C, we denote the corresponding quasi-character of A by aµ. We define ρ ≡ ρP ∈ a∗

C

by

aρ = det(Ad(a)|Lie(N))
1/2.

Theorem 1.2 (Langlands, c.f. [L],[Wa, 5.4.4]). For ∀π ∈ Ĝadm, ∃P = MAN ⊆ G, ∃σ ∈
M̂temp, ∃ν ∈ a∗

C with Re(ν) belonging to the open Weyl Chamber defined from N such that

π is infinitesimally equivalent to the unique irreducible quotient of I(P ; σ, ν) ≡ IndGP (σ ⊗
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aν+ρ ⊗ 1N), which we denote by J(P ; σ, ν). Moreover the triplet (P, σ, ν) is unique up to

conjugation.

Theorem 1.3 (cf. [Wa, 5.2.5]). For ∀σ ∈ M̂temp, ∃P1 = M1A1N1 ⊆ M , ∃σ ∈ M̂1,DS,

∃ν ∈ √−1a∗ such that σ is unitarily equivalent to a direct summand of I(P1; σ1, ν).

Note that there exists a parabolic subgroup P ′ of G with P ′ ⊆ P ⊆ G such that

P ′ ∩M = P1. Hence we have

Corollary 1.4. For ∀π ∈ Ĝadm, ∃P = MAN ⊆ G, ∃σ ∈ M̂DS, ∃ν ∈ a∗
C with Re(ν)

belonging to the closed Weyl Chamber defined from N such that π is infinitesimally equiv-

alent to an irreducible quotient of I(P ; σ, ν).

We also note

Theorem 1.5 (c.f. [Wa, 3.8]). (Casselman’s subrepresentation theorem).

Let P0 = M0A0N0 ⊂ G be a minimal parabolic subgroup of G. For ∀π ∈ Ĝadm, ∃(σ, ν) ∈
M̂0,u × a∗

0,C such that π can be embedded into I(P0; σ, ν) as (g, K)-modules.

The classification of irreducible unitary representations of general G is unknown except

for a few cases. This is a big open problem in the representation theory of real reductive

groups.

Ex. 2. G = Sp(4,R) Up to conjugation, Sp(4,R) has 3 proper parabolic subgroups:

P0, PS, and PJ .

(i) The minimal parabolic subgroup. P0 = M0A0N0.

M0 = {diag(ε1, ε2, ε1, ε2) | εi = ±1}; A0 = {diag(a1, a2, a
−1
1 , a−1

2 ) | ai > 0};

N0 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩n(x0, x1, x2, x3) :=

⎛⎜⎜⎜⎝
1

1

x1 x2

x2 x3

1

1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1 x0

1

1

−x0 1

⎞⎟⎟⎟⎠ ∈ G

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

(ii) The Siegel parabolic subgroup. PS = MSASNS.

MS =
{( m

tm−1

)
|m ∈ SL±(2,R)

}
; AS = {diag(t, t, t−1, t−1) | t > 0};

NS =
{( 12 x

12

)
| tx = x ∈M2(R)

}
.

(iii) The Jacobi (or Klingen) parabolic subgroup. PJ = MJAJNJ .

MJ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝

ε

a b

c

ε

d

⎞⎟⎟⎟⎠∣∣∣ ε = ±1,

(
a b

c d

)
∈ SL(2,R)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ;

AJ =
{

diag(a1, 1, a
−1
1 , 1) | a1 > 0

}
; NJ = {n(x0, x1, x2, 0) | xi ∈ R}.
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• As an example, we consider the degenerate principal series representation I(PS; triv., ν).

The representation space of I(PS; triv., ν) is given by

{f : G
C∞→ C | f(

(
m

tm−1

)
g) = | det(m)|ν+3f(g), ∀(m, g) ∈ GL(2,R) ×G},

on which G acts by right translation. It follows from the exact sequence (1.1) that the

representation I(PS; triv., ν) is a quotient of

I(P0; triv.,
ν+1

2
, ν−1

2
)

:={f : G
C∞→ C | f(mang) = a

(ν+1)/2+2
1 a

(ν−1)/2+1
2 f(g), ∀(m, a, n, g) ∈ M0 × A0 ×N0 ×G}.

For ν in a general position, I(PS; triv., ν) is irreducible. Hence, if such ν satisfies Re(ν) >

0, then we have

I(PS; triv., ν) ∼= J(P0; triv.,
ν+1

2
, ν−1

2
).

The degenerate principal series representation I(PS; triv., ν) and its p-adic counterparts

are the local components of the Siegel Eisenstein series. Partly because of this, the

degenerate principal series representations are studied by many authors.

In summary, the Langlands classification reduces the classification of irreducible admis-

sible representations of a reductive linear Lie group G to that of discrete series represen-

tations of a semisimple part M of a parabolic subgroup P = MAN of G. In the next

section we shall take up the latter problem.

§2. Harish-Chandra’s parameterization of discrete series

The basic setting of this section is as follows:

• G: a connected semisimple algebraic group /R.

• G := GR: the group of R-valued points of G.

Assume that G is simply connected. (This implies that G is a connected Lie group.)

• K ⊂ G: a fixed maximal compact subgroup of G.

The passage to the case of reductive G is not difficult. The first important fact is the

following:

Theorem 2.1 (Harish-Chandra, c.f. [Kn, Theorems 12.20]). The set ĜDS is not empty

if and only if rk(G) = rk(K).

From now on, we assume that rk(G) = rk(K). Then a Cartan subgroup T of K is also

a Cartan subgroup of G. We fix some notation:

• ∆ = ∆(G, T ): the root system;

• WG: the Weyl group of ∆;

• ∆c = ∆(K,T ) = ∆+
c � ∆−

c : the set of compact roots;

• WK : the Weyl group of ∆c;

• τµ ∈ K̂: the irreducible representation of K with highest weight µ ∈ √−1t∗ w.r.t ∆+
c ;
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• P (∆) := {λ ∈ t∗C | 〈λ, α∨〉 ∈ Z}: the weight lattice of ∆.

Now we can state the following parameterization theorem of discrete series representations:

Theorem 2.2 (Harish-Chandra, c.f. [Kn, Theorems 12.21]). The set ĜDS is parameter-

ized by the set

Ξ := {λ ∈ P (∆) | 〈λ, α∨〉 �= 0 (∀α ∈ ∆), and 〈λ, α∨〉 > 0 (∀α ∈ ∆+
c )}.

The discrete series representation πλ (λ ∈ Ξ) is characterized by the following properties:

(i) The infinitesimal character of π is given by λ ∈ t∗C/ ∼WG
.

(ii) Let ∆+
λ be the (unique) positive system of ∆ such that 〈λ, α∨〉 > 0 (∀ ∈ ∆+

λ ). Put

Λ = λ+
1

2

∑
α∈∆+

λ

α−
∑
α∈∆+

c

α.

Then the irreducible representation τΛ of K with highest weight Λ occurs in πλ with mul-

tiplicity one. The specific K-type τΛ of πλ is called the minimal K-type of πλ.

(iii) If an irreducible representation τµ of K occurs in πλ, then we have

µ = Λ +
∑

α∈∆+
λ \∆+

c

mαα, for some mα ∈ Z≥0.

Some terminologies and remarks:

(1) λ (resp. Λ) is called the Harish-Chandra parameter (resp. the Blattner param-

eter) of πλ. Some authors interchange the letters λ and Λ.

(2) Infinitesimal character. By Schur’s lemma, the center Z(g) of the universal en-

veloping algebra U(g) acts on each irreducible admissible representation (π,Hπ) as scalar

multiplication. That is, we have

π(z)v = χπ(z)v, (∀v ∈ Hπ, ∀z ∈ Z(g))

for some C-algebra homomorphism χπ : Z(g) → C. On the other hand, there is a

C-algebra isomorphism (the Harish-Chandra isomorphism):

q : Z(g) ∼= Sym(tC)WG.

Hence there exists ν ∈ t∗C/ ∼WG
such that

χπ(z) = 〈ν, q(z)〉, ∀z ∈ Z(g).

We call χπ or ν ∈ t∗C the infinitesimal character of π. The theorem implies that there

are �(WG/WK) numbers of discrete series representations having the same infinitesimal

character.

(3) Global character. Let (π,Hπ) be an irreducible admissible Hilbert representation

of G. Fix an arbitrary complete orthonormal system {vi} of Hπ. We define a distribution

Θπ on G by

Θπ(f) :=
∑
i

∫
G

(f(g)vi, vi)dg, f ∈ C∞
c (G),
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which is independent of the choice of {vi}. The distribution Θπ is called the global

character of π. It is known that Θπ is real analytic on the regular set Greg of G. On

Treg := Greg ∩ T = {t ∈ T | α(t) �= 1(∀α ∈ ∆)}, we have

Θπλ
(t) = (−1)

1
2

dim(G/K)

∑
w∈WK

sgn(w)tw(λ)∏
α∈∆+

λ
(tα/2 − t−α/2)

.

This gives another characterization of πλ. We can formally write Θπλ
(t) as

Θπλ
(t) =

∑
µ:dominant

n(πλ;µ)charK(τµ)(t), n(πλ;µ) ∈ Z≥0.

Here charK(τµ) is the character of the irreducible finite dimensional K-module τµ. Then

the Blattner formula ([He-Sch]) asserts that

dimC HomK(τµ, πλ) = n(πλ; ν).

(4) There are several ways of constructing discrete series representations. For this inter-

esting topic, we refer the reader to the survey article [Sch].

Ex. 1. G = SL(2,R) The Blattner parameter of D±
k (k ≥ 2) is ±k, while its Harish-

Chandra parameter is ±(k − 1).

Ex. 2. G = Sp(4,R) As a maximal compact subgroup, we take

K := G ∩O(4) =
{
kA,B :=

(
A B

−B A

)
∈ G

}
.

Fix an isomorphism κ : U(2) ∼= K by A+
√−1B �→ kA,B. As a Cartan subgroup T of K,

we can take

T =
{
t = κ(

(
t1

t2

)
) | ti ∈ C(1)

}
.

The character group T̂ of T is given by

T̂ = Ze1 ⊕ Ze2, ei(κ(

(
t1

t2

)
)) = ti (i = 1, 2).

We frequently write (a1, a2) in place of a1e1 + a2e2 ∈ T̂ (ai ∈ Z). Then we have

∆ = ∆(G, T ) = {±(2, 0),±(1, 1),±(0, 2),±(1,−1)}, ∆c = {±(1,−1)}
WG

∼= (Z/2Z)2
� S2, WK

∼= S2.

We fix a positive system ∆+
c of ∆c as ∆+

c = {(1,−1)}. The parameter set Ξ is a disjoint

union of Ξp,q (p, q ≥ 0, p+ q = 3) below:

Ξ3,0 := {λ = (λ1, λ2) ∈ T̂ | λ1 > λ2 > 0};
Ξ2,1 := {λ = (λ1, λ2) ∈ T̂ | λ1 > −λ2 > 0};
Ξ1,2 := {λ = (λ1, λ2) ∈ T̂ | −λ2 > λ1 > 0};
Ξ0,3 := {λ = (λ1, λ2) ∈ T̂ | 0 > λ1 > λ2}.

7



The Blattner parameter Λ is given by

λ ∈ Ξ3,0 ⇒ Λ = λ+ (1, 2); λ ∈ Ξ2,1 ⇒ Λ = λ + (1, 0);

λ ∈ Ξ1,2 ⇒ Λ = λ+ (0,−1); λ ∈ Ξ0,3 ⇒ Λ = λ + (−2,−1).

For λ ∈ Ξ, we set λ∨ := (−λ2,−λ1). Then the contragredient representation π∨
λ of πλ is

given by πλ∨ . Note that if λ ∈ Ξ3,0 (resp. Ξ2,1) then λ∨ ∈ Ξ0,3 (resp. λ∨ ∈ Ξ1,2). The

discrete series representations of G = Sp(4,R) are divided into two classes:

• λ ∈ Ξ3,0 ∪ Ξ0,3 ⇒ πλ is called an (anti-)holomorphic discrete series representation.

• λ ∈ Ξ2,1 ∪ Ξ1,2 ⇒ πλ is called a large discrete series representation.

One important property of large discrete series representations πλ is that they have Whit-

taker models. That is, for a maximal unipotent subgroup N0 of G and its non-degenerate

character ψ, the intertwining space Hom�,K(πλ, C
∞
ψ (N0\G)) is non-zero, where we set

C∞
ψ (N0\G) := {W : G

C∞→ C |W (ng) = ψ(n)W (g), ∀(n, g) ∈ N0 ×G}.
A realization of πλ in C∞

ψ (N0\G) is called a Whittaker model of πλ. On the other hand,

(anti-)holomorphic discrete series representations do not have Whittaker models.

If λ ∈ Ξp,q, then it is easy to check that

H(p,q)(g, K, πλ ⊗ E) ∼= C and H(r,s)(g, K, πλ ⊗ E) = 0 (∀(r, s) �= (p, q)).

Here E is the irreducible finite dimensional representation of G having the infinitesimal

character −λ. This explains the superscripts appearing in Ξp,q. For the definition of

(g, K)-cohomology groups H(r,s)(g, K, •) and their role in the theory of automorphic forms,

we refer the reader to [B-W].

Langlands parameters. ([B],[La]). Let G be a connected reductive algebraic group /R.

Assume G is split over R, for simplicity. We set G := GR. Let WR = C×�C× ·j (jz = z̄j,

j2 = −1) be the Weil group of R. We denote by G∨ the dual group of G. We set

Φ(G) := {φ : WR → G∨ | continuous hom. }/ ∼G∨ .

Theorems 1.2 and 1.3 can be expressed by a “natural” surjection

Ĝadm � Φ(G).

For each φ ∈ Φ(G), the inverse image Πφ(G) ⊂ Ĝadm of φ is a finite set, which is called

an L-packet.

Examples. Define two dimensional representations φµ,N : WR → GL(2,C) (µ ∈ C, N ∈
Z≥0) as follows:

φµ,N(re
√−1θ) =

(
r2µ−Ne−

√−1Nθ 0

0 r2µ−Ne+
√−1Nθ

)
, φµ,N(j) =

(
0 (−1)N

1 0

)
.

The representation φµ,N is irreducible if N > 0. The L- and ε-factors corresponding to

the representation φµ,N (N > 0) are defined by

L(s, φµ,N) := ΓC(s + µ), ε(s, φµ,N , ψ∞) := (
√−1)N+1.

Here ψ∞ is the character of R given by ψ∞(t) = e2π
√−1t (t ∈ R).
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G = GL(2,R) In this case, G∨ ∼= GL(2,C). We denote by π = Dk[c] (k ≥ 1, c ∈ C) the

irreducible admissible representation of GL(2,R) characterized by π|SL(2,R)
∼= D+

k ⊕D−
k

and π(zI2) = zc × id (z > 0). Then we have

Πφµ,N
(GL(2,R)) = {Dk[c]}, with µ = (c+ k − 1)/2, N = k − 1.

G = GSp(4,R) In this case, G∨ ∼= GSp(4,C). Let πλ[c] be the representation of

GSp(4,R) with πλ[c]|Sp(4,R)
∼= πλ ⊕ π∨

λ and π(zI4) = zc × id. (z > 0). For λ1 > λ2 > 0,

we consider the Langlands parameter φ : WR → G∨ = GSp(4,C) defined by

φ(w) =

⎛⎜⎜⎜⎝
a1

a2

b1

b2

c1
c2

d1

d2

⎞⎟⎟⎟⎠ with

(
ai bi

ci di

)
= φµi,Ni

(w) (i = 1, 2),

where we set

µ1 = (c+ λ1 − λ2)/2, N1 = λ1 − λ2; µ2 = (c+ λ1 + λ2)/2, N2 = λ1 + λ2.

Then the corresponding L-packet consists of two elements:

Πφ(GSp(4,R)) = {π(λ1,λ2)[c], π(λ1,−λ2)[c]}.
• spinor L-function: Let r : G∨ ↪→ GL(4,C) be a natural inclusion. For π ∈ Πφ(GSp(4,R)),

we have

L(s, r ◦ φ) = ΓC(s +
c + λ1 + λ2

2
)ΓC(s+

c+ λ1 − λ2

2
);

ε(s, r ◦ φ, ψ∞) = (−1)λ1+1.

Remark. (i) φ(WR) is not contained in any proper Levi subgroups of G∨.

⇔ ∀π ∈ Πφ(G) belongs to the discrete series (modulo center).

(ii) φ(WR) is bounded ⇔ Πφ(G) ⊂ Ĝtemp.

§3. Automorphic forms on G = Sp(4,R) of discrete series type

The space of automorphic forms. Let Γ be a congruence subgroup of G = Sp(4,R).

As usual, we define the space of automorphic forms on G w.r.t Γ by

A(Γ\G) :=

⎧⎪⎨⎪⎩f : G
C∞−→ C |

(i) f(γg) = f(g) (γ, g) ∈ Γ ×G;

(ii) f is right K-finite and Z(g)-finite;

(iii) f is of moderate growth.

⎫⎪⎬⎪⎭ .

If f ∈ A(Γ\G) satisfies∫
Γ∩NS\NS

f(ng)dn ≡ 0 and

∫
Γ∩NJ\NJ

f(ng)dn ≡ 0,

then we say that f is a cusp form. The totality of cusp forms on G w.r.t Γ is denoted

by Acusp(Γ\G).
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Let π = πλ be a discrete series representation of G with minimal K-type τΛ = (τ, Vτ).

The unique K-homomorphism τ ↪→ π yields

Hom�,K(π,A(Γ\G)) → HomK(τ,A(Γ\G)) ∼= {A(Γ\G) ⊗ V ∨
τ }K .

More concretely, take a basis {vi} of τ and its dual basis {v∨i } of τ∨. We attach to

Φ ∈ Hom�,K(π,A(Γ\G)) the function

f(g) ≡ fΦ(g) :=
∑
i

Φ(vi)(g) ⊗ v∨i

Holomorphic case.

• H2 := {z ∈M2(C) | tz = z, Im(z) � 0} : the Siegel upper half space of degree 2.

• The action of G = Sp(4,R) on H2 is given by

g〈z〉 := (az + b)(cz + d)−1, g =

(
a b

c d

)
∈ G, z ∈ H2.

• Identify X = G/K with H2 through X � gK �→ g〈√−1〉 ∈ H2. The holomorphic

(resp. anti-holomorphic) part p+ (resp. p−) of the complexified tangent space Tē(X)⊗C

at ē = eK ∈ X is given by

p± =
{( A ±√−1A

±√−1A A

)
| A = tA ∈M2(C)

}
.

For Λ = (Λ1,Λ2) ∈ Z2 satisfying Λ1 ≥ Λ2 ≥ 0, we set

Mholo
Λ (Γ\G) := {f : Γ\G → V ∨

τ | C∞, f(g; x) = 0, (∀x ∈ p−),

f(gk) = τ∨(k)−1f(g) (∀(g, k) ∈ G×K)};
MΛ(Γ\X) := {φ : X→V ∨

τ | holomorphic, φ|γ(z) = φ(z), (∀γ ∈ Γ)},
where τ = τΛ ∈ K̂. Here we use the usual notation:

• φ|γ(z) := τ∨Λ (κ( tj(γ, z)−1))−1φ(γ〈z〉);

• j(
(
a b

c d

)
, z) := cz + d, (

(
a b

c d

)
, z) ∈ G× H2,

• KC : the analytic subgroup of Sp(2,R) corresponding to kC;

• κ : GL(2,C) ∼= KC is the holomorphic extension of κ : U(2) ∼= K;

• τ∨ : KC → GL(V ∨
τ ) is the holomorphic extension of τ∨ : K → GL(V ∨

τ );

• f(g; x′ +
√−1x′′) :=

d

dt |t=0
[f(g exp(tx′)) +

√−1f(g exp(tx′′))], x′, x′′ ∈ g.

Theorem 3.1. Suppose that Λ1 ≥ Λ2 ≥ 3. If we set λ = (Λ1 − 1,Λ2 − 2), then we have

Hom�,K(πλ,A(Γ\G)) ∼= Mholo
Λ (Γ\G) ∼= MΛ(Γ\X).

Proof. The first isomorphism is given by Φ �→ fΦ. The injectivity is clear from the

irreducibility of πλ. The surjectivity follows from the fact that πλ is equivalent to the

generalized Verma module M(Λ) := U(g) ⊗U(�C+�−) Vτ and the Koecher principle (plus

the second isomorphism).
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The second isomorphism is well-known. For the sake of completeness, we review it here.

We first note that a C∞-function f : G → V ∨
τ satisfying f(gk) = τ∨(k)−1f(g) defines a

C∞-section sf of the homogeneous vector bundle G×K V ∨
τ → X:

sf : X � gK �→ [g, f(g)] ∈ G×K V ∨
τ .

We set GC := Sp(4,C) and P± := exp(p±). Then it is well-known that P+KCP− is an

open subset of GC and that the multiplication map

P+ ×KC × P− � (p+, u, p−) �→ p+up− ∈ P+KCP−

is bi-holomorphic. We set cG :=

(
1 −√−1

−√−1/2 1/2

)
∈ GC. Then we have c−1

G G ⊂
P+KCP−. Through the map

G×K V ∨
τ � [g, ξ] �→ [c−1

G g, ξ] ∈ P+KCP− ×KCP− V
∨
τ ,

the vector bundle G×K V
∨
τ on X can be regarded as a pull-back of the holomorphic vector

bundle P+KCP− ×KCP− V
∨
τ on P+. Here P− acts on V ∨

τ trivially. Since P+KCP− ×KCP−

V ∨
τ

∼= P+×V ∨
τ , the C∞-section sf defined above gives rise to a C∞-function φf : X → V ∨

τ :

φf(g〈
√−1〉) := τ∨((c−1

G g)0)f(g).

Here (c−1
G g)0 is the image of c−1

G g through the projection P+KCP− → KC. To compute

(c−1
G g)0, it is convenient to introduce P ′

± = cGP±c−1
G and K ′

C = cGKCc
−1
G . It is easy to

check that

P ′
+ = {

(
12 x

02 12

)
| x = tx ∈M2(C)}, P ′

− = {
(

12 02

x 12

)
| x = tx ∈M2(C)}

K ′
C = {

(
m 02

02
tm−1

)
| m ∈ GL(2,C)}.

By a simple computation, we have

gc−1
G =

(
12 g〈√−1〉
02 12

)(
t(c

√−1 + d)
−1

02

02 c
√−1 + d

)(
12 02

∗ 12

)
, ∀g =

(
a b

c d

)
.

By cGκ(m)c−1
G =

(
m 02

02
tm−1

)
, we get (c−1

G g)0 = κ( tj(g,
√−1)−1). Therefore we have

φf(g〈
√−1〉) = τ∨(κ( tj(g,

√−1)−1))f(g).(3.1)

Now it is easy to see that φf |γ(z) = φf(z) for all γ ∈ Γ. To complete the proof, we have to

show that the holomorphy of φf(z) is equivalent to the condition f(g; x) = 0 (∀x ∈ p−).

Since the anti-holomorphic part of TgK(X) ⊗C is given by Lg(p−), the function φf(z) is

holomorphic at gK ∈ X if and only if

d

dt |t=0
[φf(g exp(tx′)K) +

√−1φf(g exp(tx′′)K)] = 0 ∀x = x′ +
√−1x′′ ∈ p−.
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By using the holomorphy of τ∨, we have

d

dt |t=0
[φf(g exp(tx′)K) +

√−1φf(g exp(tx′′)K)]

=τ∨((c−1
G g)0)f(g; x′ +

√−1x′′)

+
d

dt |t=0
[τ∨(

(
c−1
G g exp(tx′)

)
0
)f(g) +

√−1τ∨(
(
c−1
G g exp(tx′′)

)
0
)f(g)]

=τ∨((c−1
G g)0)f(g; x) +

d

dt |t=0
[τ∨(

(
c−1
G g exp(tx)

)
0
)]f(g)

=τ∨((c−1
G g)0)f(g; x).

Hence we complete the proof of the second isomorphism. �

Remarks. (i) It is easy to check that MΛ(Γ\X) is isomorphic to the following space{
φ : X→Vτ | holomorphic, τ(κ(j(γ, z)))−1φ(γ〈z〉) = φ(z) ∀γ ∈ Γ

}
.

(ii) the case of low weights. For 2 ≥ Λ2 ≥ 0, the above theorem holds if we replace πλ
with the generalized Verma module M(Λ). We denote the unique irreducible quotient of

M(Λ) by L(Λ). Then we have

Hom�,K(M(Λ),Acusp(Γ\G)) ∼= Hom�,K(L(Λ),Acusp(Γ\G)) ∼= SholoΛ (Γ\G) ∼= SΛ(Γ\X).

Here SholoΛ (Γ\G) (resp. SΛ(Γ\X)) is the space of cusp forms inMholo
Λ (Γ\G) (resp. MΛ(Γ\X)).

If Λ2 = 2, then L(Λ) is isomorphic to the limit of discrete series representation. For

more details on the low weight case, see [Ha-Ja-1], [Ha-Ja-2].

(iii) N. Wallach’s theorem. ([Wa-2]) For π ∈ Ĝtemp, we have the following isomorphism

Hom�,K(πK ,Acusp(Γ\G)) ∼= HomG(π, L2(Γ\G)).

(iv) Limit multiplicity formulae. G = Sp(4,R). For λ = (λ1, λ2) ∈ Ξ, we set

mcusp(πλ, N) := dimC Hom�,K(πλ,Acusp(Γ(N)\G)).

G. Savin [Sa] proved that

mcusp(πλ, N) ∼ vol(Γ(N)\G) × degree(πλ), as N → +∞.

Here the formal degree deg(πλ) of πλ is proportional to |λ1λ2(λ
2
1 −λ2

2)|. This implies that

for λ1 > λ2 > 0, the “main term” of two quantitiesmcusp(π(λ1,λ2), N) andmcusp(π(λ1,−λ2), N)

coincides. The multiplicity mcusp(π(λ1,λ2), N) is nothing but the dimension of the space

SΛ(Γ(N)\X) of holomorphic cusp forms on H2 of wight Λ w.r.t Γ(N). If λ is sufficiently

regular, this dimension is known by R.Tsushima [T] (and S. Wakatsuki [Wak]). On the

other hand, the multiplicity mcusp(π(λ1,−λ2), N) of a large discrete series representation

π(λ1,−λ2) is unknown.

Acknowledgement. I would like to thank Professor Masaaki Furusawa for giving me

the opportunity writing this note.
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