TAMOTSU IKEDA

1. Review of the Miyawaki lifting

In this article, we are going to discuss a conjecture on the Petersson norm of the Miyawaki liftings.

Let $f(\tau) \in S_{2k}(\mathrm{SL}_2(\mathbb{Z}))$ be a normalized Hecke eigenform, and $h(\tau) \in S_{k+(1/2)}^+(\Gamma_0(4))$ a Hecke eigenform corresponding to $f(\tau)$ by the Shimura correspondence. Here $S_{k+(1/2)}^+(\Gamma_0(4))$ is the Kohnen plus subspace. Put $L(s, f) = \sum_{N=1}^{\infty} a(N) N^{-s}$.

Let n, r be non-negative integers such that $n+r \equiv k \mod 2$. In [16], we have constructed a Hecke eigenform $F(Z) \in S_{k+n+r}(\operatorname{Sp}_{2n+2r}(\mathbb{Z}))$ whose standard *L*-function is equal to

$$\zeta(s) \prod_{i=1}^{2n+2r} L(s+k+n+r-i, f).$$

In fact, we will make use of the linear version of the lifting

$$S_{k+(1/2)}^+(\Gamma_0(4)) \to S_{k+n+r}(\operatorname{Sp}_{2n+2r}(\mathbb{Z}))$$
$$h(\tau) \mapsto F(Z)$$

constructed by Kohnen [19]. We shall call F(Z) a Duke-Imamoglu lift of $f(\tau)$ (or $h(\tau)$) to degree 2n + 2r.

Let $g \in S_{k+r+n}(\operatorname{Sp}_r(\mathbb{Z}))$ be a Hecke eigenform. Then the Miyawaki lifting $\mathcal{F}_{h,q}(Z)$ is defined by the integral

$$\mathcal{F}_{h,g}(Z) = \int_{\operatorname{Sp}_r(\mathbb{Z})\backslash\mathfrak{h}_r} F\left(\begin{pmatrix} Z & 0\\ 0 & W \end{pmatrix}\right) \overline{g^c(W)} (\det \operatorname{Im} W)^{k+n-1} dW,$$

for $Z \in \mathfrak{h}_{2n+r}$. Here, $g^c(Z) = g(-\overline{Z})$. Note that $\mathcal{F}_{h,g}$ is a cusp form, since F(Z) is a cusp form. Then we have

Theorem 1.1. Assume that $\mathcal{F}_{h,g}(Z)$ is not identically zero. Then the cusp form $\mathcal{F}_{h,g}(Z)$ is a Hecke eigenform whose standard L-function is equal to

$$L(s, \mathcal{F}_{h,g}, \mathrm{st}) = L(s, g, \mathrm{st}) \prod_{i=1}^{2n} L(s+k+n-i, f).$$

This theorem is proved by local representation theory instead of the global unwinding technique.

2. *L*-VALUES

Let $f \in S_{2k}(SL_2(\mathbb{Z}))$ be a normalized Hecke eigenform. We put

$$\begin{split} \xi(s) &= \Gamma_{\mathbb{R}}(s)\zeta(s),\\ \Lambda(s,f) &= \Gamma_{\mathbb{C}}(s)L(s,f)\\ \Lambda(s,f,\mathrm{Ad}) &= \Gamma_{\mathbb{R}}(s+1)\Gamma_{\mathbb{C}}(s+2k-1)L(s,f,\mathrm{Ad}). \end{split}$$

Here, $\Gamma_{\mathbb{R}}(s) = \pi^{-s/2}\Gamma(s/2)$, and $\Gamma_{\mathbb{C}}(s) = 2(2\pi)^{-s}\Gamma(s)$. Then the following functional equations hold.

$$\begin{split} \xi(1-s) &= \xi(s),\\ \Lambda(2k-s,f) &= (-1)^k \Lambda(s,f)\\ \Lambda(1-s,f,\mathrm{Ad}) &= \Lambda(s,f,\mathrm{Ad}). \end{split}$$

We modify $\xi(s)$ and $\Lambda(s, f, Ad)$ as follows.

$$\tilde{\xi}(s) = \Gamma_{\mathbb{R}}(s+1)\xi(s) = \Gamma_{\mathbb{C}}(s)\zeta(s),$$
$$\tilde{\Lambda}(s, f, \mathrm{Ad}) = \Gamma_{\mathbb{R}}(s)\Lambda(s, f, \mathrm{Ad}) = \Gamma_{\mathbb{C}}(s)\Gamma_{\mathbb{C}}(s+2k-1)L(s, f, \mathrm{Ad}).$$

If *i* is a positive integer, $\tilde{\xi}(2i) = |B_{2i}|/2i \in \mathbb{Q}^{\times}$. It is well-known that $\tilde{\Lambda}(2i-1, f, \operatorname{Ad})/\langle f, f \rangle \in \mathbb{Q}(f)^{\times}$ for $1 \leq i < k$.

For a Hecke eigenform $g \in S_{k+r+n}(\operatorname{Sp}_r(\mathbb{Z}))$, we will define the completed *L*-function $\Lambda(s, g, \operatorname{st})$ and the modified completed *L*-function $\tilde{\Lambda}(s, g, \operatorname{st})$ by

$$\Lambda(s, g, \mathrm{st}) = \Gamma_{\mathbb{R}}(s + \epsilon_r) \prod_{i=1}^r \Gamma_{\mathbb{C}}(s + k + r + n - i)L(s, g, \mathrm{st})$$
$$\tilde{\Lambda}(s, g, \mathrm{st}) = \Gamma_{\mathbb{C}}(s) \prod_{i=1}^r \Gamma_{\mathbb{C}}(s + k + r + n - i)L(s, g, \mathrm{st}).$$

Here, ϵ_r is 0, if r is even and 1 if r is odd. Then the functional equation $\Lambda(1-s, g, st) = \Lambda(s, g, st)$ holds.

Let $L(s, \operatorname{st}(g) \boxtimes f)$ be the *L*-function defined by

$$L(s, \operatorname{st}(g) \boxtimes f) = \prod_{p} \det(\mathbf{1}_{4r+2} - A_p \otimes B_p \cdot p^{-s})^{-1},$$

where

$$L(s, f) = \prod_{p} \det(\mathbf{1}_2 - A_p \cdot p^{-s})^{-1}, \quad A_p \in \mathrm{GL}_2(\mathbb{C}),$$

 $\mathbf{2}$

$$L(s,g,\mathrm{st}) = \prod_{p} \det(\mathbf{1}_{2r+1} - B_p \cdot p^{-s})^{-1}, \quad B_p \in \mathrm{GL}_{2r+1}(\mathbb{C})$$

The gamma factor of $L(s, \operatorname{st}(g) \boxtimes f)$ is given by

$$L_{\infty}(s, \mathrm{st}(g) \boxtimes f) = \Gamma_{\mathbb{C}}(s) \prod_{i=1}^{r} \Gamma_{\mathbb{C}}(s+n-k+i) \Gamma_{\mathbb{C}}(s+n+k+i-1).$$

We put $\Lambda(s, \operatorname{st}(g) \boxtimes f) = L_{\infty}(s, \operatorname{st}(g) \boxtimes f)L(s, \operatorname{st}(g) \boxtimes f)$. Then the expected functional equation should be

$$\Lambda(2k-s,\operatorname{st}(g)\boxtimes f)=(-1)^{k+r}\Lambda(s,\operatorname{st}(g)\boxtimes f)$$

3. A CONJECTURE ON THE PETERSSON INNER PRODUCT

It is an interesting problem to determine when $\mathcal{F}_{h,g} \neq 0$. Here we are going to give a conjecture on the Petersson inner product of $\mathcal{F}_{h,g}$.

Conjecture 3.1. Assume that n < k. Then there exists an integer $\alpha = \alpha(r, n, k)$ depending only on r, n, and k such that

$$\Lambda(k+n, \operatorname{st}(g) \boxtimes f) \prod_{i=1}^{n} \tilde{\Lambda}(2i-1, f, \operatorname{Ad})\tilde{\xi}(2i) = 2^{\alpha} \frac{\langle f, f \rangle}{\langle h, h \rangle} \frac{\langle \mathcal{F}_{h,g}, \mathcal{F}_{h,g} \rangle}{\langle g, g \rangle}$$

In particular, $\mathcal{F}_{h,g}$ is non-zero if and only if $\Lambda(k+n, \operatorname{st}(g) \boxtimes f) \neq 0$.

Note that the left hand side does not vanish if n = r = 1.

When $\mathcal{F}_{h,g} \neq 0$, one can rewrite the right hand side in a more symmetric way. Namely, choose any non-zero $G \in \mathbb{C} \cdot \mathcal{F}_{h,g}$. Then

$$\langle \mathcal{F}_{h,g}, \mathcal{F}_{h,g} \rangle = \frac{|\langle F|_{\mathfrak{h}_r \times \mathfrak{h}_{r+2n}}, g^c \times G \rangle|^2}{\langle G, G \rangle}$$

Here $\langle F|_{\mathfrak{h}_r \times \mathfrak{h}_{r+2n}}, g^c \times G \rangle$ is a Petersson inner product on $(\operatorname{Sp}_r(\mathbb{Z}) \setminus \mathfrak{h}_r) \times (\operatorname{Sp}_{r+2n}(\mathbb{Z}) \setminus \mathfrak{h}_{r+2n})$. Therefore the conjecture takes the form

(C)
$$\Lambda(k+n, \operatorname{st}(g) \boxtimes f) \prod_{i=1}^{n} \tilde{\Lambda}(2i-1, f, \operatorname{Ad})\tilde{\xi}(2i)$$
$$= 2^{\alpha} \frac{\langle f, f \rangle}{\langle h, h \rangle} \frac{|\langle F|_{\mathfrak{h}_{r} \times \mathfrak{h}_{r+2n}}, g^{c} \times G \rangle|^{2}}{\langle g, g \rangle \langle G, G \rangle}.$$

Remark 3.1. By some computer calculation (cf. Appendix), it seems the values of $\alpha = \alpha(r, n, k)$ are

(a)
$$\alpha(0, n, k) = 2kn + 2n - k - 1,$$

(b) $\alpha(r,0,k) = r^2 + 2kr + r - k - 1,$

(c) $\alpha(r, n, k) = r^2 + 2kr + 2kn + 2rn + 2n + r - k - 2$

for r, n > 0. As for the case n = 0, we will give some evidence for (C) in the next section.

Remark 3.2. Note that s = k + n is a critical point for $\Lambda(s, \operatorname{st}(g) \boxtimes f)$ in the sense of Deligne [8]. In particular, the left hand side of (C) should be finite. Deligne's conjecture [8] implies the ratio RHS/LHS should belong to the field $\mathbb{Q}(f, g)$ under the assumption n < k. (cf. Yoshida [33]).

Example 3.1. When r = n = 0, we have F(Z) = c(1). In this case, our conjecture is a special case of the result of Kohnen-Zagier [22]

$$\Lambda(k,f) = 2^{1-k} \frac{\langle f, f \rangle}{\langle h, h \rangle} |c(1)|^2.$$

It follows that our conjecture holds for n = r = 0 with $\alpha(0, 0, k) = 1 - k$.

Example 3.2. When r = 0, n = 1, our conjecture is compatible with the Petersson inner product formula for the Saito-Kurokawa lift

$$\Lambda(k+1, f) = 3 \cdot 2^{-k+3} \frac{\langle F, F \rangle}{\langle h, h \rangle}$$

proved by Kohnen [20] and Kohnen and Skoruppa [21]. See also Krieg [23]. This is equivalent with

$$\Lambda(k+1,f)\tilde{\Lambda}(1,f,\mathrm{Ad})\tilde{\xi}(2) = 2^{k+1}\frac{\langle f,f\rangle}{\langle h,h\rangle}\langle F,F\rangle,$$

since $\tilde{\Lambda}(1, f, \text{Ad}) = 2^{2k} \langle f, f \rangle$. It follows that our conjecture holds for (r, n) = (0, 1) with $\alpha(0, 1, k) = k + 1$.

4. HEURISTICS ABOUT THE CONJECTURE

We would like to explain how Conjecture 3.1 arose. In this section we write $A \sim_X B$ if there exists an "elementary" constant ω which depends only on X such that $A = \omega B$.

Recall that Kohnen's linear lifting map $h \mapsto F$ has an Eisenstein analogue. The image of the Cohen Eisentein series

$$\mathcal{H}_{k+(1/2)}(\tau) = \sum_{N \ge 0} H(k, N) q^N$$

4

can be thought of as the normalized Eisenstein series

$$\mathcal{E}_{k+r+n}^{(2r+2n)}(Z) = 2^{-n-r}\zeta(1-k-r-n)\prod_{i=1}^{n+r}\zeta(1+2i-2k-2r-2n)\cdot E_{k+r+n}^{(2r+2n)}(Z).$$

We begin with the case n = 0. Our starting point is Böcherer's theorem [3]. By the result of Böcherer, [3],

$$\int_{\operatorname{Sp}_{r}(\mathbb{Z})\backslash\mathfrak{h}_{r}} E_{k+r+n}^{(2r+2n)} \left(\begin{pmatrix} Z & 0 \\ 0 & W \end{pmatrix} \right) \overline{g^{c}(W)} (\det \operatorname{Im} W)^{k+n-1} dW$$
$$\sim_{k,r,n} \left[\tilde{\xi}(k+r+n) \prod_{i=1}^{r} \tilde{\xi}(2k+2r+2n-2i) \right]^{-1}$$
$$\times \tilde{\Lambda}(k+n,g,\operatorname{st}) E_{k+r+n}^{(r+2n)}(g,Z).$$

Here $E_{k+r+n}^{(r+2n)}(g,Z)$ is the Klingen Eisenstein series of g to degree r+2n. When n = 0, we have

$$\frac{\langle \mathcal{E}_{k+r}^{(2r)}|_{\mathfrak{h}_r \times \mathfrak{h}_r}, g^c \times g \rangle}{\langle g, g \rangle} \sim_{r,k} \tilde{\Lambda}(k, g, \mathrm{st}).$$

It follows that when $h_0 = \mathcal{H}_{k+(1/2)}$, we have

$$\frac{\langle \mathcal{F}_{h_0,g}, \mathcal{F}_{h_0,g} \rangle}{\langle g,g \rangle} \sim_{r,k} \tilde{\Lambda}(k,g,\mathrm{st})^2 \\ \sim_{r,k} \tilde{\Lambda}(k,g,\mathrm{st})\tilde{\Lambda}(1-k,g,\mathrm{st}) \\ \sim_{r,k} \Lambda(k,\mathrm{st}(g) \boxtimes E_{2k})$$

However, this is not satisfactory, because $\langle \mathcal{F}_{h,g}, \mathcal{F}_{h,g} \rangle$ depends on h, but the RHS does not. Therefore we should consider

$$rac{\langle \mathcal{F}_{h,g}, \mathcal{F}_{h,g}
angle}{\langle h, h
angle \langle g, g
angle}.$$

Again we do not have a good analogy for the Eisenstein case because $\langle h_0, h_0 \rangle$ is not convergent. Now we consider

$$\frac{\langle f, f \rangle}{\langle h, h \rangle} \frac{\langle \mathcal{F}_{h,g}, \mathcal{F}_{h,g} \rangle}{\langle g, g \rangle}.$$

This has a good Eisensetein analogy. Recall that the Kohnen-Zagier formula [22] says

(KZ)
$$|c(|D|)|^2 \frac{\langle f, f \rangle}{\langle h, h \rangle} = 2^{k-1} |D|^{-1/2} \Lambda(k, f, \chi_D),$$

for any fundamental discriminant D such that $(-1)^k D > 0$. Here,

$$\Lambda(s, f, \chi_D) = |D|^s \Gamma_{\mathbb{C}}(s) L(s, f, \chi_D).$$

Put $h_0(\tau) = \mathcal{H}_{k+(1/2)}$ and $f_0 = E_{2k}$. Then the Kohnen-Zagier formula suggests that the factor $\langle f_0, f_0 \rangle \langle h_0, h_0 \rangle^{-1}$ should be thought of as

$$2^{k-1}|D|^{-1/2}\frac{\Lambda(k, E_{2k}, \chi_D)}{|H(k, |D|)|^2} = (-1)^{k(k-1)/2}2^{k-1}.$$

Now we can expect that there might be a formula

$$\Lambda(k, \operatorname{st}(g) \boxtimes f) = (\operatorname{constant}) \cdot \frac{\langle f, f \rangle}{\langle h, h \rangle} \frac{\langle \mathcal{F}_{h,g}, \mathcal{F}_{h,g} \rangle}{\langle g, g \rangle}.$$

A careful calculation shows the constant is equal to $2^{r^2+2kr+r-k+1}$ when $h = h_0$ and $f = f_0$, if we interpret $\langle f_0, f_0 \rangle \langle h_0, h_0 \rangle^{-1}$ as $(-1)^{k(k-1)/2} 2^{k-1}$. This is the conjecture 3.1 for n = 0.

Now we consider the case n > 0. In this case, we cannot use Eisenstein analogy directly, because the Klingen Eisenstein seires $E_{k+r+n}^{(r+2n)}(g,Z)$ is no longer cuspidal and so $\langle \mathcal{F}_{h_0,g}, \mathcal{F}_{h_0,g} \rangle$ is not convergent. However, Böcherer's result still suggests that there might be a formula which relates

$$\frac{\langle f, f \rangle}{\langle h, h \rangle} \frac{\langle \mathcal{F}_{h,g}, \mathcal{F}_{h,g} \rangle}{\langle g, g \rangle}$$

and

$$\Lambda(k+n, \operatorname{st}(g) \boxtimes f) \times (\operatorname{extra} L\text{-value}).$$

Let us denote this extra L-value by X(n, r, f, g). To determine the factor X(n, r, f, g), we consider the symmetry between g and $\mathcal{F}_{h,g}$.

Put $G = \mathcal{F}_{h,g}$ and assume that $G \neq 0$. We also assume that the multiplicity one property holds for $S_{k+r+n}(\operatorname{Sp}_r(\mathbb{Z}))$. Then we can show that $\mathcal{F}_{h,G}$ and g are proportional. Moreover, we have

$$\frac{\langle f, f \rangle}{\langle h, h \rangle} \frac{|\langle \mathcal{F}_{h,g}, \mathcal{F}_{h,g} \rangle|^2}{\langle g, g \rangle} = \frac{\langle f, f \rangle}{\langle h, h \rangle} \frac{\langle F|_{\mathfrak{h}_r \times \mathfrak{h}_{r+2n}}, g^c \times G \rangle}{\langle g, g \rangle \langle G, G \rangle}.$$

This is symmetric with respect to g and G. Therefore it is natural to expect that

$$\begin{split} \Lambda(k+n, \mathrm{st}(g) \boxtimes f) X(n, r, f, g) \\ \sim_{k, r, n} \Lambda(k-n, \mathrm{st}(G) \boxtimes f) X(-n, r+2n, f, G). \end{split}$$

Since

$$\frac{\Lambda(k-n,\operatorname{st}(G)\boxtimes f)}{\Lambda(k+n,\operatorname{st}(g)\boxtimes f)} \sim \prod_{i=1}^{2n} \Lambda(2k-i, f \times f)$$
$$\sim \prod_{i=1}^{2n} \xi(1-i)\Lambda(1-i, f, \operatorname{Ad})$$
$$\sim \prod_{i=1}^{2n} \xi(i)\Lambda(i, f, \operatorname{Ad})$$

(Here, $\xi(1) = \infty$ occurs, so we need a kind of regularization argument. See Proposition 4.1 below.) It is now natural to expect that X(n, r, f, g) is a partial product of

$$\prod_{i=1}^{2n} \tilde{\xi}(i)\tilde{\Lambda}(i, f, \mathrm{Ad}).$$

Deligne's conjecture suggests that only critical L-values occur in this product (at least when n < k). Therefore it is now natural to expect

$$X(n,r,f,g) \sim \prod_{i=1}^{n} \tilde{\xi}(2i)\tilde{\Lambda}(2i-1,f,\mathrm{Ad}).$$

In fact, we can prove the following proposition, which guarantees the symmetry between g and G.

Proposition 4.1.

$$\Lambda(k-n, \operatorname{st}(G) \boxtimes f) \left[\prod_{i=1}^{n} \tilde{\Lambda}(s-2i+1, f, \operatorname{Ad})^{-1} \tilde{\xi}(s-2i+2)^{-1} \right]_{s=0}$$
$$= \Lambda(k+n, \operatorname{st}(g) \boxtimes f) \prod_{i=1}^{n} \tilde{\Lambda}(2i-1, f, \operatorname{Ad}) \tilde{\xi}(2i).$$

Proof. By Theorem 1.1, $\Lambda(s+k-n, \operatorname{st}(G) \boxtimes f)$ is the product of

$$\prod_{i=1}^{2n} \Lambda(s+2k-i, f \times f)$$

and

$$\Lambda(s+k-n,\operatorname{st}(g)\boxtimes f)=(-1)^{k+r}\Lambda(-s+k+n,\operatorname{st}(g)\boxtimes f).$$

Since $\Lambda(s + 2k - 1, f \times f) = \Lambda(s, f, \operatorname{Ad})\xi(s)$, we have

$$\begin{split} &\prod_{i=1}^{2n} \Lambda(s+2k-i, f\times f) \prod_{i=1}^{n} \tilde{\Lambda}(s-2i+1, f, \mathrm{Ad})^{-1} \tilde{\xi}(s-2i+2)^{-1} \\ &= \prod_{i=1}^{n} \Gamma_{\mathbb{R}}(s-2i+1)^{-1} \Gamma_{\mathbb{R}}(s-2i+3)^{-1} \\ &\times \prod_{i=1}^{n} \Lambda(-s+2i-1, f, \mathrm{Ad}) \xi(-s+2i). \end{split}$$

Now using $\Gamma_{\mathbb{R}}(s+1)\Gamma_{\mathbb{R}}(-s+1) = \sin(\pi s/2)$, we have

$$\prod_{i=1}^{n} \Gamma_{\mathbb{R}}(-2i+1)^{-1} \Gamma_{\mathbb{R}}(-2i+3)^{-1} = (-1)^{n} \prod_{i=1}^{n} \Gamma_{\mathbb{R}}(2i-1) \Gamma_{\mathbb{R}}(2i+1).$$

Hence the lemma.

5. Theta functions associated with Niemeier lattices

In this section, we write $M_k^{(n)} = M_k(\operatorname{Sp}_n(\mathbb{Z}))$ and $S_k^{(n)} = S_k(\operatorname{Sp}_n(\mathbb{Z}))$, for simplicity.

We recall the results of [28]. A Niemeier lattice is a positive definite even unimodular lattice of degree 24. The number of isomorphism classes of Niemeier lattices is 24. Let L_i $(1 \le i \le 24)$ be Niemeier lattices, not isomorphic to each other.

Let V be a 24-dimensional vector space over \mathbb{C} with a basis $\{\mathbf{e}_i | 1 \leq i \leq 24\}$.

The theta function of degree n associated with L_i is denoted by $\Theta_{L_i}^{(n)}(Z) \in M_{12}^{(n)}$. By extending linearly, we obtain a linear map

$$\Theta^{(n)} : V \longrightarrow M_{12}^{(n)}$$
$$\sum_{i} c_{i} \mathbf{e}_{i} \mapsto \sum_{i} c_{i} \Theta_{L_{i}}^{(n)}(Z).$$

Let $V_n = \text{Ker}(\Theta^{(n)})$. Then $\Theta^{(12)}$ is injective (cf. [12], [5]). If n' + n'' = n, then the restriction of $\Theta_{L_i}^{(n)}(Z)$ to $\mathfrak{h}_{n'} \times \mathfrak{h}_{n''}$ is given by

$$\Theta_{L_i}^{(n)} \left(\begin{pmatrix} Z' & 0\\ 0 & Z'' \end{pmatrix} \right) = \Theta_{L_i}^{(n')}(Z') \Theta_{L_i}^{(n'')}(Z'').$$

Following Nebe and Venkov, we define the Hermitian inner product (,) on V by

$$(\mathbf{e}_i, \mathbf{e}_j) = \begin{cases} (\#\operatorname{Aut}(L_i)), & i = j, \\ 0, & i \neq j, \end{cases}$$

and a multiplication on V by

$$\mathbf{e}_i \circ \mathbf{e}_j = \begin{cases} (\# \operatorname{Aut}(L_i)) \mathbf{e}_i, & i = j \\ 0, & i \neq j. \end{cases}$$

Nebe and Venkov defined Hecke operators $K_{p,i}$, $(1 \le i \le 12)$ and T(p) acting on V and calculated Hecke eigenvectors d_1, d_2, \ldots, d_{24} .

We put

$$\begin{split} \mathbf{d}_i &= \sum_j c_{ij} \mathbf{e}_j, \\ \mathbf{e}_i &= \sum_j b_{ij} \mathbf{d}_j. \end{split}$$

A table of coefficients c_{ij} (i, j = 1, 2, ..., 24) can be found in [27]. Note that $c_{ij}, b_{ij} \in \mathbb{Q}$. As both $\{e_1, e_2, ..., e_{24}\}$ and $\{d_1, d_2, ..., d_{24}\}$ are orthogonal basis of V, we have

$$b_{ij} = (\mathbf{e}_i, \mathbf{e}_i) \overline{c_{ji}} (\mathbf{d}_j, \mathbf{d}_j)^{-1} = (\# \operatorname{Aut}(L_i)) (\mathbf{d}_j, \mathbf{d}_j)^{-1} c_{ji}$$

Nebe and Venkov showed that the degree n_i of d_i is as follows:

n_1	n_2	n_3	n_4	n_5	n_6	n_7	n_8	n_9	n_{10}	n_{11}	n_{12}
0	1	2	3	4	4	5	5	6	6	6	7
n_{13}	n_{14}	n_{15}	n_{16}	n_{17}	n_{18}	n_{19}	n_{20}	n_{21}	n_{22}	n_{23}	n_{24}

For the definition of the degree, see [28]. Note that they have shown that $n_i = \min\{n \mid \Theta^{(n)}(\mathbf{d}_i) \neq 0\}$ in this case (See [28], Lemma 2.5). As for n_{19} and n_{21} , they have shown that $7 \leq n_{19} \leq 9$, $8 \leq n_{21} \leq 10$, but we do not use \mathbf{d}_{19} or \mathbf{d}_{21} .

Note that the Petersson inner product $\langle \Theta^{(n_i)}(\mathbf{d}_i), \Theta^{(n_i)}(\mathbf{d}_j) \rangle$ vanishes for $i \neq j$, since the Hecke eigenvalues are different. We put $F_i = \Theta^{(n_i)}(\mathbf{d}_i) \in S_{12}^{(n_i)}$. Note that $F_i^c = F_i$ for i = 1, 2, ..., 24.

Lemma 5.1. Let d_i , d_j , and d_k be Hecke eigenvectors of V. Then we have

$$\langle \Theta^{(n_i+n_j)}(\mathbf{d}_k)|_{\mathfrak{h}_{n_i} imes \mathfrak{h}_{n_j}}, F_i imes F_j
angle = rac{\langle F_i, F_i
angle \langle F_j, F_j
angle}{(\mathbf{d}_i, \mathbf{d}_i) \ (\mathbf{d}_j, \mathbf{d}_j)} (\mathbf{d}_k, \mathbf{d}_i \circ \mathbf{d}_j).$$

In particular, $(\mathbf{d}_k, \mathbf{d}_i \circ \mathbf{d}_j) \neq 0$ if and only if the left hand side is not zero.

The proof of this lemma is a straightforward calculation of the theta function.

Nebe and Venkov [28] claimed that $F_{11} \in S_{12}^{(6)}$, $F_{13} \in S_{12}^{(8)}$, and $F_{24} \in S_{12}^{(12)}$ are the Duke-Imamoglu lift of $\phi_{18} \in S_{18}^{(1)}$, $\phi_{16} \in S_{16}^{(1)}$, and $\Delta \in S_{12}^{(1)}$, respectively. In fact this is easily verified by comparing the eigenvalue of T(2) (See [27]). Nebe and Venkov [28] have shown that $(\mathbf{d}_{24}, \mathbf{d}_i \circ \mathbf{d}_j) \neq 0$ for

(i, j) = (2, 23), (3, 22), (4, 20), (5, 17), (6, 18), (7, 14), (8, 16).

Then it is easy to see s that F_j is the Miyawaki lift of F_i with respect to $F_{24} \in S_{12}^{(12)}$. Similarly, using the structure constants found in [27], one can prove that $F_8 \in S_{12}^{(5)}$ and $F_6 \in S_{12}^{(4)}$ are Miyawaki lift of $F_2 \in$ $S_{12}^{(1)}$ and $F_3 \in S_{12}^{(2)}$, respectively. One can also prove that $F_{12} \in S_{12}^{(7)}$, $F_9 \in S_{12}^{(6)}$, and $F_7 \in S_{12}^{(5)}$ are the Miyawaki lift of $F_2 \in S_{12}^{(1)}$, $F_3 \in S_{12}^{(2)}$, and $F_4 \in S_{12}^{(3)}$ with respect to $F_{13} \in S_{12}^{(8)}$, respectively. We summarize these as Table A and Table B.

6. NUMERICAL CALCULATION

The following proposition follows from the result of Böcgerer [3].

Proposition 6.1. Assume that $k+r \equiv 2 \mod 2$ and $g \in S_{k+r}(\operatorname{Sp}_r(\mathbb{Z}))$. Then

$$\left|\frac{\langle E_{k+r}^{(2r)}|_{\mathfrak{h}_r \times \mathfrak{h}_r}, g^c \times g\rangle}{\langle g, g \rangle}\right| = 2^{-(r^2 - r + 2kr - 2)/2} |\mathcal{A}_{r,k}|^{-1} \tilde{\Lambda}(k, g, \mathrm{st}).$$

Here $\mathcal{A}_{r,k} = \zeta(1-k-r)\prod_{i=1}^r \zeta(1-2k-2r+2i)$ and $\tilde{\Lambda}(s,g,st) = \Gamma_{\mathbb{C}}(s)\prod_{i=1}^r \Gamma_{\mathbb{C}}(s+k+r-i)L(s,g,st).$

We briefly explain how to calculate both sides of (C) by computers. For the calculation of various *L*-values, we have used a very useful program due to Dokchitser [9]. The Petersson norm $\langle f, f \rangle$ can be easily computed by $\tilde{\Lambda}(1, f, \operatorname{Ad}) = 2^{2k} \langle f, f \rangle$. Similarly, $\langle h, h \rangle$ can be computed by Kohnen-Zagier formula (KZ). The Petersson norm of *g* or *G* can be computed by Proposition 6.1 and Lemma 5.1. Finally, $\langle F|_{\mathfrak{h}_r \times \mathfrak{h}_{r+2n}}, g \times$ *G* is computed by Lemma 5.1. Note that the structure constants $(\mathbf{d}_k, \mathbf{d}_i \circ \mathbf{d}_j)$ are already computed by Nebe [27]. We discuss the case $f = \phi_{20} \in S_{20}^{(1)}$, $g = \Delta \in S_{12}^{(1)}$, and $G \in S_{12}^{(3)}$. We put

$$\begin{split} \mathbf{d}_1' = & \mathbf{d}_1 / 1027637932586061520960267, \\ \mathbf{d}_2' = & - \mathbf{d}_2 / 8104867379578640543040, \\ \mathbf{d}_4' = & \mathbf{d}_4 / 846305351287603200, \\ \mathbf{d}_5' = & - \mathbf{d}_5 / 212694241858560. \end{split}$$

We give a table of coefficients of \mathbf{d}_2 , \mathbf{d}_4 , and \mathbf{d}_5 below (See Nebe [27]). The coefficients of \mathbf{d}_1 can be found in [27] or [7], p. 413. Then $E_{12}^{(2r)} = \Theta^{(2r)}(\mathbf{d}_1')$, $F_2' = \Theta^{(1)}(\mathbf{d}_2') = \Delta \in S_{12}^{(1)}$, and $F_4' = \Theta^{(3)}(\mathbf{d}_4') \in S_{12}^{(3)}$ is the Miyawaki's cusp form [25]. Put $h = q - 56q^4 + 360q^5 - 13680q^8 + \cdots \in S_{21/2}^+(\Gamma(4))$. Then $F_5' = \Theta^{(4)}(\mathbf{d}_5') \in S_{12}^{(4)}$ is the Duke-Imamoglu lift of $h(\tau)$ to degree 4.

	d2	d_4	d_5
Leech	21625795628236800	-1992646656000	214592716800
A_1^{24}	21618140012108640000	-462916726272000	22783711104000
A_2^{12}	104595874904801280000	385220419584000	-56204746752000
A_{3}^{8}	-7569380452233600000	865252948560000	22644338640000
A_4^6	-66640754260236828672	-625041225768960	21173267275776
$A_{5}^{4}D_{4}$	-37660962656647249920	-318497556529152	2319747268608
D_{4}^{6}	-861991027602705000	-7289830548000	4817683332000
A_6^4	-8962553548174786560	25632591249408	-23357975494656
$A_7^2 D_5^2$	-3844278424500433920	89124325640064	6074130446208
A_8^3	-400803255218995200	20932199608320	-1962418360320
$A_{9}^{2}D_{6}$	-226886348300451840	20394416373760	168373460992
D_6^4	-40713248535359400	3659642586600	716314247880
$A_{11}D_7E_6$	-22871209751470080	4366739579904	500824507392
E_{6}^{4}	-1056891465710080	201789491904	52888473792
A_{12}^2	-2655635220725760	675250266112	11615002624
D_8^3	-554584334604300	180878892480	32784927120
$A_{15}D_{9}$	-141086166819840	69909993856	8326316416
$D_{10}E_7^2$	-20420264058480	14273509536	4257598752
$A_{17}E_7$	-17203085475840	12024741888	2130518016
D_{12}^2	-426847644405	515734934	139737422
A24	-30884364288	51875840	11128832
$D_{16}E_8$	-2482214625	6542775	2974851
E_{8}^{3}	-584290850	1540110	927894
D ₂₄	-367740	2621	1601

We need the following computer calculations.

$$\begin{split} (\mathsf{d}_2',\mathsf{d}_2') =& 2^{31} \cdot 3^{10} \cdot 5^4 \cdot 7 \cdot 11^2 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 283^{-1} \cdot 617^{-1} \cdot 3617^{-1} \cdot 43867^{-1} \\ (\mathsf{d}_4',\mathsf{d}_4') =& 2^{16} \cdot 3^{-1} \cdot 5^5 \cdot 7 \cdot 11 \cdot 13 \cdot 283 \cdot 617 \cdot 691^{-1} \cdot 3617^{-1}, \\ (\mathsf{d}_1',\mathsf{d}_4'\circ\mathsf{d}_4') =& \frac{2^{61} \cdot 3^{16} \cdot 5^{12} \cdot 7^5 \cdot 11^3 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23}{131 \cdot 593 \cdot 691^{3} \cdot 3617^2 \cdot 43867}, \\ (\mathsf{d}_1',\mathsf{d}_2'\circ\mathsf{d}_4') =& -2^{54} \cdot 3^{12} \cdot 5^{10} \cdot 7^2 \cdot 11^3 \cdot 13^2 \cdot 17 \cdot 19 \cdot 23 \cdot 691^{-1} \cdot 3617^{-2} \cdot 43867^{-1}. \end{split}$$

$$\begin{split} \langle \Delta, \Delta \rangle = & 0.00001035362056804320922347816812225164593224907 \cdots \\ \langle \phi_{20}, \phi_{20} \rangle = & 0.00008265541531659703164230062760258225715343908 \cdots \\ & \frac{\langle \Delta, \Delta \rangle}{\langle h, h \rangle} = & 0.098872279065281741186752369945336382997115288715 \cdots \\ & \tilde{\Lambda}(9, \Delta, \text{Ad}) = & 0.139584317666868979132086560789461824236408711579 \cdots \\ & \doteq & 2^{19} \cdot 3^2 \cdot 5^{-1} \cdot 7^{-1} \langle \Delta, \Delta \rangle, \\ & \Lambda(18, \phi_{20}) \Lambda(19, \phi_{20}) = & 2^{23} \cdot 3^4 \cdot 7^2 \cdot 17 \cdot 283^{-1} \cdot 617^{-1} \langle \phi_{20}, \phi_{20} \rangle, \\ & \Lambda(11, \text{Ad}(\Delta) \boxtimes \phi_{20}) = & 0.00000033447080614408498864020192110373963031495 \cdots \\ & \doteq & 2^{24} \cdot 3^2 \cdot 5^2 \langle \Delta, \Delta \rangle^2 \langle \phi_{20}, \phi_{20} \rangle \langle h, h \rangle^{-1}. \end{split}$$

We can now calculate the Petersson norm $\langle F'_4, F'_4 \rangle$. By Proposition 6.1 and Lemma 5.1, we have

$$\begin{split} \langle F'_{4}, F'_{4} \rangle = & 2^{-29} \frac{(\mathsf{d}'_{4}, \mathsf{d}'_{4})^{2}}{(\mathsf{d}'_{1}, \mathsf{d}'_{4} \circ \mathsf{d}'_{4})} |\mathcal{A}_{3,9}|^{-1} \tilde{\Lambda}(9, \Delta, \operatorname{Ad}) \Lambda(18, \phi_{20}) \Lambda(19, \phi_{20}) \\ \\ \approx & 2^{-6} \cdot 3^{-5} \langle \phi_{20}, \phi_{20} \rangle \langle \Delta, \Delta \rangle. \end{split}$$

Here, $\mathcal{A}_{3,9} = \zeta(-11)\zeta(-21)\zeta(-19)\zeta(-17)$. By Lemma 5.1, we have

$$\frac{\langle F_5'|_{\mathfrak{h}_1\times\mathfrak{h}_3}, F_2'\times F_4'\rangle^2}{\langle F_2', F_2'\rangle\langle F_4', F_4'\rangle} = \langle F_2', F_2'\rangle\langle F_4', F_4'\rangle \left(\frac{(\mathsf{d}_5', \mathsf{d}_2'\circ\mathsf{d}_4')}{(\mathsf{d}_2', \mathsf{d}_2')(\mathsf{d}_4', \mathsf{d}_4')}\right)$$
$$\doteq 2^8 \cdot 3 \cdot 5^2 \langle \Delta, \Delta \rangle^2 \langle \phi_{20}, \phi_{20} \rangle.$$

On the other hand, we have

 $\Lambda(11, \mathrm{st}(g) \boxtimes f) \tilde{\Lambda}(1, f, \mathrm{Ad}) \tilde{\xi}(2) \doteq 2^{42} \cdot 3 \cdot 5^2 \langle \Delta, \Delta \rangle^3 \langle \phi_{20}, \phi_{20} \rangle^2 \langle h, h \rangle^{-1}$

Hence the equation (C) holds approximately in this case with $\alpha = 34$. Other examples are shown in Table C.

We give another example n = k = 6, r = 0, g = 1, $f = \Delta$, and $F = G = F_{24}$. Then by computer calculation,

$$\Lambda(12, \mathrm{st}(g) \boxtimes f) \prod_{i=1}^{6} \tilde{\Lambda}(2i-1, f, \mathrm{Ad})\tilde{\xi}(2i) \doteq \frac{2^{73} \langle \Delta, \Delta \rangle^{6} \Lambda(12, \Delta)}{3^{3} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 23}.$$

On the other hand, using Böcherer's result [3], one can show

$$\frac{\langle f, f \rangle}{\langle h, h \rangle} \langle F, F \rangle = \frac{\langle \Delta, \Delta \rangle^6 \Lambda(12, \Delta)}{2^5 \cdot 3^3 \cdot 5^2 \cdot 7^2 \cdot 11 \cdot 13 \cdot 23}$$

Therefore it seems (C) holds in this case as well. Notice that the assumption k > n is not satisfied in this case and that $\Lambda(12, \Delta)$ is not a critical value in the sense of Deligne [8].

• Tabe A: Standard *L*-functions

$$\begin{split} & L(s,F_3,\mathrm{st}) = \zeta(s) \prod_{10 \leq i \leq 11} L(s+i,\phi_{22}), \\ & L(s,F_4,\mathrm{st}) = L(s,\Delta,\mathrm{Ad}) \prod_{9 \leq i \leq 10} L(s+i,\phi_{20}), \\ & L(s,F_5,\mathrm{st}) = \zeta(s) \prod_{8 \leq i \leq 11} L(s+i,\phi_{22}) \prod_{8 \leq i \leq 9} L(s+i,\phi_{18}), \\ & L(s,F_6,\mathrm{st}) = \zeta(s) \prod_{10 \leq i \leq 11} L(s+i,\phi_{22}) \prod_{7 \leq i \leq 8} L(s+i,\phi_{16}), \\ & L(s,F_7,\mathrm{st}) = L(s,\Delta,\mathrm{Ad}) \prod_{7 \leq i \leq 10} L(s+i,\phi_{20}) \prod_{7 \leq i \leq 8} L(s+i,\phi_{16}), \\ & L(s,F_8,\mathrm{st}) = L(s,\Delta,\mathrm{Ad}) \prod_{7 \leq i \leq 10} L(s+i,\phi_{22}) \prod_{10 \leq i \leq 11} L(s+i,\phi_{18}), \\ & L(s,F_9,\mathrm{st}) = \zeta(s) \prod_{10 \leq i \leq 11} L(s+i,\phi_{12}) \prod_{7 \leq i \leq 8} L(s+i,\phi_{16}), \\ & L(s,F_{11},\mathrm{st}) = \zeta(s) \prod_{6 \leq i \leq 11} L(s+i,\phi_{12}) \prod_{7 \leq i \leq 8} L(s+i,\phi_{16}) \prod_{5 \leq i \leq 6} L(s+i,\Delta), \\ & L(s,F_{14},\mathrm{st}) = L(s,\Delta,\mathrm{Ad}) \prod_{9 \leq i \leq 10} L(s+i,\phi_{10}) \prod_{7 \leq i \leq 8} L(s+i,\phi_{16}) \prod_{5 \leq i \leq 6} L(s+i,\Delta), \\ & L(s,F_{13},\mathrm{st}) = \zeta(s) \prod_{4 \leq i \leq 11} L(s+i,\phi_{16}), \prod_{5 \leq i \leq 10} L(s+i,\phi_{16}) \prod_{5 \leq i \leq 6} L(s+i,\Delta), \\ & L(s,F_{13},\mathrm{st}) = \zeta(s) \prod_{10 \leq i \leq 11} L(s+i,\phi_{20}) \prod_{4 \leq i \leq 7} L(s+i,\Delta), \\ & L(s,F_{13},\mathrm{st}) = \zeta(s) \prod_{10 \leq i \leq 11} L(s+i,\phi_{20}) \prod_{4 \leq i \leq 7} L(s+i,\phi_{18}) \prod_{4 \leq i \leq 7} L(s+i,\Delta), \\ & L(s,F_{20},\mathrm{st}) = L(s,\Delta,\mathrm{Ad}) \prod_{9 \leq i \leq 10} L(s+i,\phi_{20}) \prod_{3 \leq i \leq 9} L(s+i,\phi_{18}) \prod_{4 \leq i \leq 7} L(s+i,\Delta), \\ & L(s,F_{23},\mathrm{st}) = \zeta(s) \prod_{10 \leq i \leq 11} L(s+i,\phi_{22}) \prod_{2 \leq i \leq 9} L(s+i,\phi_{13}), \\ & L(s,F_{23},\mathrm{st}) = L(s,\Delta,\mathrm{Ad}) \prod_{9 \leq i \leq 10} L(s+i,\phi_{20}) \prod_{3 \leq i \leq 8} L(s+i,\Delta), \\ & L(s,F_{23},\mathrm{st}) = L(s,\Delta,\mathrm{Ad}) \prod_{10 \leq i \leq 11} L(s+i,\phi_{22}) \prod_{2 \leq i \leq 9} L(s+i,\Delta), \\ & L(s,F_{23},\mathrm{st}) = L(s,\Delta,\mathrm{Ad}) \prod_{10 \leq i \leq 11} L(s+i,\phi_{21}) \prod_{2 \leq i \leq 9} L(s+i,\Delta), \\ & L(s,F_{24},\mathrm{st}) = \zeta(s) \prod_{10 \leq i \leq 11} L(s+i,\phi_{22}) \prod_{2 \leq i \leq 9} L(s+i,\Delta), \\ & L(s,F_{24},\mathrm{st}) = \zeta(s) \prod_{10 \leq i \leq 11} L(s+i,\Delta). \end{split}$$

• Table B: Liftings

type	form	degree	g	f	F	r	n	k
Duke-Imamoglu	F_3	2		ϕ_{22}				
Miyawaki	F_4	3	Δ	ϕ_{20}	F_5	1	1	10
Duke-Imamoglu	F_5	4		ϕ_{20}				
Miyawaki	F_6	4	F_3	ϕ_{18}	F_{11}	2	1	9
Miyawaki	F_7	5	F_4	ϕ_{16}	F_{13}	3	1	8
Miyawaki	F_8	5	Δ	ϕ_{18}	F_{11}	1	2	9
Miyawaki	F_9	6	F_3	ϕ_{16}	F_{13}	2	2	8
Duke-Imamoglu	F_{11}	6		ϕ_{18}				
Miyawaki	F_{12}	7	Δ	ϕ_{16}	F_{13}	1	3	8
Miyawaki	F_{14}	7	F_7	Δ	F_{24}	5	1	6
Miyawaki	F_{16}	7	F_8	Δ	F_{24}	5	1	6
Duke-Imamoglu	F_{13}	8		ϕ_{16}				
Miyawaki	F_{17}	8	F_5	Δ	F_{24}	4	2	6
Miyawaki	F_{18}	8	F_6	Δ	F_{24}	4	2	6
Miyawaki	F_{20}	9	F_4	Δ	F_{24}	3	3	6
Miyawaki	F_{22}	10	F_3	Δ	F_{24}	2	4	6
Miyawaki	F_{23}	11	Δ	Δ	F_{24}	1	5	6
Duke-Imamoglu	F_{24}	12		Δ				

• Table C: The autor has checked that the equation (C) holds up to at least 30 decimals in the following cases:

G	g	f	F	r	n	k	α
Δ	Δ	ϕ_{22}	F_3	1	0	11	12
F_3	F_3	ϕ_{20}	F_5	2	0	10	35
F_4	F_4	ϕ_{18}	F_{11}	3	0	9	56
F_5	F_5	ϕ_{16}	F_{13}	4	0	8	75
F_6	F_6	ϕ_{16}	F_{13}	4	0	8	75
F_9	F_9	Δ	F_{24}	6	0	6	107
F_{11}	F_{11}	Δ	F_{24}	6	0	6	107
F_3	1	ϕ_{22}	F_3	0	1	11	12
F_4	Δ	ϕ_{20}	F_5	1	1	10	34
F_6	F_3	ϕ_{18}	F_{11}	2	1	9	55
F_7	F_4	ϕ_{16}	F_{13}	3	1	8	74
F_{14}	F_7	Δ	F_{24}	5	1	6	106
F_{16}	F_8	Δ	F_{24}	5	1	6	106
F_5	1	ϕ_{20}	F_5	0	2	10	33
F_8	Δ	ϕ_{18}	F_{11}	1	2	9	53
F_9	F_3	ϕ_{16}	F_{13}	2	2	8	72
F_{17}	F_5	Δ	F_{24}	4	2	6	104
F_{18}	F_6	Δ	F_{24}	4	2	6	104
F_{11}	1	ϕ_{18}	F_{11}	0	3	9	50
F_{12}	Δ	ϕ_{16}	F_{13}	1	3	8	68
F_{20}	F_4	Δ	F_{24}	3	3	6	100
F_{13}	1	ϕ_{16}	F_{13}	0	4	8	63
F_{22}	F_3	Δ	F_{24}	2	4	6	94
F_{23}	Δ	Δ	F_{24}	1	5	6	86

References

 J. Arthur, Unipotent automorphic representations: conjectures, Astérisque 171-172 (1989), 13–71.

14

- S. Böcherer, Uber die Fourier-Jacobi-Entwicklung Siegelscher Eisensteinreihen.
 I, Math. Z. 183 (1983), 21–46.
- [3] S. Böcherer, Siegel modular forms and theta series, Proc. Symp. Pure Math. 49-2 (1989), 3-17.
- [4] S. Böcherer, Über die Funktionalgleichung automorpher L-Funktionen zur Siegelschen Modulgruppe, J. Reine Angew. Math. 362 (1985), 146–168.
- [5] R. E. Borcherds, E. Freitag, and R. Weissauer, A Siegel cusp form of degree 12 and weight 12, J. Reine Angew. Math. 494 (1998), 141–153.
- [6] S. Breulmann and M. Kuss, On a conjecture of Duke-Imamoglu, Proc. Amer. Math. Soc 107 (2000),
- [7] J. H. Conway and N. J. A.Sloan, Sphere Packings, Lattices, and Groups, 3rd edition, Springer-Verlag, 1998
- [8] P. Deligne, Valeurs de fonctions L et périodes d'intégrales, Proc. Sympos. Pure Math., XXXIII, Automorphic forms, representations and L-functions, Part 2, (1979) 313–346.
- [9] T. Dokchitser, Computing special values of motivic L-functions, preprint, math.NT/0207280.
- [10] W. Duke and O. Imamoglu, Siegel modular forms of small weight, Math. Ann. 310 (1998), 73–82.
- [11] M. Eichler and D. Zagier, *The theory of Jacobi forms*, Progress in Mathematics 55 Birkhäuser Boston, Inc., Boston, Mass. 1985.
- [12] V. A. Erokhin, Theta-series of even unimodular 24-dimensional lattices, LOMI 86 (1979) pp. 82–93. translation in J. Soviet math. 17 (1981) pp. 1999–2008.
- [13] E. Freitag, Siegelsche Modulfunktionen, Springer-Verlag, 1983.
- [14] P. B. Garrett, Pullbacks of Eisenstein series; applications, Automorphic forms of several variables (Katata, 1983), pp. 114–137, Progr. Math., 46, Birkhäuser Boston, Boston, Mass., (1984)
- [15] T. Ikeda, On the theory of Jacobi forms and the Fourier-Jacobi coefficients of Eisenstein series, J. Math. Kyoto Univ. 34 (1994), 615–636.
- [16] T. Ikeda, On the lifting of elliptic cusp forms to Siegel cusp forms of degree 2n, Ann. of Math. 154 (2001), 641–681.
- [17] T. Ikeda, Pullback of the lifting of elliptic cusp forms and Miyawaki's conjecture. preprint.
- [18] W. Kohnen, Modular forms of half-integral weight on $\Gamma_0(4)$, Math. Ann. 248 (1980), 249–266.
- [19] W. Kohnen, Lifting modular forms of half-integral weight to Siegel modular forms of even genus, Math. Ann. 322 (2002), 787–809.
- [20] W. Kohnen, On the Petersson norm of a Siegel-Hecke eigenform of degree two in the Maass space, J. Reine Angew. Math. 357 (1985), 96–100.
- [21] W. Kohnen and N.-P. Skoruppa, A certain Dirichlet series attached to Siegel modular forms of degree two, Invent. Math. 95 (1989), 541–558.
- [22] W. Kohnen and D. Zagier, Values of L-series of modular forms at the center of the critical strip, Inv. Math. 64 (1981), 175–198.
- [23] A. Krieg, A Dirichlet series for modular forms of degree n, Acta Arith. 59 (1991), 243–259.
- [24] N. Kurokawa, Examples of eigenvalues of Hecke operators on Siegel cusp forms of degree two, Inv. Math. 49 (1978), 149–165.

- [25] I. Miyawaki, Numerical examples of Siegel cusp forms of degree 3 and their zeta functions, Mem. Fac. Sci. Kyushu Univ. 46 (1992), 307–339.
- [26] C. Moeglin, M.-F. Vignéras, and J.-L. Waldspurger, Correspondences de Howe sur un corps p-adique, Lecture Notes in Math. 1291 (1987).
- [27] G. Nebe, homepage, http://www.math.rwth-aachen.de/ Gabriele.Nebe/,
- [28] G. Nebe and B. Venkov, On Siegel modular forms of weight 12, J. Reine Angew. Math. 531 (2001), 49–60.
- [29] S. Rallis, On the Howe duality conjecture, Compositio Math. 51 (1984), 333– 399.
- [30] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Publ. Math. Soc. Japan 11 Iwanami Shoten and Princeton University Press, 1971.
- [31] G. Shimura, On modular forms of half integral weight, Ann. of Math. 97 (1973), 440–481.
- [32] G. Shimura, Euler products and Eisenstein series, CBMS Regional Conference Series in Mathematics 93 the American Mathematical Society, Providence, RI, 1997.
- [33] H. Yoshida, Motives and Siegel modular forms, Amer. J. Math. 123 (2001), 1171–1197.
- [34] D. Zagier, Sur la conjecture de Saito-Kurokawa, (d'aprés H. Maass) Seminar on Number Theory 1979–80, Paris, Progr. Math., 12, Birkhäuser, 371–394, 1981.

GRADUATE SCHOOL OF MATHEMATICS, KYOTO UNIVERSITY, KITASHIRAKAWA, KYOTO, 606-8502, JAPAN

E-mail address: ikeda@kusm.kyoto-u.ac.jp

16