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Abstract In this paper, we consider the relation between the special
values of the standard zeta functions and the congruence of cuspidal Hecke
eigenforms with respect to Sp,(Z). Furthermore, we give exact values of the
standard zeta function for cuspidal Hecke eigenforms with respect to Sps(Z)
and propose a conjecture concerning the congruence of Saito-Kurokawa lift.

1 Introduction

For a cuspidal Hecke eigenform f of weight k with respect to Sp,(Z), let
L(f,s,St) be the standard zeta function of f. Let m be a positive integer
such that m < k—n and m = n mod 2. Assume that n =3 mod4orn =1if

L(f,m, St) belongs to Q(f) if all

’ >7Tfn(n+1)/2+nk+(n+1)m
the Fourier coefficients of f belong to Q(f), where < f, f > is the Petersson
product and Q(f) is the field over Q generated by all Hecke eigenvalues (cf.
[B2], [Mi]). In this paper, we consider the denominator of these values and
the congruence of Hecke eigenvalues of cusp forms. This type of problem
was first considered by Doi and Hida [D-H] in terms of special values of
Rankin-Selberg zeta functions in the elliptic modular case. In Section 5, we
give a generalization of their result in terms of the special values of standard
zeta functions in the Siegel modular form case (cf. Theorems 5.2 and 5.3).
The main tool for proving our main results is the pullback formula for Siegel
Eisenstein series due to Bocherer [B1], [B2], which we will review in Section
4. This formula has been already used to prove to algebraicity of the special
values of the standard zeta functions stated above. However, to complete the
proof of our main results, we have to consider the integrality of the Eisenstein

m = 1. Then the value



series acted by a certain differential operators. We will discuss this integrality
in Sections 2 and 3. Furthermore, to formulate our main result reasonably,
we have to consider a normalization of the standard zeta values because we
have no normalization of Hecke eigenforms in case n > 2 unlike the elliptic
modular case. We discuss this normalization of the standard zeta values
in Section 5. Furthermore, in Section 6, we give an explicit formula for this
value in terms of Hecke eigenvalues of f and some other elementary quantities
in case n = 2. This type of formula has been given in elliptic modular cases
in [Kat2]. To get our formula in this paper, we need an explicit form of
differential operators on the space of Siegel modular forms of degree 4, and
an explicit formula for local Siegel series for a half-integral matrix of degree
4. As for the former, the generating function of the differential operators
has been given in [I], and by a direct but rather elaborate computation we
can get an explicit form of them. As for the latter, we can compute it by
using the explicit formula in [Katl] in principle. However, in this paper,
we show a trick which enables us to reduce the computation of local Siegel
series of degree 4 to that of degree 2. Finally, in Section 7, we give some
numerical examples and propose a conjecture concerning the congruence of
Saito-Kurokawa lift.

Notation. For a commutative ring R, we denote by M,,,(R) the set
of (m,n)-matrices with entries in R. In particular put M,(R) = M,,(R).
Here we understand M,,,,(R) the set of the empty matriz if m =0 or n = 0.
For an (m,n)-matrix X and an (m,m)-matrix A, we write A[X]| = 'XAX,
where ‘X denotes the transpose of X. Let a be an element of R. Then for
an element X of M,,,(R) we often use the same symbol X to denote the
coset X mod aM,,,(R). Put GL,,(R) = {A € M,,(R) | det A € R*}, where
det A denotes the determinant of a square matrix A, and R* denotes the
unit group of R. Let S,(R) denote the set of symmetric matrices of degree
n with entries in R. Furthermore, for an integral domain R of characteristic
different from 2, let H,,(R) denote the set of half-integral matrices of degree
n over R, that is, H, (R) is the set of symmetric matrices of degree n whose
(i, j)-component belongs to R or £ R according as i = j or not. For a subset
S of M,(R) we denote by S* the subset of S consisting of non-degenerate
matrices. In particular, if S is a subset of S,(R) with R the field of real
numbers, we denote by Ss¢ (resp. S>¢) the subset of S consisting of positive
definite (resp. semi-positive definite) matrices. Let R’ be a subring of R. Two
symmetric matrices A and A’ with entries in R are called equivalent over R’



with each other and write A @ A" if there is an element X of GL,(R’) such
that A’ = A[X]. We also write A ~ A’ if there is no fear of confusion. For

square matrices X and Y we write X 1Y = ( )O( 8 ) .

2 Fourier coefficients of Siegel-Eisenstein se-
ries
For a complex number z put e(z) = exp(2miz). For a subring K of R put

GSpn(K)" ={M € GLy,(K) | J,[M] = k(M)J, with some k(M) > 0},

and
Spu(K) = {M € GSpu(K)* | Ju[M] = Jo},
where J,, = ( ?" _01" ) . Furthermore, put

I = Sp.(Z) = {M € GLy(Z) | J,[M] = J,.}.
Let H,, be Siegel’s upper half-space. For each element M = ( é lB) ) €
GSp,(R)" and Z € H,, put
M < Z >=(AZ+ B)(CZ + D)™

and

§(M,Z) = det(CZ + D).

Furthermore, for a function f on H,, we define f|,M as
(FIRM)(Z) = (M, Z)"" (M < Z >).

A function f on H,, is called a C*°-modular form of weight k& with respect
to '™ if it satisfies the following conditions:

(i) fis a C*™-function on H,, ;
(ii) (fleM)(Z) = f(Z) for any M € T";

We call a C*°-modular form f a holomorphic modular form if
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(i) f is holomorphic on H,;
(ii) if n = 1, for any o > 0, f(2) is bounded on the set {x + iy | y > a} for
each o > 0.

We denote by My (™) (resp. M°(I'™) the space of holomorphic (resp.
C*-) modular forms of weight k with respect to I'™. For a modular form f
of weight k with respect to I'™ let

F(Z)="3 aj(Ae(t(AZ)),

AeH(Z)>o

be the Fourier expansion of f(Z), where tr denotes the trace of a matrix. We
call f(Z) a cusp form if ay(A) = 0 unless A is positive-definite. We denote by
&, (I'™) the submodule of My, (I'™) consisting of cusp forms. Let dv denote
the invariant volume element on H,, defined by dv = det(Im(Z2)) ™" ' Ai1<j<i<n
(dzjiAdy;;). Here for Z € H,, we write Z = (x;;)++/—1(y;;) with real matrices
(xj1) and (y;;). For two C*°-modular forms f and g of weight k& with respect
to I'™ we define the Petersson scalar product < f, g > by

< fig>= / o [ det(tm(2)) e

provided the integral converges.
For a positive integer k& we define the Siegel Eisenstein series E, x(Z, s)
of degree n as

[n/2]
Eox(Z,s) = C(1-k) [ c0—2k+2i) D~ (M, Z)F(det(Im(M < Z >)))°
=1 MerS\r)

( Z € H,,s € C), where ((x) is Riemann’s zeta function, and e =

* ok
{ OTLJ’L *

of s, and E, x(Z,0) is holomorphic as a function of Z unless k = (n+2)/2 =
2 mod 4, or k = (n+3)/2 = 2 mod 4 (cf. [Sh3], [W]). From now on
we assume that FE, ;(Z,0) is holomorphic as a function of Z, and write
E,x(Z) = E,x(Z,0). To see the Fourier expansion of E, x(Z,0), for a half-
integral matrix B of degree n over Z, we define the Siegel series b(B, s) by

bB,s)= Y. e(te(BR)u(R)",

ReSn(Q)/5n(Z)

€ '™}, Then E, (7, s) is holomorphic at s = 0 as a function
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where u(R) = [RZ" + Z" : Z"]. Furthermore we put

T,(s) = Hﬁj/2f(s —(i—1)/2),

where I'(s) is Gamma function. For a p-adic number z put e,(z) = exp(2miz),
where & denotes a rational number such that & — 2 € Z,. To investigate the
Siegel series, for a prime number p and a half-integral matrix B of degree n
over Z, define the local Siegel series b, (B, s) by

by(B,s) = Z e,(tr(BR))uy(R) ™%,

where R runs over a complete set of representatives of S, (Q,)/Sn(Z,) and
pp(R) = [RZy + Z7 : Z7]. Then we easily see that for a half-integral matrix
B of degree n over Z we have

b(B,s) =[] b.(B.s).

Let m,n be non-negative integers such that m > n > 1. For A € H,,(Z,)
and B € 5,(Q,) define the local density a,(A, B) and the primitive local
density 3,(A, B) by

a,(A, B) = lim plmmnn(n/Dey A (A B),

and
5,(A, B) = lim e, (4, ),
where
Ac(A, B) = {X € Myn(Zp)/p"Mun(Zy) | A[X] = B € p“Hu(Zp)},
and

B.(A,B) = {X € A.(A, B) | rankg/pz(X) = n}.
We define y,(a) for a € Q,\{0} as follows;
+1 if Q(Va) =Q
xp(a) = ¢ —1 if Q(v/a)/Q is quadratic unramified
0 if Q(+v/a)/Q is quadratic ramified.
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For a half-integral matrix B of even degree n define §,(B) by

&(B) = xp((—1)"* det B).

Let B € H,(Z)so with n even. Then we can write (—1)"/22"det B = 5%
with b a fundamental discriminant and f; € Z-(. Furthermore, let yp =

(DTB) be the Kronecker character corresponding to Q(+/(—1)"/2det B)/Q. We
k
. * .

note that we have xp(p) = £,(B) for any prime p. Let Hy, = H1...1 H with

(0 1/2
H= ( /2 0 > |

For a non-degenerate half-integral matrix B of degree n over Z,, define a
polynomial ,(B; X) in X by

(1= X)TI20 - PP X2)(1 - p/26,(B)X)™"  if n is even

B:X) = ;
V(B3 X) { (1-X) HEZIWO — p¥X?) if n is odd

Then the following lemma is well known (e.g. [Kil], Lemma 1)

Lemma 2.1.For a non-degenerate half-integral matrix B of degree n over
Z, there exists a unique polynomial F,(B, X) in X over Z with constant term
1 such that

bp(B, s) = vp(B;p ") Fp(B;p™).

Furthermore for any positive integer k > n/2 and a half integral matriz A of
degree 2k over Z, such that 2A is unimodular, we have

ay(A, B) = Iy (B, gp(A)p_k)Vp(Bv €p<A)p_k)
and, in particular,

ap(Hy, B) = F,(B,p %)y, (B, p™").

Remark. For an element B € H,(Z,) of rank m > 0, there exists an
element B € H,,(Z,) N GL,,(Qp) such that B ~ BLO, . We note that
b,(B, s) does not depend on the choice of B (cf. [Kil]). Thus we write this

as b,(f) (B, s). Furthemore, F,(B, X) does not depend on the choice of B. Then
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we put F}™ (B, X) = F,(B, X). For an element B € H,(Z)s of rank m > 0,
there exist an element B € H,,(Z)~o such that B ~ B1O,,_,,. Then by the
above remark b(B, s) does not depend on the choice of B. Thus we write this

as b™ (B, s). Furthermore, det B does not depend on the choice of B. Thus

we put det™ B = det B. Similarly, we write Xg”) = xj if m is even.

Now for a semi-positive definite half-integral matrix B of degree 2n and
of rank m, we put

ana(B) = 2 VAT B (B, p )

p

X [T o0 C(1 420 = 20) L(1 +m/2 — 1, X%m)) if m is even
(= 1) OB 2 C(L+ 20 — 21) if misodd

Here we make the convention Fém)(B,pl*mfl) =1land L(1+m/2—1, Xg“)) _
¢(1—=1) if m = 0. Then we have

Theorem 2.2. Under the same assumption as above, we have

Boni(Z)= Y camu(Be(tr(B2)).

BEHQn(Z)ZO

Remark. ¢y, ;(B) is a rational number, and the prime divisor of its de-

nominator is not greater than (27 —1)!. This is a weaker version of Bocherer’s
result [B3].

3 Differential operators

In this section, following [B-S], [I], we introduce some differential operators
acting on the space of modular forms. Let X = (2;;)1<i<m,1<j<a b€ a matrix

of variables, and put A;; = Z 52— A polynomial P(X) in X is called

pluriharmonic if A;;P =0 for any 1 <1,7, < m. Take a polynomial mapping
P(X1,X3) from M, 9(C) x M, (C) to C such that

D-1. P(Xy, X5) is pluriharmonic for each X; (1 = 1,2).

D-2. P(X1g,X2g9) = P(X1, Xs) for any g € O(2])
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D-3. P(a1 X1, a2 X5) = (det ay)”(det az)” P(X1, Xs) for ai,as € GL(n,C).
Assume that [ > n. Then there exists a unique polynomial mapping Q(W)

t t
from Sgn(C) to C s.t P(Xl,XQ) = Q( ?;tﬁi §;t§z

degQ =nv. Let Z = (Zij)lgi,jSQn be a matrix of variables with Zij = Zjis and

). We note that

we write 85@' = (1+—2‘5“)8‘;j, and (%) = (%)19452”. For f € C*(Ha,) we
define D (f) and Do (f) by
0
Do) = QL))

and .

Dq(f) = Dq(f) z12=0,
ARAD)
ATV
We consider the action of the above operators on the Fourier series. Let
A = (a;;) € Han. Then we have e(tr(AZ)) = exp(2mi( % aapzap)). Then

a,f=1

where we write Z =

) with 71,7, € H,, and Z15, € M,(C).

we have -
ai(e(tr(AZ))) = 2miaqge(tr(AZ)).
af

Thus we have
Dale(tr(AZ))) = (2mi) " Q(A)e(tr(AZ)).

Zl Zl?

NowletZ:(tZ 7
12 42

) € Hy, asabove, and f(Z) = >  a(A)e(tr(AZ)).

AEH2n (Z) >0
Then we have

Do(f)(Z1, Ze)
= @)™ S eltt(MZitAZy) Y Q((ﬁ}% ff)d( ;}% if))

A1,A2€Hn(Z)>0 ReM,(Z)
a 0 b 0
_(ab + + o100 L
For v = (c d) € GSpu(R)" put A1 = | o | and 2 =
0 001
1 000
8 8 (1) 8 . We define the mapping ¢ from Sp, (R)x Sp,(R) to Sps,(R)
0 ¢c 0 d



by
L Spa(R) X Spa(R) 3 (71,72) = 71 75 € Span(R).

Furthermore, for a function f: H,, x H, — C, 1,7 € Sp,(R) we define

Flin,2)(Z1, Zo) = 20 (Z1) 0 (Z2) 7 F (1 (Z1),72(22)).

Then we have

Theorem 3.1 ([I])

Do (F)liv(11,72) = D(flie(11,72))

Now we apply the above theorem to the modular forms. For a subspace M
of M (I'™) let MM = {3 a;; fi(Z1) f;(Z>) (finite sum); fi, f; € M, a;; € C}.
2%
Put Cy(s) = s(s+1/2)---(s+ (¢ —1)/2). We choose @ such that

v

Do(det Zty) = (=1)™ [[(Culu/2)Cul = n + v = 11/2)),
and put
Dl/

nl_

Dy.

This coincides with ®;, ; in [B-5]. Then by Theorem 3.1 we easily see

Theorem 3.2. D”l maps M () to M2 (L) @M, (T™). Further-

more D”l maps M (T into My, ([™) @ My, (T™), and in particular if
v > 0, its image is contained in &, (™) @ &, (T'™).

4 Pullback formula

L, = Lo(GSp,(Q)*+, T ) denote the Hecke ring over Q associated with the
Hecke pair (GSp,(Q)*,T™). For each integer m define an element T'(m) of
L, by

T(m)= >  TW(dL. Ld,Leil .. Le,)T™,



where dy, ..., d,, €1, ..., e, Tun over all positive integer satisfying
di|diy1, ei1le; (i =1,....n—1),dy|en, die; =m (i =1,....,n).
Furthermore, for i = 1,...,n and a prime number p not dividing N, put
Ty(p?) = T (1,_; Lpl; Lp*1,_; Lpl,) D™,

As is well known, L, is generated over Q by all T'(p) and T;(p?) (i = 1, ..., n).
We denote by L! the subalgebra of L,, generated by over Z by all T'(p) and
T;(p*) (i=1,...,n). Let T = '™ MT™ be an element of L,, ® C. Write T as
T = U,I™~ and for g € M, (I'™) define the Hecke operator |, T associated
to T' as

FIeT = K (M )Fn—ntntD/2 Z fley.
Y

We call this action the Hecke operator as usual (cf. [A2].) If f is a eigen-
function of a Hecke operator T € L,, ® C we denote by A¢(T) its eigenvalue.
Furthermore, we denote by Q(f) the field generated over Q by eigenvalues
of all T € L,,. As is well known, Q(f) is a totally real algebraic number field
of finite degree. Now, first we consider the integrality of the eigenvalues of
Hecke operators. For an algebraic number field K let O denote the ring of
integers in K.

Theorem 4.1 Let k > n+1. Let f € &,(I'™) be a common eigenfunction
of all Hecke operators in Li,. Then \¢(T') belongs to Oq(y) for any T € L.

The above theorem is known in case n = 1,2 (cf. [Ku2]), and it seems
more or less well known also for general n. But for the reader’s convenience,
we here give a proof to it. Let R be a subring of C. Let &(I'™)(R) be the
Z-module consisting of elements of & (I"™) whose Fourier coefficients belong
to R. It is known that we have &(I'™)(Z) ® C = &,(I'™) (cf. Shimura
[Sh2]). Then Theorem 4.1 follows from the following proposition:

Proposition 4.2. Let R be a subring of C. Any T € L! maps &,(I'™)(R)
to itself.

Proof. The assertion follows from Hafner and Walling [H-W].
Put

GSpn(Qp) = {M € GL2(Qp); Ju[M] = K(M)J, with some (M) € Q, },
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and let L, = L(GSp,(Q,), GSpn(Qp) NGLay(Z,)) be the Hecke algebra as-
sociated with the pair (G:Sp,(Q,), GSPn(Q,) NG Ly, (Z,)). Now assume that
f is a common eigenfunction of all Hecke operators, and for each prime num-

ber p, let ag(p), a1(p), ...., o (p) be the Satake parameters of Ly, determined
by f. We then define the standard L-function L(f,s,St) by

L(f,s,80) =[] H{ (1=p7*)(1 = ai(p)p™)(1 — ci(p)~'p~*)} .

p =1

Let E9ni(Z) = E»,,(Z,0) be the Eisenstein series in Section 2. We then
define €y, (21, 22) as

@le’k(zl, 22) = (—1)l/2+12_n<2ﬂ'\/ —]_)l_k(l — n) DZ;Z (Egml)(zl, ZQ),

where 21,20 € H,,. Let f(2) = Y.  a(A)e(tr(Az)) be a Hecke eigenform
A€Hn(Z)>0

in &,(I'™). For a positive integer m < k — n such that m = n mod 2 put
A(f, m, St) _ (_1)n(n+1)/2+12—4kn+3n2+n+(n—1)m+1

n

xT(m+1) [[T(2k —n —i)

=1

L(f,m,St)
< f, f > mwnnt)/24nk+(nt1)m?

where 6 = 0 or 1 according as n is even or odd. We note that all the
Fourier coefficients of &, x(21, 22) are rational and any prime divisor of its
denominator is not greater than (20 — 1)!. Then as a special case of [B3] we
have

Theorem 4.3. Let [,k and n be a positive integers such that | < k —n.
Assume that | and n satisfy one of the following conditions:
C-1. n and l are even:
C-2.n=3mod 4 orn=1, and [ is odd:
C-3. n =1 mod 4, and [ is odd and greater than or equal to 3.

Let f € &,L(T™) be a common eigenfunction of all Hecke operators in
L,,. Then we have

< fa @2n,l,k(*7 _2)) >= L(f7 [ — na&)f(z)v
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For two semi-positive definite half-integral matrices Ay, Ay of degree n,
put

R A R/2 A RJ/2
k(A1 Ag) = Z C2n,l(( tR/lg A/2 >)Qlkl(( tR/12 A/Q ))’
As— 3 AT [R]>0

where &, (A) = (—1)/27127"(] —n)cy, (A) for A € Hop,(Z)so. Furthermore,
for each semi-positive definite half-integral matrix A; put

Fii;a, (z2) = Z (A1, Ag)e(tr(Azzy)).

A2€H2(Z) >0

We note that JF .4, (22) belongs to M, (I'™), and

Eomak(21,22) = Z Fii:a, (22)e(tr(Ar21)).

A1€Hn(Z)>0

In particular, if [ < k, Fj .4, (22) belongs to &, (I'™), and

Eomak(21, 22) = Z Fia, (22)e(tr(Ar21)).

A1€HR(Z)>0

Take a basis {f;}%, of &(I'™) consisting of primitive forms. Write

fi(z) = > ai(Ae(tr(Az)).

A€H2(Z)>0

Now we compute the value A(f,[,St).

Theorem 4.4. In addition to the above notation and the assumption,
assume that | < k —n —2. Then for any positive definite half-integral matrix
Ay of degree n we have

d1
Frinmn (2) = Z A(fir 1, St)as(Ar) fi(2).

Remark 2. Since Fj k. 4,(z) is not a cusp form, the above formula does
not hold for [ = k —n. However, by modifying the above method, we can get
a similar formula for this case.

12



5 Congruence of modular forms

In this section we consider the congruence between the Hecke eigenvalues of
modular forms of the same weight. Let K be an algebraic number filed, and
O = Oy the ring of integers in K. For a prime ideal P of O, we denote by
Oy be the localization of © at P in K. Then the following lemma can easily
be proved.

Lemma 5.1. Let fi,....., f1 be a basis of &,(I'™) consisting of Hecke
eigenforms, and G an element of &,(I'™). Let K be the composite field of
Q(f1),Q(f2), ..., and Q(fa), and © = Ok. Let P be a prime ideal of O.
Assume that

(1) cg(A) belongs to Oy for any A, and ay, (A1) € Dy for some A;.

(2) there exist c1,...,cq € K such that ordg(ci) < 0 and

d

G(z) = S aifil2).

i=1
Then there exists 1 # 1 such that we have
/\fz(T) = )\fl (T) mod P
for any T € L.

Let f be a Hecke eigenform in &(I'™) and M be a subspace of &(I'™)
stable under Hecke operators T € L,. A prime ideal P of Oq(y) is called a
congruence prime of f with respect to M if there exists a Hecke eigenform
g € &,(I'™) having a different system of Hecke eigenvalues from f such that

M(T) = Ag(T) mod P

for any T' € L/, where ¥ is the prime ideal of Oq(nHaq(y lying above P. If
M = &,(I'™), we simply call ¥ a congruence prime of f.

Now we consider the relation between the congruence primes and the
standard zeta values. To consider this, we have to normalize the standard
zeta value A(f,[,St) for a Hecke eigenform f because it is not uniquely de-
termined by the system of Hecke eigenvalues of f. We note that there is no
reasonable normalization of cuspidal Hecke eigenform in the higher degree

case unlike the elliptic modular case. Thus we define the following quantities:
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for a Hecke eigenform f in & (I'™), by multiplying a suitable constant ¢ we
may assume all ¢;(A)’s are elements of Q(f) with bounded denominator. Let
3; be the fractional ideal in Q(f) generated by all ¢;(A)’s. Then A(f, 1, St)3}
is a fractional ideal in Q(f). We note that the value Nq(s (A(f, 1, St))N(3;)?
does not depend on the choice of ¢, where N(3;) is the norm of the ideal 3.
Furthermore, for a prime ideal ¥ of ©, the order ordy(A(f,! ,&)‘3?) does not
depend on the choice of ¢ either. In particular, if we assume the multiplicity
one property for the Hecke eigenforms, these values are uniquely determined
by the system of eigenvalues of f. Then by Theorem 4.4 and Lemma 5.1, we
have

Theorem 5.2. Assume that &,(I'™) has the multiplicity one property.
Let f be a Hecke eigenform in & (I'™). Let | be a positive integer satisfying
the condition in Theorem 4.4. Let P be a prime ideal of ©. Assume that
ordgy(A(f,1,8t)3%) < 0 and not dividing (21 — 1)!. Then ¥ is a congruence
prime of f. In particular, if a rational prime number p divides the denomina-
tor of Nopy(A(f,1,St))N(3;)?, then p is divided by some congruence prime
of f.

Now a subspace M of &(I'™) is called non-splitting if there exists a
Hecke eigenform f in M such that M =< f7 | 0 € Aut(C) > . Clearly M
is stable under the action of L,. Let Z[f] be a subring of Dq(s) generated
over Z by all Hecke eigenvalues of f. Then the different ® of Z[f] and the
discriminant D of Z[f] does not depend on the choice of f, which will be
denoted by ©,; and D,;, respectively. Then by the above result we easily
see the following:

Theorem 5.3. Let the notation and the assumption be as in Theorem 5.2.
Let M be a non-splitting subspace of &,(I'™). Let f be a Hecke eigenform
in M. Let ® =Dy, and D = Dyy. Let P be a prime ideal of ©. Assume that
ordgy(A(f,1,5t)339) < 0 and not dividing (2l — 1)!. Then ¥ is a congruence
prime of f with respect to M*. In particular, if a rational prime number p
divides the denominator of Nq(p(A(f,1,St))N(3;)?D, then p is divided by
some congruence prime of f with respect to M*.

In Section 7, we will consider the congruence primes of the Saito-Kurokawa
lift.

14



6 Exact standard L-values in case n =2

In this section we obtain a useful formula for computing exact standard L-
values in the case of degree 2. The following lemma can easily be proved
(e.g. [Ki2]).

Lemma 6.1. Let n = ny + ny with ny even. Let Ay € Hyy(Zy) N
TGL,,(Zy) and Ay € Hny(Z,) N GL,,(Q,). Then for any I > n we have

Oép(Hb A11J—A22) = ap(Hlv All)ap(Hlfnlj—(_All); A22)-

Proposition 6.2. Let ny be an even integer. Let Ay € Hp, (Z,) N
%GLm(Zp) and Asy € Hpy(Zy). Let m be the rank of Agy. Then we have

Fé“*"” (A1 LAy, X) = Flgm)(Am, fp(An)Pm/QX)-

Proof. We may assume that Ass is non-degenerate. By Lemma 2.1 for
any [ > nj 4+ ne we have

a,(Hj, AjnLAg) = vp(AHJ_Agg,p_l)Fp(AHLAQQ, ph).
By [Katl, Proposition 2.2], we have
oy (Hy, AniLAgo) = Bp(Hi, Ann)og(Hi—n, L(—A11), A2).
Again by Lemma 2.1, we have
0 (Hiny L(= A1), Ana) = 7p(Azz, §(Ar)p"™ 27 Fy (Anz, & (An)p™ 7).

Furthermore we have

ni/2

Bp(Hiy Arr) = (1—p™") T] (1= p* )1 = p"/2 7, (A) ™!

=1

(eg. [Ki2]), and by definition we have
V(A LAz, p™') = B, (Hi, Ann)vp(Ase, &(An)p™ 7).
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Thus the assertion holds.

Corollary 1. Let A = ( t /ﬁ;/ 2 Aj2122 22 ) € Huyimy (Zy) VG L, 1y (Q)

with Ay € Hpy(Zy), Asg € Hiy(Zy), and Ay € My, ny(Zy). Let m be the
rank of A. Assume 2Ay, € GLy,(Z,). Then we have

1
F{M(A, X) = F™ ™) (A, — ZAil [A1], & (An)p™/2X).

. . A Aqa/2
Corollary 2. Letny and ng be positive even integers. Let A = ( 1 12/ ) €

PA12/2  Agp
Hn1+n2(z)>0 with AH c Hm (Z>>0,A22 c HnQ(Z)>0, and Alg c Mnl,TLz(Z)'

Let py be a prime number. Let m be the rank of A. Assume 2Ay1 € GLy,(Z,)

for any prime number p # po, and 2Ay € GLy,(Z,,). Then we have

1 na
H F™(A, X) = F{"") Ay — ZAQ_; [* Ao, X aza (P0) P> X))
p

—n1 1 — n
T B (A = AT A Xy, (p)p™2X),

PFPo

Now for later’s computation, we give an explicit form of Fzgl)(A, X) and
Fp(z)(A,X) in case deg A = 2.

Proposition 6.3. Let A = ( air ai2/2

aia/2  amn
GCD(a11, arz, as)
(1) Assume rank A = 1. Then we have

) € HQ(Z)ZO. Put e = €p =

ordp(eq)

FOAX)= Y (pX).

=1

(2) Assume A > 0. Then we have

ordp(ea) ' ordp(f4)—i ‘
F(AX)= ) (X)) Y (X%
=0 J=0
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ordp(ea ordy(f4)—i—1

)
—xalplpX Y X Y (X

i=0 §=0

Now we give an explicit form of differential operator in the case of degree
2 due to Ibukiyama. Let

Gl(f17f27f3;t)
1

N R(f1, fa, f3;)2=92(Ao(f1, fo, f3;1)? — 4fst?)1/2’

where
Ao(fi, fo, f3it) = 1 — fit + fot?
and
R(f1, fa, f3i1) = Do(f1, fo, fa;t) + (Do(fi, fo, f3:1)* — 4f3t)/? /2.
Write .
Gi(f1, fa, f35t) = Z Gim(f1, f2, f3)t",

m=0
and define a polynomial map th(( tMM//l %2 )) from S4(C) to C by
2 Wy

Ql,m( < Wl W2 ) ) = Gl,m(det WQ, det Wy det VV47 det <

Wy W,
tW2 W4 )

Wy Wy

where Wy, W, € S3(C), and Wy € M,,(C). Furthermore define a polynomial
map P, (X1, Xs) from M, (C) x M,(C) to C by

XX, XX
Prn (X1, X2) = QW(( X;tXi X;Xz )>.

Then by [I]

Proposition 6.4. P,,, (X1, Xs) satisfies the conditions D —1 ~ D —3
in Section 3.

Furthermore, by a direct but rather elaborate calculation we have
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Proposition 6.5.

[m/2]
Gimlfo forf5) = 3 ( 2n+l=5/2 ) fi

n
n=0
[(m—2n)/2]
Jf l+m—v—5/2 m—2n —v M—2n—2
D S | (L KT Cd
v=0

We note that Gy, (f1, fa, f3) € 27™Z[f1, fa, f3]. Let

1 0 0 0 0
Giom = Gz,m(;1 det(%)lsfisz:sﬁ@ det(@)lﬁi,jﬂ det(aTij)gg’js‘“ det(%)lsfi,jgi)a
H(s —i+1)
where < ;L ) = ’ZIT We note that
8 m m
(det( Ji<i<2,3<j<a)” (213204 — 214223)™) = I'(m + 2)['(m + 1).

8zij 77777

Thus we have

o

gl,m - dl,m D)

n,l»

where

F(m+2)F(m+1)(l+mm_5/2>

T2, Ca(u/2)Co(l — 2+ m — p1f2)

Furthermore, put

dl,m

k—5/2
k—1-—2
23k—l—7

L(f,1,5¢)
< f’ f > (27r)2k+31—3'

A(f,1,8t) = ( )F(Z)F(k+l—2)F(k+l— 1)

We note that .
A(f7 l7 &) = dl+2,k—l—2A(f7 lv &)7

and for a positive definite half-integral matrices A; and Ay of degree 2, let
€1x(A1, Az) be the one in Section 4. Let py be a prime number. Assume that
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2A, € GLy(Z,) for any prime number p # py and 245 € GLy(Z,,). Then we

have
ar(AAz) = 3 5‘”(( tﬁ/lz };{4/22 ))
ReM>(Z)
><G'l,k_l(%1 det R, det Ay det Ay, det < tﬁ/IZ 1;1’4/22 >))7
where

Eag(A) = (—=1)/*1272(1 — 2)

1
X E D (A= 2 AR X, (m)pe ™) T F Aa——A 'R, xa, ()P ™)

P#Po

A TT e CO 20 = 2DLB = 1xSY)  ifm =24
¢(5—2I) if m =3,

for A = tAl e . We note that ¢ (A, As) is rational number and
R/2 Ag ’

any prime divisor of its denominator is not greater than (2 — 1)!. We note

that

En(zt )= > > an(Ar, Ay)e(tr(Arz + Arz)).

A1€H2(Z)>0 A2€H2(Z)>0
We note that Ey;(Z,0) belongs to M, (I®) for an even integer [ > 4.

Fix an A; € Hz(Z)-o and a prime number p. We define €, (i, A) as
follows:
(1, A1, A) = e (A1, A),

(i, A1, A) = (i — 1, A, pA) + p* Pe (i — 1, Ay, Afp)

+pt? > ek(i — 1, A1, A[D]/p),
DEGL:(Z)UpGL2(Z)/GL2(Z)
where U, = ( é 2 ) - Let {f;}7_, be a basis of & (I"®) consisting of Hecke

eigenforms, and A; = Af,(p). Then we have

fj: l,St)a;(Ar)a;(A)

€142, k Al;

IIFﬂp~
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for any A € Hy(Z)~o. Thus by Theorem 4.5 we have

Proposition 6.6. In addition to the above assumption, assume that

AO& 7& )\ﬁ fOT « 7é 57 CI;?;Ld al(Al)val(A) 7é~0 Let f = .f17K - Q(f) a’nd
e; = erpa(i, A, A). Put A*(f,1,St) = Ngjq(A(f,1,St))N(3;)*. Then for any
positive even integer | < k — 4 we have

e; 1 —_—
ey )\2 )\d
A*(f.1,St) = N e A5t AT N(3p)?
y 0, 0L) — IVK/Q 1 1 —_— NK/Q<0J1(A1)G’1(A>>'
A Ao A
')\cll—l ;\g—l . ;\d—l
d

7 Numerical examples and conjecture

We compute the special values of the standard zeta functions by using Math-
ematica. Let J; 7" be the space of Jacobi cusp forms of weight k and
of index 1 on T, and V : J1? — M(I'®) be the injection defined
in Theorem 6.2 of Eichler and Zagier [E-Z]. Then V(J'[”) is the Maass
subspace of & (I'®), which will be denoted by &,(T®)*. Let ¢10.1(7, 2)
and ¢19,1(7, 2) be the Jacobi cusp forms in Jigy and Ji;7 in Page 40 of
[E-Z], respectively. Here 7 € H; and z € C. Furthermore let Fjj(7)
be the Eisenstein series of weight k& with respect to '™ defined in Sec-
tion 2, and put Ei(7) = ((1 — k) 'Eyx(7). Then it is well known that
E(1)Es(7)¢;1(7,2) (a,b> 0,7 =10,12,4a + 6b + j = k) forms a basis of

cusp —
J,&l.LetAo—<1/2 1 )’Al_(o 1>,andA2 (1/2 9 )

(1) We have dim &y(I'®) = 3, and dim &35(I'V) = 2. Let f1, f> be
the basis of &33(I'") consisting of primitive forms. For i = 1,2 let \; =
48(—2025 + v/D) and 48(—2025 — v/D) with D = 63737521. Then ) is the
eigenvalues of the T'(2) with respect to f;. Then they satisfy the equation

X% +194400X? — 137403408384 = 0,
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and Q(fi) = Q(\) = K with K = Q(v/D) (cf. [H-M]). Put 6; = );/96.
Then 6; satisfies the following equation

g(X) == X? +2025X — 14909224 = 0.

The discriminant of g(X) is D. Thus the discriminant of Q(v/D) is D, and
the ring of integers in Q(v/D) is Z(6,). Let hy(7, 2) = E4(7)Ee(T) 104 (7, 2),
and hy(7, z) = E4(7)*¢12,1(7, 2). These form a basis of J3, Y. Put g; = Vh; for
i = 1,2. Then these form a basis of &, (I'®)* whose Ao-th Fourier coefficient
is 1. Furthermore for i = 1,2 put

~

Then fz is the Saito-Kurokawa lift of f; whose Ay-th Fourier coefficient is

We note that we have fz = Xgo) /2 for i = 1,2, where X%) and Xé%) are the
eigenforms in Kurokawa [Kul]. Then we have

Furthermore we have
A (T(2)) = A +3-2'%,

Then
Niqlaj (Ag)) =2%-3"-5-19 - 23,

and
Ni,jqlaj(Ar)) = —2°-3-5% 23 - 2659.

By a simple computation we have N (3;) = 25.3%.5.23.

Let T20 be the cuspidal Hecke eigenform in Skoruppa [Sko]. It is a
unique (up to constant) Hecke eigenform in &,(I'®) which is not a Saito-
Kurokawa lift. We note that T = Xé%)/ 2, where Xgé) is the Hecke eigenform
in [Kul]. Then f1, f> and T20 form a basis of &5 (I'®). We have Sy = 1 and
ax(Ap) = 1 and ay(A;) = 22. Furthermore we have Ay (T'(2)) = —28-32.5-73.
Thus by Proposition 6.6, we have the following tables:
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| Nic/q(A(fi, 1,5t)|N(34)

l
2 [3-5%.7-11-132-172-29-31/2°% . D

4 |13%-5-72-11-13-17%-29-31-173-443/2°1 .23 - D

6 |3%-5-11%2-13%-17%.29-31-227-1381069/2* - 23% - D

8 [3°-5%.7-11-13%-172-29- 3121347 - 58169/234 .23 - D

10 | 3*-5%.72.13%. 172 .19 - 31 - 863 - 3673 - 3426433/2%° - 23 - D

12| 32-5-7%-11-172-29 - 37 - 293 - 6912 - 33721 - 96875477/2'¢ - 23 - D
14 | 345273 11-13%-17-29? - 31 - 467196139 - 541368271/2° - D
16 | 21%.310.52.7.11-13-17-29% - 312 - 67 - 1699 - 3617% - 296551/ D

Here we note that the square of a prime factor of the [-th Bernoulli number
appears in the numerator of Ni/q(A(fi,1,St)N(3)*.

[A(T20,1,8t)]
33.5-7-11-23-29-31/2%
32.52.13-23-29-31-113/2%
34.5.7-29.31-7549/217
8 |215.33.5.72..11-29-31 374861 /216
10 | 3-5-7-31-283-617 - 4098371 /213
12| 34.52-72.11-29 - 31 - 337 - 91909/2°
14 | 2434721312893 - 2166127
16 | 211-35.53.13..23.29 - 347162819

O = DN T

(2) We have dim &x»(I'?) = 4, and dim &4,(I'M) = 3. Let fi, f2, f3 be
the basis of &4, (') consisting primitive forms. For i = 1,2,3 let \; be the
eigenvalues of the T'(2) with respect to f;. Then they satisfy the equation

X3+ 344688 X% — 6374982426624 X — 520435526440845312 = 0,

and Q(f;) = Q(N\;) (cf. [H-M]). Put 6; = \;/48 for i = 1,2,3. Then 6; is also

an algebraic integer and satisfy the following equation:
g(X) = X?® + 7181X? — 2766919456 X — 4705905729536.
The discriminant of g(z) is —2° - 3% - 5% . 72 . 1465869841 - 578879197969.

Let hi(1,2) = Ey(7)3¢101(T,2), ha(T,2) = Eg(7)*P101(7, 2), and hs(1,2) =
Ey(7)Ee(T)¢12,1(7, 2). Then These forms a basis of Jy, 7. Put g; = Vh; fori =
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1,2,3. Then these forms a basis of &g (I'®)* whose Ay-th Fourier coefficient
is 1. Furthermore for i = 1,2, 3 put

fi = 1155(435776+316;) g1 —220(4760624+796;) go+ (286270336 —605630;+67 ) g5
Then fz is the Saito-Kurokawa lift of f; whose Ay-th Fourier coefficient is

aj (Ag) = —257745664 — 421380; + 67
Then we have

aj (Ar) = 10(395073536 — 642486; + 67)

and
aj (Ag) = —352(—376T171584 — 1827330, + 67).
Furthermore we have
Ap(T(2)) = N +3-2%.
Then
Ni,qlaj (Ag)) = —2'-3%.5%. 71117 . 13- 157 - 1213

and

Ni,jqlaj(Ar)) = —2%-3%.5° .72 11° . 13- 157 - 1447 - 2437.

Let 0 = 61, f = fi, and K = Q(f1). Put 7o = 0(0 + 13)/32,1m5 = (62 +
8)/9+0,m5 = (1 +62)/5+60, and n; = (6 + 50 + 62)/7 + 20 + 2. Then by
using, "round 2 method”, we see that < 1,60,7, > is 2-maximal in Ok (cf.
H. Cohen [Co].) We have [< 1,0, >:< 1,60,6% >] = 2° and therefore the
discriminant D of K is not divisible by 2. In the same manner, we see D is
not divisible by 3-5-7, and therefore, we have D = 1465869841 -578879197969
and O =< 1,0,n9,13,m5, 17 >z . We have

(O : Z[1,0,0%]] =2°-3%-5-7.

Put R; = 1155(435776 + 316;), Ry = —220(4760624 + 796;), and Ry =
286270336 — 605630, + 62. Then

[Z[1,0,0%] :< Ry, Ry, Ry >] =2°-3%.5%.72.11° . 13 - 157,

and

[< Rl,RQ,Rg > af(Ao),af(Al),af(Az) >] = 2834.
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Furthermore we have < a(Ao),a(A1),a;(Az) >C 3. Thus we have Thus
N(3;) =293 5. 7511913 157.

Let T22 be the cuspidal Hecke eigenform in Skoruppa [Sko|. It is a unique
(up to constant) Hecke eigenform in &,y (I'®) which is not a Saito-Kurokawa
lift. Then f1, fa, f3, and Y22 form a basis of &x,(I'®) and Q(f;) = Q(f;).
We have §y = 1 and ay(Ag) = 1 and ay(A;) = —22- 3. Furthermore we have

Mr(T(2)) = —2%-3-5-577. Thus by Proposition 6.6, we have the following
tables:
! | Nkeiyq(A(fi, 1, St)IN(35)?
2 | 39.5%.7.113.13°-172.232.292 . 312.37/2"® - D
4 | 32.52.74.112.13%.17%-19%.29% .31 - 37 - 151 - 1601 - 6551 - 7951/25% . 1423 - D
6 |32.59.113.13%.17%.19-29%-31% .37 - 137 - 809
X 38029874887 /257 - 7-1423 - D
8 |39.5.7°.11-13%- 17219223292 - 312 - 37 - 84521 - 8947751
x 699588169271 /241 - 1423 - D
10 | 319.5%.73.11%.13%. 172 . 193 . 23 . 29 - 31 - 372
x 1423469629 - 27864526583393 /2% - 1423 - D
12 | 32.5.11%2-13-17-232-29%- 31 - 37 - 691 - 953
x 243911 - 4251563 - 6617174324030971171 /20 . 1423 - D
14 | 26.312.55. 78 . 113 . 13- 172.19% . 23 - 29% - 312 . 37
x 150197 - 318467 - 1465187 - 13894099 - 63630191/1423 - D
16 | 226.319.55.72.113.13%.19-23-29%.31%2-37- 36173
x 1465869841 - 2775014078857939 - 22683897890722493 /1423 - D
18 | 2%9.3% .515.11.13%.17%-19%. 23 - 292 - 312 . 372
x 43867 - 365257 - 13553776667 /1423 - D
z A(Y22:0,50)
2 [3%-5-11-23-29-31-37/2%
4 | 3%.5.11-13-29-31.37-103 - 157/27 - 1423
6 | 30-11-20-31-372.485363/2% - 1423
8 | 32-20.-31-37- 149 - 3361493719215 - 1423
10 | 375113789 - 1039 - 2741 - 3616027/2'° - 1423
12 | 3%. 11231 - 37 - 421 - 254725279909,/28 - 1423
14 | 3372111331 37- 733 - 2131 - 826250472 - 1423
16 | 25-37-5-11-13-19- 31 - 37 - 30293340159041 /1423
18 | 21635 . 52.7-13-17- 3137 101 - 439 - 1049 - 49991/1423
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In this case, we have
1423 = .9,
in Oqy,), where ¥; =< A\; +967,1423 > and P; =< A2+ TT8\; + 660, 1423 > .

We have deg ¥, = 1Aand deg P, = 2. Thus from the above table, P; is a
congruence prime of f;. In fact we have

Aj(T(2)) = M (T(2)) mod P;.

Though we only treat the congruence of the Hecke eigenalues of modular
forms in this paper, we can also consider the cogrunece of the Fourier coeff-
cients of them in some cases, and in particlar, we can explain the examples
of congruences of modular forms in Skoruppa[Sko| in terms of special values
of L-functions, which we will discuss in subsequent papers.

Now we consider the congruence prime of the Saito-Kurokawa lift with
respect to (&,(I®)*)+. Let f be the Saito-Kurokawa lift of f € &gp_o(I'V).
Then we have

L(f,s,8t) = HLfs+k:—z)
=1

For positive integers 1 < m,m’ < 2k — 3, put

L(f, m)L(f,m')
(2mi)mtm < f f >

C(f,m,m') =
and for 2 <m < k — 2,

We note that C'(f,m,m’) € Q(f) if m —m/ is odd, and therefore C(f,m) €
Q(f) (cf. Shimura[Sh1].) On the other hand, put

LA k) = [ LU k)

o€Aut(C)

and
LApk+1) = J[ L(fk+1)/0,
oc€Aut(C)
where Q_ and Q. are the periods in Stein [St1]. We note that L(A, k)L(Ay, k+
1)/Nq(p),q(C(f,2)) is algebraic, and more precisely we expect that it has no
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prime factor greater than (2k —1)!. We note that 1423 divides both L(Ay, k)
and Nq(s)/q(C(f,2)) for f = f; in the above example (2). We have

C(f,m)¢(1L —m)
C(f,2)¢(=1)

up to elementary factor. By the above numerical data, we expect that the
numerator of A(f,2,St) has relatively small prime factors. Thus a prime
factor of the numerator of C(f,2) greater than (2k — 1)! is expected to be a
congruence prime of f with respect to (&(I'®)*)*. However this does not
hold in general as will be seen the following example. Hence we have to
observe this type of phenomenon more carefully.

A(f.m, St) = A(f,2,50)

(3) We have dim &y, (I'®) = 5, and dim &4(I'") = 3. Let fi, f2, f3 be
the basis of &5(I'")) consisting primitive forms. For i = 1,2,3 let \; be the
eigenvalues of the 7'(2) with respect to f;. Then they satisfy the equation

g(z) = X?—3814272X%—44544640241664 X +135250282417024401408 = 0,

and Q(f;) = Q(\;) (cf. [H-M]). Put 6; = X\;/576 for i = 1,2,3. Then 6; is
also an algebraic integer and satisfy the following equation:

g(X) = X? + 6622X2 — 134261189X + 707735092608 = 0.

The discriminant of g(x) is —23 - 32 - 52 . 72 . 227 - 454287770269681529. Let

hl(T, Z) = E4(7')2E6< )¢10 1(T Z) hQ(T Z) E4< ) ¢12 1(7' Z) and hd(’f Z) =
E¢(7)%*¢12,1(7, z). Then These forms a ba81s of Jo, 7. Put g; = Vh; for i =

1,2,3. Then these forms a basis of Sk( ) whose Ap-th Fourier coefficient
is 1. Furthermore for i = 1,2, 3 put

Ry (6;) = 379483272 — 890260, Ry(6;) = —882(—1783462 + 450;),

R3(0;) = —504343809 + 223400; + 07.

and
fi = Ru(0:)g1 + Ra(0:)g2 + Rs(0:) g

Then f, is the Saito-Kurokawa lift of f; whose Ag-th Fourier coefficient is

aj (Ag) = —16219620 — 98390; + 67.
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Then we have

aj (Ay) = 2(—650323008 + 843446; + 5067)

and
afi(Ag) = —8(—99687764052 + 37331756, + 1379?).
Then
NKi/Q(aﬁ (Ag)) = —23.39.75.14149 - 722947657,
and

Ni,qlaj (Ar)) =2"-3%-5%- 77 1553 - 3559 - 722947657

Let 6 =0y, f = f1, and K = Q(f1). Put 7o = 0(0+13) /32,15 = (02 +8)/9+
0,m5 = (1+62%)/5+6, and n; = (6+50+6?)/7+20+2. Then by using, "round
2 method”, we see that < 1,6,7y > is 2-maximal in Ok (cf. H. Cohen [Co].)
We have [< 1,0,1, >:< 1,0,6% >] = 25, and therefore the discriminant D
of K is not divisible by 2. In the same manner, we see D is not divisible
by 3-5-7, and therefore, we have D = 2 - 227 - 454287770269681529 and
O =< 1,0,19,n3,m5, 177 >7 . We have

Ok : Z[1,0,0*]] =2-3-5-T.
Put R; = R;(0) for j = 1,2,3. Then
[Z[1,0,0%] :< Ry, Ry, Ry >] = 2° - 3% - 7* - 722947657
and
[< Ry, Ro, Ry >:< aj(Ag), ap(Ar),a;(Az) >] = 2834,

Furthermore we have < a;(Ao),a;(A1), aj(A2) >C 3. Thus we have Thus
N(3j) =2M-37-5-7°-722947657. Let T24a and T24b be the cuspidal Hecke
eigenform in Skoruppa [Sko]. They are Hecke eigenforms and form a basis of

~

(@kﬁf(”)*)l. Then fi, fo, f3, and Y24a, T24b form a basis of S24(I'®) and
Q(fi) = Q(f;). Then we have

A(f,2,8¢t)

=—38.50. 74 11-13%.17° - 192 . 29° . 312 - 37 - 41 - 1213/2"* - D.

We note that 1213 divides C(f,2) but it is not a congruence prime of f with
respect to (&, (I'?)*)L. Indeed it does not divide either Ni/q(A;,(T(2)) —
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AMr21a(T(2)) or Niyq(Aj (T(2)) — Ar2ap(T(2)). On the other hand, from the
numerical table in W. Stein [St2], we see that

L(A; k) =157 - 83,

and
E(Af, k+1)=1213.

Thus for 4 <[ < 20, the prime numbers 157 and 83 divide the denominator
of A( f ,2,5t) and therefore, by Theorem 5.3, they are congruence primes
of f with respect to (€54(T@)*)L. From the above consideration, we would
propose the following conjecture:

Conjecture. Let P be a prime ideal of Q(f) not dividing (2k —1)!. Then
P is a congruence divisor of f with respect to (& (L)) if and only if P
divides the numerator of L(Ay, k).

This is an analogue of the Doi-Hida-Ishii conjecture concerning the con-
gruence primes of the Doi-Naganuma lifting [D-H-I]. We also note that this
type of conjecure has been proposed by Harder [Ha| in the case of vector val-
ued Siegel modular forms. We can formulate this type of conjecture for the
congruence primes of the Ikeda lifting, which we will discuss in a subsequent

paper.
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