Pullback formula and differential operators

Noritomo Kozima (Tokyo Institute of Technology)

In this report, we describe a theory of pullback formula for vector valued Siegel modular
forms. The main tools are the Eisenstein series and a differential operator which sends a
scalar valued Siegel modular form to the tensor product of two vector valued Siegel modular

forms. We investigate (DEL™9) (g V([)/) precisely, where EPT7 is the Eisenstein series

and D the differential operator.

In Section 1, we describe pullback formula for scalar valued Siegel modular forms. In
Section 2, we define vector valued Siegel modular forms. In Section 3, we describe the
differential operator explicitly and “Fundamental Lemmas”. In Section 4, we give a general
theory from Fundamental Lemmas. In Section 5, we describe results in special cases. In
Section 6, we consider a way of computation of DEETY.

1. Introduction

In this section we introduce pullback formula and its applications for scalar valued Siegel
modular forms.
Let E}} be the holomorphic Eisenstein series of degree n and weight £, i.e.,

Ep(Z):= ) det(CZ+D)™"
(C.D)

where (C, D) runs over a complete set of representatives of the equivalence class of co-
prime symmetric pairs of degree n. The right-hand side converges absolutely and locally
uniformly for £ > n 4 1. Therefore E}’ is holomorphic for k > n + 1.

Next, we define the non-holomorphic Eisenstein series of degree n and weight k by

Ep(Z,s):=det(Im(Z))* Y det(CZ + D)~* |det(CZ + D)| ™.
(C,D)

Here s is a complex variable. The right-hand side converges for k +2Re(s) > n+1. Asis
well known, E}(Z,s) has meromorphic continuation on the whole s-plane and satisfies a
functional equation. (see Langlands [13], Kalinin [9], Mizumoto [14])
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For the holomorphic Eisenstein series, Garrett [7] proved the following formula:

d(r)

N Z(p) 0 mln(PQ)
(%) wie) = BRI+ S G > DUk o LB SOV,

where C, is a constant, d(r) is the dimension of the space of cuspforms of degree r and
weight k, {fr1, fr2,.-., fra@)} is an orthonormal basis consisting of eigenforms, [f]? de-

notes the Klingen type Eisenstein series attached to f ([10]), and (0f)(z) := f(—%). For
an eigenform f and a complex variable s, D(s, f) is defined by

= Y AMf.T)det(T)"*

TeT()

where T(") is the set consisting of all elementary divisor forms of degree r and A(f,T)
T 0 . .
0 T_l) I‘T>. Here T',. is the Siegel
modular group of degree r. Using this formula, Bocherer [1] studied Fourier coefficients of
Klingen type Eisenstein series.

On the other hand, in [4], Bocherer showed that D(s, f) is equal to

is the eigenvalue on f of the Hecke operator <I‘ - (

97 [L s~ 2) 7 Lis — . 1.50)
=1

where ( is the Riemann zeta function and L(x, f,St) the standard L-function attached
to f. Furthermore, in [2], introducing a differential operator Dy, which sends a Siegel
modular form of weight £ to the product of two Siegel modular forms of weight k + v,

Bocherer showed Garrett’s pullback formula for (Dy , E2™) (g V(T)/) and proved

L(m7 f7 &)
7Tnk+m(n+1)—n(n+1)/2<f, f) € Q(f)

if the Fourier coefficients of f belong to Q(f) and m is an integer such that m > n and
(1.1) 1<m<k—-n and m+n is even.

Here (-, ) denotes a (non-normalized) Petersson inner product and Q(f) a totally real finite
extension of Q. Furthermore Mizumoto [14] proved the same result when (1.1) and

n=3(mod4) or n=1 if m=1.
For the non-holomorphic Eisenstein series, Bocherer [3] showed the following identity:
on((—Z 0\ _
f, E; ( 0« ,s) = (P-factor) - L(2s + k —n, f,St) - f(Z),
and proved meromorphic continuation and functional equation of standard L-functions.
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2. Vector valued Siegel modular forms

Let n be a positive integer. Let (p,V,) be a polynomial representation of GL(n,C) on a
finite-dimensional complex vector space V,. We fix a Hermitian inner product (-,-) on V,
such that

{p(g)v, w) = (v, p(‘PJw) for g € GL(n,C), v, w € V.

Let I, := Sp(n,R)NM (2n,Z) be the Siegel modular group of degree n, and $),, the Siegel

(n) (n)
A B > € Sp(n,R) and Z = (20)1<p,v<n €

upper half space of degree n. For g = (C’(") Do)

Hn, we put
9(Z) = (AZ+ B)(CZ+ D)™ ', 4j(g9,2):=CZ+ D,

6(g,Z) :=det(CZ + D), A(g,Z):=(CZ+D)"'C,

O\ _ (140w O
oz ) 2 Oz 1§W§n‘

Here 6,,, is the Kronecker’s delta. And for a V,-valued function f: §, — V,,

(f1p9)(Z) = p(i(9. 2))"" f(9(2)).
We write |;, for p = det”.

A C°°-function f: §, — V, is called a V,-valued C°°-modular form of weight p if it
satisfies f|,7 = f for all v € I';,. The space of all such functions is denoted by IM°. The
space of V,-valued Siegel modular forms of weight p is defined by

M, :={f € M | f is holomorphic on §,, (and its cusps)},

and the space of cuspforms by

ep::{fempuggof(@ Z.(;)):o forauZe.san_l}.

If p = det”, we write M=, My, and & for Mo, M, and &, respectively. For f,
g € M7, the (non-normalized) Petersson inner product of f and g is defined by

ra)= | oI 2), o2 detan(2)) 7 i

if the right-hand side is convergent.



3. Differential operators for Siegel modular forms

Let W; be a j-dimensional vector space
Wj:=Ce; ®Cex @ ---® Ce;y,

where eq, ea, ..., ¢; are indeterminates. Let T’ l(Wj) be the [-th tensor product of W; for
a positive integer [, i.e.,
T'W;) =W; ® - @ W;,

v

l-times
and p; the standard representation of GL(j,C) on TYW;). We put p; := det” ®p).
Let W;* and W;_ be copies of W}, i.e.,
Wj* = Cel* D Ceg* DD Cej*,
Wj* =Ce1,®Cey, d---P (Cej*,
where e1*, e2*, ..., €;*, €14, €2,, ..., €;, are indeterminates. For w € W; and v € T"(W;),
w* € W;*, w, € Wj_, v* € TYW,*) and v, € T'(W;,) are defined in the obvious way.
And pf*, pj*, p;, and p; are defined similarly.
On the other hand, we put index sets
= {1%,2 ... 0"}, L:={1.2....,0.} and I:=I"UI
and we consider a polynomial ring
Clel™ | j € Zso, a € 1],
where ega) is indeterminate for any j and «.

We fix positive integers p and ¢. For a symmetric matrix S of size p + ¢ and positive
integers a, b, we define

S = (el ele 0,00 S e L))o, 0) (= S8,
Sg = (e, ele) 0,...,0)50,... 0,68, ey,
Sap = (0,...,0,el") . ela)y §h0, .. 0,e) L el (= Sy).

Furthermore S, S+ and §%% denote S, Sy and Sgp, respectively. This notation
will be used in Section 6. Now, we consider a product

a1a2 Qazaq a2,—_1a2, a2r4+1 Qa2r+2 a
S S e S Sb1b2 Sb3b4 . e SbQT—lszSb27.+1 Sb27-+2 e bl

for some r > 0, where (a1, as,...,a;) and (by,bs,... ,b;) are permutations of (1,2,...,1).
This product can be expressed as
Z (coefﬁcient)e,gll*)eg*) . .egf*)egi*)eﬁ*) e egi*).
1<iy,ig,...,i;<p
1<j1,52,---,31<q
. . 1) (2" 1) (1.) (2. [ T X
We identify el(.1 )652 ). .ez(-l )eg.l )65-2 ). .egl ) with e;, ®e;, Q- - Qe Ve, Qej, Q- -Reyy .
Then this product belongs to TH(W}) @ TH(Wy.).
A linear combination of these products is called a homogeneous polynomial of S.
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Examples of homogeneous polynomials:

I=1
st
=2
Sis2  S§ls? §12g,.
=3
518355, S1S83S85, 838783, 555357, 535183, 535357,
S238,,8),  §2885, 81 §238,,8)  §316,,62  §31G, 82
S3151,82,  S128,593  §1285,63  §126,,83.

Let B(S) be a homogeneous polynomial of S. We put

X1

P(X1, X>) :m(<X2

) (
where X, € M(p,d,C) and X5 € M(q,d,C). Here d is
(C].) P(ale,GQXg)
GL(q,C),

(C2) P(X1g, Xog) =
If

(C3) P(X7, X32) is pluri-harmonic for each X; and X5,
and d := 2k, then we have the following theorem:

P(X1,X5) for any g € O(d).

Theorem (Ibukiyama [8, Theorem 1]) For a C*°-fun
and go € Sp(q,R), we have

X4
Xo

)

a positive integer. Then we have

P;*(al) ® P;*(a2)P(X1,X2) for any a1 € GL(p,C) and ay €

ction f: 9,1, = C, g1 € Sp(p,R)

((BO))pz91lp4.92)[3=30 = (BO)(fIrgT92+))3=30
AP p@ A(q) Bl

where for g¢; (Cip) Dﬁp)> and g ( qu)), we define gf =

Ay, 0 By 0 1, 0 0 O

C,O 10q ]()) 8 and gs, 8 14(1)2 10 %2 , and we put 0 := (%) and

1 1 p

0 0 0 1, 0 C, 0 Do

7(p) 0

30:= o w@ )

Applying the above theorem to f(3) = 6(g,3)"*
det(Im(3))®, we have the following lemmas:

or f(3) = 8(g,3)7"[6(g,3)| >



Fundamental Lemma 1 (holomorphic case) If B(S) is a pluri-harmonic homogeneous
polynomial of S, then there exists a homogeneous polynomial Q(X) of X such that

B(D)(6(g,3) ") = 8(9.3)"*Q(A(9,3))
for any g € Sp(p + ¢,R) and 3 € 9,44, and Q(X) has the following form

Q(X) =) (coefficient) X1 X2 ... X},

Fundamental Lemma 2 (non-holomorphic case) If P(S) is a pluri-harmonic homoge-

neous polynomial of S, then there exists a homogeneous polynomial Q(X,s) of X such
that

(B(9)(3(g,3)7" 16(9, 3)| " det(Im(3))*)) |33
= ((5(9,3) 7" 16(g. 3)| ™" det(Im(3))*)2(A(g, 3) — %(Im(B))_17 $))|3=30

for any g € Sp(p+ ¢, R) and 3 € H,4,.

Remarks.
(1) In the holomorphic case, we need not restrict 3 to 39. And Q(A(g,3)) depends only
on the upper-right (or lower-left) block of A(g, 3).
1 _ 1, . _ 1t - _
(2) Alg,3) = 5 (Im(3)) ™" = —-(5(9,3)) " Tm(g(3)) ™ ({9, 3)) " -
(3) Q(X) and Q(X, s) exist independently. We expect Q(X) = Q(X,0).

Example of pluri-harmonic homogeneous polynomials:

=1
st
=2 1 1
S8z — 3512512, 5357 — 3512512,
2

5182 + 5152 — 3512512, symmetric tensor valued case,

SiS2 — 5182, alternating tensor valued case.
=3

1
S%S%Sg — {(d + 1)(5235235% —+ 53153153 + 51251253?)

(d+2)(d—1)
— (8?383155 + 52381553 + 83185357 4 93181,52 4 §128,5357 4 §1255,53)}.



4. Applications

We assume that representations of GL(n,C) are irreducible. First we fix a Young
diagram (A1, A2,...,A,) which belongs to Z” and satisfies Ay > Ao > ... > A\, > 0,
v <min(p,q) and A\ + Ao +--- + A\, = [. Let

c:= Z sgn(1)To

oeH
TEV

be the Young symmetrizer of (A1, Ag, ..., A, ). Here H is the horizontal permutation group
and V is the vertical permutation group. The Young symmetrizer ¢ belongs to the group
algebra C[&;] where &; is the [-th symmetric group.

As is well known, C[&;] acts on T'(W;) in the obvious way. When C[&;] acts on
TH W) (resp. T'(Wg)), we express an element o of C[&;] as o* (resp. o0.). We put
V=t (TH W) and Vg, = ¢, (T'(Wys)). Then (p}, V") and (pgx, Vg«) are irreducible.

p

From Fundamental Lemma 1, we have the following:

Theorem (Garrett’s pullback formula) (Garrett [7], Bocherer [2], Bocherer-Satoh-
Yamazaki [5], [12]) Let k be even and k > p+ q+ 1. If VJ ® Vg.-valued polynomial
B(S) is pluri-harmonic homogeneous of S, then

d(r)

min(p,q)
OB (T )= 3 G X Dl Sl ) @ [, 120V,

Here C, is a constant satisfying

*

2r(r+1)—(rk+l)+1irk+l / <p7"*(1r _ ES)U*,Q(<1 1*1"))) det(lr _ gs)—r—l dsS = Cr’U*

S,
with S, == {S € M(r,C) | S =1, 1, -85S > 0}, d(r) is the dimension of &,
{fras fr2,- - fra@)} is an orthonormal basis consisting of eigenforms, Klingen type Fisen-
stein series [f]P is defined by

22y = Y fEr2(2))]p,

el ~\I'n

A" o B" B,
As Ay Bz Ba
c” o p" D,

0 0 0 Dy
:= f(—%). And for an eigenform f, D(f) is defined by

D(f):= > Af.T)det(T)",

TeT(r)

z\" 7,

where I'y, . := 2. 7

eI, » and pr? < ) = Zy1,and (0f)(2)

where \(f,T) is the eigenvalue on f of the Hecke operator (Fr (g qu) Fr).
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From Fundamental Lemma 2, we have the following:

Proposition (see Bocherer [3], Takayanagi [15, 16], [11]) Let n = p = q. For an eigenform

€6, , then
(ra@e () 1))
= gn(nt1=28)=(nk+D)+1nktlo(g 5 ) D(k + 25, f) £(Z)*

where c(s, p,) satisfies

/ (e (1 — SS)0ss AR, 5)) det(1y, — SS)* "1 dS = c(s, py)v*
S

n

with
R _1L S =20,
o2 \ =21, 481, -S8S)7t )

Conjecture There exists a non-zero constant ¢ depending only on p,, such that

C(s~|—n— _ .. HF I(s+k+ X —j)

2 e (s+n+k+1—25)

Conjecture If m is a critical point in the sense of Deligne [6] and all Fourier coefficients
belong to Q(f), then

L(m, f,5t)
7Tnk+l+m("+1)—n(n+1)/2(f, f) S Q(f)

5. Special cases

1. Symmetric tensor valued case (Bdcherer-Satoh-Yamazaki [5], Takayanagi [15])
Young symmetrizer
-y

oce6;

Pluri-harmonic homogeneous polynomial

(122
p (=2p)t(k+1—p—1),

12 2pu—1,2 2+1 !
S8 MSl?--'S2u—1,2uS2u+1 S



where the Pochhammer symbol (a),, :=I'(a + 1)/T'(a).
In this case,

(/2]
Q(X,s) = ce. Z a(l, p, ke, 8) X2 .. X212 X, .Xgu_l’gquﬁill .
n=0
and
D(X) = Q(X7 0)7
where

1/2
k)i S (M) K =2 0 (Sl + )
o 8] = \u W —20) (k— 1+ h)i_n ‘
2. Alternating tensor valued case (Takayanagi [16], [11])
Young symmetrizer
c:= Z sgn(o)o.

ceG,
Pluri-harmonic homogeneous polynomial

PB(S) := c*c.S157... 5L

In this case,

) — 1
Q(X, s) :c*c*H (_k_S+JT> Xix2. . . x}

j=1
and
Q(X) =9(X,0)
3. Weight (k+2,k+1,... . k+1,k,... k)
N ~ RN ’
-2 n—I

Young symmetrizer

c:= Z sgn(o)o.

oe{id.,(12)}
TEG,T(2)=2

Pluri-harmonic homogeneous polynomial
l
2k — (1 —2))

PB(S) := c*c,(S1 52 — 5 512815)83 ... 5L,

In this case,

-1 :
(X, s) = c"e. H (—k — s+ j%l)

ls
22k — (1 —2))

1 l ey
'{(_k_s_fr 2(2/lc—(z—2))>X1X2 *

and

Q(X) = 2(X,0).

X12X12} X3 ..

l

. X



6. Computation of P(9)EV ™
For simplicity, we put

5:=08(0,3), c:=det(Im(3)), A:=A(g,3) and E:= %(Im(‘%))_l.

)
We note that

00 =0A, 0t =c¢E,
6041062A0¢304 — _l(Aala3Aa2a4 + Aa1064A0¢2a3)
2 )

601062E043044 — _l(EalaSEOQOM + Ea1a4Ea2a3)
2 7

for aq, ag, asg, ag € {1%,2%, ... [ 1* 1,,2,,...,l.}. Using these relations, we obtain that
0107710177 %) = (7% |61 %) ((—k — $)A] + sEj),
0103 (577167 %) = (677 (0] 7 &) {((=F — )AL + sED)((=k — 5)AF + sE3)
1
— 5 (k= 5)(AzAT + AP A ) + s(B3ET + EYEr)) }

More generally, to describe B(8)(6~%|6|~>* &), we introduce “links” and “chain decom-
position”.

We fix an index set I. We call a non-ordered pair (aq, as) with a1, as € I and a1 # ao
a link, and define a set of links £(I) by

L(I) = {{(a1,a2), (a3, 04) ..., (2r—1,00-)}
| a1, a0,... a0, €1, «a; # (i #j) for some r}.

For L = {(a1,a2), (a3, a4), ..., (or_1,0.)} € L(I), L denotes the set {a1,as,... ,q}.
We remark #L = r and #zz 2r.
For Ly, Ly € L(I) with L1 = Lo, Ly and Lo are called chainable if we can express as

Ly = {(a1,a2),...,(2r—1,000)}, Lo ={(B1,52),---,(Bar—1,P2r)}

it 1, fori=1,2,...,2r —1,
Bi = .
aq, for ¢ = 2r.

with

If Ly and Lo are chainable,_so are Loy and Ly.
For Ly, Ly € L(I) with L1 = Lo, we can express Ly and Ly as

gl v
L, = |_| l;j, Lo= |_| ¢ (disjoint union)
j=1 j=1

such that ¢; and E;- are chainable for each j = 1, 2, ..., 7. The decomposition of L,
is called the chain decomposition of Ly with respect to L. The number -y is called the
number of chains and denoted by (L1, Lo).

Let T = {1*, 2% 11,2, . ,l*} For L = {(Oél, 052), (ag, 014), cee (Otzr—1, Oégr)}
and a symmetric matrix S of size p + ¢, we put

SL = Qo102 Gasoy  GQO2r—1Q2r

Then we have the following:
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Lemma For Ly € L(I), we have

oo (6 F 167 )

28 1
—6 e 3 (-

#Lo—~(L,Lo) v(L,Lo)
) ((—k — 5)A% + sE%)

LeL(D) =1
L=Lg
1\ #Lo v¥(L,Lo)
:(5'f|5|—2858)-(—§) > I (@k+25)A% —2sEY)
LeL(n  j=1
L=Lo

where
'Y(L7L0)

L = |_| ¢; (chain decomposition with respect to Ly).
=1

In particular,

#Lo
oro(57Fy =67k <—1> > (2K BEIAL,

2
LeL(I)
I-Ig

Remarks.
(1) In holomorphic case (s = 0), it is enough to calculate the number of chains (L, L)

and we need not show chain decomposition explicity.
(2) We put

(L, Lo)
H ((2k + 25)A% — 2sE%) = (2k + 25)" L Lo) (A — E)L 4 (remainder terms).

Jj=1

Suppose that P(S) is pluri-harmonic. Then from Fundamental Lemma 2, 3(9)(6~* |§]~>°
%) does not depend on remainder terms.
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